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Abstract—The beam-plasma interactions in the Astron device are examined utilizing a model which
consists of a homogeneous, cold, relativistic electron beam (E-Layer particles) streaming through a
Maxwellian plasma normal to a uniform external magnetic field. Using linear stability analysis, the
model shows that the strongest interactions occur at beam harmonics in the vicinity of the plasma
normal modes which are near the upper hybrid frequency, and above each subsequent multiple of the
plasma electron cyclotron frequency. The possible stabilizing effects of collisions between plasma
electrons and background neutral particles, as well as the energy spread for beam particles are also
examined. It is shown that collisional effects are especially strong at collision frequencies of the order
of the beam cyclotron frequency and that the combined effects of collisions and energy spread may
lead to quenching of the unstable modes. Comparison of the analytical results with experimental
observations is presented and discussed.

1. INTRODUCTION

THE INTERACTION of a beam of charged particles with a target plasma and its relevance
to many areas of plasma physics has been the subject of many investigations in recent
years (BRIGGS, 1964; WATSON et al., 1960; SINGHAUS, 1964; KUSSE ef al., 1970;
BOGDANKEVICH et al., 1971; BOHMER et al., 1971; SELF et al., 1971; KAINER ¢f al.,
1972). The various roles that such a beam plays when propagating through a plasma
are indeed numerous. One role that has been receiving increasing attention is that in
which the beam transfers some of its streaming energy into thermal energy of the
plasma, thus heating it. An even more basic role is that in which the beam is used to
create a plasma via ionization of a background neutral gas.

Another role, in which the beam may be used, is to form a closed magnetic region
to confine a plasma. The Astron Thermonuclear Machine is such a device (CHRIs-
TOFILOS ef al., 1958, 1968). A closed system of magnetic field lines is created in the
vicinity of a thin shell of circulating electrons called the E-Layer. These E-Layer
particles circulate about an external magnetic axis and are confined in their axial
motion by mirror fields. As the density of these E-Layer particles increases the self-
magnetic field produced by them also increases until the combination of external and
beam self-field gives rise to a closed system of field lines.

As the E-Layer particles enter the Astron system they interact with neutral particles.
This interaction leads to ionization of the gas and subsequent creation of a plasma.
Because of the space charge of the beam, the plasma electrons are initially ejected out
of the region of the E-Layer where the jonization has occurred. The plasma ions on
the other hand are attracted to the region and continue to build up in concentration.
When sufficient plasma has been formed so that the space charge of the beam has been
charged neutralized by the plasma ions, further ionization allows the plasma electrons
to remain in the E-Layer region so that charge neutrality is maintained. Obviously,
when a large amount of plasma has been created, the entire beam-plasma system
appears to be that of a low density beam of charged particles propagating through a
dense plasma, which itself is approximately charge neutral. When this stage is
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arrived at in the evolution of an Astron experiment, it is followed by the appearance
of radiation at certain harmonics of the beam cyclotron frequency (the orbits of the
beam particles are approximately circular due to the external magnetic field). This
event occurs long before sufficient beam density has been reached such that the self-
magnetic field of the beam becomes any significant portion of the applied magnetic
field. The observed radiation has been postulated to be due to a beam-plasma inter-
action, since it appears near those beam harmonics in the vicinity of the plasma upper
hybrid frequency. This interaction has been labeled the “Hybrid Mode,” by FEs-
SENDENX et al. (1970).

The interaction between a dilute beam of charged particles and a dense plasma
results from the coupling of the electric and magnetic fields of the plasma to the charged
particles of the beam. In the case of the Astron system, the highly relativistic beam
interacts with the electric field associated with the normal modes of the plasma
resulting in energy transfer from the beam to these modes. The subsequent division of
this transferred energy into field and particle kinetic energy can result in plasma
heating, as discussed by LOVELACE et al. (1971). This article is not concerned with the
ultimate disposition of this energy, but will find and attempt to understand the con-
ditions that give rise to this transfer of energy from the beam to the plasma. It is
hoped that by studying these initial events one can better delineate the direction in
which a nonlinear theory is to proceed in order to discuss the final partition of energy
between beam, plasma particles and field energy.

From the above description of the system of interest, a base model is proposed to
study the beam-plasma interaction in Astron, and is presented in the next section.
It consists of a linear stability analysis of a homogeneous, cold, relativistically stream-
ing beam of electrons propagating through a cold, homogeneous plasma immersed in
a uniform magnetic field (Stix, 1962; MoNTGOMERY and TiDMAN, 1964; HoLT and
HaskerL, 1965). For a cold plasma, a branch of the extraordinary normal modes
occurs near the plasma upper hybrid frequency and comprises the modes for which the
beam-plasma interaction can probably occur (CHRISTOFILOS, 1968; BERNSTEIN,
1958). Our model shows that the strongest interaction does occur at those beam
harmonics in the vicinity of these modes.

When thermal properties of the plasma are included, unstable beam-plasma
modes appear at harmonics in the region of the second and subsequent plasma
electron cyclotron frequencies as well as near the upper hybrid frequency. These
results are presented in Section 3 for a Cold Beam-Warm Plasma Model.

As possible mechanisms for the observed quenching of unstable modes, we con-
sider in Sections 4 and 5, respectively, the effects of plasma electron-neutral particle
collisions and energy spread in beam particles. The similarity of the resulting dis-
persion equation to that of the electrostatic streaming instability is noted (BRIGGS,
1964). This resemblance is noted because the two phenomena result from almost
counter conditions of the wave properties, yet the interaction mechanism is exactly
the same.

2. COLD BEAM-COLD PLASMA MODEL
The first model proposed to explain the beam-plasma interaction in Astron con-
sists of a cold relativistic streaming electron beam interacting with the “extraordinary”’
modes of a cold plasma (ST1X, 1962). The reason for examining these modes is that



Beam-plasma interaction in Astron 731

the relationship between their frequency and wave number places them near the upper
hybrid frequency of the plasma, where the experimental observations indicate that
r.f. radiation appears. Likewise, these modes have an electric field component parallel
to the direction of beam propagation, thus allowing the charged particles of the beam
to interact with the electric field of the normal modes of the background plasma. The
spectrum of wavelengths examined is such that a localized plane wave analysis is
employed, i.e. the wavelengths of the oscillation are much smaller than any geometrical
dimension of the system. With the neglect of finite boundary effects, the techniques
of infinite, homogeneous theory are applicable.

We consider the response of the beam and plasma to an arbitrary electromagnetic
plane wave whose electric and magnetic fields are given by

E(x, 1) = e(k, w)e™™!
B(x, t) = b(k, w)e™*1,

Response, in this case, means induced current density caused by the electromagnetic
wave on the beam and plasma species. The relationship between the field vectors of the
wave and the induced current density of the species is given by Maxwell’s equations:

®

VxE=-—la—B
¢ ot
VxB=lQE+4—WJ (2)
cdt ¢
V.E=4nmp
V.-B=0,

where J and p are respectively the current and charge density of the medium species.
Considering a cartesian coordinate system, the following wave equation is obtained,

w* 4mie

kx (k x €) +2e=— "2 J(e), 3
c

4

where the induced current density, J(e), for the beam-plasma system of interest is
given by

J(€) = Jzpan(€) + Jprasua(e).

The remaining part of the analysis involves the calculation of the induced current
density, with the resulting dispersion relation obtained by setting the determinant of
the coeflicients of the electric field components in the wave equation equal to zero.

Figure 1 shows an idealized cross-section of the Astron system pertinent to the
beam-plasma interaction (CHRISTOFILOS ef al., 1958, 1968). Itis a sector of a circular
region that appears midway and perpendicular to the external magnetic field. The
E-Layer particles rotate about the magnetic axis in approximately circular orbits of
average radius R in a cylindrical shell of thickness ¢z7.

The experimental results on the “hybrid”’ instability indicate that it does not appear
until charge neutralization of the beam occurs (FESSENDEN et al., 1970). Thus, we
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Fic. 1.—Cross-section of Astron system showing E-layer.

8o
Z

consider the following simple model of the plasma species. We assume an infinite
homogeneous, cold plasma of uniform density, #p, immersed in a constant magnetic

icq 1 o : e | A 4l
field, B,. Collisions between plasma particles and other particles are ignored, and the

relevant equations to describe the plasma species are the fluid equations:

0
En: x,H+Veny(x,1)=0
dv, 1
m,—%=gq, [E(x, f) + =v, x B(x, t)} 4)
dt c
d 0
J = 3 = a .Vﬁ
« = Malla¥a dt ot T

where 1,(x, 1), v,(x, ) are the density and velocity of particles of species «, whose mass
is m, and charge is ¢,. Since the high frequency spectrum is under consideration, the
ion motion will be ignored and only the plasma electrons will be considered to play
a role in the beam-plasma interaction.

Since the E-Layer mean radius is approximately 40 cm, we consider the interaction
to occur in a sector of the E-Layer where the beam particles have essentially straight
line orbits. The effect of the external magnetic field on the orbits of the beam particles
is therefore ignored, although the periodicity that it gives rise to in the direction of
propagation of the beam is maintained. Thus, the problem reduces to that of an
infinite, monoenergetic, homogeneous electron beam of density #p, streaming at a
relativistic velocity Vp. Neglecting self-fields and collisions, the relevant equations
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describing the beam species and its interaction with an electromagnetic wave are simply
the relativistic fluid equations:

%(x, H+Venvx,t)=0

4 mv=gq [E(x )+ -l-v x B(x, t)] %)
dt ¢
d ¢
J = ) _—= = —:—- -v,
v dt ot v

where n(x, t), ¥(x, t), m, g represent the density, velocity, mass and charge of the
beam species respectively. Because of relativistic effects, the mass in the Lorentz
equation is given by

vov\ 2
m = myg (1 — -;2—) = Mgy, (6)

where v is the relativistic mass ratio and my, is the rest mass of the electrons.
The linear response of the beam and plasma is obtained via normal linearization
techniques, where the electromagnetic wave is assumed to perturb the system only
slightly from an equilibrium state. The perturbed current density of the plasma
electrons is computed by linearizing the fluid equations about the plasma equilibrium

state, with its value given by
dmio wpp’ w'E — ioWep X € — (Wop « E)Wop)

Y]

vip =
c? c* 0 — wgp’

In this equation, the following definitions have been made:

47TqP2nP 1/2
Wpp =
My

and

are the plasma electron and cyclotron frequencies, respectively.
Likewise, for the beam, we linearize the relativistic fluid equations about the
equilibrium state and obtain for the perturbed current density of the beam particles,

dmiw CUP32

@ ET T o — k- Vg)?

2

{(‘0 - k'VB)[we Ve x(kxe€) — w(Vf'e)VB}

+ Vgk. [we+VB Xk x &) — o N2 VB]}’ ®)

C2
where

is the beam plasma frequency and yg = (1 — Vgtlc 2,
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Combining the perturbed current densities for the plasma and beam species, one
obtains the following wave equation;

w2
kx(kxe)+—e
C
2 2 . 2
Wpp WE— 1WWep X € — (wCP 'e)wcp WpR

Cz (U2 - COCPZ Cz(w - k . VB)Z

X {(w ——k-VB)[a)e +Vyx(kxe — w(sz'e)VB]
C

+ Vgk- ‘:we +Vpx(kxe)—w (V]iz' © VB:H. )

The geometry chosen to simulate the beam-plasma interaction of Astron is shown in
Fig. 2. We examine oscillations that propagate in a plane perpendicular to the mag-
netic field and have wave vectors parallel and perpendicular to the beam direction.
With this geometry we have

k= (kws ky’ O)
€= (ez: €, ez) (10)
Vg = ©, Vs, 0),

and the x, y, z components of the wave equation can be written as,

2 2 2 . 2 i 7
w wpp W, + ivwepe, ®pg (0 — k,Vpe, + k. Vae
k ke, — ke) + — €= P2P z v o PzB y 3 =" By

c c 0 —wep® ¢ w—k,Vg

H

w?
—k(ke, — k) + ;2- €,

2 .2 . 2 2 2 2 2
_ Wpp WeE, — 10WopE,  Wpp ko Vg(w — k,Vple, + (@7/yp” + ks Vie,

2
¢ o — wgpt ¢ (0 — k,Vp)*
2 2 2
2 w Wpp ®pp 2 2 2
e+ e 2 ¥EE L OPE Pk (1)
¢ ¢ c*

A non-trivial solution to the wave equation occurs when
€, =¢,=0; e, #0,
which leads to the dispersion equation:
0=k %+ wpp? + wpgt

This represents a purely electromagnetic wave, which for a dilute beam, ng < np, is
the “ordinary’’ normal mode of the plasma species (STiX, 1962) and is seen to be
stable.

The other non-trivial solution to the wave equation occurs when the electric field
of the oscillation has the components

€, €, *0; e, =0, (12)
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(13)

6()2 —_ COOPZ w — kyVB

For a weak beam, the field vectors are essentially those of the extraordinary normal
modes of a cold plasma. We note also, that the charged particles of the beam can
interact directly with the electric field of these modes, since € - V5 % 0.

Before solving the beam-plasma dispersion relation, let us consider the dispersion
equation in the absence of the beam. With the beam density set equal to zero, we
obtain the dispersion equation for the extraordinary modes of a cold plasma, i.e.

g 2 i 4
o (0l — wop — 20pp) ~ 0pp

(kpo)' = (14)

2 2
W’ — wep” — Wpp
A plot of this equation is shown in Fig. 3, which shows that there are two branches to
these modes. One branch is below the upper hybrid frequency, wg = (wop® + wppHt/?,
and the otheris above. The one above is alsoc above the velocity of light line, implying
that the phase velocity of the wave is greater than the speed of light and thus no

interaction with particles can occur.
From Fig. 3, the particles of the beam are expected to interact with the lower
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F16. 3.—Extraordinary normal modes of a cold plasma.

branch of the normal modes between approximately the plasma frequency and the

upper hybrid frequency. More explicitly, we expect the unstable solutions to the dis-
persion equation to have a frequency

o~k Vg~ w, (15)

that is, near resonance between the beam and plasma wave. Recalling the periodicity
assumption in the beam model, we consider only wavelengths in the beam direction
that have a certain period. Since the E-Layer particles are governed by cyclotron

motion, such that, wgyg = Vg/R is their cyclotron frequency, then the periodicity of
the system becomes 2wR, of which we can write,

kVp = 2;_7_7' Ruep = lucg, (16)
‘¥
where /is an integer and represents the periodicity of the wavelength in the beam direc-
ticn. The condition implied by equation (15) is that interaction between the beam and
plasma is expected at those beam cyclotron harmonics in the region of the lower
branch of the plasma normal modes.

The dispersion equation given in equation (13) is solved numerically in a later
section. Presently solutions are analytically examined in the region of interest with
applicability to the Astron system in order to gain some insight into the major trends
of the unstable modes.

Since a localized plane wave analysis has been assumed, let us consider the wave-
length of the oscillation perpendicular to the beam direction, that is, 4, and assume
a smallest dimension appropriate to Astron in that direction. Taking this dimension
to be the E-Layer thickness, 157, one assumes for validity of the present analysis

;m< IEL’

so that boundary effects can be ignored. Specifically, we calculate a minimum value
of the dimensionless parameter, k,¢/wep, which is assumed to occur when A, = t5;.
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Employing the appropriate Astron parameters, tzy, = 20 cm, wgp = 27 X 108 cps,

we obtain

k k 27e

Kt >( w"’) = 15 an
Wep  \Wep/min  Ipricp

as the condition that must be applivd to the present model so that the Astron system
can be treated by a plane wave analysis. Recalling k, 7 of equation (16) and assuming

a highly relativistic beam Vi ~ ¢, one obtains for the total perpendicular wave vector,
k ., the condition

kie ( kjc® ky2c2)1/ 2 ( k,2c* N 12)1/ 2 ke
- 2 n Py = 2 ¥ =
Weop @op~  @cp @op Wep
When comparing this condition to Fig. 3, we see that the normal mode of interest, in
this large k¢ region, has a frequency very close to the upper hybrid frequency.
We now return to the cold beam-cold plasma dispersion equation, equation (13),

and take the limit of large k,¢, and find the resulting equation to be

(18)

2
2 w 1
(0" — 0g’)w — k,Vg)f — yPIZ (0* — wg® + ypiwpp’) = 0. 19)
B
We expect the unstable modes to be near harmonics of the beam cyclotron fre-
quency, that is,
Rew ~kVp = lwgp.

With this assumption, the unstable modes are obtained from the following approxi-
mate dispersion equation;

_ l 3 2. l
2
wop 21 wep 5t oz |

_LZ(CI)PB)&(CO-— 16003) 1 2(601:3)2[12_?32(1 N wPPz) Loy _Pzi} —o.
VB \®op ©ce 2lyp"\wgp Wep wop

(20)
The solutions obtained depend on the range of certain parameters. If one considers
that the system is being examined from the stand-point of a constant beam propa-
gating through a plasma which is increasing in density, then the important parameter
to vary is wpp/wgp, Which is proportional to the plasma density. This is essentially
what occurs in the Astron system when the hybrid mode appears. Therefore, we treat
the beam parameters, wpp/wep and yp, as constants, and examine the stability at
each beam harmonic, /, as a function of plasma density, wpp/wep.

Non beam-plasma resonance

For some beam harmonics there exists a plasma density such that the hybrid fre-
quency for this density is coincident with the beam harmonic. This density is called
the hybrid density for exact beam-plasma resonance at that beam harmonic. We
first consider plasma densities which do not allow this resonance to occur, i.e.

“ep wpp* _ (lz - 732)1/2__ _1_(47741:2”?*)1/2
= - = — ]
VB

(21)

Wep Wep Weop my
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The growth rate for this region of plasma densities is given by

it L(&B) [12 — 75 (1 + wpplwep’) + VB4CUPP2/0)CP2:]U2 22

Im— =~ ' -
Wep VB \WeB 75 (1 + wpp’logp’) — I
if

y32(1 + wPP) —IP>0.

wep®
Specializing to harmonics which are less than the plasma electron cyclotron
frequency, / < yp, we find that for these harmonics no exact resonance occurs and
thus the growth rate given in equation (22) is good for all plasma densities. In this
region of harmonics the onset condition for instability is given by

wpp\_ (©ppY vg' — I
e T
Ocp wep /ot yp (Y5 — 1)
This critical density decreases as the harmonic nears yp. That is, the critical density
for the / = 1 harmonic is greater than for / = 2, etc., up to the harmonic just below

yp. Also note, that if the plasma density terms are dominant in the growth rate
expression, an asymptotic value is approached, and is given by

®  ®@pp (7132 - 1)1/ 2
— == :

7132

This is the maximum growth rate for these harmonics and is dependent on beam
parameters only.

When / = yp, the growth rate from equation (22) is the same as that obtained
above for the asymptotic result. This is expected since the condition indicated in
equation (22) for / = yy states that the growth rate given is not accurate at low
densities. More general solutions of equation (20) are required in the low density
region for the / = yp harmonic.

For harmonics above the plasma electron cyclotron frequency, / > yp, the ex-
pression for growth rate indicates stability for plasma densities below the hybrid
density, wpp < wpp®. For densities above this value, instability results, and as the
plasma density terms become dominant the asymptotic result of equation (24) is
recovered. The main implication of equation (22) for these harmonics is that the
growth rate is larger than the asymptotic value, that is, the asymptotic value is
approached from above.

Im
Wecp  WcB

Beam-plasma resonance

We turn now to the plasma density which gives rise to exact resonance between
the plasma normal mode and a given beam harmonic. We let

@Wpp wpp* _ (Z2 - ‘/32)1/2
— - H

3
which further indicates that the resonant density increases with beam harmonic.
Obviously, this region is only valid for harmonics above the plasma electron cyclotron

(25)
Wop Wop
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frequency, / > yp, and the growth rate at this plasma density is given by

Im

fl

e \/g‘inﬂz P — 732}1/3
WDep 2 COOBZ 2l '

(26)

We note that this growth rate increases with /, that is, the higher the harmonic, which
implies the larger the plasma density, the larger is the growth rate. As we shall see in
the numerical results, this growth rate is approximately the maximum value attained
at a given beam harmonic. Of course, this is not too surprising since one would
expect the strongest interaction when resonance occurs. The greatest interaction
should occur when the electric field of the plasma mode has its maximum component
in the beam direction, and hence maximum energy transfer is likely to occur at this
condition.

From the above calculations for / > yp, one expects an onset condition to occur
at a plasma density below the hybrid density. This condition is found to be

. R W ppl 18 2 IR Y
fzs] =) =3 = s 222 1 = [ 222 )

Weop (12 — }’132)2 0)032

Weop onset_

732
(27)

which is the value of plasma density for zero growth rate at beam harmonics above the
plasma electron cyclotron frequency.

in summarizing this section on the cold beam-cold plasma interaction at large
k. c/wop, we have seen first that unstable modes occur near harmonics of the beam
cyclotronfrequency, Re w ~ lwyp. Forharmonics below the plasma electron cyclotron
frequency, / < yp, instability with growth rate given by equation (22) exists at plasma
densities above a certain critical value given in equation (23), i.e. wpp > (Wpp)onset.
This growth rate increases from zero at onset to the asymptotic value given in equation
(24). The / = yp harmonic possesses the same features, but more general expressions
are required to obtain the appropriate result. For beam harmonics above the plasma
electron cyclotron frequency, /> y5, an instability does not exist until a certain
plasma density is reached, given in equation (27). The growth rate increases rapidly
from this point to a maximum near the hybrid density, equation (26), and thereafter
decreases to the asymptotic value of equation (24) via the relation given in equation
(22).

In order to gain some insight into the above results, let us consider a specific set of

parameters relevant to Astron, e.g. the following beam parameters (FESSENDEN et al.,
1970);

v =90
Yrp _ 0-3
Wep

Table 1 contains the threshold plasma density for instability for these beam param-
eters. The onset condition for beam harmonics / < 8 is given by equation (23),
while that for / > 10 by equation (27). The hybrid density is obtained from equation
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TaBLE 1. THRESHOLD PLASMA DENSITY FOR ASTRON BEAM PARAMETERS;
vp =90, Wpp/wep = 0-3

Wpp (12 — 732)1/2
(w—”)onset v

0-111
0-109
6-105
0-100
0-093
0-083
0-070
0-051
0-000
0-298 0-484
0-516 0-703
0-695 0-882

—~

s
QOO0 T W=

bt b
ho =

(25). For the present choice of beam parameters the asymptotic growth rate ap-
proached at all beam harmonics is
w  wpgV;
Im — — 28 B
Dop Wep €

= 0-298.

The growth rates in general have been numerically calculated from the dispersion
equation with arbitrary k,c/wsp. Figure 4 shows these results in the large k.c/wep
region in which the above analytical expressions are valid. In Fig. 5, the real part of
the frequency of the unstable mode, Re w/wpg, Vs wpp/wep is shown.

From Fig. 5, one observes that for / < yz = 9-0, the unstable mode occurs practi-
cally at the beam harmonic. In fact, as the plasma density increases, there appears to
be no shift in the position of the unstable mode in the frequency spectrum. However,
for harmonics above / = 10, the unstable mode initially appears substantially below
the harmonic frequency and then shifts toward the harmonic as plasma density

08

05~

04

03

normalized growth rate

cH

o2

Ol

Im w/w

/
[eXe} W74 ! I 1 1 ! !
00 02 04 06 08 |0 |2 -4 6 18 20
Np= wpp/w,p-normalized plasma frequency (density)

F1G. 4.—Growth rate vs plasma frequency for cold beam-cold plasma model in large
ksclwgp Tegion.
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FIG. 5.—Frequency of unstable mode vs plasma frequency for cold beam-cold plasma
model in large k.c/wep Tegion.

increases. Thus, if the plasma density increased from zero to a value, such that,
wpp/wop = 1-0, the frequency band over which one would observe unstable
oscillations would be larger at the higher harmonic.

The growth rate results of Fig. 4 indicate that harmonics below y5 = 9-0 are
unstable at low plasma densities. They increase monotonically from zero to the

asymptotic value. Harmonics above y become unstable at higher densities, though
the onset density is considerably below the hybrid resonant density. The grow

resonant density. The growth rate
increases rapidly from onset and maximizes very close to the resonance condition
between beam harmonic and plasma normal mode. Thereafter, the growth rate
decreases and again approaches the asymptotic value. The higher the harmonic
number, the higher the threshold density and the higher is the maximum growth rate
attained. Hence, as plasma density increases, the harmonic associated with the most
unstable mode also becomes larger.

The results of this cold beam-cold plasma model are very encouraging from the
standpoint of comparison between theory and experiment. In one Astron experiment
for which a beam energy represented by yz ~ 8-8, unstable modes were observed at the
[ =9, 10 and 11 beam harmonics for the duration of the experiment (FESSENDEN ef
al., 1970). By comparing plasma density measurements with the normalized value,
wppl/wep, our model indicates that these harmonics should be unstable. Although it
predicts the “strongest’” interaction to occur at those harmonics above the plasma
electron cyclotron frequency, the model also indicates instabilities at beam harmonics
below the plasma electron cyclotron frequency. This represents a discrepancy be-
tween theory and experiment and will be treated in a later section.

3. COLD BEAM-WARM PLASMA MODEL

In order to obtain the experimentally observed interaction at harmonics of the
beam in the vicinity of the multiples of the plasma electron cyclotron frequency
(FESSENDEN et al., 1970) when the plasma density is low, one must take into account
thermal properties of the plasma. Thermal properties give rise to normal modes of a
Maxwellian plasma near integral multiples of the plasma electron cyclotron frequency.
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One may also wish to ascertain the effects of very high temperatures such as would
exist at thermonuclear conditions. A study of plasma temperatures ranging from 0 to
25 eV is undertaken as well as the study of the entire spectrum of wavelengths per-
pendicular to the beam. These results are obtained via numerical methods.

As in the previous section, we consider again the response of a beam and plasma
to an arbitrary electromagnetic wave. The resulting wave equation is given in equation
(3). The model of the beam species is identical to that of the previous section, where
linearization of the relativistic fluid equations resulted in the perturbed current
density as given in equation (8).

For the plasma species, we consider an infinite, homogeneous, Maxwellian plasma
of uniform density np, at temperature Tp, immersed in a uniform magnetic field,
B,. Again, we ignore collisions between plasma particles as an important mechanism
for the beam-plasma interaction, but include them from the standpoint of plasma
temperature, so that the relevant equation for the plasma is the Vlasov equation;

@(x,v,t);v'@fg;& af,

1
Ex,t)+- B, 1) -
ot ox mi D) cv>< = >] ov

=0, (28)
with the current density given by
305,1) = g, [ v 5w ),

where f,(x, v, #) is the distribution function of the « species. Linearization of the
Vlasov equation is performed about the Maxwellian distribution

f (V) =7 ( "y )3/ze—ﬁ10112/2kTp (29)
. F\onKTp ’

with K being the Boltzmann Constant, and assuming perturbations of the form

exp (tk »x — iwt). The resulting equations are solved for transverse waves with wave

and E-vectors in the plane perpendicular to the magretic field, B, The perturbed

current density in component form is found to be (BERNSTEIN, 1958):
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and
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In addition to previous definitions and the geometry of Fig. 2, the following definitions
have been made in the above equations:

2 2
ki "vgg
2
Wep

is the argument of the modified Bessel function, 7,(4), and its derivative I,

KTP 1/2
brg = ( )

()

is the thermal velocity of the plasma electrons at temperature T, and

A=

tan p = —

v
where g is the angle between the wave vector and the y-axis.

We insert the perturbed current densities of the beam and plasma species in the
wave equation for the indicated geometry and wave parameters shown in Fig. 2 with
¢, = 0. The resulting dispersion equation for the extraordinary modes is

{0 — ke — wpp® — wpp'[S; — (1 + cos 29)S,1}
X {( = k7)o — k,Vp) — wpp’(@/75" + k'VE)
— wpp(w — k,Vp¥[S; — (1 — cos 2¢)S,]}
— {[k k" — wpp®Sy sin 2u)(w — k,Vp) — wpg'k,Vs}®
— {wppl(e — kVE)Ss}* =0, (31)
where S;, S; and §; are summation terms given by

w? n’e~I,
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@0 2
Sy = NIy +23 ———— MLy, (32)

n=1 0 — W Wep

nfowep

Sy = —2 Z (7).

n=1 C\) — OJCP
In the limit of a cold plasma, v,z = 0, 4 = 0, the results of the previous section are
regained.

Upon examining the dispersion equation given by equation (31), we see that the
equation is of infinite order in the variable w. However, for a beam with a relativistic
mass ratio of y» = 9-0, we find it sufficient to limit stability analysis only to beam
harmonics up to /=20, i.e. beam harmonics interacting at most with the warm
plasma modes around the second harmonic of the plasma electron cyclotron frequency.
This will yield warm plasma effects which we would also expect at subsequent multiples
of the plasma electron cyclotron frequency. With this in mind, accuracy of the solu-
tions in the vicinity of the first and second plasma electron cyclotron frequency is
essential, whereas, at higher frequencies accuracy of solutions of the plasma modes is
not required. Thus the infinite order equation in  is replaced by a finite polynomiial
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in w by keeping only a limited number of terms in the infinite sums. The number of
terms required to obtain accurate results depends on the specific choice of system
parameters. By keeping the n = 1 term in the sums, S;, S, and S;, for example, we
obtain a first order effect due to thermal plasma properties on the cold hybrid mode.
The n = 1 and 2 terms must be retained in order to obtain any plasma modes above the
second plasma electron cyclotron frequency, for which there is no cold plasma limit.
Numerical solutions have been obtained for the dispersion equation by progressively
keeping more terms in the sums, up to and including the n = 4 term. The convergence
of the results for any choice of system parameters studied was achieved by keeping
the necessary number of terms.

TABLE 2. RANGE OF PARAMETERS

Parameter Range
Beam
Wpp/Wep 03
Vg = Ep/nyc? 9-:0
Plasma
Wpp[Wop 0-1-1-9
Urglc 0-0, 0-002,
0-0044, 0-01
Wave
=k, Vl0p 6-20
k. clwgg 0-10000

Table 2 shows the range of parameters of the dispersion equation that was studied.
The value of the normalized plasma electron thermal velocity, vpy/c, is approximately
equivalent to thermal energies of 0, 1, 5 and 25 eV, respectively.

Extraordinary normal modes—Maxwellian plasma

Since the plasma normal modes play a basic role in the beam-plasma interaction,
discussion of their characteristics is presented before those of the instability. Figure 3,
we recall, shows a typical plot of the normal modes for a cold plasma at a given
plasma density. For the hybrid branch (lower branch), the asymptotic value of
frequency in the large wave number region is the hybrid frequency.

In Fig. 6, the extraordinary normal modes of a IeV Maxwellian plasma are
presented. Specifically, the frequency of the normal mode, w,/wp, is plotted vs
the wave number of the mode, k  c/wcp, With plasma frequency, wpp/wop, s a
parameter. The first (hybrid) and second branch of the plasma normal modes are
given. The main feature of the hybrid branch is that the frequency for large wave
number is asymptotic to the plasma electron cyclotron frequency instead of the
hybrid frequency as in the cold plasma case. For plasma densities below wppf/w p =
1.7, thermal effects are negligible for wave numbers &, ¢/wqp < 100. Thus, from
this figure, one would expect the unstable mode to be affected by thermal prop-
erties of the plasma only for wavelengths such that &k c/wep = 1000, for a 1eV
plasma for wpp/wep < 1-5. We also note, that after the plasma density surpasses
the hybrid density for a given frequency of the normal mode (given beam harmonic)
there exists two points in the wave number spectrum for the same frequency. That
is, a given beam harmonic will exhibit exact resonance between the beam and plasma
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mode at two values of wave number when the plasma density is greater than the
hybrid density for that harmonic. Hence,near these two exact beam-plasma resonances
we expect enhanced growth rates. Asanexample, letus consider the / = 12 (0, fwgp =
12) beam harmonic. We note that the hybrid density for this harmonic for a beam
of yg =90 is given by wpp*/wsp = 0-882, from Table 1. From Fig. 6, we see
for wpplwep = 09 that exact resonance occurs at about k|, c/wpz = 100 and 800.
Thus near these values we expect peaking of the beam-plasma growth rate. At
wpp/wgp = 11, peaking should occur near k | ¢/wgp = 16+5 and 2500.

Besides interaction with the first branch there wili exist interaction at frequencies
near the second multiple of the plasma electron cyclotron frequency. These modes
possess a feature unlike the first branch in that there is a distinct peak in the frequency-
wave number spectrum, whereas, for the first branch, a wide plateau exists. This
gives rise to no beam-plasma interaction for low values of wave number, then a region
of interaction, then again no interaction at higher values. These modes are asymptotic
to the second multiple of the plasma electron cyclotron frequency at large wave
number. For the beam parameters mentioned above, we observe from the plot that
for [ = 19, exact beam-plasma mode resonance occurs for wpp/wsp = 1-0, moreover,
for wpp/wep = 1-1, exact resonance occurs near k | c/wyp = 3000 and 6000. This
represents the region in wavelength space where strongest beam-plasma interaction is
expected with lesser interaction occurring for wavelengths above or below this region.

The features for a 5 and 25 eV plasma are similar to the 1 eV case discussed above.
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The main difference is the shift in the normal mode curves with increasing tempera-
ture to lower values of wave number or to longer wavelengths. This implies that
unstable modes at 1 eV may become stable at a higher temperature. This and the
other features indicated above will emerge when the stability analysis is presented.

Beam-plasma unstable mode

The results of the beam-plasma interaction for the range of parameters of Table 2
are presented as a function of beam harmonic at a given plasma density. Thatis, ata
given plasma density, wpp/wep, the growth rate at each unstable beam harmonic, /,
is presented. The effect of plasma temperature on these unstable modes is also shown.

In Figs. 7-11, results of the unstable beam-plasma mode are plotted in such a
manner that a clear comparison can be made with the experimental results of Astron.
Specifically, for a given set of plasma parameters, density (wpp/wep) and tempera-
ture (K7'p), the growth rate versus wave number of the unstable beam harmonics is
plotted. They are presented in the order of increasing plasma density and temperature.

In Fig. 7, the results are shown for a plasma density of wpp/wop = 0-1. In the
cold plasma case, the growth rate of the unstable mode reaches a saturated level at
relatively low wave numbers (k | /w5 ~ 50) and remains at that level for larger wave
numbers. This is the region where the analytical results of the cold beam-cold plasma
model are especially applicable. When the plasma temperature reaches 1 eV, the
growth rate departs from the cold plasma results in the large wave number region
(k  clwep > 500), as shown by the right-hand portion of the bottom graph in Fig. 7.
Although subsequent results are presented in the same manner, only plasma tempera-
tures of 0 and 1 eV are shown.

For a cold plasma of density wpp/wep = 0-1, Fig. 7 also indicates that only
beam harmonics / < 9 are unstable, with the / = 9 harmonic being the most unstable
for k,c/wgp > 10. This is reasonable since the plasma normal mode at this plasma
density and in this wave number region is located just above the plasma electron
cyclotron frequency, wpp = Ywpp. Asthe plasma temperature increases to 1 eV, the
growth rates at these harmonics begin to decrease at large wave numbers (>500).
Also, at finite plasma temperature, beam-plasma interaction begins to occur at the
[ = 18 beam harmonic, due to the second branch of the plasma normal modes which
lie above the second plasma electron cyclotron frequency, 2wop = 18wep. The
strength of the interaction at the /=9 and 18 harmonics is very similar for k ¢/
wep = 6000, while the / < 8 harmonics have already become stable in this wave
number region. Thus, for waves in Astron having wavelengths of k , ¢/wyp = 6000,
these results indicate that only the / = 9 and 18 beam harmonics are unstable at this
plasma density and temperature.

As plasma temperature increases, the stabilized region of wavelengths becomes
larger by shifting towards long wavelength oscillations. Finally, if the plasma tem-
perature increased to 25 eV, all waves for k| c/wop > 6000 are stabilized at all beam
harmonics, as indicated in the top graph of Fig. 7.

Figure 8 shows the results for a plasma density of wpp/wgp = 0-3. For the case
of a cold plasma, the results indicate that beam harmonics / < 10 are unstable. The
interaction becomes stronger at harmonics / <9 for this plasma density, while at the
/ = 10 harmonic, interaction has just begun to occur (see Fig. 4). When a finite
plasma temperature isincluded (1 eV), the unstable modes begin to stabilize as before,
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at large wave numbers and become completely stable at high enough wave numbers.
At this plasma density, plasma thermal effects initiate unstable oscillations at beam
harmonics / = 14-18, due to beam-second branch interaction. These unstable modes
persist for only a limited range of wavelengths. The interaction strength with the
second branch of the plasma modes is greatest at the / = 18 harmonic and decreases
progressively for lower beam harmonics. If the plasma temperature were 25 eV, only
the / = 9 and 18 harmonics are unstable for waves with k¥ | c/wgp > 4000, with these
harmonics becoming stable for k | c/wep > 12-15 X 10%,

Figure  is for a plasma density of wpp/wop = 0-5. This reveals that the beam-
hybrid mode interaction occurs for beam harmonics / < 10, and for beam-second
branch interaction at / = 12-18. Plasma thermal effects are largest for those har-
monics whose numbers are above muitiples of the plasma electron cyclotron frequency,

i.e. wep, 200p, 300p, .. ., and interacting with the branch of the normal modes
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which lies above the respective plasma electron cyclotron frequency. For the case
presented in Fig. 9, this is only the / = 10 beam harmonic. Other plasma temperature
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When plasma density reaches a value of wpp/wep = 07 (Fig. 10), beam har-
monics / < 12 begin to interact with the hybrid branch, while harmonics / = 12-19
become unstable due fo interaction with the second plasma branch. As the graphs
indicate, this plasma density is approximately the density for the onset of beam-
second branch interaction with harmonics above the second plasma electron cyclotron
frequency, 2wgp, ie. /=19. We might also note the local peaking of the / = 10
unstable mode for a 1 eV plasma near k | ¢/wq 5 = 2700, which is due to beam-plasma
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FIG. 10.—Growth rate vs wave number for a Maxwellian plasma at plasma density;
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resonance effects. Upon further increase in plasma density (wpp/w.p = 0-9, Fig.
11), more beam harmonics become unstable as a result of interaction with a given
plasma mode branch.

We have thus far discussed the growth rate characteristics as a function of plasma
density. We now summarize some of the general features of these results at a given
beam harmonic. In general, a given beam harmonic interacts with any plasma normal
mode; however, the interaction is strongest with that plasma mode in the immediate
vicinity of the harmonic. There is an onset condition, wp > (Wp)yet, fOr these
interactions. Relative to this onset criteria, Table 3 shows the plasma density required
for a given beam harmonic to interact with a given plasma normal mode. In our
model, the interaction can occur with the hybrid mode (first branch) or the second
branch (above the second plasma electron cyclotron frequency), in the case of a
plasma with finite temperature. These densities are not very exact, but they do reflect
the above statements.

The plasma system of interest is one in which the plasma density increases from an
initially low value. On the basis of our analysis one expects to see interaction at [ =
9 and /=18 beam harmonics at relatively low plasma densities. As the density
increases, the harmonics below the normal modes become unstable; thatis, the /=38,
7, 6, ... beam harmonics appear progressively unstable as a result of interaction
with the hybrid branch, and the / = 17, 16, 15, ... beam harmonics as a result of
interaction with the second branch. Upon further increase in plasma density, beam
harmonics above the first and second plasma electron cyclotron frequency (wqp and
2wy p) become unstable due to interaction with the plasma mode in that region.
When the plasma density reaches a value where resonance between a given beam
harmonic and the plasma mode occurs, the interaction becomes relatively strong.
In general, whenever a beam-plasma mode resonance occurs, a local, if not absolute,
maximum in the growth rate appears. This effect can be seen in Fig. 4 for beam
harmonics interacting with the first plasma mode branch. The growth rate at a given
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TABLE 3. ESTIMATE OF THRESHOLD PLASMA DENSITY FOR THE UNSTABLE
BEAM-PLASMA MODE AS A FUNCTION OF PLASMA MODE BRANCH

(wpplwgp)onset

[ Hybrid branch Second branch

6 0-083% —

8 0-051* —

9 0-000 —
10 0-30 2:00
11 0-52 1-00
12 0-70 0-50
13 0-87 0-42
14 1-00 0-30
15 1-15 0-25
16 1-30 0-20
17 1-50 0-12
18 1-60 0-08
19 170 0-70
20 1-90 1-10

* From Table 1.

beam harmonic saturates with further increase in plasma density, since a tradeoff
between mode proximity to a given harmonic, o, — /o, and the strength of the mode
wpp and ¢, become counteracting influences. This saturated level is approached
from either above or below depending on the beam harmonic and the magnitude of
this level depends on beam parameters, as given in equation (24).

In addition to initiating beam-plasma interaction at multiples of the plasma
electron cyclotron frequency, the effect of increasing plasma temperature is to shift the
unstable spectrum to longer wavelengths. That is, for a given plasma temperature,
there are regions of the wave number spectrum which are unstable but separated by
stable regions. The first unstable region, in general, represents interaction with the
hybrid normal mode while the second unstable region is the result of interaction with
the second branch of the plasma normal modes. At higher plasma temperatures,
these regions shift towards lower wave numbers and also decrease in width. It mustbe
noted that plasma temperature does not substantially affect the relative magnitudes of
the growth rates at any given plasma density.

We turn now to the wavelength region for which k | ¢/wg = 100, and observe that
harmonics below the plasma electron cyclotron frequency (/ < 9) interact with only
the hybrid mode. Rescnance never occurs between the beam and plasma mode for
these harmenics, in the wavelength region cited above. For these harmonics, the
frequency of the unstable mode is essentially coincident with the beam harmonic and
does not vary as a function of plasma density or growth rate of the unstable mode.
An identical situation occurs for those harmonics below the second plasma electron
cyclotron frequency (/ < 18) when interacting with the second branch of the plasma
normal modes. That is, the location of the frequency of the unstable mode lies
approximately at the beam harmonic. The same situation also occurs when the
plasma density greatly exceeds the hybrid density for a given beam harmonic, i.e.
when the frequency of the plasma normal mode, @, is much greater than the beam
harmonic frequency, /ogp. This occurs for / = 10, at plasma densities greater than
wppl/wep = 1'1, for a cold plasma. In short, the results indicate that when the
plasma normal mode is far from the beam harmonic, yet an unstable interaction
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exists, the location of the unstable mode is coincident with the beam harmonic, i.e.
Re wjwep 2 1.

When the plasma normal mode is in the vicinity of the beam harmonic, that is, near
resonance, we see that the location of the unstable mode, Re w/wp, is relatively far
from the beam harmonic. This same situation also cccurs when the growth rate
rapidly decreases towards zero due to plasma thermal properties. These two cases
are much the same since beam-plasma resonance does occur just prior to the rapid
decrease in the growth rate, because the warm plasma normal modes are asymptotic
to multiples of the plasma electron cyclotron frequency, and there are two values of
wave number for resonance.

In the previous section mention was made of the restrictions on wavelengths which
render this investigation applicable to the physical system under consideration. This
corresponds to the region for the cold plasma where the normal modes reach an
asymptotic frequency, i.e. the upper hybrid frequency, and the growth rates approach
a constant value independent of wave number. Also consistent with the equations
employed in this analysis, the Debye length will be taken as the lower limit on the
wavelengths of interest. This, along with the upper bound mentioned above, will
provide the region of applicability of the present theory to finite systems.

Comparison of theory and experiment

Taking intc account the upper and lower limits on the wavelengths, the model and
subsequent results indicate the following for the beam-plasma interaction in the
Astron system. Table 4 lists those beam harmonics from Figs. 7-11 which are un-
stable with respect to interaction with the hybrid or the second branch of the plasma
normal modes. This means, that somewhere in the restricted region of wave number
space, these beam harmonics undergo unstable interaction. Some of these harmonics
indicate instability for the entire region, while others are unstable for only a limited
region of the allowable wave number space. They are tabulated in order of descending
growth rate or degree of beam-plasma interaction.

As an example, at wpp/wep = 0'1, beam harmonics 7= 5-9 display unstable
oscillations via interaction with the hybrid branch of the plasma normal modes. The
[ =9 harmonic has the greatest growth rate with the subsequent harmonics having
progressively less interaction. Only the / = 18 beam harmonic is unstable with respect
to interaction with the second branch of the normal modes. These unstable harmonics
do appear in the allowable wavelength region regardless of plasma temperature,
though their growth rate may decrease depending on plasma temperature. In some
cases, a beam harmonic may be completely stabilized at a plasma temperature of
25eV.

TABLE 4. UNSTABLE BEAM HARMONICS IN THE ALLOWABLE WAVE NUMBER REGION AS A
FUNCTION OF PLASMA PARAMETERS

©pplWep Hybrid branch Second branch
0-1 9,8,7,6,5 18
03 9,87,6,...,10,...,1 18,17,16,15, 14
0-5 10,9,8,...,1 18,17,...,12
0-7 11,10,9,8,...,12,...,1 18,19,17,16,...,12

09 12,11,10,13,9,8,...,1 19,18,17,...,12
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Experiments in Astron, relative to the “hybrid’” mode, have produced the follow-
ing observations (FESSENDEN ef al., 1970). R.f. radiation has been observed at beam
harmonics between the plasma electron cyclotron frequency and the upper hybrid
frequency, and at harmonics near subsequent integral multiples of the plasma electron
cyclotron frequency. This radiation is an integrated radiation over the time of the
experiment. During this time the plasma density increases from zero to some finite
value, which implies that the upper hybrid frequency also increases with time. The
integrated r.f. radiation appears to be largest at the beam harmonic closest to the
plasma electron cyclotron frequency and decreases at progressively higher harmonics,
up to the harmonic just below the largest hybrid frequency (largest plasma density)
reached during the experiment. These harmonics progressively appear unstable, then
stable, as the experiment evolves in time.

Comparing these experimental results to those tabulated in Table 4 and shown
in Figs. 7-11, we see that oscillations at harmonics above the plasma electron cyclotron
frequency, for interaction with the hybrid mode, are indeed unstable, with more
harmonics becoming unstable as the plasma density increases. Similar features occur
above the second plasma electron cyclotron frequency for interaction with the second
branch. Our model, however, predicts two additional results which are not experi-
mentally observed. The first is that there are harmonics below the electron cyclotron
frequency that are also unstable; that is, / < 8 for interaction with the hybrid mode
and / = 12-17 for interaction with the second branch. The second is that for the
plasma temperatures probably attained in the experiments, our results might not
indicate stabilization of all beam harmonics. We may, therefore, conclude that other
physical mechanisms not presently contained in our analysis might be responsible for
the apparent disagreement.

Two effects which exist in Astron, and not contained in our model thus far, are
collisions between plasma electrons and neutral particles and energy spread of beam
particles. In Astron, we recall that the plasma is formed by ionization of a back-
ground gas. Thus, the particles of the plasma are most likely to collide with the neutral
particles because of the relatively high density of the latter. Also, beam particles
injected into the plasma region possess a spectrum in velocities, thus giving rise to an
energy spread about a monoenergetic distribution. These two effects will be treated in
the next two sections.

Convective nature of the unstable mode

Before concluding this section, it would be desirable to assess the extent to which
the results predicted by this analysis can be observed in Astron. We do this by esti-
mating the time it takes the unstable mode to convect across the lateral dimension of
the system.

Assuming this appropriate dimension to be the E-Layer thickness, 7y, the time it
takes the wave to leave the Astron region (where our model is expected to apply) is
given by

T — 'EL ,
dwp/0k,

where Jwg/0k, is the group velocity of the unstable mode in the direction

(33)
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perpendicular to the beam. The time in which the unstable wave grows is

T, =— (34)
Wy

where w; is the growth rate. If the instability is to be observed, then the following
condition must be satisfied,

T, <T. (35)

In order to get an order of magnitude for these times with respect to the present
model, we let T; ~ T in equation (35) and obtain an approximate upper bound on the
group velocity of the unstable modes, i.e.

_1_. —_ e (36)

1254 (awR/akcc)ma,x

.
v = Wy,
8km max BLET

Normalizing the various quantities to previous variables, we obtain

[ML; f_@(&) (37)

a(kmc/wOB) R \w¢gp
which for Astron becomes
Folow ol )1 17
l_ A RI Cﬁ/J %_K'_I') (38)
a(k:cc/wCB) max 2 Wop

If the value of dwy/0k, as obtained from our numerical results is less than the value
given above, one might conclude that these modes will be observed in Astron.

From previous considerations we restrict ourselves to beam harmonics above the
plasma electron cyclotron frequency (/ = 9) and their interaction with the hybrid
mode only. Similar results can be obtained for beam harmonics / > 18, and their
interaction with the second branch. The first group represents the fastest convecting
modes since it can be shown that they have the largest group velocity. Substituting
the corresponding parameters in equation (38), we find that

(awR/ CUOB)
MB_ < 0-001,
w;/wcp
which clearly indicates that the wave grows substantially before it can convect out of
the system.
4. COLLISIONAL EFFECTS

A process that is not included in our base model is collisions between the plasma
particles (electrons) and the dense neutral background gas. Generally, collisions tend
to act as a damping mechanism of the plasma normal modes, therefore, we postulate
that they will tend to stabilize the unstable beam-plasma interactions. In this section,
an analytical treatment is carried out on a model that includes the effect of collisions.
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Because of applicability to Astron, we restrict our analysis to oscillations with
short wavelengths perpendicular to the beam propagation direction, as given by
equation (17) and (18). It has already been noted that at relatively low plasma
densities the strongest interaction occurs at those beam harmonics which interact with
the hybrid normal mode. Thus, we consider a cold plasma model where collisions
among plasma particles are ignored, but collisions between plasma and neutral
perticles are included. These assumptions seem especially meaningful to Astron,
since the plasma is formed by ionization of a neutral gas.

We consider again the response of a beam and plasma species to an arbitrary
electromagnetic plane wave with time and space variation given in equation (1). The
resulting wave equation is given by equation (3). The beam species is identical to that
used previously. The basic equations describing these particles are given by equation
(5), with the resulting perturbed current density shown in equation (8).

In addition to the assumptions used in the cold plasma case, the plasma particles
are assumed to have collisions with the background neutral particles. The relevant
equations are given by;
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Here, v,y is the collision frequency between the plasma species « and the neutral
particles of the system, and the other quantities are as defined previously. The per-
turbed current density in the plasma now becomes
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Combining the perturbed current densities and inserting into the wave equation
we obtain the following dispersion equation for the extraordinary mode;
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This equation reduces to equation (13) in the limit of no collisions.
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Before solving this equation, we consider the cold plasma dispersion equation in
the large k,c limit. Inequation (41) we let the beam density be zero and in the absence
of collisions we find that the frequency of oscillation is at the upper hybrid frequency.
Assuming this frequency to be the same when collisions are included, and the collision
frequency vzy to be much less than the upper hybrid frequency, one finds that the
plasma oscillations become damped, as shown by

1 wpp?

. PP

w_ﬁ_U)H——WEN( —Ew 2).
H

(42)

Since these plasma modes are damped by collisions in the short wavelength region, it
is possible that collisions may have their greatest effect on the beam-plasma unstable
mode in the vicinity of the upper hybrid frequency.

We return to equation (41) and consider the region of large k,c. The resulting
equation is
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Recalling the periodicity of the system in the beam direction, i.e.
ky VB = [C()CB,

we find that the beam-plasma mode with collisional effects can be described by a third
order equation in w, with the unstable mode being located near the beam harmounics.
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To lowest order we wish to know the sign of the quantity,

; (44)
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where Im w/v = 0 is the growth rate for zero collision frequency. If the sign of the
quantity in equation (44) is positive, then collisions have a de-stabilizing effect at low
collision frequencies, whereas, if it is negative, collisions provide a stabilizing effect
on the beam-plasma unstable mode. These effects are calculated for the same regions
of plasma density considered in the Cold Beam-Cold Plasma Model, i.e. at densities
corresponding to resonance and non-resonance between beam harmonic and the
upper hybrid frequency.

Beam-plasma resonance

In the case of resonance, as given in equation (25), the growth rate to lowest order
in collision effects is
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which for v = 0, reduces to equation (26). From this we see that collisions have a
stabilizing effect on the beam-plasma unstable mode at exact resonance. We recall,
that at this beam-plasma resonance, one observes almost maximum growth rate for
the entire range of plasma densities at a given beam harmonic. We might therefore



756 C. D. StrirFrLER and T. KAMMASH

TaBLE 5. COLLISION FREQUENCY, ¥y, RE-
QUIRED TO STABILIZE THE BEAM-PLASMA MODE
AT EXACT RESONANCE

{ Voy/®es
10 1-26
11 1-70
12 206
13 2:36

infer that collisions have their largest effect where the interaction is the strongest.
This perhaps is expected since the greatest damping of the plasma mode occurs at the
oscillation frequency which coincides with the beam harmonic.

Though it is not meaningful to discuss complete stabilization due to collisions in
the present analysis one can at least obtain some feeling for the magnitude of the
collision frequency required to stabilize the mode at beam-plasma resonance. Table 5
lists the collision frequency required for the growth rate of equation (45) to become
zero for Astron parameters. We see that collision frequencies of the order of the beam
cyclotron frequency could stabilize the beam-plasma interaction at exact resonance.

Non beam-plasma resonance
For the case when the plasma density is such that resonance between the plasma
normal mode and a given beam harmonic does not occur, we might expect less damp-
ing due to collisions. The growth rate for this density region, to lowest order in the

collision frequency, is
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where we have assumed that

y5(l + wpptweph) — 2> 0
and
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for instability to occur in the limit of zero collision frequency. This result agrees with
equation (22) in the vy = 0 limit. Asin that case, we consider two groups of beam
harmonics; those equal to and above the plasma electron cyclotron frequency, / = vz,
and those below, / < y3.

For beam harmonics above the plasma electron cyclotron frequency, we see that
the coilision term is negative and thus collisions have a stabilizing effect on these
harmonics. For beam harmonics below the plasma electron cyclotron frequency, the
results indicate that collisions have a stabilizing influence only for plasma densities
up to a critical value given by
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TABLE 6, CRITICAL PLASMA DENSITY IN-
CLUDING COLLISIONAL EFFECTS FOR BEAM
HARMONICS [ < v5. SEE EQUATION (47)

l Dpplegp

5-17
3-07
2:02
1-28
0-61
0-00
0-00
0-00
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and a de-stabilizing effect for plasma densities above this value. Table 6 gives the
value of this critical density for Astron parameters; and we note, for example, that the
/ = 8 beam harmonic experiences a stabilizing effect due to collisions for plasma
densities up to wpp/wep = 5:17, and a destabilizing effect for densities above this
value. It is interesting also to note that coliisions have a destabilizing effect at all
plasma densities for beam harmonics less than three.

In this case of non-resonance the effect of collisions is of order (vzy/wep)wpp/
wep) less than the zero collision growth rate, that is, it is two orders of magnitude less,
while in the hybrid density case, the effect is approximately of the same order as the
vgy = 0 growth rate. This may be viewed as further confirmation of the fact that
collisional effects are most dominant when the plasma normal mode is near a giving
beam harmonic.

From the above statement, we might expect that the onset condition for instability
for beam harmonics above the plasma electron cyclotron frequency to be greatly
affected by collisions. In the zero collision case, the onset condition is given by equa-
tion (27), and the following result is obtained at that plasma density;
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This states that the damping due to collisions at the onset condition is approximately
the same as that at the hybrid density, which implies that collisions have a tendency to
increase the threshold plasma density for beam harmonics above the plasma electron
cyclotron frequency.

In Appendix A, we show that the dispersion equation for the Cold Beam-Cold
Plasma model in the large wave number region is similar to that of the streaming
instability. The effects of collisions on the streaming instability have been examined
by BOHMER ef al. (1971) and SINGHAUS (1964), among others. These two references
show the enhancement of growth rate at low frequencies (Table 6, / < 3), and re-
duction of growth rate in the region of the plasma modes. Our results reduce to those
obtained by these authors in the appropriate limits.

11

(48)

5. EFFECTS OF BEAM ENERGY SPREAD
A feature of the beam particles in Astron that is not included in our base model is
that the beam particles have a finite distribution in streaming energy. The purpose of
this section is to examine the effect of this energy spread on the beam-plasma unstable
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mode. Itisnot our intent to imply that the streaming energy spread is in any way the
most dominant form of energy spread relative to the beam-plasma mode. The point
is that the streaming energy spread is a consequence of the Astron injection system.
The plasma species, wave vectors and model geometry are the same as in Section 2.
We employ the same beam model used before but with the addition of a spread
in particle energy or velocity. The appropriate equations are the relativistic Vlasov
equations which we choose to write in Minkowski space (SUDAN, 1965), i.e.

@mma+fu@ﬂ+ﬁ{mx0+1vaxﬂ-ﬁ:o, (49)
ot v 0X  mec ¢ du

where

and

y = (1 _ Uz/cz)-l/z — (1 + u2)1/2
are the Minkowski velocity (u) and relativistic mass ratio, respectively. The current
density is now given by

Ix, 1) =g f f wf(x, u, £) du. (50)

We linearize the above equation about the equilibrium state of an arbitrary
velocity distribution, and assume the space and time dependence of the perturbed
quantities as given in equation (1). The linearized perturbed current density for the
beam becomes
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where f,(u) is the normalized equilibrium distribution function of the beam particles,
ie.

f d®ufy(a) = 1.
If the distribution function is a delta function in energy (velocity), i.e.

fo(®) = 6(u — ug),
then the perturbed current density becomes that given in equation (8) indicating that
the results obtained in this section reduce to those of Section 2 in the limit of zero
energy spread.
We further assume that there is energy spread of the beam particles in the direction
of the beam only, which makes the equilibrium distribution function assume the form

Jo@) = 6(us) 6(u,) fo,(uy). (52)
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Integrating over u, and u, and defining the following velocity integrals,
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If we now combine the above result with equation (7), and insert into the wave
equation , we obtain for the extraordinary mode the following dispersion equation in
the limit of large k,c:
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Square distribution

As an attempt to understand the effect of energy spread on the unstable mode, we
consider a “‘square’’ distribution in beam particle velocities centered about the mono-
energetic value, u,z. That is, we let f;,(1,) be of the form

1
foy(uy) == Z N uyB —_ A/z S uy S ul/B + A/2 (56)

=0 otherwise,

where the energy or velocity spread is represented by the parameter A. Inserting this
distribution into the velocity integrals of equation (55), and assuming that the energy
spread in the beam is small, i.e.

A <Luyp, 57

we obtain after expanding the numerator and denominator of the integrand of the
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velocity integrals in powers of the variable u, the following:
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For a highly relativistic beam (yp > 1) we can approximate the integrals by keeping
terms through «2 in both the numerator and denominator. Such an approximation
allows us to consider energy spreads which are larger or smaller than the resonant
frequency term, w — k,Vp.
“Small”> beam energy spread
We assess the initial effects of energy spread by assuming that
o —k,Vg i

i)

VB kyVB
which we call the “small”” beam energy spread limit. In this limit, the dispersion
equation becomes

(59)
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Solutions to this equation for plasma densities where normal mode-beam resonance
occurs (/ =10, 11,12,...), the addition of energy spread into the beam particles
produces an initial increase in the growth rate of the cold beam-cold piasma unstable

mode. For beam harmonics below the plasma electron frequency (/ < 9), we find
there exists a critical plasma density above which energy spread has a stabilizing effect

!
e

il

0. (60)
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and below which it has the opposite effect. It appears then that at small energy spreads
the expected stabilization does not occur for harmonics below and above the plasma
electron cyclotron frequency at the appropriate plasma densities.

“Large’ beam energy spread
We shall refer to the opposite limit of equation (59) as the “large’” beam energy

spread limit;
A(ﬂi) > l w—kVp .
7B kyVB

In this limit, the following dispersion relation is obtained:

(61)
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which represents the “zeroth” order dispersion relation in the “large” beam energy
spread limit.

For beam harmonics below the plasma electron cyclotron frequency, / < yz, one
can calculate from equation (62) a plasma density, wpp = @ pp, Where the quantity
(o — lwgp)? is zero. The result is
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which yields:

(w — logg)* >0, for wpp > dpp, implying stability
and (64)
(0 — logg)? <0, for wpp < dpp, implying instability.
Table 7 lists values of & pp for Astron parameters. Comparing the stability condi-
tions for the “large’” energy spread limit and for the case of a cold beam (Section 2),
we find that the two conditions are almost reversed. For example, at the / = 8 beam
harmonic the cold beam case indicates instability for plasma densities wpp/wep 2
0-051, whereas, for the present case, instability is indicated for wpp/wep < 0-055.

TABLE 7. CRITICAL PLASMA DENSITY FOR
“HIGH”’ TEMPERATURE BEAM FOR BEAM HAR-
MONICS / < y5 = 9-0

~
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Bpplwcp

0-055
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If one takes into account the experimental evidence that the beam-plasma interaction
does not occur until sufficient plasma density is attained, corresponding to wpg/
wep = 0-3, the present results indicate that all beam harmonics less than the plasma
electron cyclotron frequency are stable. We must keep in mind however that the
dispersion equation is not valid at plasma densities far from wpp = dpp, and thus
this equation can only provide indications of the stabilizing effects due to energy
spread in the limit of “large’” energy spread.

For the beam harmonic which is coincident with the plasma electron cyclotron
frequency, / = yz = 9-0, we find only stable modes, which again is a reversal from
the cold beam case where instability existed at all plasma densities.

The remaining group of harmonics are those above the plasma electron cyclotron
frequency, namely / > yp. Three regions of plasma density are examined separately.
The first region is for densities below the hybrid density for a given beam harmonic.
In this case, the dispersion relation gives:

(0 — lwgp)? <0, for wpp<wpp®, implying instability. (65)
For a plasma density greater than the hybrid density the result becomes
(0 — lwgg)* >0, for wpp> wpp*, implying stability. (66)

Since the analysis becomes more difficult in the vicinity of the hybrid density, only the
solution at exactly the hybrid density is obtained. This solution is
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for wpp = wpp™, which clearly does not satisfy the condition in equation (61).
However, it may be indicative of the fact that probably an unstable mode exists at the
hybrid density. We observe, nevertheless, the similarity between the growth rate in
this “large’” energy spread limit and the comparable cold temperature limit result of
Section 2, i.e. equation (26). The difference between the two results, however, is that
for the cold beam case the unstable mode appears below the beam harmonic, while
in the present case it appears above the harmonic. Again, as for the other harmonics
(! < ypand ! = yp) the two stability conditions are essentially reversed.

From the standpoint of Astron, where energy spread of the beam increases with
time, we can visualize the beam-plasma interaction to initially occur with an essentially
monoenergetic beam. As the energy spread in the beam increases, it ultimately
becomes sufficient to quench the instability. For a rigorous theoretical verification of
these postulated events, an analytical model which incorporates the mechanism of
changing energy spread with time or with plasma density will be required. But, from
the present preliminary calculations, we conjecture that it plays a major role in sup-
pressing the instabilities in Astron. This role is seen mainly in the non-existence of
unstable modes for harmonics / < yp, and the quenching of unstable modes for
beam harmonics above the plasma electron cyclotron frequency, / > yp.

As in the section on collisional effects, we compare the present results with those
obtained by other authors on the streaming instability. Again, we find that our
results readily reduce to those of BOHMER ef al. (1971) and that of SINGHAUS (1964).
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Specifically, we find that if we substitute the growth rate given by equation (22) into
the non-relativistic limit of our definition as given in equation (61), we obtain

CA w @Wpp > 1
Vpwpp

which is essentially identical to the definition of “high” beam temperature used by
Singhaus. These authors find in the “high” temperature limit that instabilities persist
in a narrow region about the plasma frequency, which in their case (B, = 0) is the
normal mode corresponding to our hybrid frequency. Their conclusion agrees with
ours in that sufficient energy spread may stabilize all beam harmonics except those in
the immediate vicinity of the plasma normal modes.

6. CONCLUSIONS

We have put forth a model that describes the beam-plasma interaction and corre-
sponding instabilities in Astron. This model shows that for a cold beam-cold plasma
system the strongest interaction occurs at beam harmonics in the vicinity of the plasma
upper hybrid frequency. When plasma thermal effects are included the model
shows that interaction also occurs for beam harmonics above integral multiples of the
plasma electron cyclotron frequency.

The introduction of collisions between the plasma electrons and the background
neutral gas seems to indicate that collisional effects are most dominant in the imme-
diate vicinity of the plasma normal modes. It is also shown that collision frequencies
of the order of the beam cyclotron frequency can lead to stabilization of beam-plasma
interactions in this vicinity,

The effects of energy spread in beam particles appear to be so profound that the
instability conditions for a cold beam become totally reversed for “large” energy
spreads. This reversal indicates possible stabilization of all harmonics below the
electron cyclotron frequency, i.e. / < yp, and at sufficiently high plasma density for
those harmonics in the region of the plasma normal modes.

These results are in good agreement with experimental observations and with
results obtained in connection with a comparable phenomenon, namely, the streaming
instability.
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APPENDIX

In this appendix we demonstrate the mathematical similarity of the dispersion relation obtained in
Section 2 for large wave numbers and that obtained for electrostatic oscillations in a beam-plasma
system. The latter results in the streaming instability as discussed by BricGs (1964).

The dispersion relation as given in equation (13) represents waves whose propagation and electric
field vectors lie in a plane perpendicular to the applied magnetic field, B,. If, in this equation, or
better yet in equation (11), we let

ke =0 Al
B, =0, (AD
and consider the mode
e, =¢,=0, ¢ *0, (A2)
then for waves propagating along the beam, i.e. for
kivsle, (A3)
the dispersion relation becomes
2 2
ot — ot — 2 2, (A%)

vs' (@0 — k,Vp)

This equation represents a monoenergetic beam streaming through a cold background plasma, and
its similarity to equation (19) is obvious. The important observation, here, is that the mechanisms
that result in the unstable modes, and the stabilizing effects of collisions and energy spread in both our
model and the streaming instability are similar (WATsON e al., 1960; SINGHAUS, 1964; BOHMER ef al.,
1971; SELF et al., 1971).



