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RESEARCH NOTE 

Electron and ion escape over a otential barrier in a &or field fl 
(Received 1 November 1977; and ita revised form 24 March 1978) 

THE PROBLEM of calculating the electron loss rate and the corresponding energy loss rate from a 
magnetic mirror machine having a positive potential has been examined and solved to a reasonable 
approximation by PAS~UKHOV (1974). However, his results cannot be directly applied to heavy ions 
escaping over a potential barrier since his equations, which are based on a two-species plasma, contain 
the assumption that the escaping species has a much higher speed than the remaining species. In the 
case of heavy ions escaping over a potential barrier (as in the central section of a Tandem Mirror 
(FOWLER and LOGAN, 1977) this assumption must in fact be reversed. In this note we follow 
Pastukhov to produce particle and energy confinement times for ions which can be readily utilized in 
the study of plasma confinement in Tandem Mirrors. We will show that a single additional parameter, 
labeled C, can be incorporated into the appropriate equations to make them equally applicable to 
electrons and ions; C = 1 for electrons and C = fi  for ions. 

The derivation is based on the Fokker-Planck equation in a square well potential, which, when 
expressed in terms of the Rosenbluth potentials (ROSENBLUTH et al., 1957) g and h, assumes the form 

Where 

g=gi+ge  

h = h i + h e  
and In A is the familiar Coulomb logarithm. 

We make the common assumption that the Rosenbluth potentials are independent of the angle 
term p ,  although the distribution function f may depend on k. For the electron loss problem, since 
v, >>vi for virtually all electrons and ions involved, we find that the potential g, can be expressed as 

ge = gee + gei = gee + niVe* (2) 

For the ion loss term, it is generally true even for the high energy tail of the ion distribution that 
ui<ve. For this calculation, we shall assume that vi is in fact negligible compared to U,, so that we can 
write 

gi=g,tgie=g,+2ne(.na,)- 1/2 (3) 

where a;’’’ is the electron thermal velocity. Thus, we have 
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If we now introduce the dimensionless variables used by PASTUKHOV (1974), namely 

where the quantity = 1 for the electron case, and = O  for the ion case; or more 

explicitly c, = 1 and ci = A. This form of c appears somewhat awkward in equation (5). However, 
when we let gee and gii take their Maxwellian forms, and let x become very large, so that 

ay 1 -+I-- 
ax 2 2  

then we obtain an equation of the form 

1 aZF 1 aF 1 a 
2x3ax2 xZax c2x3ap 

L(F)=--+--+-- 

The solution F can be obtained by following the procedure outlined by Pastukhov. This method 
entails extending F into the loss cone region by requiring it to satisfy an equation of the form 

L(F) - Q(X, W )  = o (7) 

where i(F) is the operator given in equation (6) and Q(x, p )  is a source (or loss) term which is 
non-zero only for x > xo and po2 < pz 5 1, where 

p+-.+-e R-1 X '  

R Rs2 

with r$ being the potential and R the mirror ratio. 
Pastukhov proposes the function 

Q(x, p )  = -qe-x2 6( 1 - p2)q(x - a)  (8) 
where q (Z) is the step function, being zero for Z < 0 and unity for Z > 0. The constants q and a are 
determined from the boundary conditions: 

F(x = xo, pZ = 1) = 0 

Obtaining the solution F, in Pastukhov's method, involves two co-ordinate transformations. First, we 
let 

r = ex2 
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and second, we define 

Pastukhov's paper defines p without the factor c, of course. With this definition, however, the 
transformed differential equation becomes identical to his, and, after much calculation, we obtain 

u=x, (10) 

(11) 
8 

7r3/2czxO3 In E+ 2)' 
4 =  

The loss rates are obtained from 

Q*=4s[[x2Q(x,p)dp n dt dx 

(noo') = 47r[ [ x4Q(x, p )  d p  dx. 
3 T, d 
2 nvo2 dt 

Inserting the results, (10) and (11) into (8), and defining 
t=xZ-aZ 

we obtain 

These equations are identical to those of Pastukhov when we set c = 1 (the electron case) except 
that his loss rates are only half as large as our results. The source of this factor of two discrepancy is 
somewhat obscure, since his published work must necessarily omit many of the intermediate steps 
required to obtain the results. The quantity q given by (11) is four times as large as Pastukhov's value. 
One factor of two appears to be related to the integral over p, and thus disappears when the integrals 
of (12) are performed. The other factor of two remains unexplained. However, our results agree with 
those given (without derivation) in LOGAN (1977). 

Finally, we note that when more than one heavy ion species is present, the loss rate for each 
species can be represented in the form given by (13) and (14), with the quantity cz now defined as 
follows: 

for electrons, 

and for heavy ions, 

In (15) and (16), the summations'over k include the heavy (positive) ion species, but not the electrons, 
and rjr is given by 

(17) 
4sZ;Z2e4 In A j k  

m; 
rjk = 
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