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Abstract-Ideal MHD equilibrium for toroidal piasma situated in a magnetic field with single 
non-planar magnetic axis with variable torsion and curvature is investigated. The plasma is taken 
to have a non-circular cross section (elliptically or triangularly deformed) through which a longi- 
tudinal current with a flat prolile flows. Equilibria of the Tokomak or French Harmonica types are 
examined as special cases of the general class and it is shown that for a given longitudinal current and 
torsion of the magnetic axis the effect of triangular deformation on the limiting value of p (the ratio 
of kinetic to magnetic pressure) is weak and can be neglected. Vertically elongated elliptical deforma- 
tion of the plasma cross section is shown to lead to an increase in the limiting value of relative to that 
of a circular cross section. Equilibria exist a t  a low value of p in the absence of the longitudinal 
current. The particular type of stellarator with non-planar magnetic axis of constant torsion and with 
Ohmic heating is also considered. Moreover, classical diffusion of non-axisymmetric toroidal plasma 
is examined with the result that vertical elongation tends to decrease diffusion while triangular 
deformation appears to show an effect only at high B. In addition an expression for V," is obtained 
and discussed for the existence of a magnetic well. 

1. I N T R O D U C T I O N  
DISTORTION of the plasma cross section as possible means of stabilizing plasmas in 
toroidal geometry and thus raising their betas has been intensively studied in recent 
years. Very recently (GLASSER et al., 1973) investigated the effect of such distortion 
on the collisionless trapped-particle instability in Tokamaks and have shown that 
elliptic deformations have a strong stabilizing influence while triangular distortions 
result in a much smaller effect. Moreover, several authors who have studied the 
equilibria and stability of Tokamaks (LAVAL et al., 1971) and the French Harmonica 
(ADAM and MERCIER, 1969) have shown that plasmas with non-circular cross section 
have deeper average magnetic wells than those with circular cross sections. 
In his study of plasma equilibrium and stability near the magnetic axis of complex 
toroidal configurations (MERCIER, 1964) has found that because of singularities no 
analytical solutions of the equilibrium equations exist. The position of this singularity 
depends on the ratioj,,/B,, of the longitudinal components of the current density],, 
and the magnetic field B,, near the magnetic axis, the rate d'(s)/2 at which the cross 
section turns around the magnetic axis and on the torsion l/T(s). The curvature 
1/R(s) of the magnetic axis has no idiuence on this position. For circular cross 
sections near the magnetic axis, Mercier has also shown that there is no domain of 
stability in the case of absence of longitudinal current (SHAFRANOV, 1968) and 
SOLEV'EV et al. (1969) have, however, shown that there indeed exists a domain of 
stability when the plasma cross section near the magnetic axis is taken as non-circular. 
Recently, Luc et al. (1974) have shown that by choosing some specific value of ,8 
with elliptical cross section near the magnetic axis no domain of stability exists in the 
absence of longitudinal current and only the smallest stable value of longitudinal 
current is obtained with horizontal elliptical plasma cross section. 

Moreover, an expression for the average velocity of diffusion across a magnetic 
surface of a stationary non-axisymmetric toroidal plasma near the magnetic axis has 
been obtained by MASCHKE (1971) using Mercier's coordinates and by NUBERNBERG 
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(1972) using Hamada’s coordinates but their results do not explain the resonance 
effects which appear near the magnetic axis. 

In the first part of this work we examine the equilibrium of non-circular (ellipti- 
cally or triangularly deformed) high beta toroidal plasma with a non-planar closed 
magnetic axis characterized by variable torsion and curvature. Of special interest 
is a toroidal configuration with or without a weak flat longitudinal current flowing in 
forward and backward directions in a plasma with non-circulator cross section. 
The resulting rotational transform is due to the current, the rotation of the non- 
circular cross section dong the magnetic axis and the torsion in the magnetic axis. 
We find it especially useful to use the generalized Helicoidal image method (Luc 
et al., 1974) in order to avoid the difficulties associated with the singularities referred 
to earlier. We would like to point out that our equilibrium calculations here are for a 
thin cord plasma restricted near the magnetic axis using the so-called thin tube 
approximation and corresponding to the resonance case. Also, we have investigated 
the possibilities of existence of the magnetic well. The stability of this equilibria will 
be treated in a subsequent paper. A closely related investigation, namely that of the 
stability of a toroidal plasma with circular cross section but with different non-flat 
current profile will be treated in a later paper. 

In the second part we derive a general expression for the average diffusion velocity 
across a magnetic surface near the magnetic axis and examine the resonance case. 
The results are then applied to various devices whose equilibria have been considered 

11. BASIC EQUATIONS AND ANALYSIS 
The magnetic ‘I” is defined by its intrinsic coordinates R(s) and T(s) where 

R(s) and T(s) are respectively the radii of curvature and torsion expressed as functions 
of the curvilinear distance s. A point ‘P’ (See Fig. 1) is then defined by its polar 

ducing Bo = e + a(s) where a($) = f: ds/T(s) the square of the element of length is 
coordinztej ( p ,  0) is a plase ii~iiiizl to arc! the cdivAEnear coor&rzie Gs,. l=tio- 

The equations of interest are the ideal MHD equations: V B = 0; V x B = j 
and j x B = V p  where B; j and P are the magnetic field, current density and scalar 
pressure respectively. The solution of the first equation can be written with the aid 
of the helicoidal image method (Luc et al. 1974) as 

B = fu + u x VP (1) 

FIG. 1 .-System of coordinates 
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where f and Fa re  function of p and t ,  and the vector U is given by 

In the above equations the following definitions have been employed; 

is the inverse of the aspect ratio, a is the characteristic dimension of the plasma cross 
section. L = $ ds is the total length of the magnetic axis, and A,, is the resonant 
coefficient corresponding to the index ko related to the Fourier expansion of the 
relative curvature of the non-planar magnetic axis as given by (SHAFRANOV, 1964) 

exp [i r$ s - x ( s ) ) ]  = a,exp (T) i27rks 
k=-m R(s) 

with the coefficient a, being given by 

Here a, # a-, is a complex number that can be expressed as a, = exp (icp,) 
(a, = a-, for planar magnetic axis). It is important to note (Luc et al., 1974) at 
this point that there is one and only one A,, coefficient that can be dominant in the 
equilibrium, stability and classical diffusion problems of this type of complex mag- 
netic toroidal configuration. The expression for the current density can also be given 
in terms of the above functions as 

where the operator 9 is given by 

In view of this equation for MMD equilibrium then assumes the form (Luc et al., 
1974) 

9 F + % f + - - + g - = O  1df2 dP 
ag 2 d F  dF  (4) 

and one can readily show that the function f as well as the pressure P are arbitrary 
functions of 8'. We shall assume in the present calculation that the plasma is a thin 



1052 H. M. RIZK and T. K.WVASH 

chord with ck: N E~ N so N E < 1 (the so-called 'thin tube' approximation) so that 
all terms containing E can be neglected relative to unity in the zero order terms. 
We will assume that [p,l/a < 1 to keep the magnetic axis always inside the plasma; 
here p = p, and t = ' i ~  are the coordinates of the position of the magnetic axis 
relative to the central geometrical axis. 

We turn now to the calculation of the magnetic surface functions for configura- 
tions with closed, non-planar magnetic axis with variable torsion and curvature. 
The volume of a bounded magnetic surface, F = constant, can be written as 

Moreover, the short way (transverse) fluxes Y and X of the magnetic field and the 
current density are given by 

where B,, Bo, and j,, j,, are respectively the longitudinal and azimuthal components 
of both the magnetic field and current density. By the same token the long way 
(longitudinal) fluxes F" and 2 of the magnetic field and current density are represented 

PZT ,w) 
k =Jo dojo dp(j,d. 

For planar magnetic axis i.e. I/T(s) = 0, equations 

(jej 

(5b) and (5d) reduce to those 
obtained by MERCER (1966). It might be noted that the two flux functions 'Y and 

and the rotational transform i J 2 ~  = dY/d'l? are related to lowest order by 

Y = -koT -+ L(F - F,) 
or 

where F, is the value of the function F on the magnetic axis. The expression for the 
rotational transform near the magnetic axis (Luc et al. , 1974) is given by 

where the function K(s) has the form 
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and r](s) is related to the ellipticity parameter E, = (bm2 - am2)/(bm2 + am2) of the 
non-circular plasma cross section near the magnetic axis through the relation E, = 
thq(s). The terms 2bm and 2a, are respectively the major and minor axis of the small 
ellipse near the magnetic axis, d’(s)/2 = d/ds(d(s)/2), and d(s)/2 = + a@) - 
@/a is the turning angle of the minor axis of the ellipse relative to the principal normal 
to the magnetic axis. From (6a), (7a and 7b) one can obtain the value of the function 
dF/dF. Accordingly, the function Po’ = (dP/dY), is given directly by 

Similarly the relation between x and 2 and the rational transform uc/2v = dx/d5 
is given by 

or 
x = -k& + Lcf- fm)  (94 

where f, is the value off on the magnetic axis. 
Through an expansion to third order in p ,  the distance from the magnetic axis, the 
functionY can be expressed in two well known forms, the so-called standard form 
(MERCER, 1963) given by 

-- 2y - p2(chr] + shr] cos 224) + p 3 ( G o  7 cos 3u + fro S sin 3u) (10) 
P c 0 l  B S ,  

and the so called normal form (SOLEV’EV and SWAFRANOV, 1970) denoted by 

x [j2(1 + E ,  cos 2u) + j3(q cos U + c12 sin U + Q~ cos 3u + a4 sin 3u)l (11) 
where U = 0 + d(s)/2 is the phase angle of the magnetic surface near the magnetic 
axis which has a period of 2v. The function F and 9 which appear in (12) give the 
coirectioils to the elliptic form of the magnetic surfaces near the magnetic axis. 
These two functions are important because they appear in ihe necessary stabiiity 
condition (MERCIER, 1964) near the magnetic axis. The functions al, a2, ag and a4 
are related to one another (SOLVEV’EV and SHAFRANOV, 1970) and also enter into the 
necessary and sufficient stability condition (SOLVEV’EV, 1968, 1969) near the mag- 
netic axis as well as in the definition V,,” = d2V/dT2 which characterizes the curvature 
of the mean magnetic well. The relations connecting the parameters r“ and S,  and 
al, a2, x 3  and x4 are given in the third approximation by 

and 
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The expression for the function V,,” near the magnetic axis has the form (SOLVEV’EV 
and SRAFRANOV, 1970); 

It might be noted that this expression for V,” does not explain the resonance case, 
and in order to calculate V,” for the resonance case one needs to use the integrals 
(Luc et al., 1974) given by 

The expression for V{ which yields the resonance case for the configuration with 
201?-$mr ma,a-etic axis of variable curvature and torsion, in which the hnctions 
q(s) ’ js0 and B,, are constant, is given by 

111. EQUILIBRIUM 

i. Equilibrium solutions 
To obtain a solution of the MKD equilibrium equation for non-circular (ellip- 

tically or triangularly deformed) cross section in the complex field geometry referred 
to earlier it is important to first note that to lowest order the central and magnetic 
axes are so close to each other that they can be assumed to possess the same length, 
torsion and curvature. We also note that a longitudinal current density with a flat 
distribution can be represented by f = fo2 + AF where A and& are constant param- 
eters. The function f has been expanded to yield f = fo + 0(g2) and we further assume 
that the pressure is related to the function Flinearly i.e. P = Po + PIF with Po and PI 
being constants. The constants that appear in the above relations are characteristic 
plasma parameters and can be expressed in terms of the total current I,, the torsion 
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Z/T(s) and ,b. E we take F = P = 0 which leads to Po = 0 then this corresponds to 
the case where the toroidal plasma surface is surrounded by vacuum. 

The differential operator that appears in equation (4) can be expressed in terms 
of the Cartesian coordinates x(p, t )  andy(p, r )  as 9 = V2 + Ako(a/ax) with V2 = 
a2/ax2 + a2/ay2. From equation (3) we note that the longitudinal component of the 
current density can be written as 

where j ,  = -(PI + A/2) is the current density at the central axis (x = y = 0) of the 
toroidal plasma. This central current represents to zero order the average density 
of the total longitudinal current across the plasma cross section. Similarly from 
equation (1) we see that the longitudinal component of the magnetic field, B,, is given 
by 

where p = w; and that Bo = a = fo(1 + O(E) .  

put in the form 
With the effects of toroidicity incorporated the solution of equation (4) can be 

F = FZc (19) 

where 

and Fo, Y, yl and y 2  are constants. The equation for triangular deformation is simply 
F, = 0 or 

2 1 = x2 - + 7 y2 + E , ( : )  6 - 3 +) 
a2 b 

where E ,  is the appropriate distortion factor. Figure 2 shows the possible shapes of 
this cross section. We have used E, = yAk0 where y is an arbitrary constant, and have 
assumed that E, is of the order of E (corresponding to weak deformation) so that terms 
containing E,  in the zero order approximation can be ignored relative to unity. 
When E, = 0 the plasma cross section reduces to that of an ellipse whose major 
and minor axis are 2b and 2a respectively. The 'singular' points can be readily seen 
to be: (i) x = y = 0 (elliptic point) for which FJF, = 1. (ii) x/a = - (2 /3~ , ) ,  
y/b = 0 (hyperbolic point) for which FJF, = (1 - 4/27~,3 .  (iii) x/a = 1/3q;  
y /b  = i ( l / &  E, (two hyperbolic points) for which Fs/Fo = (1 - 4/27~,3.  The 
constants F,, Y ,  yl and y z  can be determined by substituting equations (19-21) into 
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section. 

(4); the results are 

Fo = 

V [Y (1 - $) 4- I] + 2(  1 + $) B 

" (3 + $) -k E 2 ( 2 1 / 1  + 27,- - 1 

-- - 
a2 

b2 

2 ~ 2  1 + 6 -  a2 - 32)(?) + &,2!?/3 + $) 
r l = - $  1 ( b2 b4 a b2 \ 

2 

Y2 = 
2e7:(1 + 6-  a2 +z) 

b2 b4 
with 

( P ,  - $Bo)  
G =  

( ? ?  - j,) 

(25)  
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If we define the mean pressure as that averaged over the plasma volume then it 
can be written as 

1 
V 

(P) = - j P du N pp0 

similarly we define = 2(P)/B,2 N PlFo/B,2. In addition we introduce the non- 
dimensional quantity G = -(kt  + I /q(J  with Ijq = I,/2.?rbeoBo and I, 'U nabj, 
and let the quantity p* be given by 

In terms of these physical parameters and the ellipticity parameter E = (b2 - a2)/ 
(b2 + a2) of the plasma bouiidary the constants given by equations (23-26) can now 
be written as 

where 

2 

2 

4(:)(1 + 2E - 2E2) + % (1 - E)(2 + E )  
Y l = ; +  1 &k 

6(2 - E') 

(i + L] n\2r 1-4 E, E, (1 ,, - Ej + 7 st2 (2 + fijj -\l 
&k 

Y2 = 
4(2 - E2)(1 - E )  

with $* = P 
(1 + E)&02G2 

Figures 3 and 4 show a typical plot of these magnetic surfaces. The solution €or the 
plasma with purely elliptic cross section can be obtained from the above equations 
by letting eS = 0. For the case of a circular cross section with radius a(&, = E = 0) 
equation (24) yields 

which for I, = 0 further becomes 

(33) 
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VI 

FIG. 3.-Magnetic surfaces in the plasma for 

and different values of FIFO. The magnetic 

l/q = 0, ko = 3, L/2rT = 2.8455, @ = 04Q45, 
EO = 0.3494; E& = 0.364413, = 0.1,E = 0.6 

is &sp;sie: cl; $'s+mca x, = -9.95 fiQiii 

the central axis of the plasma 

FIG. 4.-Magnetic surfaces in the plasma for 

and different values of FIFO. The magnetic 

l/q =0,3,L/2~T=2'8455,ko = 3,p = 0.084, 
EO = 0.3494, &k = 0.36413, E~ = 0.1, E = 0.6 

. .  is &sp:acS."d a; $s;siiie & = -9.246 
from the centrd axis of the plasma. 

These results agree with those obtained by other authors; for example equation (33) 
in the limit of zero torsion (l/T8 = 0) reduces to that given in ADAM and MERCER 
(1969). Moreover, the MHD equilibria of the French Harmonica (l/T(s) = 0, 
P ( s )  = variable, k, # 0) and Tokamak (LAVAL et al., 1971)-(1/T~s~, F ( s )  = 
constant, k,  = 0) with triangular or elliptic cross sections are just special cases of the 
soiutions given by equations (29-32). 

Before proceeding to the investigation of the limiting values of #? associated with 
these equilibria it would be desirable to briefly examine the geometric implications of 
the distortion of the plasma cross section. For the non-circular (elliptically or tri- 
angularly deformed) plasma cross section with the principal normal to the non-planar 
magnetic axk of variable torsion and curvature (as described in the image system 
characterized by two variables p and t = 0 + 6(s)/2) rotates (-ko) times along the 
plasma ring-@ the real system given by (p,  e,, 3)). For circular cross section plasma 
with low #? (the magnetic surfaces are concentric circles)-the effect of the phase angle 
will not appear in the real system since it remains in the same position as it rotates. 
Moreover the position of the magnetic axis relative to the central axis will not only 
change as we go from the image to the real systems but it will also rotate around the 
central axis. The physical picture can be made clearer when applied to the case of a 
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toroidal plasma with non-planar magnetic axis of variable curvature and constant 
torsion. (See appendix). 

ii. Expansion of the solution F near the magnetic axis 

axis can be written as 
The function F expressed in terms of a system F, U centered around the magnetic 

- F = Q + M , r ) l t  M2(;7+ Nl(+) ($+ N2r+7 (35) 
R - 0  

or 

The point (x,,,, 0) is assumed to be the position of the magnetic axis and the remaining 
quantities in the above equations are defined as follows: 

F = F,+ ( A  + B COS 2u)j 2+ (C COS U + D COS 3u)P3. (36) 

x, - x = j cos U ;  y = p sin U ;  

C1= M1(1 + E )  + M2(l - E )  

C3 = 3N2(1 + E )  + Nl(1 - E )  

C2 = Ml(1 + E )  - M2(1 - E )  

C4 = N2(1 + E )  - N1(1 - E )  
2 

M1 = (yl&,p - 1) + 3(v - E,) 5’ + ~ Y ( E ,  - A E ~ ) ~ )  

2 

( a ,  

M2 = ( y 2 w  - 1) + (v + 3%) (:) - 43% + + 7211 p) 
a 

NI = (9 + 3 4  - 2 ~ [ 3 ~ ,  + d r 1  + rdl k) 
N2 = (9 - 6,) + 4% - YlSJ - 

a 

r:i 
We can now return to equations (6a) and (36) to obtain the expression for the 

transverse flux Y. It is 

and where we readily note that the magnetic surface near the magnetic axis to order 
jz corresponds to a small ellipse with an ellipticity given by 
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By comparing equation (37) with the Mercier’s standard form (10) we find 
that 

s ” = O  (39) 

These two terms along with q ,  d(s)/2 characterize the magnetic surface near the 
magnetic axis. Also, we can write from equations (6a) and (36) the expression for 
the flux’?’ as 

If we now compare this with Solevev’ev and Shafranov’s normal form (11) we find 
that 

at = 0 

ti3 = - 

a4 = 0 

1 ( N d 1  + E ) -  Ni(1 -E)] 
2a \M~(I + E )  + ~ ~ ( 1 -  

(42) 

The longitudinal component of the magnetic field B,, and the current density 
ofj,, near the magnetic axis can be obtained from equations (17) and (18). The result 
is 

where the quantity W is given by; 

MERCER’S necessary condition (1964) for stability and SOLVEV’EV’S necessary and 
sufficient conditions (1969) depend on the above quantities as well as on the curvature 
and torsion of the magnetic axis, on the rate d’(s)/2 at which the cross section turns, 
and on the ratio j,,/Bso. As mentioned earlier these stability criteria will be examined 
in a subsequent paper. 
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Following the same procedure we find that the rotational transform near the 
magnetic axis, ic0/2v, can be put in the form 

= -k, + GJl - Em2 (@*W- 1) (45) 27r 
and on the boundary of the plasma it is given by 

!CL = -ko + GJ(1 - ~ * ) ( l  - E*) (1 + O(E)).  (46) 2v 
These expressions agree with those given in ADAM and MERCIER (1969) for circular 
cross section with planar magnetic axis. For v = 1 equations (45) and (46) reduce to 
iCo/27r = -k, + G m  and i,,/2n = -ko respectively while for Y < 1 the 
two transforms become equal and have the value iCo/2v = icb/2v = - k, + G m .  

The expression for V," for the present case can now be calculated from formula 
(16), (38) and (42); the result is 

In the special case when the displacement of the magnetic axis is weak, say 
@*/(1 + E/2) - E ,  we find (x,/u) - ek which corresponds to @* 4 1 and v 'U 

that 

= iVi, 'v -I, N I  N (Y  f k,), N 2  N (V - E,), Em N E,  W e  0, 

1 1 
2a 2u 

til = - - (Y(E + 2) - 3&,E), a3 = - - (YE + &,(E - 2)). 

The singular points (the positions of the separatrix) of the curve of the cross section 
with d(s)/2 = 0 are given by the equations aF/ax = 0 and aF/ay = 0 as (i) (x&) = 
2 / 3 ( ~  - E,) and (ysl/b) = 0 (hyperbolic point), (ii) (x,,/a) = I / ( Y  + 38,) and 
( ~ , ~ , ~ / b ) ~  = (98, - Y ) / ( Y  + 3&J2 (two hyperbolic points), at which (FIFO - Qm) = 
-4/27(v - E , ) ~  and 

y."= 
2 7 ( ~ ,  - Y ) ~  

In this case expression (47) takes the form 

E2 2 2vA,, 
a2 a 

-- Et + (-)(I - E)}. (48) 
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In order to obtain the condition for existence of the magnetic well (i.e. V,,“ < 0), we 
need to calculate numerically the Fourier components of the relative curvature 
appearing in expression (48) for the class of equilibria that belongs to the non-planar 
magnetic axis. As an example, these components are calculated in the appendix 
for a particular class of equilibria of non-planar magnetic axis closed curve of con- 
stant torsion turned three times around the magnetic axis characterized by L/2nT = 
2.84549 and k, = 3. In this case, the expression for V,“ given by (48) takes the form 
for low values of ,!3 

- i(0.30885 - 0.1526E) - - + (0.36413) e ) ( 1  - E)] .  (49) -= a2 
Vgn = 

TBSo2J1 - E2 
We note that expression (49) does not contain any E, terms thereby indicating that 
the triangular deformation has no effect on V,”. The condition for existance of a 
magnetic well (V,” < 0) is that the terms in the square bracket be positive. We assume 
&st that the coniigblration of magnetic surface contains only a single magnetic axis 
(i.e. Y < 1 and positive). For horizontally elliptic cross section (E < 0) the square 
bracket is positive (V,” < 0) and the result is a magnetic well. For vertically elliptic 
cross section (E  > 0), the square bracket may take on a negative value (V,” > 0) 
leading to a magnetic hill. For circular cross section (E  = 0) the square bracket has 
an absolutely positive value, thus V,” < 0 and the result is a magnetic well. These 
results are valid in the presence or absence of longitudinal current. 

It might be noted that the equilibrium examined here belongs to a particular type 
of stellarator with or without Ohmic heating (l/T(s) # 0; jso # 0 or j,, = 0), and 
the equilibrium solution for Tokamak (l/T(s) = 0; jso # 0; l/R(s) = constant) and 
the French Harmonica (l/T(s) = 0; j,, # 0; l/R(s) = variable) are just special 
cases of the above solution. 

iii. Limiting values of for equilibrium 
can be estimated from the condition which corresponds 

to the appearance of a new magnetic axis on the boundary of the toroidal plasma 
(LAVAL et al., 1971). A single inward magnetic axis exists inside this boundary when 
v < 1 and that corresponds to a maximum pressure profile. A second new outward 
magnetic axis appears when Y B 1 and this corresponds to a minimum pressure 
profile in the configuration. One is usually interested in a plasma coniiguration in 
which the magnetic surface encircles a single magnetic axis. If we let x = x,, y = 0 
be the coordinates of the magnetic axis relative to the central axis which is determined 
from the condition (VF),=, = 0, and assume that the displacement of the magnetic 
axis is toward the center of the torus i.e. (x,/a) < 0 then to zero order approximation 
we get (x,/a) w 1 - -/3v. If we further define the limiting p for v N 1 
as 

The limiting value of 

= y 1  -k f )  - i [ l+ (? + l jE] - - k, 
&k G 

then it is clear that the case l/q = -k, corresponds to the resonance case at which 
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G = 0 and p = 0. To the zero order approximation these results reduce to 

We note that equations (52) and (53) do not contain any terms related to the triangular 
deformation of the plasma cross section. This implies that the influence of this kind 
of distortion is weak and can be neglected to lowest order. On the other hand elliptic 
deformations have a significant effect on the limiting @, vertically elongated (E > 0) 
elliptic cross sections are preferable for equilibria at high B values. This conclusion 
agrees with that of LAVAL et al. (1971) for the case of a Tokamak with triangularly 
deformed plasma cross section. For the low p(p* < 1) case we find that pDmax M 
sO2G2(1 - E )  N s2. If we substitute 1/T = k, = 0, L = 27R and A,  = 1/R in equa- 
tions (52) and (53) we obtain the limiting values of p for Tokamak plasmas i.e. 

In the interesting case where the !ongitnV-al cnrrent is dxenyt (2s ~ - h t  6 cx& ia ii 
particular type of stellarator without ohmc heating) equation (53) becomes 

As an application, we have carried out numerical calculations from equation (53) 
for a particular type of stellarator configuration oaolely that of Eon-planar magnetic 
axis of variable ciw-vature and constint tors im characterized bq' L12aT = 2.84549 
and ko = 3 (The properties of this configuration are studied in detail in the appendix.) 
This geometry is further characterized by an inverse aspect ratio of E, = 0.1 and with 
a longitudinal current through the non-circular cross section plasma in forward and 
backward directions. The results are given in Fig. 5 which shows l/q vs the limiting 
value of ,!3 for equilibrium and also defines the domains of equilibrium. We readily see 
that if all the curves are extended they will intersect at a point which corresponds to 
the resonance case at a value of l/q = - (k, - L/27T) = -0.1545 for which 
G = 0 and pp,,, = 0. We also note that for I/q f 0 equilibrium is possible without 
constant torsion. In the absence of longitudinal current equilibrium exists at a low 
value of p (limited between from zero to 1.4 x for E = -0.99 and from zero 
to 7.05 x for E = +0.99 with E, = 0.1). The class of equilibrium considered 
here has been examined by R ~ Z K  and KAMMASH (1973) for a weak flat and non-flat 
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5.-Plot of PPmax vs llq for L/25rT = 2.8455, k, = 3, and so = 0.1. 

proiiles of a current flowing in the forward and backward directions through a 
circular plasma cross section where it has been shown that the effect of the non- 
uniformity in current density profile is very weak and can be neglected. Finally it 
should be pointed out that the class of equilibria considered here belongs to a 
non-planar closed magnetic axis of constant torsion characterized by L/2rT = 
2.84549 and k, = 3. 

IV.  CLASSICAL DIFFUSION 

In this section, we discuss the classical diffusion of non-axisymmetric toroidal 
plasma in the presence of the non-planar magnetic axis of a variable curvature and 
torsion and with non-circular (elliptically or triangularly deformed) cross section. 
The magnetic toroidal configuration considered here represents a particular type of 
stellarator. 

The general expression for the average diffusion velocity across a magnetic surface 
y = yo = constant is given by (MASCHKE, 1971) 

where V,, is the resistive diffusion velocity (SPITZER, 1962) in a straight plasma column 



Toroidal MHD equilibria and classical diffusion in complex magnetic conligurations 1065 

with the same magnetic surfaces cross section as considered here, and qll; qi are the 
resistivities parallel and perpendicular to the magnetic field. The quantity Eext is the 
externally applied toroidal electric field. 

Near the magnetic axis of the magnetic surface of the toroidal plasma configura- 
tion, expression (47) reduces to 

with 

The function Z(s) is the solution of equation (43) of MERCIER (1964) which is given 
(Luc et al., 1974) by 

where dL1 = y k o  - q+@ -k 2rls/L, and = yko - ykof z  - 21rls/L. As may be 
seen from equation (59) there are singularities in the function Z(s) when the rotational 
transform near the magnetic axis given by equation (7a) has an interger value i.e. 

I = I,,, = 0 at which the coeEcient Azo appears to dominate. 
For the resonant case, we can neglect all terms 1 # 0 and substituting from equa- 

tion (59) into equation (58) for the case LK(,,/2rr < l with the class of equilibria 
given by q(s) = constant, K(s) = A = constant with A = (js0/2Bs0 - 
et/a); we get 

LLT,l2.;; = lre8 + E < 1. T h e  : . .c~-~~+:. . , - .  :- +Lo+ -C+L- _-_--....-_ T VI?, - 
iucl iu&clicl*uu& baas ia L u a L  vi LUG icwuaukc ~ A / L J I  - 

If the displacement of the magnetic axis is weak (i.e. x , / a N  E , ;  ?* Q 1; 
- I. ; W = 0; jso - jo;  Bso - Bo; E, - E and A N ~ ~ j a l  GI) v - EL. ; MI = MZ 

equation (60) takes the form 

where Bo is the value of ,5 on the magnetic axis. The above relation gives the ex- 
pression for { V,) near the non-planar magnetic axis of variable torsion and curvature 

5 
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of the non-circular cross section toroidal plasma through which a current with flat 
density proiile flows (the case of a particular type of stellarator with Ohmic heating). 
It also includes the resonance case at which l/q = -k,  for which G = 0 and ,6 = 0. 
In the absence of longitudinal current density, formula (61) takes the form 

at which resonance exists at k, = ~ @ ) / 2 7 ~ .  From equation (61)) we can also get the 
expression for (V,) near the magnetic axis for the French Harmonica (l/T= 0, 
l /R(s)  = variable, k, # 0) as 

- € 8 1  + E )  - l(1 - + ko )[ (1 - $41 - E 2 )  - 
28, 4 4 

L 

and for Tokamak (1/T= 0, k,  = 0, A g o  = l/R(s) = 2n/L) as 

which are just special cases of expression (61). The first term in the square brackets 
with E = 0 corresponds to the PFIRSCH-SCHLUTER (1962) regime. We note from (62) 
that the second term decreases by increasing k, and the total diffusion velocity also 
decreases by increasing k,  (for this case the maximum value of ,6 increases also). 
The effect of triangular deformation of the plasma cross section on the diffusion 
velocity exists only for high values of Is; this may be readily seen from equation (61) 
which contains no E, dependent terms. The effect of ellipticity on the diffusion 
velocity can be discerned from the various terms inside the square bracket of equation 
(6ij. We note that the first term decreases for increasing E while the two teriiis in 
the curly brackets are positive for positive values of l/q. Therefore, both the second 
and third terms in the square bracket increase for increasing E, leading to the con- 
clusion that the diffusion velocity (V,) decreases for the vertically elongated (E  > 0) 
elliptic cross section; a geometry which is also preferable for equilibrium. 

V. CONCLUSION 

We have examined the MHD equilibrium and classical diffusion of a non-axi- 
symmetric toroidal plasma with non-circular cross section (elliptically or triangularly 
deformed) characterized by non-planar magnetic axis with variable curvature and 
torsion, and through which flows a longitudinal current of flat density profile in 
forward and backward directions. We have found that the effect of triangular de- 
formation on the limiting value of! for equilibrium and on the classical diffusion 
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(for low ,8) to be weak and negligible; and have also found that a vertically elongated 
(E > 0) elliptic cross section is preferable for equilibrium and with reduced diffusion 
velocity (V,). We have also concluded that equilibrium does not exist for high 
values of ,8 (corresponding to Y 2 1 at which a new magnetic axis is supposed to 
appear) in the absence of longitudinal current. In addition, we have shown that in 
the absence or presence of longitudinal current, a magnetic well (V,” < 0) obtains 
for horizontal elliptic (E < 0) and circular (E = 0) cross sections while a magnetic 
hill (V,,” > 0) may obtain for a vertically elliptic (E  > 0) cross section. 
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APPENDIX 

The parametric equations for a closed non-planar magnetic axis characterized by variable 
curvature and constant torsion; are 

X O  = yo sin v + PI sin 41; + pz sin 2v + ,u3 sin 7v + p4 sin 5v T 

y(v) -= p d l  - cos U> 4- Pl(1 - cos 4v) - pz(1 - cos 2u) - p4(l - cos 5v) 

with 

PO = -2.763, pl = 0.0301; pz = 0.1939; p3 = -0.0277; ,ur = 0.0562, and ,us = 0.1556. 

From these equations we obtain 

(?) = [8.1329 + 0.9989 cos 3v - 0.4668 cos 6~1112. T dv 
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The curvature of this curve is given by 
T 0.2415[-13*2039 + 63.131 COS 3~ + 2.9966 COS 6~ - 0,9335 COS SUI 

[8.1329 + 0.9989 COS 3~ - 0.4668 COS 6~]*/’ E @ =  
m 

= T 2 ~ ~ e x p  i (F + Yk)  
k = - m  

Figure (A-1) shows the projection in the (X-Y) plane of this closed curve whose local geometry 
is a torus inside the plasma. Numerical calculations have been carried out for this curve with the 
characteristic value LI2n-T = 2.8455 and resonance index k ,  = 3 (The integer resonance index ko 
was chosen as near as possible to L/2nT), and it was found that the non-circular cross section with 
the principal normal to the magnetic axis as characterized by the unit vector 11 = (nS, nu, nz) in the 
image system ( p ,  t = qKO + 8 + 2~k,s/L) rotates -IC,(= -3) times in the real system ( p ,  8, = 8 -k 
s/T, s) along the plasma ring. 

Figure (A-2) shows the projection of both the non-planar closed curve of LI2nT = 2.84549 with 
1/T = 1, and its principle normal (represented by the broken curve) in the (X-Y) plane. 

Figure (A-3) gives a plot of oc (= t a r 1  n,/d/ny2 + n:) the angle between the principle normal n 
and its projection in the (X-Y) plane, vs the curvilinear distance ‘s’ and shows that the principle 
normal rotates three times around both the central and magnetic axes. For this particular non-planar 
closed curve the following integrals which enter in the calculations of both the magnetic well function 
V,” and SOLOV’EV’S necessary and sufKcient criteria of stability 1968 and 1969 near the magnetic axis 
have been numerically obtained: 

1 +m 
(&j) = soL ds ~ 2 ( ~ j  = 2 l A k l Z  0.30885 

k = - m  

X 
FIG. A-l.-Local geometry of the non-planar closed curve of characteristic L/2n T = 

284549 with 1/T = 1. 
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I l l ,  I , , !  1 1 1 1  

---_- The pr inc ipa l  normal 
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I l l 1  / / 1 /  

-4.5 I \,, 

S 
FIG. A3.-Plot of the angle a(= tan-' n , /dhz  + nyz) between the principal normal n 

and its projection in the (X-Y) plane versus the curvilinear coordinate s. 


