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Abstract-The influence of temperature perturbations on the propagation and stability of low fre- 
quency waves in a weakly collisional plasma is analyzed. Temperature oscillations in general reduce 
the stability of ion acoustic waves. It also tends to lower themagnitude of the critical current necessary 
for triggering the instability. In the case of drift waves its effect is to change the destabilizing role 
of electron-ion collisions in the isothermal model into a damping influence. 

1. INTRODUCTION 
THE EFFECT of weak collisions on the propagation and stability of low frequency waves 
in a fully ionized plasma is often investigated by means of kinetic equations with an 
appropriate collison operator. In order to properly account for the dominant small 
angle collisions the Fokker-PIanck collision operator is frequently used. However, 
the complete Fokker-Planck kinetic equation (MONTGOMERY and TIDMAN, 1964) 
is mathematically extremely complicated and very often one has to resort to numerical 
methods. To make the analysis tractable a model Fokker-Planck operator is very 
frequently employed (DOUGHERTY, 1964; OPPE~FIM, 1965). This model also in- 
corporates a diffusion in velocity space and hence the dominant effect of small angle 
interactions is to a certain extent correctly taken into account. However, the mo&l 
omits the details of the collision mechanism such as the velocity dependence of the 
collision frequencies and the anisotropy of the dynamical friction force. Instead 
effective collision frequencies must be specified apriovi (ONG and Yu, 1969, 1970). 

In the model Fokker-Planck collision operator the electron and ion temp- datures 
are usually assumed constant, i.e. the plasma is assumed isothermal. This approxima- 
tion has the simplifying consequence that the coefficient of the diffusion term in the 
collision operator is a constant. It has been noted recently that temperatwe perturba- 
tions may have r significant influence on the stability criteria of low freqiieiicy waves 
in collision dominated plasmas (ROGNLIEN and SELF, 1971). In this paper we shall 
study the effect of temperature perturbations on the propagation and stability of ion- 
acoustic and drift waves in a weakly collisional plasma with Ti M T,. The electron 
and ion temperatures will be allowed to vary. Consequently, the velocity space 
diffusion term in the model Fokker-Planck collision operator now has a variable 
coefficient. The variation in the temperatures will have to be determined through the 
macroscopic conservation equations. 

The kinetic equations for ions and electrons are solved by means of the usual 
perturbation technique. Instead of applying the traditional method of integration 
along particle trajectories, we employ a velocity space Fourier transform (ONG and 
YIJ, 1970). This method is preferable because of the relatively complicated nature of 
the modei Fokker-Planck collision terms. The dispersion relation and growth rate 
are then determined for the case of small collision frequencies (v/k,,uFi << 1 , Y/$ << 1 , 
V/W Q 1) and the stability of the oscillations investigated. 
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Our results show that temperature perturbations in general reduce the stabilizing 
factors in the case of ion-acoustic waves. It also tends to decrease the electron current 
necessary for instability. In the case of the drift-wave or universal instability, the 
effect of temperature fluctuations yields stabilization by electron-ion collisions, while 
the iso-thermal calculations predict instability. Similar results are also obtained in a 
recent investigation of the drift wave instability by BHADRA (1971), who solved the 
the complete Fokker-Planck kinetic equation numerically, and obtained electron-ion 
collisional damping for very smal! collisional frequencies. 

2. FORMULATION O F  THE PROBLEM 

A low-fl singly ionized plasma is immersed in a stationary externally applied 
magnetic field directed along the z-axis of a Cartesian coordinate system. The plasma 
density and temperature may vary in the x-direction. We assume that a temperature 
difference between electrons and ions is maintained. This may be accomplished by 
introducing an external heat source for the electrons and an external heat sink for the 
ions, as is often found in laboratory discharges.* 

We consider low-frequency electrostatic waves of the form exp (ik * r - iwt), where 
k = k,e, + kile,. The kinetic equations for the electrons and ions are 

where 1 Jjj(fj) = v j j  - . [- - + (v - Uj) f j  
a T? a 
av m j a v  

The subscriptsj and 1 denote either electrons or ions. 
The number density, mean velocity and temperature are given respectively by 

I Z ~ ( F ,  t )  = f j  d3v 

njuj(r, t> =l,.lr. d3v 

sp, 
m 

m 

3niTj(r, t )  = m j j - ( v j  - uj) f j  d3v. 

The terms J j j  and J j z  represent collisions between like and unlike particles respectively. 
The collision operators satisfy conservation of number, momentum and energy in 
like particle collisions. They also satisfy conservation of number and total momentum 
in unlike particle collisions. Total energy is conserved in unlike particle collisions only 
if there is no external source of energy, such as, for example, an applied electric field. 
Otherwise, we must assume that energy is dissipated by radiation through unlike 
particle collisions. In this way a “steady state” can still be maintained provided the 
applied electric field is sufficiently small. 

* The authors thank the Referee for his suggestions in regard to this matter. 
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We also have the equations of continuity, the equations of conservation of mom- 
entum, and Poisson’s equation. These may be written in the form: 

ani  a 
at ar -t - . ( n p , )  = 0 - (3) 

V .E  = 477 2 ejni ( 5 )  
i 

where gi is the traceless stress tensor. 
We linearize equation (1) and carry out a normal mode analysis assuming the 

disturbances to be of the form exp(ik * r - iut). Throughout the analysis we use the 
assumption that collisions are weak. This implies that the largest collision frequency 
of the particles in the plasma is very small compared with either the wave frequency 
or the ion Larmor frequency. The steady state kinetic equation is satisfied to order 
vIQi by the following velocity distribution which is nearly Maxwellian: 

1 dnj  
n, dx 

e . = - -  

1 dTi d . = - - -  
Tj dx 
e,B 
m,c 

Q.=-- .  

The drift velocity uio may be related to the external electric field E,. If the drift 
velocity ui0 of the ions is taken to be zero, then the corresponding electron drift 
velocity is given by 

It may then be shown that the resulting Ohmic heating is exactly equal to the total 
energy loss in the unlike particle collisions (ONG and Yu, 1969). 

We combine the like and unlike particle collision terms in the linearized k s t  order 
eauations and obtain 

ne0 = -eEo/m,vei 

where 
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the last term in (7) is due to the temperature perturbation, which contributes only to 
the non-homogeneous part of the equation forA.f;.,. 

To solve equation (7) we apply a Fourier transformation in velocity space: 
m 

Gj(a) = [ fjl(v) exp (-ia . v) d3v. 
J-m 

The perturbation number density, nil, is then given by G,(O). The transformed 
equation may be rearranged into the form: 

a 
U(O)G(O) + b(a). y G(G) = C(.) 

OQ 
where 

(9) 

vTo2 
~(a) = --io + iyuooz + - 

m 

The subscripts which indicate the various species have been omitted. Equation (9) 
is a first order partial differential equation and its solution may be obtained by the 
method of characteristics. In terms of the parameter t the characteristic equations are 

d 
a(a')G(a') + - G ( d )  = ~(a'). 

dt 
We can integrate (1 1) and obtain 

G(o') =it -m exp ( /t"u[a'(t'')] dt" (12) 
The vectcr ~ ' ( t )  is then determked by its components which are given by the solutions 
of (10) 

o,'(t) = -(k,,Q/Q2 + v') + exp (vt)[(o, + A) k Q  cos Qt 
Q2 4- v2 
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It is to be noted that (12) is a rather complicated but exact integral of the linearized 
kinetic equation (7).  In the limit of small collision frequencies we neglect terms of 
order (vj/QJ2 and (vjIki,u,j)2, with vTj = (Tj/mj)1'2, the thermal velocity of the 
particle of species]. From the relation n, = G(0) we then find the perturbation number 
density. This is given by 

1 
n.1 = - - [n,e4,  exp (-b)j 2 (A,  + i d l  - ivw*A2 - i y~*bqA, )  

T 1 

where 
ik4, = El 

c = g(k,VT/a)2 
q = Si€ 

CO* = ck,TE/eB. 

Furthermore, in equation (14), we have made the frequencies and velocities dimension- 
less by dividing them by kliuT and vT respectively. The functions Ai with i = 
0, 1, . . . , 5 are given by the following expressions: 

A, ZQI,Z, - 6122,' - CO*[(~ + bq)I,Z, - b@,'Z, - hI&"] 

Al = [(21 + b)12' - 2ZI,]Z, - &bI,'Z," - &I,Z~v 
+ Q12[(2 - b)lZ,' - iz;  - hlz;] 

21 A2 = - bl ,  Z,' + IZZ, - &I,Z," 

1 b(1, - I,') + - I ,  - I,' 2,' f y a I  -!- 1l'>z; + 2dJ:  1 6 2 2 1  
l2 
b 

k A4 = --i - ( I ,  - I2')Z,UiS 
kllQ 

E A5 = 2b(I ,  - I,')Z, - $I,&" - i - U,Z, 
k, 

B - - l([(l -I- b)I,  - bI,']Z, - I&") 
k, 

Ii = I,@) is the Bessel function of order I with imaginary argument. 2, I Z,(o - 
kliu, + ibv - ZG) is the plasma dispersion function (ONG and Yv, 1969, 1970). 
The superscripts on I ,  and 2, denote derivatives. 

through the continuity and The quantities ul* and T, are related to n, and 
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momentum equations (3) and (4) as follows: 

As we are restricting ourselves to weak collisional effects the contribution of the 
traceless stress tensor to the expression for Tj, in (16) is negligible since this would 
lead to terms of order ( Y ~ / Q , ) ~  and (vj/kiiaTj)z in the dispersion relation. 

We may now readily obtain the dispersion relation by the substitution of equations 
(14), (15) and (16) into Poisson's equation (5). 

3 .  LOW FREQUENCY WAVES 

In this section we consider electrostatic waves with frequencies much less than the 
ion cyclotron frequency. In particular, the ion-acoustic and drift waves will be in- 
vestigated. The former may be unstable in the presence of a drift current parallel to 
the magnetic field. The latter may be unstable if finite Larmor radius effects are 
significant, or when there are sufficiently large gradients in the plasma. As we are 
considering the case where w < Qi, only the zeroth order Bessel functions contribute 
to the summation in (14). 

(a) Ion-acoustic watie instability 

geneity effects. Moreover, we may assume 

We now let w = w0 4- iy ,  and assume y << q,. The real part of the dispersion relation 
yields the ion-acoustic wave frequency 

where 1, is the electron Debye length. 

This can be written as 

where 

In considering the ion-acoustic wave instability, we shall neglect the inhomo- 

/17\ 
1s 41 vr* < e?/.kii < Y F e .  

wo = kll  (T5/mi)1/2( 1 + k23 ' 5  q-ll2; kA, < 1. 

The imaginary part of the dispersion relation gives the growth rate of the instability. 

Y = YO 4- Yi + y e  

Here yo, yi and ye  represent the attenuation due to wave-particle interactions, ion- 
ion collisions and electron-ion collisions respectively. Note that as far as collisional 
effects are concerned drift is coupled via the electron-ion collisions in a destabilizing 
sense if ki,ueo/oo > 0, i.e. for the wave with phase velocity in the sense of ue0. It is 
seen that ion-ion collisions always lead to a damping effect. However, in the presence 
of a drift current, electron-ion collisions may increase the growth rate of the instability. 
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In the isothermal case the coefficient 7 in ye is replaced by y .  This shows that the 
effect of the temperature perturbations is to lower the stabilizing influence of the 
electron-ion collisions. 

The critical electron drift velocity above which the plasma becomes unstable is 
2 2 2  

’U wo/k\l f nli2(m,/rn,)(.,i/k114(1 + k ) 

+ ( ~ ~ / ~ e ) ” z ( ( r ~ / ~ ) 3 ” ” ( w , / k i l >  exp (-0,” /kiy V& ) 

x (1 + k23.:)4 exp ( - w ~ / k , , 2 u T ~ ) .  (18) 
Equation (1 8) indicates that temperature perturbations tend to reduce the magnitude 
of the critical electron drift velocity necessary for instability. Ion-ion collisions again 
shows a stabilizing influence. In the isothermal limit the expressions for wo and ue0 
above are quantitatively slightly different from our earlier results (ONG and Yu, 1969) 
because here we have neglected terms of order higher than (k , ,  Vri/w)2, while in the 
earlier paper such terms are included in the analysis via interaction. In Fig. 1 we show 
the effect of temperature perturbation on the threshold drift ue0 in the case of an ion 
acoustic wave as k?,, and TJT, are varied. The growth rates are shown in Fig. 2. 

N U  x 

-t 
N 
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Go’% 

FIG. 1.-The threshold current of the ion-acoustic wave instability. Results from iso- 
thermal calculations are indicated by the dashed curves. The regions to the right of the 

curves are unstable. 

(b) Dryt wave instability 
To consider the drift wave or universal instability we retain the inhomogeneity 

effects while neglecting the external electron drift current. Again, we shall assume the 
wave phase velocity ordering as given by (17). For the propagation frequency of the 
drift wave we obtain 

00 = 0~*50/ (2  + k2Li2 - 50); k& = kVTi/wDi < I 
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-0.08 1 
FIG. 2.-The growth rate of the ion-acoustic instability. 

where we have let Ti = T,, be = 0, dT/dx = 0 and (,,@I) = I,@) exp (-b) with 
b = bi = $(k,vTi/QJ2. From the imaginary part of the dispersion relation we obtain 
the growth rate for the case where b < 1, i.e. kg2rL? < 1, where rLi is the ion Earmor 
radius : 

yo 'U (m,/mni)li2w,2(1 + b + k23.?)-l 

yt 'U -v& + b 4- k22~)-"(2b  + $(I + 7b)k2A,2 

x (r1"(2b f k2A,")(1 - b)-l - ~1/2((mt/m,)'/2(2 + k2A;) exp (-cot)} 

+ 2 - k If (1 + k2A:)w,2[1 + k2ibf + ib(7 - k2A:)]) 
k2 

ye N ( ~ ~ , / m i ) ~ , i w ~ ( l  -+ b + k21~~)- '  

1 k 2  1 k2 
x -4 + $2b + (1 + b)k2i . f ]  - 2 A- lfrb(3 - k'A;) + k'l.;] . 

In the expressions above the frequencies are non-dimensionalized with respect to  
iCiiuTi. i n  the isothermal case the terms 2b, 1 -+ 7b and 7 - k2?,: in the expression 
for yi are replaced by 4b, 1 + 3b and 3 - k2%? respectively. More important, the 
large damping term -4 in yE does not appear in the result for the isothermal case. 
Figure 3 shows these results. 

Consequently, we note that the isothermal assumption leads to an overestimation 
of the ion-ion collisional damping. On the other hand, the inclusion of temperature 
perturbations changes the effect of electron-ion collisions from growth to damping. 
The latter result has also been found by BHADRA (1971), who solved the full Fokker- 
Planck equation numerically for the effect of electron-ion collisions on the universal 
instability. 

In the limit of weak collisions Bhadra's result (equation (18) in his article) can be 
written in the form 
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FIG. 3.-The growth rate of the drift wave instability. 

This is to be compared with the most significant term in our expression for y e  above, 
namely 

The growth rate for b > 1 is given by 

yo N (me/mz)1'2~,2[7i(2b)1/2 - ~ ~ / ~ ( n z J r i t ~ )  exp (-U:) 
yz 'U - y*2~02(bm, /27 i r i t , ) ' / 2 [~  + (2 + k2i,")-l] 

- 4(k,,2/ik2)(nz2/m,)1i2~2~(l + k2j.,2)(2 + k2,?:)-' 
y e  N 4(m,/m,)y , ,~o"[4(2~b)~'~ - (2 1 k'I.,">-']. 

Again, in the above expressions ail frequencies are made dimensionless with respect 
to klIuTz. In the result for the isothermal case the term (2 + k2312)-1 does not appear, 
while the expression for yz is only slightly altered. Thus, for b > I the temperature 
perturbations does not affect the contribution of ion-ion collisions but it again 
introduces electron-ion collisional damping which does not appear in the isothermal 
model. Naturally, our conclusions above are valid only in the case of weak collisions 
in the plasma. 

4. CONCLUSION 
We have studied the influence of temperature perturbations on the propagation 

and stability of low frequency waves in a fully ionized plasma. In regard to ion 
acoustic waves it reduces electron-ion collisional damping and decreases the magnitude 
of the drift current necessary for instability. On the other hand, temperature per- 
turbations have the effect of reversing the destabilizing influence of electron-ion 
collisions found in the isothermal calculations of the drift wave instability. In this 
case temperature oscillations actually introduce electron-ion collisional damping. 
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