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Abstract—The long time behavior of a monochromatic, finite amplitude shear Alfvén wave is studied
by means of the Krylov-Bogoliubov-Mitropolsky perturbation technique. The plasma model is
assumed to be described by the linearly non-dispersive, ideal magnetohydrodynamic equations.
Non-linear coupling between the Alfvén pump wave and a free sound wave gives rise to forced
magnetic sidebands. It is shown that the Alfvén pump wave as well as the magnetic sidebands steepen
up in the long time scale.

1. INTRODUCTION

Tuis paper deals with the long time evolution of a monochromatic, finite amp-
litude Alfvén wave propagating in a plasma parallel to a uniform, applied
magnetic fleld. Our plasma model is described by the ideal magneto-
hydrodynamic equations. KakuTani et al. (1967) has shown that this simple model
of a plasma is non-dispersive in regard to small amplitude waves, i.e. dispersion is
absent in the linear (amplitude independent) dispersion relation.

In order to study the long time behavior of the waves we use the Krylov-
Bogoliubov-Mitropolsky method of perturbation. Initially the ponderomotive
force generated by the finite amplitude Alfvén pump wave drives a density
oscillation non-resonantly, which couples energy in a nonlinear manner back into
the pump wave. This has the effect of generating a third harmonic of the pump
wave which, in a linearly non-dispersive medium, is also a normal mode. There-
fore, the initial steepening of the pump wave occurs because of “‘feedback” from
the sound wave. Taniuti and Wasumvt (1968) develop a non-linear Schrodinger
equation for this self-trapping process in a cold plasma and retain linear disper-
sion to lowest order. We go one step further and allow coherent interaction
between a free sound wave and the Alfvén pump wave. In third-order force
magnetic sidebands are generated, and by the elimination of secular terms we
derive a non-linear Schridinger equation describing the second order Alfvén
pump wave amplitude. By the elimination of secular terms in the fourth-order
sound wave a similar equation is derived which governs the free sound wave to
second-order. We also obtain the equation describing the amplitude of the forced
magnetic sidebands since this is related to the product of the pump and sound
wave amyplitudes. From these equations the non-linear dispersion relation for each
wave is determined. A stability criterion is then derived which incorporates the
amplitude dependent non-linear correction to the linear dispersion relation. With
the aid of this criterion we show that the Alfvén pump wave as well as the forced
magnetic sidebands steepen up in the long time scale.

2. FORMULATION OF THE PROBLEM

Consider an infinite, uniform plasma in which the constant magnetic field Bo
lies along the x-direction. The plasma is warm with respect to the electrons but
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cold for the ioms, thus allowing the existence of free ion-acoustic waves. We
assume that dissipative losses are absent for both Alfvén wave and pressure
fluctuations. Following Kakurani et al. (1967) the hydromagnetic approximation
is valid provided the following criteria are satisfied:

(a) o<, (non-relativistic)
(b) R,.'«1,
(C) /\D « L,
(d) Izci—1 + I{:e—'1 « (C/CA )25
where
_ 47n,e®
R, IEco/a)pe; Wpe =——r—n-e——,
3
Rci—l = 0/wy; we; = eBo/myc,
Rce_l = w/wce 5 Wee = —eBO/ m.C,

ca = Bo/(dmno(me +m)*?,

Ap’ = kT/4mnee®,
¢ =speed of light.

The satisfaction of the above conditions allows us to assume quasi-neutrality and
neglect displacement currents. The two fluid equations can now be cast into a
one-fluid form. Kaxutant et al. (1967, 1968) and Tanwwtt and Wasumvr (1968)
used this description of a plasma in their studies of non-linear hydromagnetic
waves. Moreover for our purpose we shall choose a dispersionless (R, R;—>%)
ideal magneto-hydrodynamic model with #ll disturbances propagating paraliel to
the constant external magnetic field Bg. Let

1) B, = Bof,
(2) b = b3,
3) v="1j,
4) u=uf.

It is to be noted that for waves propagating along B, the two possible linear
polarizations are independent, so that the analysis can be applied to either
polarization. We then have the following system of equations:

a_p+_a_ (pu) =0, (2.1)
ox

ou ou d
p-tpu—+ csz—p

d .2
+2 = 22
ot 3x 9x  ox (b%/8m) =0, @2

—+pu——"—— .
po, TP 0, (2.3)

ab 38 dv
—— —By—= 4
= o (ub)— B, P 0, (2.4)
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where we have used an equation of state of the form
p= CsZPQ Csz = kBTe/mi'

The approach we use in solving these equations will be that developed by KryLov
and Bogoriusov described by MitroPoLskY (1961) and Kakutant and SuciMoTO
(1974). The essence of this perturbation method lies in the elimination of secular
terms, thus allowing one to obtain a solution in the form of an asymptotic
expansion. The expansion parameter ¢ is chosen to be related to the amplitude of
the finite amplitude Alfvén wave as follows:

e =0(al/Bo)

where |a| is defined as the amplitude of the Alfvén pump wave. Along the same
lines we assume that the amplitude of the free sound wave, essential in the
production of forced magnetic sidebands, is related to the expansion parameter ¢
in the following manner:

e2=0(c|/po)

where |c| is the magnitude of the second-order free sound wave and p, is the
constant ambient density.

By means of the Krylov-Bogoliubov-Mitropolsky perturbation method for
non-linear wave modulation we carry on the following expansion (Kakutaxt and

SucmoTo, 1974): /u\ / 0\ /g\ /zz\

p Po} 2

= —+ + +....
b o} lp, ] 7 bZ)
0 0 o Uy J

We assume that each coefficient of the & power in the expansion of the magnetic
field depends on x and ¢t through a, @, and the phase factor ¢ = kx — wt. Similarly,
each coefficient in the expansion of the density depends on x and ¢ through ¢, ¢,
and . As usual the bar indicates the complex conjugate operation. The complex
amplitudes a and ¢ are further assumed to be slowly varying functions of x and ¢
through the relations

da
_=8a1+82a2+... &

=e@+eart. ..,
at

a_d
at
aa 2 0d = .=
—= + +... & —=gBitePBat. ..,
% ef1+e7Bo o Bite B
ac

aC - —
at=8A1+82A2+... & 5;=8A1+82A2+...,

ac ac _ _
Z=¢B,+&’By+... & —=¢eBi+e’Bo+. ...
ax ax

The coefficients a(a, @), B(a, d), Alc, &) and B(c, €) are then adjusted to elimi-
nate all secular terms in the perturbation expansion. It is interesting to note that
had we allowed a first order sound wave, the perturbation scheme would break
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down because we then would not be able to eliminate all the secular terms. An
example of such a breakdown in the case of a pure wave equation has been
described by MontGoMmERY and TipmaN (1964). The existence of a finite amp-
Jitude pump wave increases the order of the expansion parameter &, which has the
effect of producing a finer vernier in the time scale (i.e. a faster time scale). This
faster time scale has the effect of keeping successive orders in the expansion
“close”, and therefore the perturbation scheme remains valid to all orders.

(a) 1storder (g).

The pump wave is assumed to be a finite amplitude, plane polarized, mono-
chromatic Alfvén wave propagating parallel to an external magnetic field:

b, = a exp (i) + @ exp (—ity)

(2.5)
p=0,
where ¢ = kx—wt and o/k = ca.
(b) 2nd order ().
Using the first-order description we arrive at
&b &b
—;22—— CAZ?% 0, (2.6)

—F ¢l =— (b }/87). 2.7)
X X

In obtaining equation (2.6) as a wave ree Alfvén wave we

equation for a secular
have placed the following restriction c;; “(:1:‘3‘1): : )
a1+csB1=0 and &1+CA[§1=0. (2.8)
The solution to equation (2.6) is chosen to be
b= asexp (13¢)+ s exp (—i3¢), (2.9)

where (a3, ds) indicate the amplitude of the third harmonic Alfvén wave. The
choice of a third harmonic solution results because of the appearance of 2 secular
term in third-order. By adjusting (as, as) it is possible to eliminate this term from
the analysis. Physically, the second order third harmonic represents the initial
non-linear distortion (steepening) of the pump. It is generated by the coupling of
the second-order forced sound wave, driven by the action of the pondermotive
force of the pump, and the pump wave itself.

The solution to equation (2.7) is given by

aZkZEZidI
={\———+4cc.c |+ iw,+ .C. .
P2 (Zst(2w,2k) CC) (ce™ +c.c), (2.10)

where D,(w, k) =~w?+ ¢ 2k?,
and

df’z klx_wrt; co//k/___ Co

The first bracket in the expression (2.10) for p, represents a forced density
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oscillation, which as shown by Tantutt and Washmvt (1968) may trap the Alfvén
wave. A free sound wave is introduced in the second bracket in (2.10).

(c) 3dorder  (&°).
The third-order magnetic field is described by the following equation:

8°b &b ) (°b 9°b > (azb 8°b1)
3 3 2 3 2 2 2 2 1 2 1
S T te N s — ) te -y %
¢ (arz *ax?) T E e A a2 art % ax?/
+83[Bo 8 oy 8 v

82
et RN Y SO SR S X ]=o. 2.11
poax P2 3 Doy Mgy T (b 2.11)

Now,
b a°b , .
8(7371_ ca’ ﬁ) = &°Qiwas+2ikea’B,) exp (i) + c.c.
and
3%b a°b _
82(__22_ ca’ —22) =~¢>(6iwas; + 6ica’kBs1) exp (i3¢) + c.c.
at ox
with
da 0a
a—;=sa31+82a32+... & ’“—§'=8&31+82&32+...,
da 3B - -
T;=8B31+82532+... & ';’3:=SB31+82‘B32+....

The functions (a,, ;) can be adjusted to eliminate the first harmonic secular
terms generated by the interaction of p, and by, i.e. '

cak®|al> a

i{az+caBa) = m4ﬂpoDs(zw, %)’

(2.12)

where D20, 2k) = ~4w?+4c2k*#0

and 5a ,
Qy=—, t,=¢"t
dtr
da 2_ 2
2= X =€ X
B axz’

In the same way (asi, B5;) are adjusted to eliminate the third harmonic secular
terms resulting from the coupling of p, and b, i.e.

3CAk3a3
47poD. (2w, 2K)

With the aid of equation (2.5), (2.9) and (2.10) the solution to equation (2.11) can
now be written as:

bs=[ach. exp (i¥.)/Da(w., k.)]
+[ach_exp (iy_)/Da(w_, k)]+asexp (id¢) +c.c., (2.14)

i{asitcaBs) = (2.13)
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where
b. = ca(wks—keske— B P kows)lpo
b_=calwk_—kek-— B k_w_)/po,
and B=cle,?
Da(ws, ko) =—w"+ca k2 #0,
w:=wto
k.o=kxk'

The first two terms in the expression (2.14) for b; represent the forced magnetic
sidebands. It is important to note that the sidebands (as written above) are not
normal mode Alfvén waves. The . sideband represents the “beating” of the
pump with the sound wave:

(w, k) w—wi—w
T (00, k) k—k.—k'
(o, k' )ﬂ*"ﬁﬂ
It would never satlsfy the rule for a ““decay” instability as this requires .. to be a
normal mode Alfven wave.
The _ sideband is slightly different from the ¢, wave. In this situation we are
dealing with the scattering of the pump wave off an ion-acoustic wave:
(-, k) ,
o—>w_tow
(0, k}rmenmd] i k—=k_+k.
H"“‘“d(w’_’ kr)
In this case the conservation relations for a decay instability are satisfied provided
Y_ is a normal mode Alfvén wave. It is a simple matter to determine (o', k') for
which the decay instability occurs. These values are

o' =20/[1+(ca/c)l;  k'=2k/[1+(cica)l (2.15)

The linear properties of this instability are discussed by Lasumore-Davies and
ONG (1974). When the conditions for the decay instability are satisfied, the last
bracket in equation (2.11) contains a secular term from the _ sideband. In the
spirit of the Krylov-Bogoliubov-Mitropolsky perturbation technique this term
would have to be eliminated by adding a 1st harmonic term into the solution for
b, and adjusting its amplitude accordingly. A long time analysis of the ““decay”
products then simply prolong the study of the forced, scattered magnetic wave
(not a normal mode) to higher order. For this reason we disregard the decay
instability and proceed to study the long time behavior of the forced magnetic
sidebands by restricting ourselves to the case where D, (w_, k_)#0.

The third-order sound wave is described by the following equation:
¥ & ak[ 4k’cs?
*5:)73— 525§= ?[m (B-1D+ 1}31 exp (i2¢)

—(asak?*/4m) exp (i¥)— 9aask> exp (i3) /4w +c.c. (2.16)
with the first order secularity condition
A1+C$B1=0 & A1+CSE1=O.
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The solution of equation (2.16) is
ps = —asak’ exp (il)/47D,(w, k)
+iak{{4k*cs*(B - 1)/D,(2w, 2k)1+ 1}B; exp (i2¢)/47D, (2w, 2k)
~%asak’ exp (i3y)/4mD,(3w, 3k)+ c; exp (i2¢)+c.c. (2.17)

Since the ideal MHD equations compietely neglect the displacement current and
charge separation, the linear dispersion normally found for an ion—acoustic wave
is absent. Consequently, to this order, the sound wave steepens via the generation
of harmonics which are all normal modes of the plasma. The last term in (2.17)
eliminates the secular second harmonic found in the fourth order.

(d) 4thorder (&%
The fourth order sound wave is described by the following equation:
4(8294 2 azp4> 2[8292 2 8 Pz
el=m 3 |+’

C; s —% b,"/8 ]
ot %2 Ye 3%’ 2( v'/8m)

2 2
+€3[%_CS23 P3 d 2(b1b2/47‘l’)]

at> x>
9 3 duy e
+g4[axatpzuz“ﬁ’oa—x uzg 2(bz /877)— 5 (by b3/4'n')] 0. (2.18)

The second harmonic secular term can be eliminated by adjusting (c,, ¢,) accord-
ingly. However, we are primarily concerned with the amplitude of the first
harmonic sound wave and this is described by the first harmonic secular terms.
Therefore, we have

i(A2+¢B2) =lal” ck'{[b./Da(w+, k)1+[b-/Dalw-, k)}/8mc,  (2.19)

where
ac oc¢
A2-~9 =
a1y Xo
2
h=¢'t, Xo=€ X

In summary we are then left with the following coupled equations for the
sound wave and the Alfvén pump wave amplitudes:

0
i(g-tg—‘rcsaa(:) a? ck'{{b./Da(w-, ki)]+[b_/Dalw_, k)}/8mc, (2.20)
2
0
122, cA%= —kea |al® aj4By” (2.21)
8t2 ax2

along with their complex conjugates.

3. DERIVATION OF THE DISPERSION RELATIONS

Without formally solving the two equations (2.20) and (2.21) a relatively large
amount of qualitative information can be inferred by determining the non-linear
dispersion relations for the various waves. Since linear dispersion is absent in all
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cases, knowledge of the non-linear dispersion is necessary in determining the
stability of these waves.

We assume that the amplitudes (a, @) of the Alfvén pump wave and (c, ¢) of
the sound wave are slowly varying, and are given by

a=Aqexp [i(KE~ Q)] GB.1)
where
E=x1—caly
nh=e’t=¢t (3.2)
c=Coexp [i(K'¢ - Q1))
where

E=x1-c¢ty
=gt = et.
Using equation (3.1) in (2.21) we obtain
Q=—|Aq” kealdBo’.

Recalling that
by =a expli(kx —ot)]+c.c,

we have
b, = Agexp [i(k+eK)x — i{w+ eKcy +°Q)t],

where we let
SszA [Aolz

w{k+Ak, Ag) = (wo+caAk)— 4B.2
0

(3.3)
with Ak =K and wo= kc,.

The first bracket in (3.3) is the term obtained by carrying out a Taylor series
expansion about k, and it is due to linear dispersion. Since our ideal magnctohyd-
rodynamic model lacks linear dispersion, the change in wave number Ak is zero.
Hence we are left with

a(k, Ag) = kea[1—-(1/4) |[Aol*/Bo], (3.4)

where we have used £”=|A.P/B," for the Alfvén pump wave as mentioned
previously in Section 2. To this order the non-linear phase and group velocities
are given by

ca = ca[1-(1/4) |Aol*/Bo*. (3.5)

Note that even to this order the phase and group velocities are equal in the
non-linear limit.

Proceeding in the same way, and assuming a low S=c?/cs” plasma, the
non-linear dispersion relation for the forced sidebands can be written as follows:

w:=(w+o)+a A’

o_.=(w—w)+a A2

(3.6)

where
A+ =A_= AoCo,
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and

_ 2
Q= SZCAk’/Boz\/B (4 —%2’) C02

= -0y

Ao, A, A_ and G, represent the amplitudes of the Alfvén pump wave, the Y.
and _ magnetic sidebands, and the sound wave respectively.

We take the case where (k, k) are greater than zero and note that from linear
theory the sidebands are unstable only for k'>2k (Lashmore-Davies). The
analysis leading to equation (3.6) is not valid for the resonance case k'=2k. This
singular case corresponds to the well-known decay instability where some of the
excited waves are in resonance with a natural mode of the plasma. This situation

has been briefly discussed in the paragraph leading to equation (2.15) in Section
2.

4. STABILITY ANALYSIS

The evolution of a finite amplitude monochromatic wave in a weakly non-
linear dispersion medium proceeds via the propagation of local values for the
wave number and amplitude at the non-linear (amplitude dependent) group
velocity. In general we can write the non-linear dispersion relation in the form

w(k, a) = wo(k) + a(k)a?, 4.1)

where wo(k) corresponds to the frequency of the linear wave, and the second term

to the non-linear correction. The wave amplitude is denoted by a. Following

Kapomrsev and KarpmaN (1971) we now derive a stability criterion retaining the

dependence of the non-linear correction term in the dispersion relation (4.1).
Let the phase of our initially monochromatic wave be

g =kx— ot.
Then the local frequency and wave number can be expressed by
k=d¢/ox and w=-ay/at

As a consequence we have the reiations

ok 9
ol (4.2)
at 0x
Using the dispersion relation (4.1) in relation (4.2) we get
ak ok 8a’
—+V —ta——= 4.
o Vel @) ras m=0 *3)
where
dwo(k) ,da da
Vg(k, a)=—dk—-+a a= 0 azgﬁg,
and Vg, is the linear group velocity. From the conservation of energy we have
da® 9
=+ eV, (k, a)]=0. (4.4)

dt  ox
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Let us suppose we subject the monochromatic wave to a small perturbation of the
form:

k=ko+k"exp [i(kx—vt)]

a=aog+a expli(kx—v1)].
Substituting this into equations {4.3) and (4.4), keeping only terms linear in the
perturbation yields two homogeneous algebraic equations for k' and a'. We then

set the coefficient determinant equal to zero and obtain a quadratic equation for
v. The solution for v is given by

1 d
VZKVg-EaOZKa—‘:
7 ,d%a da dv, L d2a\1?
:f:aoK(—Zaohazi—zvg()a—lgﬁ'aﬁ*—aao'a‘?) . (45)

As described by Kapomtsev and KarpmaN (1971) this is an instability of the type
of breakdown of the wave into packets and subsequent self-contraction of the
wave packets, eventually developing into “‘envelope solitons”. On the other hand
a “stable’” wave would steepen in a hyperbolic sense, i.e. the system possesses real
characteristics and unless additional dispersive effects come into play the wave
train continues to steepen and eventually break.

In our case the Alfvén pump wave and magnetic sidebands are linearly
non-dispersive, i.e. the derivative of the linear group velocity V,, with respect to
the wave number vanishes. Applying the stability criterion (4.5) to equations (3.4)
and (3.5) with k’'>2k we find that for the Alfvén pump wave as well as for the
two magnetic sidebands the left-hand side of (4.5) is real. Thus in the sense
of Kadomtsev and Karpman these waves are “stable”, i.e. they steepen in a
typically hyperbolic fashion.

5. CONCLUSION

By means of an ideal magnetohydrodynamic model we have studied the long

3 1 ~rh v 1
time behavior of a monochromatic, plan

plane polarized finite amplitude Alfvén wave
propagating parallel to a uniform applied magnetic field. The use of the Krylov-
Bogoliubov-Mitropolsky perturbation method shows the development of forced
magnetic sidebands, and yields two non-linear Schrédinger equations coupling the
amplitudes of the Alfvén pump wave and a free sound wave. The amplitudes of
the sidebands are found to be proportional to the product of the Alfvén pump and
sound wave amplitudes. The non-linear dispersion relations for these waves are
determined. As frequency dispersion is absent in the linear case because of the
simplicity of the ideal MHD model employed, we derive a stability criterion which
incorporates the amplitude dependent non-linear correction to the linear disper-
sion relation. Applying this to our analysis we show that the Alfvén pump wave
and the forced magnetic sidebands steepen in a typically hyperbolic fashion.
Therefore it is possible that the Alfvén pump wave as well as the sidebands form
shocks and this phenomenon could explain the observed discontinuities in Alfvén
fluctuations found by BeELcHER and Davis (1971).
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The most serious oversight in the above analysis is the neglect of linear
dispersion inherent in the ideal MHD fluid model adopted. As discussed in
Section 2 this is a consequence of taking the limits

Rci = wci/(*’)__)Oo
R = 0/ >,

In higher order the linear dispersion may well be comparable to the amplitude
dependent non-linear dispersion and should be taken into account.
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