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Abstract. Computer-aided diagnosis schemes are being developed to assist radiologists in 
mammographic interpretation. In this study, we investigated whether texture features could be 
used to distinguish belween mass and non-mass regions in clinical mmmomms.  Forry-five 
regions of interest (ROB) containing true masses with various degrees of visibility and 135 ROB 
containing normal breast parenchyma were extracted manually from digitized mammograms as 
case samples. Spatiill-grey-level-dependence (scw) matrices of each ROI were calculated and 
eight texture features were calculated from the SGLD matrices. The camlation and clawdistance 
properties of extracted texture feaNm were analysed. 

Selected texture features were input into B modified decision-tree classification scheme. The 
performance of the classifier was evaluated for different feature combinations and orders of 
features on the wee. A classification accumcy of about 89% sensitivity and 76% specificity 
was obtained for ordered features, sum average, correlation, and energy. during the training 
procedute. With a leave-one-out method, the test result was about 16% sensitivity and 64% 
specificity. The results of this preliminaq study demansrmte the feasibility of using texture 
information for classification of mass and normal b r a t  tissue, which will be likely to be useful 
for classifying me and false detections in computer-aided diagnosis programmes. 

1. Introduction 

It is known that images of many target objects or lesions are characterized by unique textural 
and shape properties. Computerized pattern-recognition techniques have been applied to 
mammographic images (Hand et al 1979, Magnin et al 1986, Chan et al 1987, Fam et al 
1988, Lai er al 1989, Caldwell et al 1990, Davies et a1 1990, Yin er al 1991, Cheng er 
al 1993) as well as other types of medical image (Kruger er al 1974, G m a  et al 1989, 
Cheng et al 1991, Goldberg et al 1992). Detection of mammographic abnormalities using 
morphological features has been reported (Hand et a1 1979, Chan et al 1989, Lai et al 
1989, Davies et al 1990, Brzakovic er al 1990, Yin et al 1991, Mascio et al 1993). 
Investigators have also explored the extraction of image statistical and textural information 
and classification of normal and disease patterns with discriminant analysis or neural- 
network techniques (Kruger et al 1974, Magnin er al 1986, Garra et al 1989, Katsuragawa 
et al 1988. Caldwell et al 1990, Cheng et al 1991, Goldberg et al 1992, Dhawan et al 
1993, Cheng et al 1993). More recently, i t  was reported that edge-gradient orientation 
in combination with Laws texture features could be used to effectively detect spiculated 
masses on mammograms (Kegelmeyer et al 1994). The methods utilizing texture features 
take advantage of the fact that computers are better than human observers in analysing 
second-order statistical features. 
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The purpose of the present study was to extract texture features from regions of 
interest (ROIs) on mammograms and use those features to determine whether the ROI 
contained a mass or normal tissue. The features were derived from the spatial-grey-level- 
dependence (SGLD) matrix (Haralick et ai 1973, Pratt 1978, Comers 1979), also known as 
the concurrence or co-occurrence matrix. The classification capabilities of the features were 
analysed by their correlation doefficients and class distances. Groups of three features were 
selected and put into a decision-tree classification scheme (Jain 1989, Agin et ai 1975). 
The decision-tree classification approach is based on a so-called distribution-free method. 
That is, it does not require knowledge of any a priori probability distribution functions. 
The advantages of this method include its simplicity, requiring relatively low complexity of 
calculations, as well as the fact that, unlike many other algorithms that require a training 
stage, i t  is guaranteed to converge whether or not the feature space is linearly separable. 
Making use of a modified decision-tree classification algorithm which is described step by 
step below in section 2, we considered training sets containing case samples of four different 
patterns, mass, dense fibroglandular, mixed glandular and fatty, and fatty breast parenchyma, 
and classified them into normal and abnormal categories. The decision tree was optimized 
by varying the thresholds for the extracted features as well as entering the features into the 
tree in different orders. Thus, unlike traditional methods (Jain 1989), our method allowed 
evaluation of the performance of different texture features in different branches separately. 
It revealed reasons for inefficiencies of specific features and permitted investigation of ways 
to improve those individual branches either by employing preprocessing procedures or by 
considering additional features. 

2. Materials and methods 

Mammograms used in this study were selected from patient files in the Department of 
Radiology at the University of Michigan Hospitals. All mammograms were obtained 
with Kodak MinRNRE screedfilm systems using dedicated mammographic units with 
molybdenum anodes and 0.03 mm thick molybdenum filters. The mammograms were 
digitized with a Lumisys laser film scanner with a pixel size of 0.1 mm x 0.1 mm and 4096 
grey levels. The digitizer was calibrated so that the pixel values were linearly proportional 
to the optical density in the range of 0.1-2.8 optical-density units (OD) at 0.001 OD/pixel 
value. The gradient of the calibration curve falls off gradually outside this optical density 
range. In this study, 45 clinical mammograms were selected from our database. Each of the 
selected mammograms contained a mass proven to he malignant by biopsy. No criterion 
was imposed on the morphology of the masses so that the selected cases included both 
spiculated (n = 27) and non-spiculated (n = 18) masses. 

Four different ROIs, each of 256 x 256 pixels, were manually extracted from each 
mammogram. One of the ROIS contained the true mass, hereafter referred to as M. The other 
three ROIS contained normal breast parenchyma. One, denoted NI ,  contained a small dense 
region resulting, for example, from imaging crossing vessels, vessels on end, or overlapping 
tissue. A second, denoted NZ, contained dense fibroglandular tissue or overlapping breast 
structures that might simulate a mass. The thud, denoted N3, contained fatty tissue. An 
example of each of these ROIsjs shown in figure 1. We also considered an N class which 
included 45 ROB, with 15 ROIs from each of the NI, N2, and N3 groups. The 15 ROIs from 
each of the N groups were randomly selected from each group with the constraint that no 
two N-type ROB were obtained,from the same mammogram. 

All ROIS were ranked, on a scale of one to 10 (one, least likely; 10, most liiely), by two 
experienced radiologists (MAH, DDA) regarding the likelihood of containing a mass. In the 
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Figure 1. An example of the mass and non-mass regions manually selected from one of the 
clinical mammograms used in this study. The four Rots ace upper left. mass (M): upper fight, 
normal mixed dense and fatty tissue (NI) ;  lower left. dense fihroglandular tissue (N2); lower 
“ght, fatty tissue (N3). 

ranking experiment, the radiologists read a single-view mammogram on which the locations 
of the four ROIS were marked. If the likelihood was greater than one, the radiologists 
also ranked the visibility of the ’mass’ (one, most obvious, 10, most subtle mass seen on 
clinical mammograms), and the diameter of the ‘mass’ was measured. The average ranks 
and sizes for the four types of ROI are summarized in table I .  The likelihood of containing 
a mass for the 45 M-ClaSS ROB ranged from four to 10, with a mean of 7.5. The visibility 
ranks of the 45 true masses ranged from two to eight with a mean of 4.2. The diameter 
of the 45 true masses ranged from 7 mm to 19 m m  with a mean of I I  mm. Although 
the ranks are quite subjective and will be observer dependent, they are included here in 
an attempt to describe the appearance of the masses used in our study relative to those 
seen on mammograms of our patient population. It should he noted that the radiologists 
could use the mammographic information surrounding an ROI to determine whether a mass 
was present whereas the computer was presented with the R 0 1  without the surroundings. 
About one-third of the N I  and N2 ROls were ranked by the radiologists as regions with some 
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Table 1. The average mnk.3 O f  the 45 nuss (M) and non-mass (NI, N2, M) regions. The rank O f  
the likelihood of containing a mass was obtained by averaging the ranks of all 45 ROIS for each 
Iype. The visibility mnk and the size were obtained by averaging the regions with a likelihood 
nnk greater than unity. 

hi NI N2 N3 

Likelihood of containing a mass 7.5 1.6 1.6 1 
Wsibility 4.2 6.1 6.7 - 
Size (mm) 11.1 8.6 11.3 - 

likelihood of containing a mass. 
The two-dimensional SGLD matrix was determined for each ROI image. An SGLD matrix 

element, pe.d(i, j ) ,  is the frequency of occurrence orjoint probability of the grey-level pairs 
i and j in a given direction 0 and separated by a distance of d pixels. In this feasibility study, 
the distance was chosen to be one pixel and the grey levels were grouped into 128 x 128 bins 
(seven bits) in the sGm matrix. The texture features in four directions (0 = O", 45", go", 
135O) were calculated and their average was used as input to the classifier. This choice was 
made because the dominant features in an ROI with a mass were approximately rotationally 
invariant. 

The eight features evaluated in this study included angular second moment (energy), 
entropy, correlation, inertia, sum average, sum entropy, difference entropy, and inverse 
difference moment (local homogeneity) (appendix A). These eight quantities characterize 
the energy spread about the diagonal of the SGLD matrix. The correlation coefficient between 
every two features within a class as well as the variance-normalized distance between every 
two class means was calculated (appendix B) to evaluate the ability of the features to 
distinguish between two classes. 

For classification of the features, we chose to use a threelayer, seven-node decision-tree 
classifier. The decision-tree classifier as found in the literature (Jain 1989) was based on 
the normalized average protoQpe feature matrix. In this study, we proposed a modified 
optimization algorithm in which the thresholds to be evaluated in each layer were selected 
from the values of the corresponding feature in the training set. A flow diagram of the 
modified decision tree using three features for classification is shown in figure 2. The 
algorithm for optimization of the decision tree can be summarized as follows. 

Step 1. The order of the three selected features is chosen and the features are assigned 
to the tree nodes. 

Step 2. A threshold LY is selected for the feature 4 in the first layer. CI is chosen to 
be one of the values of FI obtained from the input training cases. Similarly, threshold p 
and y for the feature F2 in the second layer are chosen to be certain values of F2. The 
corresponding feature values of each input case in the training set will then be compared 
with the thresholds, thereby classifying the input cases into the four branches. 

Step 3.  In the third layer, the four thresholds p ,  q, r ,  s are chosen to be four different 
values of feature F3 and the input cases are further classified into eight groups. By comparing 
the classification obtained from the decision tree with the known true classification (gold 
standard), we can determine for each individual case whether it is a true positive (TP) or a 
false positive (FP) decision by the current tree. By summing the number of TP cases and 
FP cases in each branch, the total number of TP and FP cases for the chosen set of seven 
thresholds are obtained. 

Step 4. The algorithm determines the maximum TP value at each FP value. It does so by 
checking whether the current TP value is greater than the previous maximum TP value at the 
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same FP value. If it is, the maximum TP value is updated and the current set of thresholds 
replaces thc previous set for this FP value. 

Step 5. Steps 3 and 4 are repeated with different combinations of p. q ,  r ,  s thresholds 
and then steps 2-4 are repeated with all different combinations of a,  0, y thresholds until all 
possible combinations of thresholds as suggested by the input feature values of the training 
cases are evaluated. 

Input Features Fq. F2, Fa - 
NO 

Figure 2. A flow diagram of the architecture of a three-layer, seven-node decision tree used for 
classification of the mass and non-mass ROB. A binary decision is made at each node using its 
associated decision threshold as indicated in the diagram. In the third layer, MIN indicates that, 
during training, the decision tree algorithm allows the bnnch corresponding to either ‘greater 
than or equal to’ or ’less than’ to be assigned to the mass class. Once the tree smcture, 
thresholds, and direction of inequality are chosen during training, they will be fixed during test 
or application. 

With this training procedure the highest values of TP at each possible FP value and the 
corresponding set of seven thresholds a, 6 ,  y .  p. q ,  r ,  s will be found. The classification 
accuracy can be evaluated on a graph plotting the true-positive fraction (TPF) against the 
false-positive fraction (FPF). The TPF is calculated as the ratio of mass ROB correctly 
identified as containing masses to the total number of mass ROls in the input data set. 
The FPF is calculated as the ratio of non-mass ROB incorrectly identified as containing 
masses to the total number of non-mass ROIS in the input data set. Each data point on the 
graph represents a pair of FPF and TPF values obtained from a decision tree with its seven 
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specific decision thresholds at the nodes. It may be noted that the TPF-VeISUS-FPF curve 
is not a conventional receiver operating characteristic (ROC) curve that assumes that both 
the normal and abnormal cases follow a normal distribution and a single threshold can be 
applied to the decision variable. As a result, the available ROC curve-fitting programs and 
the associated statistical significance tests (Men et al 1990) will not be applicable to the 
TF'F-VerSUS-FPF curves obtained in this study. 

The classification accuracy obtained from these fixed-order trees can be compared with 
those from trees of different feature orders, as well as with those from trees of different 
feature combinations. The decision tree with the optimal feature combination and order 
for this task can thus be identified. Examples of the training and test results obtained in 
this study will be discussed below. It should be noted that, to use a trained decision-tree 
classifier, one has to choose the specific tree sh-ucture with the set of decision thresholds 
corresponding to the desired sensitivity (TPF) and specificity (~-FPF). The structure and the 
thresholds will be fixed during testing or application. 

3. Results 

The correlation coefficients between pairs of features within a class and the variance 
normalized distances between the feature means of the mass and non-mass classes are 
tabulated in table 2 and table 3, respectively. Table 2 indicates that there is a strong 
correlation between some of the features, for example, between energy and entropy, inertia 
and inverse difference moment, and inverse difference moment and difference entropy. The 
correlation feature is relatively, independent of other features. Further, the feature distances 
in table 3 indicate that correlation provides the greatest separation between the mass and 
the non-mass ~ 0 1 s .  These analyses thus provided a guide for selection of features for the 
classification task. 

We first studied the effect of different feature orders for a given combination of three 
texture features. The results of'the output FPF and TPF for distinguishing the M and N classes 
by using the features sum average, correlation, and energy are shown in figure 3. Only three 
out of the six possible orders for the three features were plotted to maintain readability of 
the graph. The three orders shown illustrate the range of TPF obtained with different order of 
the features. About 10% variation in the TPF, depending on the FPF values, was possible by 
changing the orders of the features on the tree. The order of sum average (Fl), correlation 
(Fz), and energy (F3) was found to be the best for this feature combination. 

The dependence of classification accuracy on feature combination was studied. Since 
three out of eight features were used for the tree, there were 56 possible combinations. 
We did not exhaustively study,all 56 combinations. Rather, we considered correlation to 
be the most important feature based on the correlation-coefficient and distance analyses 
(tables 2 and 3) and included correlation as one of the three features in most cases. Thus, 
only 21 combinations were possible when two features were selected from the remaining 
seven features. A few combinations of three features without the correlation feature were 
also evaluated for comparison. The classification accuracies for four selected feature 
combinations, which represent the best, the worst, and two intermediate results, are shown 
in figure 4. For each feature combination, the results obtained with the best order were 
plotted. The different combinations of features could provide greater than 20% variation 
in TPF. The best combination appeared to be sum average-correlationenergy, whereas 
difference entropy-inertia-inverse difference moment was the poorest choice among those 
studied. These results were consistent with observation from the analysis of correlation 
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Figure 3. The effect of feature order on classification accuracy, The three feaNres used on the 
tree were energy. correlation. and sum average. Three out ofthe six passible orders of the three 
features are plotted. They were chosen to illustrate he range of TPF obtained with the different 
orders. The best order was Sum averagecarrelation-nergy. Pony-five M-CI~SS ROIS and 45 
 class ROB were used for training. 

coefficients and distances. Correlation, sum average, and energy were the features that had 
the greatest distances between the M- and N-class ROIS and they were relatively independent 
of each other. On the other hand, difference enfropy, inertia, and inverse difference moment 
had the shortest distances between the two classes and they were highly correlated with one 
another; combination of these three features on the tree might not provide much additional 
information in comparison with using one of the features alone, thereby resulting in poor 
classification. 

To study the classification ability of the decision tree, using the sum averagecorrelation- 
energy features for the various N-type ROIS, we used the 45 NI, 45 N2, and 45 N3 ROIs 
separately in combination with the 45 M ROIS as our input data set. Figure 5 shows the 
results of classification. As expected, the accuracy was highest for classification of the mass 
and fatty tissue (N3), intermediate for the mass and medium-dense area (NI), and lowest for 
the mass and dense fibroglandular tissue (NZ). The classification accuracy between M and 
N2 ROIS was about 71% TPF at an FPF Of 24%. 

In this preliminary study, the number of case samples was small. To maximize the utility 
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ORDERED FEATURES 

0 SUM AVERAGE-CORRELATION-ENERGY 
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Figure 4. The effect of feature combination on clsssihcation accuracy. Out of the combinations 
studied, sum averagecorrelatian-energy appeared to be the best combination. Forty-five M-cla~s 
ROIS and 45 N - C ~ ~ S S  ROIS were used for training. 

of the available cases for training, we used a leave-one-out method (Jain 1989) for testing 
the decision tree classifier (sum average-correlation-energy). In each training cycle, we 
left out both the M- and the N-ClaSS ROIs that were extracted from the same mammogram 
as test ROIS; the remaining 44 M and 44 N ROB were used for training the tree. This 
eliminated the possibility that the trained tree learned about the structured background of a 
specific mammogram from the ROI extracted from the same mammogram, as might be in 
the case when one R01 was included for training and the other from the same mammogram 
for testing. The results of the leave-one-out test are shown in figure 6. Because there are 
actually 45 training curves, one for each training cycle, the plotted training curve is the one, 
obtained with the complete set of 45 M and 45 N ROIS as training set, i.e., the same curve 
as that shown in figure 4. We had verified that the training curves in the leave-oneout 
test were almost indistinguishable from the training curve with the complete data set. Each 
of the data points on the training curve has a corresponding test point. The number of 
test points appears to be fewer because some of them overlap. A pair of the training and 
test results is marked with solid symbols as an example. This tree yielded a TPF of about 
89% and an FPF of 24% in each training cycle. For this trained tree with the set of seven 
thresholds, the test result was about 76% TPF at an FPF of 36%. It should be noted that 
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Figure 5. The accuracy of the decision uee (sum average-correl~lion-enrrgy) for classification 
of the mass Rots and the three types of normal ROI. Forty-five M ROE and 45 N-type RON were 
used in each case. 

any of the trained trees indicated by the circular data points can be chosen as an operating 
point, as in the ROC analysis. However, there is a trade-off between the TPF and the FPF. A 
high sensitivity is always accompanied by a low specificity. The selection of an 'optimal' 
operating point has to be based on the specific task for which this texture-analysis method 
will be used and cost-benefit considerations for the task. 

4. Discussion 

In this work we investigated whether texture features of mammographic breast patterns 
could provide reliable distinction between mass and non-mass regions. The classification 
accuracy, represented by the curves shown in figures 3-6, while encouraging, is inadequate 
for practical clinical implementation. However, the method proposed here provides the 
flexibility to determine the specifically ordered sequences of various texture features (or tree 
branches) in order to achieve desirable separation of classes. In other words, an advantage 
of the decision-tree classification technique employed is that it is robust. Its performance can 
be optimized for a specific task by combining features and comparing results for different 
arrangements of the nodes for the various texture features. 
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Figure 6. A comparison of training and tesf results obtained with a leave-one-out method. 
Results for 45 decision-me classifien. each corresponding to one point on tho mining curve, 
were shown. The test result indicated by a solid triangle was obtained with the decision tree 
indicated by a solid square on the training curve. 

In our current algorithm described above, the optimal decision threshold in each of 
the tree nodes is obtained by exhaustively searching through all combinations of threshold 
values to achieve the maximum TPF. The CPU time required for this procedure increases 
rapidly with increasing number of input training cases. An alternative approach that yields 
near-optimal threshold values may be employed. In this alternative search procedure, once 
the distributions of the F3 feature values in the four nodes are obtained, the sensitivity of 
the TP values for a desired FPF in each of the nodes may be maximized separately. For 
example, suppose that in the ith node a number of M- and N-feature values are obtained. 
By comparing the average values of the M and N features, the algorithm can determine 
whether the branch corresponding to ‘greater than or equal to’ or ‘less than’ should be 
assigned to the mass class. The threshold is then set only by the values of either the M or 
N features, and the maximum possible values of TP at a predetermined FPF (e.g. 20%) are 
calculated for each node. We observed that, for the limited preliminary comparisons that 
we made, the TPF obtained with this approach was a few per cent lower than that obtained 
with the exhaustive search procedure. Alternatively, in the case of a large training data 
set such that a distribution of feature values can be formed at each node, one can perform 
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thresholding of the feature space in a systematic way by using uniform division of the 
feature values for the distribution at each node for decision making. This third method can 
be advantageous over the current method in terms of computation time and over the second 
method in terms of precision. This further demonstrates the flexibility of using different 
optimization procedures in the tree construction process. 

In this preliminary study, we constructed SGLD matrices in four directions (0 = 0", 4 9 ,  
go", 135") at a pixel distance of d = 1. We observed no substantial difference in the feature 
properties calculated in the four directions. Therefore, an average of the feature values 
over the four directions were used as input to the classifier to simplify feature selection. 
Furthermore, to reduce the computation time and to improve the statistics of the SGLD matrix, 
the grey-level depth of the ROI images had to be reduced from 12 bits. Because the three least 
significant bits of the 12-bit images contained mainly screen/film noise (Chan et ul 1994) 
and we found that there was no substantial difference in the classification accuracy when 
the pixel depth was varied from nine bits to seven bits, the SGLD matrices were calculated at 
seven bits. Note that for the detection of microcalcifications, it was found that the detection 
accuracy decreased significantly if the grey-level resolution was reduced to less than nine 
bits (Chan et ul 1994). The detection of microcalcifications is a fundamentally different 
task from the texture analysis of masses and normal breast tissue. It can be expected that 
both the spatial and grey-level resolution requirements for the former task are much more 
stringent than those for the latter because of the subtle nature of the microcalcifications. 
More detailed analyses of the dependence of the classification accuracy for mass and normal 
tissue on the distance and bit depth in construction of the SGLD matrices, as well as on the 
directionality of the texture features, will be performed in future studies. 

Many texture features derived from different methods (Haralick 1986) may be useful 
for differentiation of masses and normal tissue. In this feasibility study, we have not 
attempted to investigate the performance of different texture features. We chose the texture 
features calculated from the SGLD matrix because it was reported that they were effective 
in distinguishing different types of texture (Haralick et al 1973). Since normal tissue that 
mimics a mass is usually a result of overlapping mammographic structures, it is expected 
that normal tissue should have more complex textures than solid masses. The results of 
our study indicated that texture features from the SGLD matrix contained information for 
distinguishing normal tissue from masses. Further investigation to compare the effectiveness 
of various texture features in this application is warranted. 

The goal of this study was to investigate whether texture features based on the SGLD 
matrix can be used for distinguishing mass and normal tissue. Such methods can be 
implemented in a computer-aided diagnosis program, which automatically screens an input 
mammogram for suspicious areas, to reduce false detections. Alternatively, such methods 
can be implemented in an interactive display station, which may be developed in the future 
for digital mammography, to provide a second opinion on the probability that a suspicious 
area identified by a radiologist may contain a mass. 

The large difference in the training and test results suggests that the training data set in 
this study is not large enough to provide optimal decision thresholds for the test cases. This 
may be improved by increasing the number of training cases in future development. A larger 
number of texture or morphological features may also be used to improve the classification 
accuracy either between mass and normal tissue or to classify between benign and malignant 
masses. Image preprocessing in terms of background reduction, noise suppression, or 
signal enhancement will need to be explored. Optimization of the feature characteristics by 
studying their dependence on the parameters in the SGLD matrix will need to be performed. 
The efficiency and accuracy of the decision-tree classifier in comparison with other classifiers 
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will also need to be investigated. The present study concentrated on evaluation of the 
feasibility of using texture features derived from the SGLD matrix for classification of mass 
and normal tissue. Our results indicate that the texture features will probably be useful for 
classifying true and false detections in computer-aided diagnosis programmes. 
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Appendix A. The spatial-grey-level-dependence (SGLD) matrix and texture features 

The (i. j)th element of the SGLD matrix, pe.&, j ) ,  i s  the joint probability that the grey 
levels i, j occur in a direction of angle 8 and at a distance of d pixels apart over the entire 
ROI. The joint probability PO,&, j )  is normalized by the number of grey-level pairs obtained 
from the ROI with a pixel distance of d. For each ROI eight features were derived from its 
SGLD matrix as described below. A simplified notation p( i ,  j )  will be used for the SGLD 
matrix elements in the formulation 

where n is the number of grey levels per pixel. 

where 

are the mean and variance of the marginal distributions p,(i) and p y ( j ) ,  respectively. 
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1 n-1n-1 

Inverse difference moment = cc . , , p ( i ,  j )  
i=o j=o 1 + ( 1 - 1 )  

2n-? 
Sum average = kpx+y(k) 

k=O 

where 

where 

These texture features describe the shape of the SGLD matrix, which is related to specific 
textural characteristics of the image such as homogeneity, contrast, and the presence of 
organized structures within the ROI. They reflect the complexity and the nature of grey-tone 
transitions that occur in the image. However, it is difficult to identify which specific textural 
characteristic is represented by each of these features (Haralick et ul 1973, Kruger et ul 
1974). 

Appendix B. The correlation coefficient and variance-normalized distance of features 
(Stark and Woods 1986) 

To evaluate the correlation coefficient between any two of the features Fl and Fz within a 
class (table 2), we made use of the following relationship: 

Correlation coefficient(Fl, Fz) 

where m is the number of FI or F2 feature values, f1.i and f1.i are the individual feature 
values of FI and F?, respectively, calculated for the ith image, and ave(F,), ave(Fz), 
var(Fl), var(F2) are the averages and variances of the features, respectively. 
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For estimation of the ability of a feature F to distinguish between two classes, mass 
and non-mass, the variance-normalized distance (table 3) is used: 

where ave(F-), var(F,,,) and ave(Fn,,n-maJ, var(FnOD-,,,,J are the averages and 
variances of the feature F calculated for the mass and non-mass ROB, respectively. 
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