
Plasma Physics, Vol. 18. pp. SO9 to 819. Pergamon Press, 1976. Printed in Northern Ireland 

THE LONG TIME BEHAVIOR QF A FINITE AMPLITUDE 
SHEAR ALFVBN WAVE IN A WARM PLASMA 

J. A. IONSON and R. S .  B. ONG 
Department of Aerospace Engineering and Space Physics Research Laboratory, ?he University of 

Michigan, Ann Arbor, MI 48105. U.S.A. 

(Received 20 October 1975) 

Abstract-The long time behavior of a monochromatic, finite amplitude shear Alfvtn wave is studied 
by means of the Krylov-Bogoliubov-Mitropolsky perturbation technique. The plasma model is 
assumed to be described by the linearly non-dispersive, ideal magnetohydrodynamic equations, 
Non-linear coupling between the AlfvCn pump wave and a free sound wave gives rise to forced 
magnetic sidebands. It is shown that the AlfvCn pump wave as well as the magnetic sidebands steepen 
up in the long time scale. 

1. I N T R O D U C T I O N  

THIS paper deals with the long time evolution of a monochromatic, finite amp- 
litude AlfvCn wave propagating in a plasma parallel to a uniform, applied 
magnetic field. Our plasma model is described by the ideal magneto- 
hydrodynamic.equations. KAKUTAAAI et al. (1967) has shown that this simple model 
of a plasma is non-dispersive in regard to small amplitude waves, i.e. dispersion is 
absent in the linear (amplitude independent) dispersion relation. 

In order to study the long time behavior of the waves we use the Krylov- 
Bogoliubov-Mitropolsky method of perturbation. Initially the ponderomotive 
fsrce gezemtec! by the finite amplitude AifvCn pump wave drives a density 
osciliation non-resonantly, which couples energy in a nonlinear manner back into 
&e pump wave. This has the effect of generating a third harmonic of the pump 
wave which, in a linearly non-dispersive medium, is also a normal mode. There- 
fore, the initial steepening of the pump wave occurs because of “feedback” from 
the sound wave. TANIUTI and WASHIMI (1968) develop a non-linear Schrodinger 
equation for this self-trapping process in a cold plasma and retain linear disper- 
sion to lowest order. We go one step further and al!ow coherent interaction 
between a free sound wave and the A!fvCn p ~ m p  wave. !E th i rd-de :  forced 
magnetic sidebands are generated, and by the elimination of secular terms we 
derive a non-linear Schrodinger equation describing the second order AlfvCn 
pump wave amplitude. By the elimination of secular terms in the fourth-order 
sound wave a similar equation is derived which governs the free sound wave to 
second-order. We also obtain the equation describing the amplitude of the forced 
magnetic sidebands since this is related to the product of the pump and sound 
wave amplitudes. From these equations the non-linear dispersion relation for each 
wave is determined. A stability criterion is then derived which incorporates the 
amplitude dependent non-linear correction to the linear dispersion relation. With 
the aid of this criterion we show that the AlfvCn pump wave as well as the forced 
magnetic sidebands steepen up in the long time scale. 

2 .  F O R M U L A T I O N  O F  T H E  PROBLEM 

Consider an infinite, uniform plasma in which the constant magnetic field Bo 
lies along the x-direction. The plasma is warm with respect to the electrons but 
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cold for the ions, thus allowing the existence of free ion-acoustic waves. We 
assume that dissipative losses are absent for both AlfvCn wave and pressure 
fluctuations. Following KAKUTANI et al. (1967) the hydromagnetic approximation 
is valid provided the following criteria are satisfied: 

C A  << c, (non-relativistic) 
Rpe-’<< 1, 

AD << L, 
Rei-'+ Rce-’ << (c/cA)’, 

where 

R,;’ = o /wCi ;  

RCL1 = o/u,,; 
wei = eBo/mic, 

w,, = -eBo/mec, 

CA = ~ ~ / ( 4 n n ~ ( m ,  + mi)’”, 

AD2 = kT/4nnoe2, 

c =speed of light. 

The satisfaction of the above conditions allows us to assume quasi-neutra!ity and 
neglect displacement currents. The two fluid equations can now be cast into a 
one-fluid form. KAKUTANI et al. (1967, 1968) and TANIUTI and WASHIMI (1968) 
used this description of a piasma in their studies of non-iinear nydromagnetic 
waves. Moreover for our purpose we shall choose a dispersionless (R,,, RCi + m) 

ideal magneto-hydrodynamic model with all disturbances propagating parallel to 
the constant external magnetic field Bo. Let 

It is to be noted that for waves propagating along Bo the two possible linear 
polarizations are independent, so that the analysis can be applied to either 
polarization. We then have the fol!owing system of equations: 

aP a -+- (pu)  = 0, 
a t  ax 

a u  a u  ‘ap a 
a t  ax ax ax 

p-+ PM-+ C, -+- (b2 /8n)  = 0, 

a v  av B~ a b  
a t  ax 4 n a x  

p-+ p--- - = 0, (2.3) 

(2.4) 
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where we have used an equation of state of the form 

c: = kBTelmi. 2 p = cs p; 

The approach we use in solving these equations will be that developed by KRYLOV 
and BOGOLIUBOV described by MITROPOLSKY (1961) and KAKUTANI and SUGIMOTO 
(1974). The essence of this perturbatioii iilcihod lies in the elimination of secuiar 
terms, thus allowing one to obtain a solution in the form of an asymptotic 
expansion. The expansion parameter E is chosen to be related to the amplitude of 
the finite amplitude AlfvCn wave as follows: 

= Q(/ al/Bo) 
where / a /  is defined as the amplitude of the AlfvCn pump wave. Along the same 
lines we assume that the amplitude of the free sound wave, essential in the 
production of forced magnetic sidebands, is related to the expansion parameter E 

in the following manner: 

E ’ =  Q(/c I lpo )  
where IC ]  is the magnitude of the second-order free sound wave and po is the 
constant ambient density. 

By means of the Krylov-Bogoliubov-Mitropolsky perturbation method €or 
non-linear wave modulation we carry on the following expansion (KAKUTANI and 
SUGIMOTO. 1974): 

We assume that each coefficient of the E power in the expansion of the magnetic 
field depends on x and t through a, a, and the phase factor 11, = kx -ut. Similarly, 
each coefficient in the expansion of the density depends on x and t through c, ?, 
and 9. As usual the bar indicates the complex conjugate operation. The complex 
amplitudes a and c are further assumed to be slowly varying functions of x and t 
through the relations 

da 2 -_  - E ( Y 1 + &  azs . . .  
a t  

aa 
ax  
-= & P l +  E 2 P 2 + .  . . 

aii 
a t  

& -= &Q11+E2Q12+ ..., 

& 
az - 2 -  
- = & P I + &  p z +  ..., 
ax 

The coefficients &(a, ii), P(a, a), A(c, C) and B(c, ?) are then adjusted to elimi- 
nate all secular terms in the perturbation expansion. It is interesting to note that 
had we allowed a first order sound wave, the perturbation scheme would break 
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down because we then would not be able to eliminate all the secular terms. An 
example of such a breakdown in the case of a pure wave equation has been 
described by MONTGOMERY and TIDMAN (1964). The existence of a finite amp- 
litude pump wave increases the order of the expansion parameter E ,  which has the 
effect of producing a finer vernier in the time scale (i.e. a faster time scale). This 
faster time scale has the effect of keeping successive orders in the expansion 
“close”, and therelore the perturbation scheme remains valid to 211 orders. 

(a) 1st order ( E ) .  

The pump wave is assumed to be a finite amplitude, plane polarized, mono- 
chromatic AlfvCn wave propagating parallel to an external magnetic field: 

b, = a exp (i4) + ii exp (-@) 

p=O, 
where = kx - ot and o l k  = CA. 

(b) 2nd order ( E ’ ) .  

Using the first-order description we arrive at 

In obtaining equation (2.6) as a wave equaticr, fcr a s e d a i  free AifvCn wave we 
have placed the following restriction on ( c y l ,  P I ) :  

cyl + cAPl = 0 and (Y1 + c& = 0. (2.8) 

b2= u3 exp (i34)+ ii3 exp (-i3$), (2.9) 

The solution to equation (2.6) is chosen to be 

where (a3, li3) indicate the amplitude of the third harmonic AlfvCn wave. The 
choice of a third harmonic solution results because of the appearance of 2 sscu12r 
term in third-order. By adjusting (a3, a3) it is possible to eliminate this term from 
the analysis. Physically, the second order third harmonic represents the initial 
non-linear distortion (steepening) of the pump. It is generated by the coupling of 
the second-order forced sound wave, driven by the action of the pondermotive 
force of the pump, and the pump wave itself. 

The solution to equation (2.7) is given by 

2rDS(2w, 2k) (2.10) 

where Ds(w, k )  = - w 2 +  c?k2, 
and 

I,!J’= k ‘ x - w ‘ i ;  o ’ / k ’ =  c,. 

The first bracket in the expression (2.10) for p2 represents a forced density 



The long time behavior of a finite amplitude shezr AlfvCn wave 813 

oscillation, which as shown by TANIUTI and WASHIMI (1968) may trap the AlfvCn 
wave. A free sound wave is introduced in the second bracket in (2.10). 

(c) 3d order ( E ~ ) .  

1 +&3[W. P2-+B0--2-+-(u2bl) = o .  (2.11) 
au1 a a ~ ,  a2 

po ax at ax ax axa t  

Now, 

and 

with 

The functions (a2, p2) can be adjusted to eliminate the first harmonic secular 
terms generated by the interaction of p2 and bl, i.e. 

(2.12) 

where Ds(2w, 2k) = -4u2+4c,2k2Z 0 

and 

2 2  aa  
P 2 = z ;  x = E X ,  

In the same way (a31, P31) are adjusted to eliminate the third harmonic secular 
terms resulting from the coupling of p2 and b l ,  i.e. 

(2.13) 

With the aid of equation (2.5), (2.9) and (2.10) the solution to equation (2.11) can 
now be written as: 

b, = [ a d +  exp (i$+)/DA(u+, k,)] 
+[a& exp (i+-)/DA(w-, k-)]+a, exp (i41))+c.c., (2.14) 
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and 

W * = W * W ’  

k, = k i. k’. 
The first two terms in the expression (2.14) for b3 represent the forced magnetic 
sidebands. It is important to note that the sidebands (as written above) are no+ 
normal mode Alfvtn waves. The $+ sideband represents the “beating” of the 
pump with the sound wave: 

(0, k ) \  

(w’ .  k‘) / 
0 + W A  - w ’ 

- ( U + ,  kL) k+ k-- k‘. 

It would never satisfy the rule for a “decay” instability as this requires 4- to be a 
normal mode Alfven wave. 

The @- sideband is slightly different from the i , ! ~ ~  wave. In this situation we are 
dealing with the scattering of the pump wave off an ion-acoust‘ IC wave: 

w + o - + o ’  

in this case the conservation relations for a decay instabi!ity are satisfied provided 
th- is a normal mode Alfvtn wave. It is a simple matter to determine (U’ ,  k’) for 
which the decay instability occurs. These values are 

(2.15) 

The linear properties of this instability are discussed by LASHMORE-DAVIES and 
ONG (1974). When the conditions for the decay instability are satisfied, the last 
bracket in equation (2.11) contains a secular term from the $- sideband. In the 

would have to be eliminated by adding a 1st harmonic term into the solution for 
bz and adjusting its amplitude accordingly. A long time analysis of the “decay” 
products then simply prolong the study of the forced, scattered magnetic wave 
(not a normal mode) to higher order. For this reason we disregard the decay 
instability and proceed to study the long time behavior of the forced magnetic 
sidebands by restricting ourselves to the case where D A ( w - ,  k-) # 0. 

w ’ = 2 a/[ 1 + (C,/C,)] ; k’ = 2 k/[ 1 + ( c,/ CA)]. 

Sn;r;t y L . A L  =f +ha LIIc. Vv..ln. rllylu J - S”,”l,,”~.;-Mitropo:jkj: A-fil;.7h perturbation technique this term 

The third-order sound wave is described by the following equation: 

-(a3ak2/47)exp (i@)-9aa3k2exp (i34)/47r+c.c. (2.16) 

with the first order secularity condition 
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The solution of equation (2.16) is 

p3 = -u3iik2 exp (i+)/47rDs(0, k j  
+ iuk{[4k2cA’(/3 - !)/Ds(2w, 2k)]+ !}PI exp (i2+)/4.irDS(2w, 2k)  

-9u3uk2exp (i3$)/47rDS(30, 3 k ) + c 2  exp (i2+’)+c.c. (2.17) 

Since the idea! MED equations compieteiy neglect the displacement current and 
charge separation, the linear dispersion normally found for an ion-acoustic wave 
is absent. Consequently, to this order, the sound wave steepens via the generation 
of harmonics which are all normal modes of the plasma. The last term in (2.17) 
eliminates the secular second harmonic found in the fourth order. 

(d) 4thorder ( E ‘ )  

The fourth order sound wave is described by the following equation: 

The second harmonic secular term can be eliminated by adjusting (c2 ,  C2) accord- 
ingly. However; we are primzri!~ coi;ceiiiCd with the amplitude of the first 
harmonic sound wave and this is described by the first harmonic secular terms. 
Therefore, we have 

i(A2 + cSB2) = /U/’  ck’{[ b,/D, ( w+, k,)] + [ b-/DA(w-, k-)])/87icS, (2.19) 

where 

l ’ = E - t ,  X ’ = E L X .  

In summary we are then left with the following coupled equations for the 
sound wave and the AlfvCn pump wave amplitudes: 

= ja1’ Ck‘{[bL/l)A(wL, k T ) ] + [ b - / D ~ ( W - ,  k - ) ] } / 8 ~ ~ ~ ,  (2.20) 

(2.21) 

along with their complex conjugates. 

3. DERIVATION OF T H E  DISPERSION RELATIONS 

Without formally solving the two equations (2.20) and (2.21) a relatively large 
amount of qualitative information can be inferred by determining the non-linear 
dispersion relations for the various waves. Since linear dispersion is absent in all 
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cases, knowledge of the non-linear dispersion is necessary in determining the 
stability of these waves. 

We assume that the amplitudes (a, ii) of the Alfvkn pump wave and (c, E )  of 
the sound wave are slowly varying, and are given by 

where 

where 

a = A. exp [ i(K5 - fit2)], 

5’ = x1- C,tl  
2 

t 2 =  E t =  E t l .  

Using equation (3.1) in (2.21) we obtain 

n =  -lA01~ kC~/4Bo’. 

Recallifig that 
b l = a  exp[i(kx-wt)]+c.c., 

we have 
b , =  A o e x p [ i ( k t ~ K ) ~ - i ( ~ + ~ K ~ A + ~ 2 S l ) t ] ,  

where we let 

(3 .3)  
E2kC.A ! & I 2  

w j i c + ~ ~ , A o ) = ( w o + c A h k ) -  4 B 2  

with hk = E K  and WO = kc,. 
The first bracket in (3.3) is the term obtained by carrying out a Taylor series 

expansion about k, and it is due to linear dispersion. Since our ideal magrxtohyd- 
rodynamic model lacks linear dispersion, the change in wave number hk is zero. 
Hence we are left with 

W ( k ,  Ao) = k ~ ~ [ 1 - ( 1 / 4 )  IAo14/Bo41, (3.4) 
where we have used E’= lAo/2/Bo2 for the AlfvCn pump wave as mentioned 
previously in Section 2. To this order the non-linear phase and group velocities 
are given by 

C A ~ = = C A [ ~ - ( ~ / ~ )  lAO/4/B04]. (3.5) 
Note that even to this order the phase and group velocities are equal in the 
non-linear limit. 

Proceeding in the same way, and assuming a low P=c?/cA2 plasma, the 
non-linear dispersion relation for the forced sidebands can be written as follows: 

where 
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and 

cy- = -a+ 

Ao, AA, A- and CO represent the amplitudes of the PWvCn p u a p  wave, the ++ 

and 4- magnetic sidebands, and the sound wave respectively. 
We take the case where (k, k') are greater than zero and note that from linear 

theory the sidebands are unstable only for k '> 2k (Lashmore-Davies). The 
analysis leading to equation (3.6) is not valid for the resonance case k '=  2k. This 
singular case corresponds to the well-known decay instability where some of the 
excited waves are in resonance with a natural mode of the plasma. This situation 
has been briefly discussed in the paragraph leading to equation (2.15) in Section 
2. 

4.  STABILITY ANALYSIS 

The evolution of a finite amplitude monochromatic wave in a weakly non- 
linear dispersion medium proceeds via the propagation of local values for the 
wave number and amplitude at the non-linear (amplitude dependent) group 
velocity. In general we can write the non-linear dispersion relation in the form 

o(k ,  a)=w,(k)+cy(k)a2, (4.1) 
where wo( k) corresponds to the frequency of the linear wave, and the second term 
to the non-linear correction. The wave amplitude is denoted by a. Following 
KADOMTSEV and KARPMAN (1971) we now derive a stability criterion retaining the 
dependence of the non-linear correction term in the dispersion relation (4.1). 

Let the phase of our initially monochromatic wave be 

+=  kx-ut. 

Then the local frequency and wave number can be expressed by 

k = a+lax and w = -a+/at. 

As a conseqiiefice we have the relations 

a k  a@ _--_ - 
a t  ax 

Using the dispersion relation (4.1) in relation (4.2) we get 

8 k  a k  aa2  
--+V,(k, a)--+a-=O 
a t  ax ax 

where 

(4.3) 

dw (k)  dcy 2 d a  V,(k, L Z ) = ~ + Q ~ - =  V + U  - 
dk dk go d k '  

and Vgo is the linear group velocity. From the conservation of energy we have 

aa2 a 
a t  ax 
- -F -[ a 2  V, (k, U ) ]  = 0. (4.4) 
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Let us suppose we subject the monochromatic wave to a small perturbation of the 
form: 

k = k o +  k‘ exp [ ~ ( K x  - ut ) ]  

a = a. + a’ exp [ i( K X  - u t ) ] .  

Substituting this into equations (4.3) and (4.4), keeping on!y terms linear in the 
perturbation yields two homogeneous algebraic equations for k‘ and a‘. We  then 
set the coefficient determinant equal to zero and obtain a quadratic equation for 
U .  The solution for u is given by 

d a  d Vgo + crao2 - d’ “)”?. (4.5) 
d k’ 2 v,,, --f cy - 

dk’ dk  d k  

As described by KADOMTSEV and KARPMAN (1 97 1) this is an instability of the type 
of breakdown of the wave into packets and subsequent self-contraction of the 
wave packets, eventually developing into “envelope solitons”. On the other hand 
a “stable” wave would steepen in a hyperbolic sense, i.e. the system possesses real 
characteristics and unless additional dispersive effects come into play the wave 
train continues to steepen and eventually break. 

In our case the AlfvCn p i m p  wave and magnetic sidebands are linearly 
non-dispersive, i.e. the derivative of the linear group velocity V,,, with respect to 
the wave number vanishes. Applying the stability criterion (4.5) to equations (3.4) 
and (3.5) with k ‘ > 2 k  we find that for the AlfvCn pump wave as well as for the 
two magnetic sidebands the left-hand side of (4.5) is real. Thus in the sense 
of Kadomtsev and Karpman these waves are “stable”, i.e. they steepen i r  a 
typically hyperbolic fashion. 

5 .  C O S C L U S I O N  

By means of an ideal magnetohydrodynamic model we have studied the long 

propagating parallel to a uniform applied magnetic field. The use of the Krylov- 
Bogoliubov-Mitropolsky perturbation method shows the development of forced 
magnetic sidebands. and yields two non-linear Schrodinger equations coupling the 
amplitudes of the AlfvCn pump wave and a free sound wave. The amplitudes of 
the sidebands are found to be proportional to the product of the AlfvCn pump and 
sound wave amplitudes. The non-linear dispersion relations for these waves are 
determined. As frequency dispersion is absent in the linear case because of the 
simplicity of the ideal MHD model employed, we derive a stability criterion which 
incorporates the amplitude dependent non-linear correction to the linear disper- 
sion relation. Applying this to our analysis we show that the AlfvCn pump wave 
and the forced magnetic sidebands steepen in a typically hyperbolic fashion. 
Therefore it is possible that the AlfvCn pump wave as well as the sidebands form 
shocks and this phenomenon could explain the observed discontinuities in AlfvCn 
fluctuations found by BELCHER and DAvis (1971). 

ti-0 Lllllr hehaTr;nr vc l l  vlvI nf a mnnnnhrnm IIIvIIvcIIIvllla:ic~ plane polarized finite amplitude AlfvCn wave 



The long time behavior of a finite amplitude shear AlfvCn wave 819 

The most serious oversight in the above analysis is the neglect of linear 
dispersion inherent in the ideal MHD fluid model adopted. As discussed in 
Section 2 this is a consequence of taking the limits 

R,i = w,i/W -+ CC 

R,, = w,,/w S. 

In higher order the linear dispersion may well be comparable to the zmplitude 
dependent non-linear dispersion and should be taken into account. 
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