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Abstract-The beam-plasma interactions in the Astron device are examined utilizing a model which 
consists of a homogeneous, cold, relativistic electron beam (E-Layer particles) streaming through a 
Maxwellian plasma normal to a uniform external magnetic field. Using linear stability analysis, the 
model shows that the strongest interactions occur at beam harmonics in the vicinity of the plasma 
normal modes which are near the upper hybrid frequency, and above each subsequent multiple of the 
plasma electron cyclotron frequency. The possible stabilizing effects of collisions between plasma 
electrons and background neutral particles, as well as the energy spread for beam particles are also 
examined. It is shown that collisional effects are especially strong at collision frequencies of the order 
of the beam cyclotron frequency and that the combined effects of collisions and energy spread may 
lead to quenching of the unstable modes. Comparison of the analytical results with experimental 
observations is presented and discussed. 

I .  I N T R O D U C T I O N  
THE INTERACTION of a beam of charged particles with a target plasma and its relevance 
to many areas of plasma physics has been the subject of many investigations in recent 
years (BRIGGS, 1964; WATSON et al., 1960; SINGHAUS, 1964; KUSSE et al., 1970; 
BOGDANKEVICH et al., 1971; BOHMER et al., 1971; SELF et al., 1971; QINER et al., 
1972). The various roles that such a beam plays when propagating through a plasma 
are indeed numerous. One role that has been receiving increasing attention is that in 
which the beam transfers some of its streaming energy into thermal energy of the 
plasma, thus hcating it. plr, eve:: mcxe basic role is that ia which the beam is used to 
create a plasma via ionization of a background neutral gas. 

Another role, in which the beam may be used, is to form a closed magnetic region 
to confine a plasma. The Astron Thermonuclear Machine is such a device (CHRIS- 
TOFILOS et al., 1958, 1968). A closed system of magnetic field lines is created in the 
vicinity of a thin shell of circulating electrons called the E-Layer. These E-Layer 
particles circulate about an external magnetic axis and are confined in their axial 
motion by mirror fields. As the density of these E-Layer particles increases the self- 
magnetic field produced by them also increases until the combination of external and 
beam self-field gives rise to a closed system of field lines. 

As the €-Layer particles enter the Astron system they interact withneutral particles. 
This interaction leads to ionization of the gas and subsequent creation of a plasma. 
Because of the space charge of the beam, the plasma electrons are initially ejected out 
of the region of the E-Layer where the ionization has occurred. The plasma ions on 
the other hand are attracted to the region and continue to build up in concentration. 
When sufficient plasma has been formed so that the space charge of the beam has been 
charged neutralized by the plasma ions, further ionization allows the plasma electrons 
to remain in the E-Layer region so that charge neutrality is maintained. Obviously, 
when a large amount of plasma has been created, the entire beam-plasma system 
appears to be that of a low density beam of charged particles propagating through a 
dense plasma, which itself is approximately charge neutral. When this stage is 
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arrived at in the evolution of an Astron experiment, it is followed by the appearance 
of radiation at certain harmonics of the beam cyclotron frequency (the orbits of the 
beam particles are approximately circular due to the external magnetic field), This 
event occurs long before sufficient beam density has been reached such that the self- 
magnetic field of the beam becomes any significant portion of the applied magnetic 
field, The observed radiation has been postulated to be due to a beam-plasma inter- 
action, siiice it appears near those beam harmonics in the vicinity of the plasma upper 
hybrid frequency. This interaction has been labeled the “Hybrid Mode,” by FES- 
SENDEN et al. (1970). 

The interaction between a dilute beam of charged particles and a dense plasma 
results from the coupling of the electric and magnetic fields of the plasma to the charged 
particles of the beam. In the case of the Astron system, the highly relativistic beam 
interacts with the electric field associated with the normal modes of the plasma 
resulting in energy transfer from the beam to these modes. The subsequent division of 
this transferred energy into field and particle kinetic energy can result in plasma 
heating, as discussed by LOVELACE et al. (1971). This article is not concerned with the 
ultimate disposition of this energy, but will find and attempt to understand the con- 
ditions that give rise to this transfer of energy from the beam to the plasma. It is 
hoped that by studying these initial events one can better delineate the direction in 
which a nonlinear theory is to proceed in order to discuss the final partition of energy 
between beam, plasma particles and field energy. 

From the above description of the system of interest, s base model is proposed to 
study the beam-plasma interaction in Astron, and is presented in the next section. 
It consists of a linear stability analysis of a homogeneous, cold, relativistically stream- 
ing beam of eiecrrons propagating through a coici, homogeneous piasma immersed in 
a uniform magnetic field (STIX, 1962; MONTGOMERY and TIDMAN, 1964; HOLT and 
HASKELL, 1965). For a cold plasma, a branch of the extraordinary normal modes 
occurs near the plasma up?er hybrid frequency and comprises the modes for which the 
beam-plasma interaction can probably occur (CHRISTOFILOS, 1968; BERNSTEIN, 
1958). Our model shows that the strongest interaction does occur at those beam 
harmonics in the vicinity of these modes. 

When ‘iherna! properties of the plasma are included, unstable beam-plasma 
modes zippea- at hzrmc~ics  i3 the region ~f the second ard  subsecpent plasma 
electror, cyclotron frequencies as well as near the upper hybrid frequency. These 
results are presented in Section 3 for a Cold Beam-Warm Plasma Model. 

As possible mechanisms for the observed quenching of unstable modes, we con- 
sider in Sections 4 and 5, respectively, the effects of plasma electron-neutral particle 
collisions and energy spread in beam particles. The similarity of the resulting dis- 
persion equation to that of the electrostatic streaming instability is noted (BRIGGS, 
1904). This resemblance is noted because the two phenomena result from almost 
counter conditions of the wave properties, yet the interaction mechanism is exactly 
the same. 

2 .  COLD BEAM-COLD PLASMA MODEL 
The first model proposed to explain the beam-plasma interaction in Astron con- 

sists of a cold relativistic streaming electron beam interacting with the “extraordinary” 
modes of a cold plasma (STIX, 1962). The reason for examining these modes is that 
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the relationship between their frequency and wave number places them near the upper 
hybrid frequency of the plasma, where the experimental observations indicate that 
r.f. radiation appears. Likewise, these modes have an electric field component parallel 
to the direction of beam propagation, thus allowing the charged particles of the beam 
to interact with the electric field of the normal modes of the background plasma. The 
spectrum of wavelengths examined is such that a !ocalized plane wave analysis is 
employed, i.e. the wavelengths of the oscillation are much smaller than any geometrical 
dimension of the system. With the neglect of finite boundary ezects, the techniques 
of infinite, homogeneous theory are applicable. 

We consider the response of the beam and plasma to an arbitrary electromagnetic 
plane wave whose electric and magnetic fields are given by 

E(x, t )  = E(k, cu)eik‘x-iwt 

B(x, t) = b(k, co)eik‘x--im? 

Response, in this case, means induced current density caused by the electromagnetic 
wave on the beam and plasma species. The relationship between the field vectors of the 
wave and the induced current density of the species is given by Maxwell’s equations: 

l 8 E  477 v x 13 =-- + - 3  
at 

V .E=477p  

V - B = O ,  

where J and p are respectively the current and charge density of the medium species. 
Considering a Cartesian coordinate system, the following wave equation is obtained, 

where the induced current density, J(E), for the beam-plasma system of interest is 
given by 

J(E) = J B E d d 4  + J m s n r a ( E ) .  

The remaining part of the analysis involves the calculation of the induced current 
density, with the resulting dispersion relation obtained by setting the determinant of 
the coefficients of the electric field components in the wave equation equal to zero. 

Figure 1 shows an idealized crcss-section of the Astron system pertinent to the 
beam-plasma interaction (CHFUSTOFILOS er al., 1958, 1968). It is a sector of a circular 
region that appears midway and perpendicular to the external magnetic field. The 
E-Layer particles rotate about the magnetic axis in approximately circular orbits of 
average radius R in a cylindrical shell of thickness tEL. 

The experimental results on the “hybrid” instability indicate that it does not appear 
until charge neutralization of the beam occurs (FESSENDEN et al., 1970). Thus, we 
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FIG. 1 .-Cross-section of Astron system showing E-layer. 

consider the following simple model of the plasma species. We assume an infinite 
homogeneous, cold plasma of uniform density, np ,  immersed in a constant magnetic 

relevant equations to describe the plasma species are the fluid equations : 
fidd, Bo. CQ!!~S~CEC b e t ~ ~ e ~  P ! ~ S E ~  p ~ t i c l e s  an:! 9 t h ~ ~  partides are ignored, 2nd the 

8% 
- (x, t )  + v n,v,(x, t )  = 0 
at 

1 1 E(x, t )  + -v, x B(x, t )  
C 

(4) 

d a  - - - - + v , . Q ,  J, = naqav,, 
dt at 

where n%(x, t ) ,  v,(x, t )  are the density and velocity of particles of species CI, whose mass 
is m, and charge is qZ. Since the high frequency spectrum is under consideration, the 
ion motion will be ignored and only the plasma electrons will be considered to play 
a role in the beam-plasma interaction. 

Since the E-Layer mean radius is approximately 40 cm, we consider the interaction 
to occur in a sector of the E-Layer where the beam particles have essentially straight 
line orbits. The effect of the external magnetic field on the orbits of the beam particles 
is therefore ignored, although the periodicity that it gives rise to in the direction of 
propagation of the beam is maintained. Thus, the problem reduces to that of an 
infinite, monoenergetic, homogeneous electron beam of density n,, streaming at a 
relativistic velocity V,. Neglecting self-fields and collisions, the relevant equations 
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describing the beam species and its interaction with an electromagnetic wave are simply 
the relativistic fluid equations : 

d t  1 ( 5 )  

where n(x, t ) ,  v(x, t ) ,  m, q represent the density, velocity, mass and charge of the 
beam species respectively. Because of relativistic effects, the mass in the Lorentz 
equation is given by 

where y is the relativistic mass ratio and mo is the rest mass of the electrons. 
The linear response of the beam and plasma is obtained via normal linearization 

techniques, where the electromagnetic wave is assumed to perturb the system only 
slightly from an equilibrium state. The perturbed current density of the plasma 
electrons is computed by linearizing the fluid equations about the plasma equilibrium 
state, with its value given by 

wppz cu% - iowcp x E - ( ~ c p  E)wC~) 
( i j  

4riw - ZIP = - - 
C2 C2 CO2 - W c p 2  

In this equation, the following definitions have been made: 

and 

are the plasma electron and cyclotron frequencies, respectively. 
Likewise, for the beam, we linearize the relativistic fluid equations about the 

equilibrium state and obtain for the perturbed current density of the beam particles, 

where 

is the beam plasma frequency and yB = (1 - VB2/~2)>"'2. 
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Combining the perturbed current densities for the plasma and beam species, one 
obtains the following wave equation; 

w2 
C2 

k x (k x E) + --E 

wpp2 W2E - icowcp x E - (ocp E)Wcp OPB2 

c’(w - k ’ VJ 
+ -- - 

C2 w2 - wcp2 

The geometry chosen to simulate the beam-plasma interaction of Astron is shown in 
Fig. 2. We examine oscillations that propagate in a plane perpendicular to  the mag- 
netic field and have wave vectors parallel and perpendicular to the beam direction. 
With this geometry we have 

k = @ x ,  k,, 0)  

and the x ,  y ,  z components of the wave equation can be written as, 

A non-trivial solution to the wave equation occurs when 

E ,  = E ,  = 0; E, # 0 ,  
which leads to the dispersion equation: 

w2 k - , 2 ~ 2  -+ ~ p p ’  + wpg’. 

This represents a purely electromagnetic wave, which for a dilute beam, nB np, is 
the “ordinary” normal mode of the plasma species (STIX, 1962) and is seen to be 
stable. 

The other non-trivial solution to the wave equation occurs when the electric field 
of the oscillation has the components 

E., # 0; E* = 0 ,  (12) 
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FIG. 2.-Geometry of model. 

and the corresponding dispersion relation 

For a weak beam, the fieid vectors are essentially those of the extraordinary zormal 
modes of a cold piasixa. We note also, that the charged particles af the b e m  can 
interact directly with the electric field of these modes, since E - 87, f 0. 

Before solving the beam-pksma dispersion relaticn, let us consider the dispersion 
equation in the absence of the beam. With the beam density set equal to zero. we 
obtain the dispersion equation for the extraordinary modes of a cold plasma, i.e. 

(14) 
OJP P4 cr)k (coli - wcp2 - 2 0 J p p 7  

(klc)2 = 2 2 w ; - w c p  - u p p  

2 2  

A plot of this equation is shown in Fig. 3, which show that there are two branches to 
these modes. One branch is below the upper hybrid frequency, wx = (wCp2 + wpp2)1'2, 

and the other is above. The one above is elso above the velocity of light line, implying 
that the phase velocivji of the w2ve is greater than the speed of light and thus no 
interaction with particles can occur. 

From Fig. 3, the particles of the beam are expected to interact with the lower 
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FIG. 3.-Extraordinary normal modes of a cold plasma. 

branch of the normal modes between approximately the plasma frequency and the 
upper hybrid frequency. More explicitly, we expect the unstable solutions to the dis- 
persion equation to have a frequency 

oj - k,V, N C O k ,  (1 5 )  

that is, near resonance between the beam and plasma wave. Recalling the periodicity 
assumption in the beam model, we consider only wavelengths in the beam direction 
that have a certain period. Since the E-Layer particles are governed by cyclotron 
motion, such that, = VB/R is their cyclotron frequency, then the periodicity of 
the system becomes 27iR, of which we can write, 

(16) 
27r k,VB = - RcoCB 3 /uCB, 
4 

where lis an integer and represents the periodicity of the wavelength in the beamdirec- 
tion. The condition implied by equation (15) is that interaction between the beam and 
$ 2 ~ ~ 2  is expected a: those bean1 cyclotron harmonics in the region of the lower 
branch of the plasma normal modes. 

The dispersion equation given in equation (13) is solved numerically in a later 
section. Presectly solutions are analytically examined in the region of interest with 
applicability to the Astron system in order to gain some insight into the major trends 
of the unstable modes. 

Since a localized plane wave analysis has been assumed, let us consider the wave- 
length of the oscillation perpendicular io  the beam direction, that is, i.%, and assume 
a smallest dimension appropriate to Astron in that directicn. Taking this dimension 
to be the E-Layer thickness, tEL ,  one assumes for validity of the present analysis 

3, t E L ,  

so that boundary effects can be ignored. Specifically, we calculate a minimum value 
of the dimensionless parameter, kGc/mCB, which is assumed to occw when I.% = tEL. 
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Employing the appropriate Astron parameters, t,, = 20 cm, uCB = 2.ii x los cps, 
we obtain 

as the condition that must be applied to the present model so that the Astron system 
can be treated by a plane vi'ave analysis. Recalling k,VB of equation (16) and assuming 
a highly relativistic beam, VB - c, one obtains for the total perpendicular wave vector, 
k ,  - , the condition 

When comparing this condition to Fig. 3,  we see that the normal mode of interest, in 
this large k,e region, has a frequency very close to the upper hybrid frequency. 

We now return to the cold beam-cold plasma dispersion equation, equation (13), 
and take the limit of large kze,  and find the resulting equation to be 

We expect the unstable modes to be near harmonics of the beam cyclotron fre- 
quency, that is, 

With this assumption, the unstable nodes are obtained from the following approxi- 
mate dispersion equation; 

Re 03 - kgVB = 1 0 3 ~ ~ .  

(20) 
The solutions obtained depend on the range of certain parameters. If one considers 
that the system is being examined from the stand-point of a constant beam propa- 
gating through a plasma which is increasing in density, then the important parameter 
to vary is wpp/wcp,  which is proportional to the plasma density. This is essentially 
what occurs in the Astron system when the hybrid mode appears. Therefore, we treat 
the beam parameters, wPB/coCB and yB, as constants, and examine the stability at  
each beam harmonic, I ,  as a function of plasma density, wpp/o~cp.  

Non beam-plasma resonance 
For some beam harmonics there exists a plasma density such that the hybrid fre- 

quency for this density is coincident with the beam harmonic. This density is called 
the hybrid density for exact beam-plasma resonance at  that beam harmonic. We 
first consider plasma densities which do not allow this resonance to occur, i.e. 
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The growth rate for this region of plasma densities is given by 

if 

Y B 2 ( l  4- -2) - l 2  > 0. 
C P  

Specializing to harmonics which are less than the plasma electron cyclotron 
frequency, I < yB,  we find that for these harmonics no exact resonance occurs and 
thus the growth rate given in equation (22) is good f m  all plasma densities. In this 
region of harmonics the onset condition for instability is given by 

This critical density decreases as the harmonic Gears yB. That is, the critical density 
for the I = I harmonic is greater than for I = 2, etc., up to the harmonic just below 
yB. Also nore, that if the plasma density terms are dominant in the growth rate 
expression, an asymptotic value is approached, and is given by 

This is the maximum growth rate for these harmonics a.nd is d e p d e n t  OI? kea? 
parameters only. 

When I = yB,  the growth rate from equation (22) is the same as that obtained 
above for the asymptotic result. This is expected since the condition indicated in 
equation (22) for I = ;lB states that the growth rate given is not accurate at low 
densities. More generai solutions of equation (20) are required in the low density 
region for the I = yB harmonic. 

For harmonics above the piasma electron cyclotron frequency, 1 > y B ,  the ex- 
pression for growth rate indicates stability for piasma densities below the hybrid 
density, uPp < O J ~ ~ * .  For densities above this vaiue, instability results, and as the 
plasma density terms become dominant the asymptotic result of equation (24) is 
recovered. The main implication of equation (22) for these harmonics is that the 
growth rate is larger than the asymptotic value, that is, the asymptotic value is 
approached from above. 

Beamplasma resonance 

the plasma normal mode and a given beam harmonic. We let 
We turn now to the plasma density which gives rise to exact resonance between 

which further indicates that the resonant density increases with beam harmonic. 
Obviously, this region is only valid for harmonics above the plasma electron cyclotron 
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frequency, I > yB, and the growth rate at this plasma density is given by 

We note that this growth rate increases with I ,  that is, the higher the harmonic, which 
implies the larger the plasma density, the larger is the growth rate. As we shall see in 
the numerical results, this growth rate is approximately the maximum value attained 
at a given beam harmonic. Of course, this is not too surprising since one would 
expect the strongest interaction when resonance occurs. The greatest interaction 
should occur when the electric field of the plasma mode has its maximum component 
in the beam direction, and hence maximum energy transfer is likely to occur at this 
condition. 

From the above calculations for 1 > y B ,  one expects an onset condition to occur 
at a plasma density below the hybrid density. This condition is found to be 

(27) 

which is the value of plasma density for zero growth rate at beam harmonics above the 
plasma electron cyclotron frequency. 

ia summarizing this section on the cold beam-co!c! plasma interaction at large 
k&oCB, we have seen first that unstable modes occur near harmonics of the beam 
cyclotronfreqnency, Re Q w hCB. For harmonics below the plasma electron cyclotron 
frequency, I < yB ,  instability with growth rate given by equation (22) exists at plasma 
densities above a certain critical value given in equation (23), i.e. wpp  > ( o ~ ~ ) ~ ~ ~ ~ ~ .  
This growth rate increases from zero at onset to the asymptotic value given in equation 
(24). The I = yB harmonic possesses the same features, but more geseral expressions 
are required to obtain the appropriate result. For beam harmonics above the plasma 
electron cydotron f r e q u e q ,  I > yB,  ail instability does not exist until a certain 
plasma density is reached, given io equation (27). The growth rate increases rapidly 
from this point to a maximum near the hybrid density, equation (26), and thereafter 
decreases to the asymptotic value of equation (24) via the relation given in equation 

In order to gain some insight into the above results, let us consider a specific set of 
parameters relevant to Astron, e.g. the following beam parameters (FESSENDEN et al., 
1970) ; 

(22). 

’/s = 9.0 

- wpB z 0.3. 
@OB 

Table 1 contains the threshold plasma density for instability for these beam param- 
eters. The onset condition for beam harmonics I I 8  is given by equation (23), 
while that for 1 2 10 by equation (27). The hybrid density is obtained from equaticjn 
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TABLE 1. THRESHOLD PLASMA DENSITY FOR ASTRON BEAM PARAMETERS; 
yB  = 9.0, o ~ ~ ~ w ~ ~  = 0.3 

1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

0.111 
0.109 
@iC5 
0.100 
0.093 
04S3 
0,070 
0,051 
0.000 
0.298 
0.5 16 
0.695 

0484 
0,703 
0.882 

(25). For the present choice of beam parameters the asymptotic growth rate ap- 
proached at all beam harmonics is 

@PBVB Im - -+ - - = 0.298. 

The growth rates in general have been numerically calculated from the dispersion 
equation with arbitrary k,c/w,,. Figure 4 shows these results in the large k,c/w,, 
region in which the above analytical expressions are valid. In Fig. 5, the real part of 
the frequency of the unstable mode, Re w/wCB, vs wp-p/wcp is shown. 

From Fig. 5, one observes that for I < yB = 9.0, the unstable mode occurs practi- 
cally at the beam harmonic. In fact, as the plasma density increases, there appears to 
be no shift in the position of the unstable mode in the frequency spectrum. However, 
for harmonics above 1 = 10, the unstable mode initially appears substantially below 
the harmonic frequency and then shifts toward the harmonic as plasma density 

%B QCB c 

3 
T ~ =  w ~ ~ / w ~ ~ -  normalized plasma frequency (density) 

FIG. 4.-Growth rate vs plasma frequency for cold beam-co!d plasma model in large 
kzc/wcB region. 



Beam-plasma interaction in Astron 74 1 

13 

12 
I! 

lo 

1.12 

1.11 
/ ( = I O  

- 
- 

/ l =  9 

i = 6  
1.7 

i 16 

i- 
8 .  gL 

I 
51 
4 1  i 3r 
2t 
I !  I I I I I I 1 1 1 
00 0.2 04 0 5  0 8  1’0 1.2 1.4 1’6 1.8 2 

qp = wpp/wcp - normalized p l a sma  frequency (dens i ty )  
0 

FIG. 5.-Frequency of unstable mode vs plasma frequency for cold beam-cold plasma 
model in large k,c/w,, region. 

increases. Thus, if the piasma density increased from zero to a value, such that, 
opplcocp = 1.0, the frequency band over which one would observe unstable 
oscillations would be larger at the higher harmonic. 

The growth rate results of Fig. 4 indicate that harmonics below yB = 9.0 are 
unstable at low plasma densities. They increase monotonically from zero to the 
asymptotic value. Harmonics above yB  become unstable at higher densities, though 
the onset density is considerably below the hybrid resonat  density. The groffth raie 
increases rapidly from onset and maximizes very close to the resonance condition 
between beam harmonic and plasma normal mode. Thereafter, the growth rate 
decreases and again approaches the asymptotic value. The higher the harmonic 
number, the higher the threshold density and the higher is the maximum growth rate 
attained. Hence, as plasma density increases, the harmonic associated with the most 
unstable mode also becomes larger. 

The results of this cold beam-cold plasma model are very encouraging from the 
standpoint of comparison between theory and experiment. In one Astron experiment 
for which a beam energy represented by y B  N 8.8, unstable modes were observed at the 
I = 9, 10 and 11 beam harmonics for the duration of the experiment (FESSENDEN et 
al., 1970). By comparing plasma density measurements with the normalized value, 
Q ~ ~ / w c ~ ,  our model indicates that these harmonics should be unstable. Although it 
predicts the “strongest” interaction to occur at those harmonics above the plasma 
electron cyclotron freqnency, the model also indicates instabilities at beam harmonics 
below the plasma electron cyclotron frequency. This represents a discrepancy be- 
tween theory and experiment and will be treated in a later section. 

3. C O L D  BEAM-WARM PLASMA M O D E L  
In order to obtain the experimentally observed interaction at harmonics of the 

beam in the vicinity of the multiples of the plasma electron cyclotron frequency 
(FESSENDEN et al., 1970) when the plasma density is low, one must take into account 
thermal properties of the plasma. Thermal properties give rise to normal modes of a 
Maxwellian plasma near integral multiples of the plasma electron cyclotron frequency. 
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One may also wish to ascertain the effects of very high teaperatures such as would 
exist at thermonuclear conditions. A study of plasma temperatures ranging from 0 to 
25 eV is undertaken as well as the study of the entire spectrum of wavelengths per- 
pendicular to the beam. These results are obtained via numerical methods. 

As in the previons section, we consider again the response of a beam and plasma 
to an arbitrary electromagnetic wave. The resulting wave equation is given in equation 
(3). The model of the beam species is identical to that of the previous section, where 
linearization of the reiativistic fluid equations resulted in the perturbed current 
density as given in equation (8). 

For the plasma species, we consider an infinite, homogeneous, Maxwellian plasma 
of uniform density np, at temperature Tp,  immersed in a uniform magnetic field, 
Bo. Again, we ignore collisions between plasma particles as an important mechanism 
for the beam-plasma interaction, but include them from the standpoint cf plasma 
temperature, so that the relevant equation for the plasma is the Vlasov equation; 

with the current density given by 

Jkx, t> = 4, d3Wu(x, v, f ) ,  S 
wheref,(x, v,  t )  is the distribution function of the x sp ies .  Linearization of th 
Vlasov equation is performed about the Maxwellian distribution 

with K being the Boltzmann Constant, and assuming perturbations of the form 
exp (ik .x - icoi). The resulting equations are solved for transverse v~aves with wave 
and E-vectors in the plane perpendicular io the magnetic field, Bo. The perturbed 
current density in con:ponent form is found to be (BERNSTEIN, 1958): 

lL(l - cos 2y)(I,' - I,) cy +- i(n - il. sin 2y)(I,' - I,&, 
n 1 

and 
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In addition to previous definitions and the geometry of Fig. 2, the following definitions 
have been made in the above equations : 

j -~ kL2VTH2 
* -  

%P2 

is the argumect ofthe modified Sessel %action, In(lb), and its derivative in', 

is the thermal velocity of the plasma electrons at temperature Tp,  and 

k ,  
tan y~ = -" , 

k, 
where y is the angle between the wave vector and the y-axis. 

We insert the perturbed current densities of the Seam and plasma species in the 
wave equation for the indicated geometry and wave paraiileters shown in Fig. 2 with 
E ,  = 0. The resulting dispersion equation for the extraordinary modes is 

2 2  2 2 
( 0 2  - k, c - wpg - u p p  [SI - (1 f cos 2 y ) S J )  

x ((CO' - k ,  2 2  c )(w - k,Vg)' - ~ ~ p n ~ ( ~ ~ / y g '  f k:V'') 

- cl)ppZ(w - kyVg)'[S, - (1 - cos 2y)S2]j 
- ([k,k,c' - oPp2s2 sin 2y] (o  - kyV') - 

- (o+p~((o - k,VB)S,)' = 0, 

wtiere S,: S2 and S, are summation terms given by 

In the limit of a cold plasma, uTH = 0, jb = 0, the results of the previous section are 
regained. 

Upon examining the dispersion equation given by equstion (31)) we see that the 
equation is of infinite order in the variable w. Ilowever, for a beam with a relativistic 
mass ratio of y,? = 9.0, we find it snficient to limit stability analysis only to beam 
harmonics up to I = 20, i.e. beam harmonics interacting at most with the warm 
plasna modes around the second harmonic of the plasma electron cyclotron frequency. 
This will yield warm plasma effects which we would also expxt at subsequent izultiples 
of the plasma electron cyclotron frequency. With this in mind, zccuracy of the so!u- 
tiom in the vicisity of the first and second plzsma electron cyclotron frequency is 
essential, where's, at higher frequencies accuracy of solutions of the plasma modes is 
not required. Thus the infinite order equation in (o is replaced by a finite polynoniial 
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in w by keeping only a limited number of terms in the infinite sums. The number of 
terns required to obtain accurate results depends on the specific choice of system 
parameters. By keeping the n = 1 term in the sums, SI, S, and S,, for example, we 
obtain a first order effect due to thermal plasma properties on the cold hybrid mode. 
The IZ = 1 and 2 terms must be retained in order to obtain any plasma modes above the 
second plasma electron cyclotron frequency, for which there is no cold plasma limit. 
Numerical solutions have been obtained for the dispersion equation by progressively 
keeping more terms in the sums, up to and including the iz = 4 term. The convergence 
of the results for any choice of system parameters studied was achieved by keeping 
the necessary number of terms. 

TABLE 2. RANGE OF PARAMETERS 

Parameter Range 

Beam 
%&CB 0.3 

y B  = EB/m,c2 9.0 
Plasma 

WPPI%P 0.1-1.9 
b € I I C  0.0, 0.002, 

0.0044, 0.01 
Wave 

I = k,V,/%, 6-20 
kzc /oCB 0-10000 

Table 2 shows the range of parameters of the dispersion equation that was studied. 
The value of the normalized plasma electron thermal velocity, tiTH/c, is approximately 
equivaient to thermal energies of 0, 1, 5 and 25 eV, respectively. 

Extraordinary normal modes-Maxwellian plasma 
Since the plasma normal modes play a basic role in the beam-plasma interaction, 

discussion of their characteristics is presented before those of the instability. Figure 3, 
we recall, shows a typical plot of the normal modes for a cold plasma at  a given 
plasma density. For the hybrid branch (lower branch), the asymptotic value of 
frequency in the Iarge wave number region is the hybrid frequency. 

Iii Fig. 4,  the extraordinary norma! modes of a i eV Maxweiiian piasma are 
presented. Specifically, the frequency of the normal mode, Q ~ / o ~ ~ ,  is plotted vs 
the wave number of the mode, kLc/wcB,  with plasma frequency, as a 
parameter. The first (hybrid) and second branch of the piasma normal modes are 
given. The main feature of the hybrid branch is that the frequency for large wave 
number is asymptotic to the plasma electron cyclotron frequency instead of the 
hybrid frequency as in the cold piasma case. For plasma densities below w p p / o ~ c p  = 
1.7, thermal effects are negligible for wave numbers k , c/wcB < 100. Thus, from 
this figure, one would expect the unstable mode to be-afiected by thermal prop- 
erties of the plasma oniy for wavelengths such that k,cjucB > 1000, for a 1 eV 
plasma for o p p / w c p  < 1.5. We also note, that after the plasma density surpasses 
the hybrid density for a given frequency of the normal mode (given beam harmonic) 
there exists two points in the wave number spectrum for the same frequency. That 
is, a given beam harmonic will exhibit exact resonance between the beam and plasma 
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Rode at two values of wave number when the plasma density is greater than the 
hybrid density for that harmonic. Hence, near these two exact beam-plasma resonances 
we expect enhanced growth rates. As an example, leius consider the I = 12 (co,.cocB = 
12) beam harmonic. We note that the hybrid density for this harmonic for a beam 
of yB  = 9.0 is given 5y copp*/ocp = 0.882, from Table 1. From Fig. 6, we see 
for opp/cocp = 0.9 that exact resonance occurs at about k , c/cocB = 100 and 800. 
lnus near these values we expect peaking of the beam-plasma growth rate. At 
~ r ) ~ ~ / o ~ ~ ~  = 1.1, peaking should occur near kLc/cocp = 16.5 and 2500. 

Besides interaction with the first branch there wili exist interaction at frequencies 
near the second multiple of the plasma electron cyclotron frequency. These modes 
possess a feature unlike the first branch in that there is a distinct peak in the frequency- 
wave number spectrum, whereas, for the first branch, a wide plateau exists. This 
gives rise to no beam-plasma interaction for low values of wave number, then a region 
ofinteraction, then again no interaction at higher values. These modes are asymptotic 
to the second multiple of the plasma electron cyclotron frequency at large wave 
number. For the beam parameters mentioned above, we observe from the plot that 
for I = 19, exact beam-plasma mode resonance occurs for wppjwcp 2 1.0, moreover, 
for wpp/~r )cp  = 1.1, exact resonance occurs near k,c/cocB = 3000 and 6000. This 
represents the region in wavelength space where strongest beam-plasma interaction is 
expected with lesser interaction occurring for wavelengths above or below this region. 

The features for a 5 and 25 eV plasma are similar to the 1 eV case discussed aboke. 

7. 
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The main difference is the shift in the normal mode curves with increasing tempera- 
ture to lower values of wave number or to longer wavelengths. This implies that 
unstable modes at  1 eV may become stable at a higher temperature. This and the 
other features indicated above will emerge when the stability analysis is presented. 

Beam-plasma unstabIe mode 
The results of the beam-plasma interaction for the range of parameters of Table 2 

are presented as a function of beam harmonic at  a given plasma density. That is, at  a 
given plasma density, w p p / w c p ,  the growth rate at each unstable beam harmonic, I ,  
is presented. The effect of plasma temperature on these unstable modes is also shown. 

In Figs. 7-11, results of the unstable beam-plasma mode are plotted in such a 
manner that a clear comparison can be made with the experimental results of Astron. 
Specifically, for a given set of plasma parameters, density (wpp /wcp)  and tempera- 
ture (KT,), the growth rate versus wave number of the unstable beam harrnonics is 
plotted. They are presented in the order of increasing plasma density and temperature. 

In Fig. 7, the results are shown for a plasma density of wpp/wcp  = 0.1. In the 
cold plasma case, the growth rate of the unstable mode reaches a saturated level at  
relatively low wave numbers (klc/wcB - 50) and remains at  that level for larger wave 
numbers. This is the region where the analytical results of the cold Seam-cold plasma 
model are especially applicable. When the p!asma temperature reaches 1 eV, the 
growth rate departs from the cold plasma results in the large wave number region 
(k,c/cocB > 50G), as shown by the right-hand portion of the bottom graph in Fig. 7. 
Although subsequent results are presented in the same manner, only plasma tempera- 
tures of 0 and 1 eV are shown. 

For a cold plasma of density wpp/wcp  = 0.1, Fig. 7 also indicates that only 
beam harmonics 1 I 9 are unstable, with the I = 9 harmonic being the most unstable 
for k , c /ocB > 10. This is reasonable since the plasma normal mode at this p!asma 
density and in this wave number region is located just above the plasma electron 
cyclotron frequency, ocp = 9w,B. As the plasma temperature increases to 1 eV, the 
growth rates at these harmonics begin to decrease at large wave numbers (>530). 
Also, at finite plasma temperature, beam-plasma interaction begins to occur at the 
I = 18 beam harmonic, due to the second branch of the plasma normal modes which 
lie above the second plasma electron cyclotron frecpency, 2w,, = 1 8 0 ~ ~ ~ .  The 
strecgt!: of the interaction at the 1 = 9 arid 18 hariiioiiics is veiy similar for k,c/ 
oCB 2 6000, while the I I 8  harmonics have already become stable in this wave 
number region. Thus, for waves in Astron having wavelengths of k - c /ocB 2 6300, 
these results indicate that only the I = 9 and 18 beam harmonics are nnstable at this 
plasma density and temperature. 

As plasma temperature increases, the stabilized region of wavelengths becones 
larger by shifting towards long wavelength oscillations. Finally, if the plasma tem- 
perature increased to 25 eV, all waves for k _ L ~ / ~ j C B  2 BO00 are stabilized at all beam 
harmonics, as indicated in the top graph of Fig. 7. 

Figure 8 shows the results for a plasma density of o p p / w c p  = 0-3. For the case 
of a cold plasma, the results indicate that beam harmonics I I 10 are unstable. The 
interaction becomes stronger at harmonics I I 9 for this plasma density, while at the 
I = 10 harmonic, interaction has just begun to occur (see Fig. 4). When a finite 
plasma temperature is included (1 eV), the unstable modes begin to stabilize as before, 
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FIG. 7.-Growth rate vs wave number foi  a Maxwellian plasma at plasma density; 
wpp/wcp = 0.1. 

at IarSe wave numbers and become completely stable at high enough wave numbers. 
At this plasma density, plasma thermal effects initiate unstable oscillations at beam 
harmonics I = 14-18, due to beam-second branch interaction. These unstable modes 
persist for only a limited range of wavelengths. The interaction strength with the 
second branch of the plasma iiiodes is greatest at the i = is harmonic and decreases 
progressiveiy for lower beam harmonics. If the plasma temperature were 25 eV, only 
the I = 9 and 18 harmonics are unstable for waves with kLi/wcB > 4000, with these 
harmonics becoming stable for k,c/cocB > 12-15 x IO3. 

Figure 9 is for a plasma density of w ~ ~ / Q ~ ~  = 0.5. This reveals that the beam- 
hybrid mode interaction occurs for beam harmonics 1 < 10, and for beam-second 
branch interaction at I = 12-18. Plasma thermal effects are largest for those har- 
monics whose numbers are above muitiples of the plasma electron cyclotrm frequency, 
i.e. mCp, 2cucp, 3wcp,  . . , , and interacting with the bracch of the ~XXXZ~ inodes 

c: .3 
0)  XTP =oev 9 c e 

KTp = I eV m 
100 1000 10,000 

k,C/ wcB- w w e  number 

FIG. 8,-Growth rate vs wave number for a Maxwellian plasma at plasma density; 
wpp/wCp = 0.3. 
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FIG. 9.-Growth rate vs wave number for a Maxwellian plasma at  plasma density; 
wpp/ocp  = 0.5. 

which lies above the respective plasma electron cyclotron frequency. For the case 
presented in Fig. 9, this is only the 1 = 10 beam harmonic. Other plasma temperature 
effects are as indicated in previous discussions. 

When plasma density reaches a value of opp/ocp = 0.7 (Fig. lo), beam har- 
monics I I 12 begin to interact with the hybrid branch, while harmonics I = 12-19 
become unstable due to interaction with the second plasma branch. As the graphs 
indicate, this plasma density is approximately the density for the onset of beam- 
second branch interaction with harmonics above the second plasma electron cyclotron 
frequency, 2wcp,  i.e. 1 = 19. We might also note the local peaking of the 1 = 10 
unstable mode for a 1 eV plasma near k , c / o ,  = 2700, which is due to beam-plasma 
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FIG. 10.-Growth rate vs wave number for a Maxweliian plasma at plasma density; 
wpp/ocp  = 0.7. 
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FIG. 11.-Growth rate vs wave number for a Maxwellian plasma at  plasma density; 
W,,/O, = 0.9. 

resonance effects. Upon further increase in plasma density ( O ~ ~ / W , ~  = 0.9, Fig. 
l l) ,  more beam harmonics become unstable as a result of interaction with a given 
plasma mode branch. 

We have thus far discussed the growth rate characteristics as a function of plasma 
density. We now summarize some of the general features of these results at a given 
beam harmonic. In general, a given beam harmonic interacts with any plasma normal 
mode; however, the interaction is strongest with that plasma mode in the immediate 
vicinity of the harmonic. There is an onset condition, cop > for these 
interactions. Relative to this onset criteria, Table 3 shows the plasma density required 
for a given bean; harmonic to interact with a given plasma normal mode. In our 
model, the interaction can occur with the hybrid mode (first branch) or the second 
branch (above the second plasma electron cyclotron frequency), in the case of a 
plasma with finite temperature. These densities are not very exact, but they do reflect 
the above statements. 

The plasma system of interest is one in which the plasma density increases from an 
initially low value. On the basis of our analysis one expects to see interaction at 2 = 
9 and I = 18 beam harmonics at relatively low plasma densities. As the density 
increases, the harmonics below the normal modes become unstable; that is, the I = 8, 
7 ,  6 , .  . . beam harmonics appear progressively unstable as a result of interaction 
with the hybrid branch, and the I = 17, 16, 15, . . . beam harmonics as a result of 
icteraction with the second branch. Upon further increase in plasma density, beam 
harmonics above the first and second plasma electron cyclotron frequency (wCp  and 
2wcp) become unstable due to interaction with the plasma mode in that region. 
When the plasma density reaches a value where resonance between a given beam 
harmonic and the plasma mode occurs, the interaction becomes relatively strong. 
In general, whenever a beam-plasma mode resonance occurs, a local, if not absolute, 
maximum in the growth rate appears. This effect can be seen in Fig. 4 for beam 
harmonics interacting with the first plasma mode branch. The growth rate at a given 
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TABLE 3. ESTJMATE OF THRESHOLD PLASMA DENSITY FOR THE UKSTABLE 
BEAM-PLASMA MODE AS A FUNCTION OF PLASMA MODE BRANCH 

(%+hJonset 
I Hybrid bianch Second branch 

6 0,083 * 
0.051 - S 

9 0.000 
io 0.30 2.00 
11 0.52 1.00 
12 0.70 0.53 
13 0.87 0.42 
14 1 .oo 0.30 
15 1.15 0.25 
16 1.30 0.20 
17 1.50 0.12 
18 1.60 0.0s 
19 1.70 0.70 
20 1.90 1.10 

- 

- 

~~~ 

* From Table 1. 

beam harmonic saturates with further increase in plasma density, since a tradeoff 
between mode proximity to a given harmonic, wk - IcoCB, and the strength of the mode 
wPP and ey, become counteracting influences. This saturated level is approached 
from either above or below depending on the beam harmonic and the magnitude of 
this level depends on beam parameters, as given in equation (24). 

In addition to initiating beam-plasma interaction at multiples of the plasma 
electron cyclotron frequency, the ezect of increasing plasma temperature is to shift the 
unstable spectrum to longer wavelengths. That is, for z gi~er ,  ;!as~z teqeraki re ,  
there are regions of the w2ve number spectrum which are unstable but separated by 
stable regions. The first unstable region, in general, rqresents interaction with the 
hybrid normal mode while the second unstable region is the result of interaction with 
the second branch of the plasma norm21 modes. At higher plasma temperatures, 
these regions shift towards lower wave numbers and also decrease in width. I t  must be 
noted that plasmz temperature does not substantially affect the relative magnitudes of 
the growth retes at any given plasma density. 

We turn now to the wavelength region for which k,c/wcB 2 100, and observe that 
harmonics below the piasma electron cyclotron frequency ( I  < 9) interact with only 
the hybrid mode. Resonance never occurs between the beam and plasma mode for 
these harmonics, in the wavelength region cited above. For these harmonics, the 
frequency of the nnstable mode is essentially coincident with the beam harmonic and 
does not vary as a function of plasma density or growth rate of the unstable mode. 
An identical situation occurs for those harmonics below the second plasma electron 
cyclotron frequency (1 < 18) when interacting with the second branch of the plasma 
normal modes. That is, the location of the frequemy of the unstable mode lies 
approximately at the beam harmonic. The same situation also occurs when the 
plasma density greatly exceeds the hybrid density for a given beam harmonic, i.e. 
when the frequency of the plasma normal mode, wk, is much greatei than the b e a a  
harmonic frequency, hCE. This occurs for 1 = 10, at plasxa densities greater than 
o p p / o c p  = 1.1, for a cold plasma. In short, the results indicate that when the 
plasma normal mode is far from the beam harmonic, yet an unstable interaction 



Beam-plasma interaction in Astron 751 

exists, the location of the unstable mode is coincident with the beam harmonic, i.e. 
Re w/wCB s 1. 

When the plasma normal mode is in the vicinity of the beam harmonic, that is, near 
resonance, we see that the location of the unstable mode, Re m/mCB, is relatively far 
from the beam harmonic. This same situation also cccurs when the growth rate 
rapidly decreases towards zero due to plasma thermal properties. These two cases 
are much the same since beam-plasma resonance does occur just prior to the rapid 
decrease in the growth rate, because the warm plasina normal modes are asymptotic 
to multiples of the plasma electron cyclotron frequency, and there are two values of 
wave number for resonance. 

In the previous section mention was made of the restrictions on wavelengths which 
render this investigation applicable to the physical system under consideration. This 
corresponds to the region for the cold plasma where the normal modes reach an 
asymptotic frequency, i.e. the upper hybrid frequency, and the growth rates approach 
a constant value independent of wave number. Also consistent with the equations 
employed in this analysis, the Debye length will be taken as the lower limit on the 
wavelengths of interest. This, along with the upper bound mentioned above, will 
provide the region of applicability of the present theory to finite systems. 

Comparison of theory and experiment 
Taking into account the upper and lower limits on the wavelengths, the model and 

subsequent results indicate the following for the beam-plasma interaction in the 
Astron system. Table 4 lists those beam harmonics from Figs. 7-11 which are un- 
stable with respect to  interaction with the hybrid or the second branch of the plasma 
normal modes. This means, rh2r somewhere in the restricted region of wave number 
space, these beam harmonics undergo unstable interaction. Some of these harmonics 
indicate instability for the entire region, while others are unstable for only a limited 
region of the allowable wave number space. They are tabulated in order of descending 
growth rate or degree of beam-plasma interaction. 

As an example, at w p p / o c p  = 0.1, beam harmonics I = 5-9 display unstsble 
oscillations via interaction with the hybrid branch of the plasma normal modes. The 
I = 9 harmonic has the greatest growth rate with the subsecpent harmonics having 
progressively less interaction. @n!y the 2 = 18 bezm harixolonic is uiisiable with respect 
to interaction with the second branch of the normal modes. These unstable harmonics 
do appear in the allowable wavelength region regardless of plasma temperature, 
though their growth rate may decrease depending on plasma temperature. In s=me 
cases, a bean harmonic may be completely stabilized at a plasma temperature of 
25 eV. 

TABLE 4. UNSTABLE BEAM HARMONICS IN THE ALLOWABLE WAVE KUMBER REGION AS A 
FUKCTION OF PLASMA PARAMETERS 

WPPl%P Hybrid branch Second branch 

0.1 9, 8 , 7 ,  6 5  18 
0.3 9 , 8 , 7 , 6  , . . . ,  10 , . . . ,  1 18, 17,16, 15, 14 
0.5 10,9,8 , . . . )  I 18,17,.  . . , 12 
0.7 
0.9 

11,10,9,8, .  . . , 12,.  . . , 1 
12,11,10,13,9,8, .  . . , 1 

18,19,17,16,.  . . , I 2  
19,18,17,. . . , 12 

3 
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Experiments in Astron, relative to the “hybrid” mode, have produced the follow- 
ing observations (FESSENDEN et al., 1970). R.f. radiation has been observed at beam 
harmonics between the plasma electron cyclotron frequency and the upper hybrid 
frequency, and at harmonics near subsequent integral multiples of the plasma electron 
cyclotron frequency. This radiation is an integrated radiation over the time of the 
experiment. During this time the plasma density increases from zero to some finite 
value, which implies that the upper hybrid frequency also increases wit5 time. The 
integrated r.f. radiation appears to be largest at the beam harmonic closest to the 
plasma electron cyclotron frequency and decreases at progressively higher harmonics, 
up to the harmonic just below the largest hybrid frequency (largest plasma density) 
reached during the experiment. These harmonics progressively appear unstable, then 
stable, as the experiment evolves in time. 

Comparing these experimental results to those tabulated in Table 4 and shown 
in Figs. 7-1 1, we see that oscillations at harmonics above the plasma electron cyclotron 
frequency, for interaction with the hybrid mode, are indeed unstable, with more 
harmonics becoming unstable as the plasma density increases. Similar features occur 
above the second plasma electron cyclotron frequency for interaction with the second 
branch. Our model, however, predicts two additional results which are not experi- 
mentally obseTved. The first is that there are harmonics below the electron cyclotron 
frequency that are also unstable; that is, 1 I 8 for interaction with the hybrid mode 
and 1 = 12-17 for interaction with the second branch. The second is that for the 
plasma temperatures probably attained in the experiments, our results might not 
indicate stabilization of all beam harmonics. We may, therefore, conclude that other 
physical mechanisms not presently contained in our analysis might be responsible for 
the apparent disagreement. 

Two effects which exist in Astron, and not contained in our model thus far, are 
collisions between plasma electrons and neutral particles and energy spread of beam 
particles. In Astron, we recall that the plasma is formed by ionization of a back- 
ground gas. Thus, the particles ofthe plasma are most likely to collide with the neutral 
particles because of the relatively high density of the latter. Also, beam particles 
injected into the plasma region possess a spectrum in velocities, thus giving rise to an 
energy spread about a monoenergetic distribution. These two effects will be treated in 
the next two sections. 

Cont‘ective nature of the unstable mode 

Before concluding this section, it would be desirable to assess the extent to which 
the results predicted by this analysis can be observed in Astron. We do this by esti- 
mating the time it takes the unstable mode to convect across the lateral dimension of 
the system. 

Assuming this appropriate dimension to be the €-Layer thickness, f E L ,  the time it 
takes the wave to leave the Astron region (where our model is expected to apply) is 
given by 

where ao,/ak, is the group velocity of the unstable mode in the direction 
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perpendicular to the beam. The time in which the unstable wave grows is 

(34) 
1 TI = - 
WI 

where wI is the growth rate. If the instability is to be observed, then the following 
condition must be satisfied, 

TI <T.  (35) 
In order to get an order of magnitude for these times with respect to the present 

model, we let TI - Tin equation (35) and obtain an approximate upper bound on the 
group velocity of the unstable modes, i.e. 

Normalizing the various quantities to previous variables, we obtain 

which for Astron becomes 

If the value of awE/akx as obtained from our numerical results is less than the value 
given above, one might conclude that these modes will be observed in Astron. 

From previous considerations we restrict ourselves to beam harmonics above the 
plasma electron cyclotron frequency ( I  2 9) and their interaction with the hybrid 
mode only. Similar results can be obtained for beam harmonics I >  18, and their 
interaction with the second branch. The first group represents the fastest convecting 
xcdes s ixe  it caii be shown that they have the iargest group velocity. Substituting 
the corresponding parameters in equation (38), we find that 

which clearly indicates that the wave grows substantially before it can convect out of 
the system. 

4. COLLISIONAL EFFECTS 
A process that is not included in our base model is collisions between the plasma 

particles (electrons) and the dense neutral background gas. Generally, collisions tend 
to act as a damping mechanism of the plasma normal modes, therefore, we postulate 
that they will tend to stabilize the unstable beam-plasma interactions. In this section, 
an analytical treatment is carried out on a model that includes the effect of collisions. 
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Because of applicability to Astron, we restrict our analysis to oscillations with 
short wavelengths perpendicular to the beam propagation direction, as given by 
equation (17) and (18). I t  has already been noted that at relatively low plasma 
densities the strongest interaction occurs at those beam harmonics which interact with 
the hybrid normal mode. Thus, we consider a cold plasma model where collisions 
among plasma particles are ignored, but collisions between plasma and neutral 
partic!es are included. These assampiions seem especiaily meaningful to Astron, 
since the plasma is formed by ionization of a neutral gas. 

We consider again the response of a beam and plasma species to an arbitrary 
electromagnetic plane wave with time and space variation given in equation (1). The 
resu!ting wave equation is given by equation (3). The beam species is identical to that 
used previously. The basic equations describing these particles are given by equation 
( 5 ) ,  with the resulting perturbed current density shown in equation (8). 

In addition to the assumptions used in the cold plasma case, the plasma particles 
are assumed to have collisions with the background neutral particles. The relevant 
equations are given by; 

an, - + v * n,v, = 0 
at 

dt (39) 

4- v, .V. d a  
dt - at J, = naq,va, - - - 

Here, vn-v is the collision frequency between the plasma species CI. and the neutral 
particles of the system, and the other quantities are as defined previously. The per- 
turbed current density in the plasma now becomes 

(40) 
Combining the perturbed current densities and inserting icts the wave equation 

we obtain the following dispersion equation for the extraordinary mode; 

This equation reduces to equation (13) in the limit of no collisions. 
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Before solving this equation, we consider the cold plasma dispersion equation in 
the large k,c limit. In equation (41) we let the beam density be zero and in the absence 
of collisions we find that the frequency of oscillation is at the upper hybrid frequency. 
Assuming this frequency to be the same when collisions are included, and the collision 
frequency vEh7 to be much less than the upper hybrid frequency, one finds that the 
piasma oscillations become damped, as showo by 

Since these plasma modes are damped by collisions in the short wavelength region, it 
is possible that collisions may have their greatest effect on the beam-plasma unstable 
mode in the vicinity of the upper hybrid frequency. 

We return to equation (41) and consider the region of large k,c. The resulting 
equation is 

x {O[(w j iVE&-)' - aCp2]  (YE2 - l)(m iVEA7)Upp 2 1 0. (43) 

Recalling the periodicity of the system in the beam direction, i.e. 

kg vB = ILoCB, 

we find that the beam-plasma mode with collisional effects can be described by a third 
order equation in o, with the unstable mode being !ocated ~ e z r  the beam hariiionics. 
To lowest order we wish to know the sign of the quantity, 

where Im w/v  = 0 is the growth rate for zero collision frequency. If the sign of the 
quantity in equation (44) is positive, then collisions have a de-stabilizing effect at low 
collision frequencies, whereas, if it is negative, collisions provide a stabilizing effect 
on the beam-plasma unstable mode. These effects are calculated for the same regbns 
of piasma density considered in the Cold Beam-Cold Plasma Model, i.e. at densities 
corresponding to resonance and non-resonance between beam harmonic and the 
upper hybrid frequency. 

Beain-p l a m a  resonaif ce 

in collision effects is 
In the case of resonance, as given in equation (25), the growth rate to lowest order 

which for YEN = 0, reduces to equation (26). From this we see that collisions have a 
stabilizing effect on the beam-plasma unstable mode at exact resonance. We recall, 
that at this beam-plasma resonance, one observes almost maximum growth rate for 
the entire range of plasma densities at a given beam harmonic. We might therefore 
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TABLE 5 .  COLLISION FREQUENCY, v~,,,, RE- 
QUIRED TO STABILIZE THE BEAM-PLASMA MODE 

AT EXACT RESOKASCE 

I VE.V-I%B 

10 1.26 
11 1.70 
12 2.06 
13 2.36 

infer that collisions have their largest effect where the interaction is the strongest. 
This perhaps is expected since the greatest damping of the plasma mode occurs at the 
oscillation frequency which coincides with the beam harmonic. 

Though it is not meaningful to discuss complete stabilization due to  collisions in 
the present analysis one can at least obtain some feeling for the magnitude of the 
collision frequency required to stabilize the mode at beam-plasma resonance. Table 5 
lists the collision frequency required for the growth rate of equation (45) to become 
zero for Astron parameters. We see that collision frequencies of the order of the beam 
cyclotron frequency could stabilize the beam-plasma interaction at exact resonance. 

Non beam-plasma resonance 
For the case when the plasma density is such that resonance between the plasma 

normal mode and a given beam harmonic does not occur, we might expect less damp- 
ing due to collisions. The growth rate for this density region, to lowest order in the 
collision frequency, is 

Im-=-- - 
0 1 OpB [ I 2  - "/B 2 (1 + m p p z / ~ C ~ z ~  ?B4mPP2/wcp211'2 

I @CB 1/B W C B L  $(l $. OPPZ/0JCP*) - l 2  
2 

"/B vE-VwPB 1/B20PPz +----- 2 

X 2 (46) 

2 UCp OJCB 12WCp2 

4Z2(l2 y ~ * )  - (2' - 1/B2)[12 - ̂JB2(1 + ~ p p 2 / W c P 2 ) ]  

[l' - I/B2(1 Qpp2/wCp2)13 

where we have assumed that 

and 

for instability to occur in the limit of zero collision frequency. This result agrees with 
equation (22) in the vES = 0 limit. As in that case, we consider two groups of beam 
harmonics; those equal to and above the plasma electron cyclotron frequency, l 2 y B ,  
and those below, 1 < yB. 

For beam harmonics above the plasma electron cyclotron frequency, we see that 
the collision term is negative and thus collisions have a stabilizing egect on these 
harmonics. For beam harmonics below the plasma electron cyclotron frequency, the 
results indicate that collisions have a stabilizing influence only for plasma densities 
up to a critical value given by 

f w P P 2 j W c P 2 )  - l 2  > 0 

l2  - 1/B2(1 - mpp2/mCpz) 1/B4wpp'/wCp2 2 0 
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TABLE 6. CRITICAL PLASMA DENSITY IN- 
CLUDIXG COLLISIONAL EFFECTS FOR BEAM 

HARMONCS I < y B .  SEE EQUATIOS (47) 

5.17 
3.07 
2.02 
1.28 
0.61 
0.00 
0.09 
0.00 

and a de-stabilizing effect for plasma densities above this value. Table 6 gives the 
value of this critic21 density for Astron parameters; and we note, for example, that the 
I = 8 beam harmonic experiences a stabilizing effect due to collisions for plasma 
densities up to oPp/ocp = 5.17, and a destabilizing e8ect for densities above this 
value. It is interesting also to note that collisions have a destabilizing effect at all 
plasma densities for Seam harmonics less than three. 

wcB) less than the zero collision growth rate, that is, it is two orders of magnitude less, 
while in the hybrid density case, the effect is approximately of the same order as the 
vEN = 0 growth rate. This may be viewed as further confirmation of the fact that 
collisional effects are most dominant when the plasma normal mode is near a giving 
beam harmonic. 

From the a t o x  statement, we might expect that the onset condition for instability 
for beam harmonics above the plasma electron cyclotron frequency to be greatly 
affected by collisions. In the zero collision case, the onset condition is given by equa- 
tion (27), and the following result is obtained at that plasma density; 

In this case of non-resonance the effect of collisions is of order 

This states that the damping due to collisions at the onset condition is approximately 
the same as thst at the hybrid density, which impiies that coiiisions have a tendency to 
increase the threshold plasma density for beam harmonics above the plasma electron 
cyclotron frequency. 

In Appendix A, we show that the dispersion equation for the Cold Beam-Cold 
Plasma model in the large wave number region is similar to that of the streaming 
instability. The effects of collisions on the streaming instability have been examined 
by BOHMER et al. (1971) and SIWGHAUS (1954), among others. These two references 
show the enhancement of growth rate at low frequencies (Table 6 ,  I <3) ,  and re- 
duction of growth rate in the region of the p!asma modes. Our results reduce to those 
obtained by these authors in the appropriate limits. 

5 .  EFFECTS OF B E A M  E N E R G Y  SPREAD 
A feature of the beam particles in Astron that is not included in our base model is 

that the beam particles have a finite distribution in streaming energy. The purpose of 
this section is to examine the effect of this energy spread on the beam-plasma unstable 



75 8 C. D. STRWLER and T. KAMMASH 

mode. It is not our intent to imply that the streaming energy spread is in any way the 
most dominant form of energy spread relative to the beam-plasma mode. The point 
is that the streaming energy spread is a consequence of the Astron injection system. 
The plasma species, wave vectors and model geometry are the same as in Section 2. 

We employ the same beam model used before but with the addition of a spread 
in particle energy or velocity. The appropriate equations are the relativistic Vlasov 
equations which we choose to write in Minkowski space (SUDAN, 1965), i.e. 

(49) 1: ~ ( x , u , t ) + ~ u . a J + ~ [ E ( x , t ) + - v x B ( x , t )  1 .-=o, 
at y ax m0c C 

where 
C - u = v  
Y 

and 
= (1 - 212/c2)-l/? = (1 + u2)1 /2  

are the Minkowski velocity (U) and relativistic mass ratio, respectively. The current 
density is now given by 

J(x, t )  = q - u~(x, U, t )  d3u. (50) 1; 
We linearize the above equation about the equilibrium state of an arbitrary 

velocity distribution, and assume the space and time dependence of the perturbed 
quantities as given in equation (1). The linearized perturbed current density for the 
beam becomes 

47riw 
C2 

- 

where fo(ii) is the normalized equilibrium distribution function of the beam particles, 
i.e. 

d3&@) = 1. s 
If the distribution function is a delta function in energy (velocity), i.e. 

fo(N = &U - %3>, 

then the perturbed current density becomes that given in equation (8) indicating that 
the results obtained in this section reduce to those of Section 2 in the limit of zero 
energy spread. 

We further assume that there is energy spread of the beam particles in the direction 
of the beam only, which makes the equilibrium distribution function assume the form 

fo(n) = Xu,) 8(Ua)fOy(Uy). (52) 
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Integrating over U, and U ,  and defining the following velocity integrals, 

the perturbed current density becomes 

where 

[mduvfoy(l!,) --o) = 1 

yy  = (1 + zly2)1’2 = (1 - vy2/c2)-1’2 
and 

czi 
V =-U. 

YY 

If we now combine the above result with equation (7), and insert into the wave 
equation, we obtain for the extraordinary mode the following dispersion equation in 
tGe limit of large IC,C : 

Square distribution 
As an attempt to understand the etTect of energy spread on the unstable mode, we 

consider a “square” distribution in bezm particle velocities centered about the mono- 
energetic value, u , ~ .  That is, we letfoy(uy) be of the form 

1 

(56)  foy(Uy) = a , u,B - 4 2  I U, _< ZL,B + AI2 

= o  otherwise, 

where the energy or velocity spread is represented by the parameter A. Inserting this 
distribution into the velocity integrals of equation (55) ,  and assuming that the energy 
spread in the beam is small, i.e. 

A <uyB, (57) 

we obtain after expanding the numerator and denominator of the integrand of the 
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velocity integrals in powers of the variable U, the following: 

- - _ -  
c2 A 

where 

For a highly relativistic beam (yE > 1) we can approximate the integrals by keeping 
terms through u2 in both the numerator and denominator. Such an approximation 
allows us to consider energy spreads which are larger or smaller than the resonant 
frequency term, CL) - k,VB. 

“Small” beam energy spread 
’Mie assess the initial effects of energy spread by assuming that 

which we call the “small” beam energy spread limit. In this limit, the dispersion 
equation becomes 

Solutions to this equation for plasma densities where normal mode-beam resonance 
occurs ( I  = 10, 11, 12, . . .), the addition of energy spread into the beam particles 
produces an initial increase in the growth rate of the cold beam-cold plasma unstable 
mode. For beam harmonics below the plasma electron frequency ( I  < 9), we find 
there exists a critical plasma density above which energy spread has a stabilizing effect 
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and below which it has the opposite effect. It appears then that at small energy spreads 
the expected stabilization does not occur for harmonics below and above the plasma 
electron cyclotron frequency at the appropriate plasma densities. 

“Large” beam energy spread 

spread limit; 
We shall refer to the opposite limit of equation (59) as the “large” beam energy 

In this limit, the following dispersion relation is obtained : 

which represents the “zeroth” order dispersion relation in the “large” beam energy 
spread limit. 

For beam harmonics below the plasma electron cyclotron frequency, I < yB,  one 
can calculate from equation (62) a plasma density, w p p  = O j p p ,  where the quantity 
(o - Iw,,)~ is zero. The result is 

(63 j 

which yields : 

(w - IwCB)‘ > 0, for copp > d p p ,  implying stability 
and 

(w - 2 0 ~ ~ ) ~  < 0, for w p p  < hpp, implying instability. 
Table 7 lists values of d p p  for Astron parameters. Comparing the stability condi- 
tions for the “large” energy spread limit and for the case of a cold beam (Section 2), 
we find that the two conditions are almost reversed. For example, at  the I = 8 beam 
harmonic the cold beam case indicates instability for plasma densities wpp/wcp 2 
0.051, whereas, for the present case, instability is indicated for oJpp/wcp 5 0.055. 

(64) 

TABLE 7. CRITICAL PLASMA DENSITY FOR 
“HIGH” TEMPERATURE BEAM FOR BEAN HAR- 

MONICS < *JB = 9.0 

0.055 
0.078 
0.095 
0.111 
0.129 
0.156 
0.210 
0.383 
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If one takes into account the experimental evidence that the beam-plasma interaction 
does not occur until sufficient plasma density is attained, corresponding to wPB/ 
wCB = 0.3, the present results indicate that all beam harmonics less than the plasma 
electron cyclotron frequency are stable. We must keep in mind however that the 
dispersion equation is not valid at plasma densities far from copp = GPp,  and thus 
this equation can only provide indications of the stabilizing effects due to energy 
spread in the limit of “large” energy spread. 

For the beam harmonic which is coincident with the plasma electron cyclotron 
frequency, 1 = y B  = 9.0, we find only stable modes, which again is a reversal from 
the cold beam case where instability existed at all plasma densities. 

The remaining grcup of harmonics are those above the plasma electron cyclotron 
frequency, namely I > yB. Three regions of plasma density are examined separately. 
The first region is for densities below the hybrid density for a given beam harmonic. 
In this case, the dispersion relation gives: 

(w - IwcB)~ < 0, for w p p  < wpp*,  implying instability. (65)  

(a - hcB)’ > 0, for w p p  > wPp*, implying stability. (66) 

For a plasma density greater than the hybrid density the result becomes 

Since the analysis becomes more difficult in the vicinity of the hybrid density, only the 
solution at exactly the hybrid density is obtained. This solution is 

for opp = wpp*, which clearly does not satisfy the condition in equation (61). 
However, it may be indicative of the fact that probably an unstable mode exists at the 
hybrid density. We observe, nevertheless, the similarity between the growth rate in 
this “large” energy spread limit and the comparable cold temperature limit result of 
Section 2, i.e. equation (26). The difference between the two results, however, is that 
for the cold beam case the unstable mode appears below the beam harmonic, whi!e 
in the present case it appears above the harmonic. Again, as for the other harmcnics 
( I  < yB and I = 1/~) the two stability conditions are essentially reversed. 

From the standpoint of Astron, where energy spread of the beam increases with 
time, we can visualize the beam-plasma interaction to initially occur with an essentially 
monoenergetic beam. As the energy spread in the beam increases, it ultimately 
becomes sufficient to quench the instability. For a rigorous theoretical verification of 
these postulated events, an analytical model which incorporates the mechanism of 
changing energy spread with time or with plasma density will be required. But, from 
the present preliininary calculations, we conjecture that it plays a major role in sup- 
pressing the instabilities in Astron. This role is seen mainly in the non-existence of 
unstable modes for harmonics I < yB,  and the quenching of unstable modes for 
beam harmonics above the plasma electron cyclotron frequency, I > yB. 

As in the section on collisional effects, we compare the present results with those 
obtained by other authors on the streaming instability. Again, we find that our 
results readily reduce to those of BOHMER et al. (1971) and that of SINGHAUS (1964). 
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Specifically, we find that if we substitute the growth rate given by equation (22) into 
the non-relativistic limit of our definition as given in equation (61), we obtain 

“B W P B  

which Is essentia!ly identical to the defifiition of “high” beam temperatiire used by 
Singhaus. These authors find in the “high” temperature limit that instabilities persist 
in a narrow region about the plasma frequency, which in their case (Bo = 0) is the 
normal mode corresponding to our hybrid frequency. Their conclusion agrees with 
ours in that suficient energy spread may stabilize all beam harmonics except those in 
the immediate vicinity of the plasma normal modes. 

6. CONCLUSIONS 

We have put forth a model that describes the beam-plasma interaction and corre- 
sponding instabilities in Astron. This model shows that for a cold beam-cold plasma 
system the strongest interaction occurs at beam harmonics in the vicinity of the plasma 
upper hybrid frequency. When plasma thermal effects are included the model 
shows that interaction also occurs for beam harmonics above integral multiples of the 
plasma electron cyclotron frequency. 

The introduction of collisions between the plasma electrons and the background 
neutral gas seems to indicate that collisional effects are most dominant in the imme- 
diate vicinity of the plasma normal modes. It is also shown that collision frequencies 
of the order of the beam cyclotron frequency can lead to stabilization of beam-plasma 
interactions in this vicinity. 

The effects of energy spread in beam particles appear to be so profound that the 
instability conditions for a cold beam become totally reversed for “large” energy 
spreads. This reversal indicates possible stabilization of all harmonics below the 
electron cyclotron frequency, i.e. 1 < y B ,  and at sufficiently high plasma density for 
those harmonics in the region of the plasma normal modes. 

These results are in good agreement with experimental observations and with 
results obtained in connection with a comparable phenomenon, namely, the streaming 
instability. 
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APPEND I X 

In this appendix we demonstrate the mathematical similarity of the dispersion relation obtained in 
Section 2 for large wave numbers and that obtained for electrostatic oscillations in a beam-plasma 
system. The latter results in the streaming instability as discussed by BRiGGs (1964). 

The dispersion relation as given in equation (13) represents waves whose propagation and electric 
field vectors lie in a plane perpendicular to the applied magnetic field, Bo. If, in this equation, or 
better yet in equation (Il) ,  we let 

k, = 0 
( A 0  Bo = 0, 

EX = E* = 0, Ey f 0, ('42) 
and consider the mode 

then for waves propagating along the beam, i.e. for 

k II VB I/ E, 
the dispersion relation becomes 

This equation represents a monoenergetic beam streaming through a cold background plasma, and 
its similarity to equation (19) is obvions. The important observation, here, is thit  thz mechzzisms 
that result in the unstable modes, aod the stabilizing effects of collisions and energy spread in both our 
model and the streaming instability are similar (WATSON et al., 1960; S i N G m u s ,  1964; BOHMER et al., 
1971; SELF et al., 1971). 


