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Abstract-This investigation develops a set of exact kinetic equations describing density fluctuations 
in many body systems with S species. These equations are then applied to the analysis of a partially 
ionized gas with three species: electrons, ions and neutral atoms. The relationship of this theory to 
earlier kinetic theory investigations is discussed. A particularly simple approximation for the non- 
local, non-Markovian collision kernels in these kinetic equations is introduced and used to compute 
the dynamic structure factors S(k, a) characterizing the scattering of electromagnetic radiation 
(both Thomson and Rayleigh) from partially ionized gases. 

1. INTRODUCTION 
TIME correlation functions of dynamical variables play an extremely important role 
in the description of many body systems such as liquids, gases or plasmas. It is well 
known that transport parameters which characterize the irreversible behavior of such 
systems can be expressed in terms of time correlation functions calculated under 
equilibrium conditions (ZWANZIG, 1965). Moreover, the cross sections or emission 
coe3cients for the interaction of radiation with an aggregate of particles can be 
directly related to the time correlation of density or current fluctuations in the system, 

I ne theoretical significance of time correlation fuoctions, coupled with the ever- 
increasing use of radiation scattering as a technique for probing the microscopic 
structure and dynamics of matter, have stimulated the development of a variety of 
theories of density fluctuations in many particle systems. Most studies of density 
fluctuations in gases and plasmas (UIXONTOVICH, 1967; ROSTOKER, 1961) 
usually begin with a derivation (or postulation) of a kinetic equation describing the 
time correlation of fluctuations in the microscopic phase space density 

-- 

and 

To the lowest order of approximation, the appropriate kinetic equation for neutral 
gases is just the linearized Boltzmann equation, while for fully ionized plasmas, the 
corresponding description utilizes the coupled linearized Vlasov equations (MONT- 

Of course these simple kinetic equations are inadequate to describe high frequency, 
short wavelength fluctuations in dense gases or plasmas in which short-range Coulomb 
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collisions become important. A number of techniques have been used to derive higher 
order kinetic equations suitable for the description of density fluctuations in these 
latter situations. A particular!y powerful approach relies upon the use of projection 
operator algebra to develop an exact, but formal, kinetic equation for Y(x, p, x’, p’, t )  
which can then be approximated using standard perturbation theory or modeling 
(AKCASU and DUDERSTADT, 1969, 1970). This scheme has recently been applied to the 
study of density fluctuations in fully ionized plasmas (LINNEBUR and DUDERSTADT, 
1973). In this paper, we extend the theory to analyze partially ionized gases in which 
charged particle-neutral collisions are important. 

We Segin by deriving a set of exact kinetic equations describing density fluctuations 
in a many body system containing S species which is assumed to be in thermal 
equilibrium. This set is then specifically applied to analyze a three species ionized 
gas (neutrals, ions and electrons). The relation of these coupled kinetic equations to 
previous theories is discussed, and several standard alternative approximate kinetic 
equation descriptions of density fluctuations are derived. 

A more elaborate modeled kinetic theory of density fluctuations of plasmas of 
arbitrary ionization is then developed and applied to calculate the eiectron dynamic 
form factor S(k, w )  for a typical partially ionized plasma. 

2 .  KINETIC EQUATION DESCRIPTION O F  DENSITY 
FLUCTUATIONS I N  S-SPECIES SYSTEMS 

In earlier work (LINWEBUR and DUDERSTADT, 1973) we indicated that the pro- 
jection operator techniques of ZWANZIG (1961); MORI (1965) can be used to derive 
an exact equation of motion for a matrix of time correlation functions. In particular, 
if a is a column vector whose components are dynamical variables a,(xli. . . , pN), 
then Mori has shown that the correlation matrix 

satisfies an exact equation of the form 

where the frequency matrix d and the damping matrix F ( T )  are given as 
if) (aa*) ~ (aa*\-I 

@ ( T )  = ( f ( ~ ) f * ( O ) ) .  (aa*)-l 

f ( 7 )  = exp [ i ~ ( 1  - P)L]i(1 - P)La, 
where 

and the projection operator P is defined by its action on an arbitrary dynamical 
variable vector G as 

PG = (Ga*) . (aa*)-l. a. (9) 

Here a denotes a(O), a* is the row vector adjoint to a, and L is the kiouville operator 
L = ZyH, -1. 
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This equation can be extended to describe sets of dynamical variables a(p, t) = 
col [aj(p, t ) ]  which depend as well upon a continuous “momentum” parameter p 

(10) 

(11) 

where 

?(P, P’, 0 = W P ,  t)a*(p’)>. 
The kinetic equations describing density fluctuations in a S-species system can be 
explicitly derived by choosing 

a@> = col [a,@>, * * > as(P), * > a,(p>l (12) 
where the a,(p) correspond to the spatial Fourier transform of the fluctuation of 
gs(x, p, 0) from its equilibrium value 

N 

as=l 
as(p) = eikexU8 S(p - pus) - n, G(k)M,(p) = 6g,(k, p, 0) 413) 

W P )  = (Bs/2“3’2 exp (-P,P2/2mJ, B,  = ~/k?3T,. (14) 

where 

In order to explicitly calculate the generalized frequency matrix a@, p‘) and 
damping matrix f(p, p‘, T), we must first calculate the inverse of the static correlation 
matrix: 

+ d P >  P’) = (a,(P)a,,*(p’>) 
= n,M,(p) S@ - p’) d,,, f n,n,~Ms~)M,~@’)h,,~(k) (1 5 )  

where h,,(k) is the Fourier transform of [gss/(r)  - 11, gs,((r) being the static pair 
correlation function between species s and s‘. Here J@, p’) can be written more 
concisely as 

where 
$(p, p’) = E .  a@) S@ - p‘) f A . a@). i i(k).  A .  ah’) (16) 

[AI,,~ = n,d,,., [G(p)lss. = M,@) 8,,3 l&41ssJ = M W .  (1 7) 

The inverse correiation matrix is defined by 

(18) Jd3p’$(p, P‘) 4- “ 1  (P I > P”) = S(P - P ’ Y .  

[A“(P”) I ss = Sd”p ’Ms(P? $52 (P ’ 9 P”> * 

Substituting in equztion (16), one finds 

where 
6 U(p) . [J-’(p, p”) b(k)  . n“ Z(P”)] = 6(p - p”)f ( 1 9  

(20) 

But integrating equation (19) over p yields 

f i  . [I f A(/?) . i i ]  . A”(p”) = i 

Z(p”) = [i + &(k) . 51-1 . A-1. 

(21) 

(22) 
or 
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We can substitute equation (22) back into equation (19) to find 

where 
J-yp, p’) = [2 . B(p)]-l S@ - p’) - C(k) 

C(k) = 4(k)  . A . [ I  + 4(k) . A 1 4  . A-1. 
(23) 

(24) 
Thus having evaluated the inverse matrix @l@, p’), we can continue on to calcu- 

late the frequency matrix 

iQ(p, p’) = d3p”@(p)a”(p”)) . &I(”’, p‘) s 
by first noting that 

a 
as=l  ap as 

N s  
us(p) = (ik . p/m,)a,(p) 4- G,(P), ~ , ( p )  = 2 eik.xasF‘s - S(p - p“’). (26) 

Hence usicg equations (23,  (25), and (26) ,  one finds 

Finally, noting 

@(P, P’, 4 = d3P”(f(P, Of“P”, 0))  * J-Yp”, P’) (28) s 
and J d3p”f(p”, 0) = 0, one finds 

where 
;?,,,@, $, T> = [-, B/ ,[n‘\l-l/ C f n  t\ /,*/” n\\ 

h(P,  0) = (1 - m ( P )  = (1 - P>OS@>. 

/20\ 
‘ * ‘ * x s \ P I J  \ J s \ Y , * l J s  \P ’/ 

(30) 

Further explicit calculations of the damping matrix @(p, p’, T) will require approxima- 
tions. 

Hence the coupled set of exact kinetic equations for the time-dependent density 
correlation functions for an S-species system 

Y,,,(k, p, p”, L’j G @&@, p, i j  Eg s ”‘k 3 P 3 V ) l  -’’ (31) 
can be explicitly written as 

d3p’9,,(p, p’, T)gS,,(k, p’, p”, t - T )  = 0 r ,  s = 1, . . . , S. (32) 

These coupled kinetic equations for the Sp,,(k, p, p”, t )  are still exact, and still quite 
formal in that the damping kernels ~,,(p, p“, T) remain to be explicitly determined. 
It should be noted that these equations involve terms which are non-local in space and 
non-Markovian in time. It is also important to note that these exact kinetic equations 
for the time correlation functions are linear, unlike kinetic equations for distribution 
functions such as (g,(x, p, t))o. 
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3. KINETIC EQUATIONS F O R  PARTIALLY IONIZED PLASMAS 

We will now consider a classical, partially ionized plasma in thermal equilibrium 
at a temperature T with neutral density n,, ion density ni, and electron density 
ne = Zn,, where Z denotes the effective ionization per atom. Since the electron 
density fluctuations are of most interest in calculating quantities such as the scattering 
cross section for incident electromagnetic radiatior,, we wii! study the coupled kinetic 
equations for Y e e ( k ,  p, p”, t ) ,  Y, , (k ,  p, p”, t ) ,  and Y , , ( k ,  p, p”, f): 

651 

+ 2 1>Tk3p’cpss.(p, p‘, T)-Y~.,(~C, pl, p”, t - = o s = e, i, n. (33) 

To simplify and interpret this set of equations, we first confine our attention to 
wave-lengths large compared to the range of the charged particle-neutral interaction, 
but comparable to the much longer range of Coulomb interactions. [Essentially all 
of the restrictive approximations and assumptions discussed in this section will be 
removed in the more elaborate alternative theory developed in Section 4.1 Hence we 
can neglect Iz,,(k) in comparison with h,,(k), hii(k), and h,,(k). If we furthermore 
assume that the pair correlation function gss/(r)  for charged particles is given by a 
simple Debye-Suckel form 

s’= 9 ,  i, n 

h,,<(k) = -47iZsZs,1/2,2/(1 -/- k23.D2). (35) 

Under these two assumptions, one then finds that 

and 
C,,,(k) = 0 if s or s‘ = n 

Cssl(k) = - 4 ~ Z , Z , d [ k ~  E @V,,, for s, SI = e ,  i. (3 61 

’PL ~ U C  - coupled kinetic equations (33) then reduce to the more familiar form: 
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where the self-consistent field terms characterizing charged particle density fluctua- 
tions can readily be identified: while the damping terms can now be seen to play the 
role of generalized, nonlocal collision terms. 

To proceed further, one must now introduce approximations in order to obtain 
explicit expressions for the damping kernels qs,f(p, p', T) .  Of course, one could 
proceed by using perturbation theory to calculate pl,,,(p, p', 7 )  to lowest order in 
some suitable parameter. Earlier investigations (AKCASU and DUDERSTADT, 1969, 
1970; ZWANZIG, 1961) have indicated that q1~~4j.1, p', T )  yields the more familiar 
collision operators in the appropriate limits. For example, in the low density limit 
(MAZENKO, 1971) 

Jim rdTpp 'p l (p ,  P', .j-)f(p', t - 7) = Jd f (p ,  01 
n+O - 0  
t+ W 

where JB[ ] is the usual linearized Boltzmann operator. Similarly, the weak coupling 
limit yields the linearized Fokker-Planck operator, while an expansion in the plasma 
parameter (yleAD3)-1 yields the Balescu-Lenard collision operator to lowest order. 

With these facts in mind, we can now easily make contact with earlier theories of 
electron fluctuations in ionized gases. For example, if all short range collisions were 
neglected entirely, one would arrive immediately at the coupled Viasov description 
of SALPETER (1960); FEJER (1960); DOUGHERTY and FARLEY (1960); ROSTOKER 
and ROSE~BLUTH (1962). For weakly ionized gases, one can essentially neglect charged 
particle (Coulomb) collisions in comparison to charged-partick-neutral collisions. 
Furthermore, for weak ionization, the neutral density fiuctuations decouple from the 
electron and ion fluctuations. Finally, for low frequency, large wavelength processes 
in !ow de~s i ty  ionized gases, a density expansion of the pl",,(p, p', ij  ana p i i ( p ,  p', t )  
kernels is appropriate, yielding the linearized Boltzmann operator characterizing 
electron- and ion-neutral collisions 

I .  

Such approximate kinetic equations were recently derived by WILLIAMS and CHAPPELL 
(1971) to describe electron density fluctuations in weakly ionized plasmas. These 
authors then approximated the Boltzmann operator JB[ 1 by a simple BGR collision 
model in order to obtain an explicit analytic soliltion for Ye&, p, p", t ) ,  and hence for 
the electron dynamic form factor 

where 

G,,(k, S )  ss - d3p d3p"Yee(k, p, p", S> ' S  e s 
(39) 

(4 C) 

is the Laplace transform of the time correlation function of electron density fluctua- 
tions (s being the transform variable). 
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Such a BGK model was used earlier by GOROG (1969) to investigate the effect of 
charged particle-neutral collisions on the Thomson scattering of electromagnetic 
radiation from weakly ionized plasmas. Our exact set of kinetic equations (32) 
clearly indicates the sequence of approximations necessary to derive such kinetic 
models for partially ionized plasmas, and furthermore indicates how such a model 
can be improved-for instance, by inc!uding neutral dynaaics or charged particle 
collisions. In the next section, we will develop a much more sophisticated kinetic 
equation description valid for arbitrary k and w and degree of ionization by utilizing 
a simple model of the time dependence of the non-Markovian damping kernels 
v,&, p’, t )  which has proven extremely effective in describing high k ,  w density 
fluctuations in liquids, gases, and plasmas. 

It should be mentioned that Williams and Chappel also derived an equation 
analogous to (38) for the “self” part of the density correlation function which char- 
acterizes test particle motions (self-diffusion). A more general (indeed, exact) kinetic 
equation for test particle motions can easily be derived using the projection operator 
formalism. This equation is presented and discussed in Appendix A. 

4. A MODELED KINETIC EQUATION DESCRIPTION 

As in earlier studies (LIN~TBUR and AKCASU, 1972) we will model the time depend- 
ence of the damping kernel in the following fashion: 

vss,(p, P’, t )  = 91XP7 P’, 0) exp (--or,”s,(W + v:,,(P7 P’, 0) exp (--cr$,(W) (41) 
where pis, and y:,, refer to the self- and distinct parts of the damping kernel which 
can be explicitly calculated at t = 0: 

where 

D,(O) = 2 D,,r(O), D,,?(O) = - 
(4) 

S’ 38, 
a 2 v s s ’  

D,,,(k) = D,,.(O)f - d3Rg,,,(R) - (1 - COS k . R). 
B S  ‘S aR aR 

The exponential relaxation parameters a,,@) can be specified by applying various 
known constraints (LINNEBUR and AKCASU, 1972) to the small and large k behavior of 
the solutions to the corresponding modeled kinetic equations (substituting equations 
(41-43) into equation (32) and Laplace transforming in time): 

x [- kk nrCrs(k) - - ”” - nT d, , (k) ]  . /d3p’p’Y,,(k, p’, p”, s). (45) 
m7mS *,m, ns 



654 E. J. LINKEBUR and J. J. DLDERSTADT 

v.,P(@> = .,l."(O) 

k e e  = k i t  = ;.D-l, 

where v,, is the self-col?ision frequency for the rth species, 
while 

2 4 1 3  

and knnd is given in terms of the shear viscosity qs, as 

where 

The solution of the set of coupled kinetic equations (45) for 

d3P"9&, P, P", SI 

is straightforward and yields (in matrix notation) 

where 
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Although rather formidable in appearance, this model lends itself quite readily to 
explicit calculations of the dynamic form factor SJk,  w) characterizing density 
fluctuations, primarily since the t = 0 form of the damping kernels yield kinetic 
equations which can be solved analytically. It furthermore yields the exact large 
frequency behavior (i.e. o -+ CO or t -+ 0) in contrast to other more phenomenological 
kinetic models such as the Boltzmann-Vlasov-BGK model. The non-local and non- 
Markovian character of the modeled damping or collision terms is frequently signi- 
ficant in analyzing scattering experiments at large k and o. 

One particularly interesting application of these results is to the study of light 
scattering from partially ionized gases. Since ionized as well as neutral atoms are 
present, both Thomson and Rayleigh scattering will occur, the first being characterized 
by the electron dynamic structure factor See(k, o) while the second is characterized 
by the neutral factor S,,(k, a). The relative significance of these two rnechanisms 
depends upon the ionization of the plasma. Since the total cross section characterizing 
Rayleigh scattering from neutral atoms is of order cm2, while the Thomson 
scattering cross section from free electrons is 6.65 x cm2, it is evident that for 
ionizations ne/n, > 0.01, the Thomson scattering will dominate Rayleigh scattering, 
and hence the primary role played by the neutral atoms will be to perturb the electron 
dynamic structure factor from its behavior for a fully ionized plasma. 

As a specific application, we have applied this theory lo study the influence of 
neutral co!!isiocs 9x1 Se,(/<, CG) characterizing Thomson scattering from a singiy- 
ionized, lithium-like plasma. The neutral-neutral and neutral-charged particle 
collisions were crudely modeled using a Maxwell force law (see Appendix B) with 
force constants 

Ken = Kne = 5-87 x erg cm4 

Kzn = Kni = 9-36 x loA3 erg cm4 

K,, = 9.36 x erg cm4. 

The plasma was taken to have an electron and ion density of ne = n, = ~ m - ~  
and a temperature T, = Ti = T, = 5.0 eV. The neutral density was varied from 
a, = 1020 cm-3 to n, = 1018 ~ m - ~  (corresponding to ionizations of from 10 to 90 
per cent). The predictions of the kinetic model equations (46-58) for both the ion and 
electron resonances in See(k, w) are shown in Figs. 1 and 2. As one would expect, the 
effect of neutrals is to broaden (and lower) these resonances. 
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Part ial ly ionized Iith;-m 
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0 0.5 1.0 1.5 2.0 2 . 5  3.0 3.5 

AX, A 
FIG. 1.-The ion feature of S,,(k, o) for a partially ionized lithium-like plasma with 
neutral density lo1* ~ m - ~  (solid curve) and lozo ~ m - ~  (dashed curve). Here, ne = l O l e  

~ m - ~ ,  T = 5 eV. 

I I 

0 480 400 500 513 

A A ,  a 
FIG. 2.-The electron satellite peak of Se& o) for a partially ionized lithium-like 

plasma with neutral density lozo ~ m - ~  (solid curve) and lozo c m 3  (dashed curve). 



A microscopic theory of density fluctuations in partially ionized gases 657 

We have chosen this calculation as only one illustration of the utility of the model. 
It is a trivial extension to calculate other quantities such as the high frequency elec- 
trical conductivity o(k, CO) for partially ionized plasmas (since this is closely related to 
the longitudina! current correlation and hence to S(k, a)), and to study such quantities 
for arbitrary k and Q as well as arbitrary degree of ionization. 
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APPENDIX A :  TEST PARTICLE MOTIONS 
Define the test particle correlation function for species r as 

I 8r 1 8 )  or, P, P“, t )  E @ f i l  or, P, t )  6f *1r(kr P, 0)) (‘4.1) 
where 

(A. 2)  Sfdk, P, t )  E exp tzk. xl‘(t)l SIP - PWJ - 7S(k)Mr@). 

If we choose our dynamical variable a(p) = 3fl,(k: p), then repeating the analysis of Section 2 yields 
an exact kinetic equation for gp)(k, p, p”, t ) :  

(; - i k . p  x) p l s ,  J~ L , 1; d7 1 d3p’@)(p, p’, r)Qpl(k, p’, p”, t - r )  = 0 

1 

(-4.3) 

where 
a 

aplr 
8(p’ - pl~)eni(l-PILerk~~lrFlr, - a@ - PIT)} e ; : )@,  p’, T) [M~o’)]-l(e-.”lrFlr. - (A.4) 

a 
aplr 

and the projection operator P, is defined by 

PTG@) = 1 d3p’[MT(p’)l-’(G@) Sf *Il&, p‘, 0)) 8 0 ’  - PI‘). (‘4.5) 

It should be noted that the “self-consistent field” terms do not arise in this equation since it char- 
acterizes single particle motions. Furthermore, the test particle density fluctuation does not couple 
directly to the collective density fluctuations 8gg,(k, 2,  t ) .  [Such coupiing terms are of order l / N  and 
vanish in the thermodynamic limit as N --f cc , V .+ oc, such that N /  V = n.] Hence choosing addi- 
tional dynamical variables, e.g. 

a(p) = col {ahT, 8gs, . . .I (-4.6) 
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will merely reproduce the test particle equation (A.3) decoupled from a set of collective kinetic 
equations for the correlation functions of cYg3(k, p, i). 

APPENDIX B : STATIC CORRELATION FUNCTIONS FOR 
MAXWELL FORCE LAWS 

If one chooses a Maxwell force law such that 


