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Abstract. We studied the effectiveness of using texture features derived from spatial grey 
level dependence (SOLD) matrices for classification of masses and n o d  breast tissue on 
mammograms. One hundred and sixtyeight regions of interest (~01s) containing biopsy- 
proven masses and 504 ROE containing normal breast tissue were extracted from digitized 
mammograms for this study. Eight features were calculated for each no!. The impfiance 
of each feahm in distinguishing masses from normal tissue was determined by stepwise linear 
discriminant analysis. Receiver operating characteristic (ROC) methodology was used to evaluate 
the classification accuracy. We investigated the dependence of classification accuracy on the 
input features, and on the pixel distance and bit depth in the construction of the SOW matrices. It 
was found that five of the texture features were important for the classification. The dependence 
of classification accuracy on distance and bit depth was weak for distances greater than 12 pixels 
and bit depths greater than seven bits. By randomly and equally dividing the data set into WO 
groups. the classifier was trained and tested on independent d a h  sets. The classifier achieved 
an average area under the ROC curve, A,, of 0.84 during training and 0.82 during testing. The 
results demonsate the feasibility of using linear discriminant analysis in thttexture feature space 
for classification of true and false detections of masses on mammograms in a computer-aided 
diagnosis scheme. 

1. Introduction 

Mammography is the most efficacious method for detection of early breast cancer. However, 
retrospective studies have shown that radiologists do not detect all breast cancers that are 
visible on the mammograms (Wolfe 1966, Martin et al 1979, Wallis et al 1991, Bud et QZ 
1992, Harvey et al 1993). Double reading has been suggested to be an effective approach 
to improve the detection accuracy (Thufjell et al 1994). Double reading is costly because 
it requires twice as much radiologists’ reading time. This cost will be quite problematic 
considering the ongoing efforts to reduce costs of the health care system. Cost effectiveness 
is one of the major requirements for a mass screening program to be successful. 

In our previous study, we demonstrated that a computer-aided diagnosis (CAD) scheme 
can serve as a second opinion for radiologists in the film interpretation process (Chan 
et Q! 1989). A well trained computer program, in effect, can partly assume the role of 
a second reader and assists radiologists in certain aspects of the detection and decision 
making processes. Although a computer program may never be able to achieve the level of 
knowledge and cognitive capability of a radiologist, a trained computer program can perform 
certain tasks reproducibly and consistently without the interobserver and intraobserver 
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variations that are commonly observed among human observers. The ability of a cm 
scheme can therefore be complementary to that of a radiologist. The combination of the 
two will probably result in improved accuracy in the interpretation of mammograms. 

A number of research groups have been developing computer programs for analysis 
of mammographic abnormalities. For detection of mammographic masses, the methods 
reported to date mainly utilize morphological features to distinguish a mass from the normal 
mammographic background (Lai et al 1989, Brzakovic et al 1990, Yin et a1 1991, Ng 
and Bischof 1992). Others have made use of texture or fractal analysis in classification 
of the four types of normal breast parenchyma according to Wolfe (Magnin et a1 1986, 
Caldwell et a1 1990), in an attempt to predict the risk levels of developing breast cancers. 
Recently, Kegelmeyer et al (1994) detected spiculated masses using local edge orientation 
and Laws texture features. This latter method, however, is not applicable for detection of 
non-spiculated masses. 

In our previous study, we demonstrated the feasibility of using texture features to 
discriminate regions containing spiculated or non-spiculated masses from those containing 
normal breast tissue (Petrosian et a1 1994). The texture features were derived from a spatial 
grey level dependence (SGLD) matrix, which characterized the spatial distribution of grey 
levels in the region of interest (ROI). We classified the ROIS by using a three-layer decision 
tree. The decision tree classifier was found to be effective in classifying ROIS containing 
mass and normal breast tissue. Using only three texture features, a truepositive rate of 89% 
at a false-positive rate of 24% was achieved during training. However, it was also found 
that training of the decision tree was quite inefficient. The training time increased rapidly 
when the number of layers and the number of training cases increased. Furthermore, the 
test results seemed to lag far behind the training results. 

In  the present study, we evaluated a new approach, which used linear discriminant 
analysis for classification of the Rots based on the texture features. The linear discriminant 
analysis takes full advantage of the combinations of all available features, and the training 
process is relatively efficient. Using this classifier, we determined the relative importance 
of each input feature for the classification task based on statistical criteria The dependence 
of the classification accuracy on the parameters of the SGLD matrix and on the combination 
of the texture features was analysed. 

2. Materials and methods 

2.1. Case samples 

The 168 mammograms used in this study were randomly selected from the patient files 
in the Department of Radiology at the University of Michigan Hospitals by radiologists 
experienced in mammography. .The only criteria for inclusion were that the mammogram 
contained a biopsy-proven mass and that no grid lines were visible. The data set therefore 
included a mixture of benign (n = 83) and malignant (n = 85) masses. Forty-five of the 
malignant masses and six of the benign masses were judged as spiculated by the radiologists. 
The visibility of the masses on the mammograms was ranked by the radiologists on a scale 
of 1 to 10, with 1 being the most visible (obvious) and 10 the least visible (subtle) relative 
to the range of masses seen on mammograms. The range would be similar to the case 
mix encountered in clinical practice because the cases were randomly sampled from clinical 
films, although some biases'would exist due to the small sample size. The size (length of the 
long axis) of the masses seen on the mammograms was also measured by the radiologists. 
The histograms of the visibility and the size of the masses are plotted in figure ](a) and 
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Figure 1. (a) The histogram of the subjective ranking o f  the visibility of the 168 masses in our 
data set an mammograms. The ranking ranges from very obvious ( I )  to very subtle (IO) with 
a mean of 4.5. (b) The histogram of the size (lengh of the long axis) of the mares. The mean 
size of the mvsses is  12.2 mm. 
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Figure 2. (a) The I(rX K O I S  coiiramng bwp\yprovro 8mmc~. (1)) t he  IhX ~ o i i  cont;uning dense 
brcnst tissue, (c) the I68 K i m  c o n r a ~ m g  i i i ixetl drnsd la l ty  hreas1 Iissuc. and (d) the 168 ROIS 

containing fatly breast tissue used in this study. 
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Figure 2. (Continued) 
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(b), respectively. All mammograms with grid lines were excluded because the repetitive 
grid pattern might interfere with the texture features extracted from the images. This will 
not be a limitation because only systems with reciprocating grids can be used in performing 
mammography under new regulations. The mammograms were acquired with dedicated 
mammographic systems with a 0.3 mm focal spot, molybdenum (MO) anode and 0.03 mm 
MO filter, and a 5 1  reciprocating grid. A Kodak Min R/MRE mammographic screedfilm 
system using extended cycle processing was employed as the image receptor. 

2.2. Digitization 

All mammograms were digitized with a laser film scanner (LUMISYS DIS-1000) at a pixel 
size of 0.1 mm x 0.1 mm and 4096 grey levels (12 bits). The light transmitted through the 
film was amplified logarithmically before analogueto-digital conversion. The digitizer had 
an optical density (OD) range of 0-3.5. It was calibrated so that the OD on film was linearly 
proportional to the output pixel value in the range of about 0.1 OD-2.8 OD with a slope 
of 0.001 OD/pixel value. The slope of the calibration curve outside this range decreased 
gradually. Before input to the detection program, the pixel values were linearly converted 
such that low optical densities were represented by high pixel values. 

2.3. ROI selection 

On each mammogram, the location of the mass was identified by an experienced radiologist 
and verified with biopsy reports. Three additional regions of normal breast parenchyma 
were also chosen by the radiologist from the same mammogram: a region containing the 
densest tissue, a region of mixed tissue, and a region of fatty tissue. These three types of 
normal tissue were included because the classifier is developed for differentiation of mass 
and normal tissue for all breast types. Each of these ROrs was composed of 256x256 pixels. 
The four sets of ROE, each of 168 samples, are displayed at a reduced spatial resolution 
in figure 2 to illustrate the masses and normal tissue included. Each ROI corresponds to a 
2.56 cm x 2.56 cm area on a mammogram. 

2.4. Texture features 

The texture features used in this study were derived from the SGLD matrix (Haralick eta1 
1973), also known as the concurrence matrix or the co-occurrence matrix, of the ROI as 
discussed previously (Petrosian er al 1994, Cheng et al 1994). The SGLD matrix element, 
P&j(i, j ) ,  is the joint probability density of the occurrence of grey levels i and j for two 
pixels with a defined spatial relationship on an image. The spatial relationship of the pixel 
pair is described by a selection rule that specifies the relative direction 0 and the distance 
d between the two pixels. Because of the discrete nature,of the digital image, the choice 
of 0 is actually limited to o", 45O, 90", and 135" and the distance d is limited to integral 
multiples of the pixel size. 

A number of texture f&tures can be derived from the SGLD matrix (Haralick et  al 
1973, Conners 1979). In this study, we evaluated the discriminant ability of eight features: 
correlation, entropy, energy (angular second moment), inertia, inverse difference moment, 
sum average, sum entropy, and difference entropy (Petrosian et al 1994). These features 
describe the shape of the SCLD matrix and generally contain information about the image 
characteristics, such as homogeneity, contrast, and the presence of organized structures, as 
well as the complexity and grey level transitions within the image. However, a particular 
feature cannot be related uniquely to a specific image characteristic (Haralick et al 1973). 
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The background grey levels of each ROI depend on the x-ray intensity and the density 
of the neighbouring and overlapping tissue. In general, the background grey levels do not 
relate directly to the presence of a mass, but affect the shape of the SGLD matrix and thus 
the value of some of the texture features. In order to reduce this variability, we developed a 
technique that estimated the low-frequency background by using the grey level of a band of 
pixels around the perimeter of the ROI. The method was chosen based on visual comparison 
of the background-corrected images with the original image so that the background was 
levelled and no artifact could be seen. This subjective judgement was used because it was 
impossible to quantitatively determine how good a background correction method was; no 
'true background' could be found due to the complexity and variability of the overlapping 
structures. We first calculated a running average of the pixel values along the perimeter of 
the ROI using a box filter of a 32 x I6 kernel, of which the long dimension was parallel to 
the edge of the ROI. For the perimeter pixels that were within 16 pixels of one of the four 
corners of the ROI, the long dimension of the box filter kernel was reduced on the side that 
was limited by the ROI edge. For example, the average pixel value at a corner of the ROI 
was obtained by a I6 x 16 box filter, with one apex of the box filter kernel coinciding with 
the corner pixel. The grey level, G(i, j ) ,  of a given pixel (i, j )  in the estimated background 
image of the ROI was then calculated as 

where gk is the grey level of the pixel at the intersection between one side of the low- 
pass-filtered ROI perimeter and the normal from the pixel (i, j )  to that side, and dk is the 
distance from the pixel (i, j )  to the intersection; k ranges from one to four, denoting the 
four sides of the ROI. More than four pixels around the ROI perimeter might be used in 
the weighted sum for the background estimation and a low-pass filter might be applied 
to the interpolated background image to provide further smoothing. We used (1) for the 
interpolation and applied a low-pass box filter of a 32 x 32 kernel to the interpolated 
background image in this study. The background image was then subtracted from the 
original ROI, thus reducing the background to near zero. The texture features were calculated 
from the background-corrected ROE. An example of an original ROI with a malignant mass 
and the background-corrected ROI is shown in figure 3(a) and (b), respectively, It can be seen 
that the background of the ROI was flattened while the high-frequency information in the ROI 
was basically unchanged because the background image only contained low frequencies. 

As discussed above, the SGU) matrix depends on the spatial relationship of the pixel 
pairs. Because it is expected that the texture of a mass may be isotropic whereas the texture 
of normal breast structures may have a slightly stronger directional dependence as they 
diverge from the nipple, we first investigated the dependence of the classification accuracy 
on directional information. For a fixed pixel distance d ,  we calculated each of the eight 
texture features from the sGm matrices at 8 = O", 45", go", and 135", resulting in a 32- 
dimensional feature space. An eight-dimensional feature space was derived by averaging the 
corresponding features in the four directions, thereby neglecting the directional information 
of the texture features. The classification accuracy in these two feature spaces was compared. 
As discussed in section 3 below, the comparison indicated that there was no significant 
difference between the two approaches. Therefore, the eight features averaged over the four 
directions were used as the input features to the classifier in the rest of our studies. 

The SGLD matrix depends not only on the direction and the distance between the pixel 
pairs, but also on the bin width (i.e. the grey level interval) used in determining the two- 
dimensional histogram, which is an estimate of the joint probability density distribution. 
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Figure 3. An example dcmonslrating the effect of background correction: (a) the original ROI 
with a malignant mms and (bj the hackground~corrected ROI. A constant value was added to 
each pixel of the ROI in (bj to match the mean level of the R O I  in (a) for visual comparison 
purposes. The displayed window width is the same for both images. The sloped background in 
(a) becomes relatively Ant in (h) after background correction. 

For a 12-bit image, a 4096 x 4096 SCLD matrix is obtained with the minimum bin width of 
one grey level. A matrix size of 256 x 256 is obtained with a bin width of 16 grey levels, 
which is equivalent to reducing the grey level resolution (i.e. the bit depth) of the image by 
eliminating the four least significant bits and using a bin width of one grey level. There is 
a trade-off between the grey level resolution and the statistics of the estimated distribution. 
When the bin width is small, the number of counts of pixel pairs in each bin will be small 
and the statistics of the estimated joint probability density distribution will be poor. The 
noise in the least significant bits of the image will also affect the distribution. On the other 
band, when the bin width is large, the statistics in each bin will improve and the effect of 
image noise will decrease. However, some characteristic features of the distribution may 
be lost. In either case, the discriminant power of the texture features derived from the SGLD 
matrix may be degraded. We therefore investigated the dependence of the classification 
accuracy of the texture features on grey level resolution in order to determine the best bin 
width to construct the SGLD matrix. The grey level resolution of the original images was 
reduced from 12 bit to lower bit depths by eliminating the least significant bits. The texture 
features of the images of different bit depths were calculated in the same way as described 
above. 

2.5. Linear discriminant analysis 

Linear discriminant analysis is a well established statistical technique (Lachenbruch 1975, 
Tatsuoka 1988). For a two-class problem, one canonical discriminant function can be 
constructed for classification of the two groups of cases. The discriminant function is 
formulated by a linear combination of the feature variables: 

D = Q + C ~ ~ X ~  (2) 
, = I  
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where n is the number of feature variables, the X j  are the values of the feature variables 
and the ai are coefficients (or weights) estimated from the input data during training so that 
the separation between the distributions of the discriminant scores, D, of the two groups is 
a maximum. This is accomplished by maximization of the ratio of the between-groups sum 
of squares to the within-groups sum of squares for the two distributions of the discriminant 
scores. Geometrically, the linear discriminant function can be considered as a projection 
of the feature vectors onto an axis in the multidimensional feature space. The component 
of the feature vector of a given case along this axis corresponds to the discriminant score 
of that case. An example of the probability density distributions of the discriminant scores 
for the RoIs with masses and normal tissue used in this study is shown in figure 4. The 
discriminant scores were obtained with five input features calculated from the SGLD matrix at 
a distance of 20 pixels and eight bits as discussed below. The goal of the linear discriminant 
analysis is to find the axis (i.e. the principal axis) that provides the maximum separation 
between the distributions of the discriminant scores for the two groups. If the population 
of the feature vectors for each group in the feature space follows a multivariate normal 
distribution and the population covariance matrices for the two groups are equal, the linear 
discriminant function provides an optimal classification rule to minimize the probability of 

- 3 - 2 - 1  0 1 2  3 4 5 
DISCRIMINANT SCORE 

Pigure 4. An example of the probability density distributions of the discriminant scares of the 
normal tissue (white) and masses (black). The discriminant scoces were calculated fmm the 
discriminant function, which provides a linear combination of five texture features derived from 
the scw matrices constructed at eight bits and a distance of 20 pixels to maximize the separation 
between the two groups. 

The linear discriminant analysis can be performed in a two-stage process (SPSS 1993). 
First, a stepwise procedure is performed to identify from all available input features the 
useful feature variables for the formulation of the discriminant function. Second, the selected 
features of the input cases are used to determine the coefficients of each feature variable 
in the dscriminant function to achieve maximum separation. In the SPSS implementation, 
several statistical criteria can be used to choose good feature variables in the stepwise 
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procedure. These criteria include the maximization of a generalized measure of the distance 
between two groups (Mahalanobis distance), the minimization of the ratio of the within- 
group sum of squares to the total sum of squares of the distributions (Wilks’ lambda), the 
Lawley-Hotelling trace (Rao’s V), the maximization of the between-groups F statistic value, 
and the minimization of the sum of unexplained variance. We studied the effect of using 
the different criteria in the stepwise procedure on feature selection for a feature set from 
fixed SGLD matrix parameters and found that the same feature variables were selected for 
our two-class problem when the different criteria were used. The Wilks’ lambda criterion 
was then used for variable selection under the different bit depth and distance conditions in 
this study. The stepwise procedure using the Wilks’ lambda criterion is described briefly as 
follows. A detailed discussion of the underlying statistical theories is given in the literature 
(Lachenbruch 1975, Tatsuoka 1988, SPSS 1993). 

At the stepwise feature selection stage, the program enters one feature or removes 
features in alternate steps by analysing their effect on the separation between the two 
groups based on the Wilks’ lambda criterion. The significance of the change in Wilks’ 
lambda when a variable is entered or removed from the model is based on F statistics. 
Initially, the program calculates the Wilks’ lambda values between the two groups when 
each of the feature variables is used individually. The variable that provides the smallest 
Wilks’ lambda is entered into the model first. In a subsequent feature entry step, each of the 
variables not yet in the model is assumed to be entered one at a time. The Wilks’ lambda 
and the F value for the change in Wilks‘ lambda (F-to-enter) are evaluated. The variable 
that provides the smallest Wilks’ lambda will be entered next in the model if the F-to- 
enter value is larger than the F-to-enter threshold. In the feature removal step, each of the 
variables already included in the model is assumed to be removed one at a time. The Wilks’ 
lambda and the F value for the change in Wilks’ lambda (F-to-remove) are evaluated. If the 
F-to-remove value is smaller than the F-to-remove threshold, the variable will be actually 
removed from the model. The stepwise procedure continues until the F-to-enter values for 
all variables not in the model are smaller than the F-to-enter threshold and the F-to-remove 
values for all variables in  the model are greater than the F-to-remove threshold. At this 
point, no more variables meet the entry or removal criteria and the procedure terminates. 

To evaluate the relative importance of the feature variables for our discrimination task, 
we first made use of the stepwise procedure to select the important features for each bit depth 
and each distance of the SGLD matrices. All eight features were entered into the stepwise 
selection procedure under each condition. We then examined the features selected for all 
conditions, and ranked the relative importance of the features based on the frequency with 
which the features were chosen. To evaluate the effect of the combination of the feature 
variables on the discriminant analysis, linear discriminant functions with one to eight input 
features were formulated by adding one feature at a time, in the order of importance as 
found by the stepwise selection procedure. For each feature combination, the dependence 
of the classification accuracy on bit depth and distance was studied by receiver operating 
characteristic (ROC) analysis as described below. With this approach, the combinations 
of features that were effective for the separation of the two classes were systematically 
evaluated. Although we did not exhaustively study all feature combinations, our approach 
should find a near-optimal combination under the conditions studied. 

After selection of features and optimization of the SGLD matrix parameters, we studied 
the aaining and testing of the discriminant classifier. The 168 mass RON were randomly 
and equally divided into two subsets, referred to as group 1 (GI) and group 2 (G2). The 
three normal ROIs obtained from the same mammogram as the mass ROI were grouped into 
the same subset as the mass ROI in order to ensure the independence of the aaining and 
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test sets. When group 1 was used as training set, group 2 was used as the test set and 
vice versa. The discriminant classifier was trained with the selected combination of feature 
variables. The weight of each feature variable in the discriminant function for a given 
condition was optimized, as described above, by using the feature values in the training set. 
During testing, the feature values of each case in the test set were entered into the trained 
discriminant function to calculate the discriminant score for that case. 

The accuracy of the discriminant classifier was evaluated by ROC methodoIogy (Swets 
and Pickett 1982, Metz 1986). The discriminant score was used as the decision variable 
in the ROC analysis. An ROC curve, which is the relationship between the hue positive 
fraction (TPF) and false positive fraction (FPF), can be generated by setting different 
decision thresholds. For the distributions shown in figure 4, a decision threshold at a 
large discriminant score corresponds to a stringent criterion with a small TPF and small 
FPF; a decision threshold at a small discriminant score corresponds to a lax criterion with a 
high TPF and high FPF. The LABROCI program (Metz et al 1990), which assumes binormal 
distributions of the decision variable for the normal and abnormal cases and fits an ROC 
curve based on maximum-likelihood estimation, was used to estimate the area under the ROC 
curve, A,, and the standard deviation (SD) of A,. We used A,  as an index of classification 
accuracy. The best combination of features, bit depth, and distance for the classification task 
was determined by maximization of A,. To test the statistical significance of the difference 
in A, for two conditions, the CLABROC program for correlated data (Mea e t a l  1984) was 
used. 

3. Results 

We compared the classification accuracy of using the texture features in four directions 
separately to that of using the texture features averaged over the four directions. The 
comparison was performed for features calculated from the SGLD matrix constructed at a 
bit depth of eight and a pixel distance of 20. These conditions were chosen because they 
provided near-maximum classification, as discussed below, for the texture features and data 
set used in this study. For both sets of input features, the stepwise discriminant procedure 
was used to select the features. We used the entire data set of 672 ROIS as input cases so that 
the statistical properties of the feature variables could be more reliably determined. For the 
set of 32 input features, the discriminant analysis selected six features: correlation (45"), 
correlation (135"), difference entropy (45O), difference entropy (135"), entropy (135'), and 
inertia (90"). The A, was 0.842 f 0.017. For the set of eight input features averaged over 
the four directions, the discriminant analysis selected four features: correlation, difference 
entropy, entropy, and inertia. The A, was 0.834 k 0.018. Although the directional input 
features seemed to provide slightly better discriminant power, the difference was less than 
0.5 SD. The two-tailed p level obtained from the correlated 'area test' (Metz eta! 1984) for 
the difference in the A,  values was greater than 0.05 and did not reach statistical significance. 
We therefore used the texture features averaged over four directions in the following studies. 

For the determination of the relative importance of the features for the classification task, 
we again used the entire data set of 672 ROB as input cases in the stepwise feature sekction 
precedure. The threshold values for inclusion or exclusion in the stepwise procedure were 
kept at the default values in the SPSS program for all conditions (F-to-enter threshold, 
3.84; F-to-remove threshold, 2.71). The features selected for grey level resolution of four 
bits to nine bits and pixel pairs separated by a distance of two to 40 pixels are listed in 
table 1. The numbers in the table entries indicate the number of bits used in construction of 
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the SGLD matrices. The correlation feature appeared to be the most discriminative because 
it was selected for all bit depths and all distances. The difference entropy was the second 
most important feature. Entropy and inertia were almost equally important. The order of 
importance of the next three features, energy, inverse difference moment, and sum entropy, 
was less obvious. Energy was important when the distance was small, sum entropy was 
more important in the mid-distance range, while inverse difference moment spanned over 
all distances for relatively low bit depths. The effect of ,sum average was negligible under 
almost all conditions. For the following studies, we ordered the features as (i) correlation, 
(ii) difference entropy, (iii) entropy, (iv) inertia, (v) inverse difference moment, (vi) sum 
entropy, (vii) energy, and (viii) sum average. 

We studied the dependence of classification accuracy on the bit depth and pixel distance 
parameters of the SGLD matrix when the feature combination was fixed. The entire data 
set was again used to achieve the best statistical certainty and the study was performed as 
a training procedure. The dependence of A, on pixel distance for bit depths from four to 
nine bits using five feature variables is illustrated in figure 5. The classification accuracy 
increased with increasing distances initially, reached a broad maximum, and decreased 
slightly or levelled off at large distances. For distances above 12 pixels, A, increased as the 
bit depth increased from four bits to seven or eight bits and fell off slightly at nine bits. The 
SDS of A, ranged from 0.017 to 0.018 at distances from 12-40 pixels and six to nine bits; 
the SDS could be as large as 0,021 at smaller distances or four and five bits. The differences 
in  A, for distances of 12-40 pixels and six to nine bits were less than one sD. We performed 
statistical significance tests between some selected pairs of conditions. At a bit depth of 
eight, the two-tailed p levels were greater than 0.05 for the differences between pairs of 
A, at pixel distances larger than 12. The two-tailed p level for the difference between 
six and eight bits at a pixel distance of 20 was 0.2. These differences therefore were not 
statistically significant. The difference between five and eight bits at a pixel distance of 20 
was statistically significant at a two-tailed p level of 0.04. 

The dependence of classification accuracy on feature combination for various bit depth 
and distance parameters of the SGLD matrix was studied. The features were combined based 
on their order of importance as found in the stepwise feature selection procedure discussed 
above. The number of feature variables in the discriminant function was varied from one 
to eight. The entire data set of 672 ROls was used as input cases. The effect of the different 
input features on classification accuracy is plotted in figure 6 for the various bit depths 
and a fixed distance of 20 pixels used in the SGLD matrices. The value on the horizontal 
axis indicates the feature combinations. For example, a number of features of four means 
that the first four features =:ordered previously were used to formulate the discriminant 
function. The results are discrete but the data points are linked with lines to facilitate 
reading. The accuracy is low'when only one or two features are used for classification. It 
increases significantly when the third feature is added. For five to seven bits, A, is almost 
constant for four to eight input features. For eight to nine bits, there was a broad maximuin 
at five or six features. The SDS of the A, for these conditions were about 0.018. For a 
fixed grey level resolution of eight bits, the two-tailed p levels of the differences in pairs 
of A, between three and eight features were all greater than 0.05. Because the SDS and 
the differences in A, between the other conditions from six to nine bits and from three to 
eight features were of a similar magnitude, their p levels were expected to be in the same 
range. The difference in A, between two and three features at eight bits was statistically 
significant at a two-tailed p level of 0.002. 

The dependence of the training and test results on variations in the input data sets is 
demonstrated in figure 7. The A,  values obtained with five input features and eight bits were 
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F i y r e  5. Dependence of classification accuracy, quantified in terms of the area under the ROC 
curve, A,, an distance for various bit depths used in the SGLD mauices. The resultc for five 
input features were plotted. The WO curves for seven bits and eight bits almost overlap. The 
standard deviations of A, ranged from 0.017 to 0.018. 

plotted as a function of pixel distance of the SGLD matrix. The use of group 1 or group 2 as 
training set resulted in a difference of about 0.001-0.025 in A,  of training, and a difference 
of about 0.0014023 in A, of testing except for a difference of 0.051 at d = 4. Because 
of the smaller data sets used to obtain these results, the SDS in A,  ranged from 0.024 to 
0,029. The maximum average A, was 0.840 for training and 0.823 for testing, occurring 
at a distance of 20 pixels. The average difference between the training A,  and test A,  was 
0.015 with a maximum difference of 0.036 at d = 28. The ROC curves corresponding to 
the A, values at a distance of 20 pixels are plotted in figure 8. The A, values for the two 
training curves are 0.831 and 0.850, and the A, values for the two test curves were 0.829 
and 0.817, respectively. 

To further estimate the variation in A,  caused by differences in the input data sets, we 
equally divided the 168 mass ROB again with a different sequence of random numbers, 
together with the normal ROIS from the same image, to form group 1' and group 2'. The 
analysis described above was repeated using these two groups for training and testing 
alternately. The differences in A, at various pixel distances varied from 0.007 to 0.021 for 
training and from 0.001 to 0.030 for testing, except for a difference of 0.045 at d = 4. The 
SDs in A,  ranged from 0.024 to 0.030. The maximum average A, for training was 0.839, 
occurring at a distance of 20 pixels. The corresponding average A, for testing was 0.810. 
The average difference between the training A, and test A, was 0.027 with a maximum 
difference of 0.061 at d = 12. 
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Figure 6. The dependence of classihcation accuracy on the input features to the linear 
discriminant classifier. The results for a distance of 20 pixels and four to nine bits are plotted. 
The order of features being added to the input was (i) correlation, (ii) difference entropy, (iii) 
entropy, (iv) ineni4 (U) inverse difference moment, (vi) sum entropy, (vii) energy, and (viii) 
sum average. 

Since the results from the different grouping were not independent of the first grouping, 
we did not estimate the variation in A, from the four training or test groups. However, 
this study using the four combinations of training’and test sets indicates that the variations 
in the training A, or test A, caused by different input data sets were within 1 SD under 
most of the conditions studied. The differences between the training A,  and the test A, for 
each combination ranged from 1 to 2 SD. Similar differences were observed for other input 
features and bit depths. The linear discriminant classifier therefore appears to be consistent 
among different training and test data sets and also between training and testing. 

4. Discussion 

In our previous study, a decision tree was trained to classify masses and normal breast tissue 
based on texture features extracted from the SGLD matrix (Petrosian et al 1994). The data 
set consisted of 45 mass ROB and 135 normal ROB. It was found that the decision tree could 
provide high accuracy for a training set, a TPF of 89% at an FPF of 24%. However, the test 
results lagged substantially behind the training results. The trained decision tree provided a 
TPF of 76% at an FPF of 36% using a leave-one-out test scheme. One possible cause of the 
discrepancy was that the statistics at each branch of the decision tree in the higher layers 
were poor. The number of cases reaching each branch was small because the number of 
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Figure 7. The dependence of classification accuracy on input data seU.,The 168 m s  ROE were 
randomly and equally divided into two groups together with the normal ROIS extracted from the 
same mammogram. One group (GI) was used as the training set and the other (GZ) as the 
test set and vice vem. The five input texture features were calculated from the SOLD mahices 
conswcted at eight bits. 

tree branches increased rapidly with the number of layers. The decision threshold at each 
branch could not be optimally determined unless the number of input training cases was 
extremely large so that the population of cases at each branch of the tree was sufficiently 
representative. 

With the linear discriminant classifier for a two-class problem, one single decision 
threshold was determined based on the probability distributions of linearly combined features 
of all available training cases. The statistical properties of the test cases were therefore more 
accurately predicted. The A, of the test set was generally within a few per cent of the A, 
of the training set. This consistency indicates that a linear discriminant classifier could be 
trained more reliably than a decision tree. One possible l i t a t i on  of the linear discriminant 
classifier, however, was that only linear combinations of the features were utilized. The 
performance of a linear discriminant classifier should be compared with that of a non- 
linear discriminant classifier or an df ic ia l  neural network to determine the effectiveness 
of non-linear feature combinations in future studies. 

Although there is a general trend that the normal tissue pattern on a mammogram 
diverges from the nipple, how strong this pattern appears depends somewhat on the breast 
types, i.e. Bbroglandular, fatty, or mixed. There is also local branching, as can be seen from 
a ductogram, and other superimposed structured background, which increases the complexity 
of the tissue pattern. The general direction of the tissue, if it can be seen at all in an ROI, 
depends on the location in the breast from which the ROI is extracted. Because our ROls 
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Figure 8. The ROC CUN- obtained from five texture features calculated at eight bits and a 
distance of 20 pixels. The A, values for the two training c w e s  were 0.831 and 0.850, and the 
A, values for the two test curves were 0.829 and 0.817, respectively. 

were selected based on the tissue of interest instead of the location in the breast or direction 
of the tissue, the directional information in all normal ROIS in the data set is statistically 
random as a whole. This is consistent with our observation that the discriminant power of 
the texture features without being averaged over the four directions is statistically similar 
to that of the average texture features. When this classifier is used to reduce FP detections, 
it will have to be applicable to any locations in the breast and breasts of all tissue types. 
We therefore believe that the directional information of the normal tissue would not be very 
effective in our classification task and did not pursue this further in this study. 

The results of our study indicate that the classification accuracy reached a broad 
maximum when the input features were obtained from SGLD matrices at about seven or eight 
bits. In our previous study (Chan et a1 1994) of the dependence of detection accuracy of 
microcalcifications on grey level resolution, we found that a ninebit resolution was required 
to provide optimal detection, indicating that, for the screedfilm system and digitizers used 
in our study, the three least significant bits contained mainly noise. For the classification 
of masses with texture features, an additional factor that affected the accuracy was the 
trade-off between grey level resolution and the statistical uncertainty of the SGLD matrices. 
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This factor might have further reduced the bit depth at which the classification accuracy of 
masses was maximized as observed. 

The texture features used in this study appear to be promising in distinguishing 
ROIs containing masses from those containing normal breast parenchyma. Although the 
classification accuracy at an A, of 0.823 may not be adequate to be used as a primary tool 
for detection of masses on mammograms, the classifier at its present stage may be used in 
combination with a computer-aided detection scheme, which can screen a mammogram for 
suspicious regions with an automated algorithm, to serve as one of the steps in reducing 
FP ROB. For this application, the operating point along the ROC curve may be chosen to 
be relatively lax, for example, at a TPF of 95% and an FPF of about 60%, so that most 
of the mass regions are kept while 40% of the normal Rots are excluded. The selection 
of an operating point along the ROC curve depends on the application and on cost benefit 
considerations. The best decision threshold should be determined based upon the specific 
task to which the classifier is applied. 

The results of this study establish the feasibility of using a linear discriminant classifier 
with texture features for classification of masses and normal breast tissue. Further studies 
are being conducted in an effort to improve its accuracy. Preprocessing methods are 
being evaluated for enhancement of the image before the texture features are extracted. 
Multiresolution analysis using wavelet transform is being investigated as a method that can 
potentially condense information at each resolution level and make use of any differences 
in the dependence of the texture features on pixel distance between regions containing 
masses and normal tissue, as observed in the present study. Additional texture features 
(Haralick 1986) and morphological features are also being analysed in order to increase 
the discriminant ability of the classifier. Linearization of the sensitometric response of the 
screedfilm system from optical density to relative exposure before extraction of the texture 
features will further reduce their variability due to the limited dynamic range of the film. 
However, it may be difficult to implement the sensitometric conversion in practice because 
it is difficult to measure the x-ray sensitometric curves routinely at present. 

The effectiveness of a classifier for FP reduction in a CAD algorithm is expected to depend 
on the specific type of FP generated by the detection process, which may be different for 
different automated detection schemes or human observers. Furthermore, the values of the 
weights in the discriminant function will depend on the values of the input texture features 
which may, in turn, depend on the properties of the image acquisition system used. To 
implement our proposed texture feature classifier in a specific application, the classifier 
should be trained based on the mass and FP populations obtained from representative case 
samples in that application, ,using the optimization procedures proposed in this study. 
Ideally, the number of training samples should be much larger than that used in this 
feasibility study in order to provide adequate training for the classifier. The performance of 
the trained classifier should also be tested for its generalization capability. 

5. Conclusion 

We studied the effectiveness of using texture features derived from the SGLD matrix for 
classification of masses and normal breast parenchyma on digital mammograms. With five 
input features calculated at a distance of 20 pixels and a grey level resolution of eight 
bits, a linear discriminant classifier provided an average A, of 0.823 for testing. The 
feature classifier may be incorporated into a CAD scheme, which automatically scans a 
digital mammogram for suspicious regions, as one of the steps to differentiate TP and Pp 
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detections. Alternatively, it may be used interactively in mammographic viewing stations to 
assist radiologists in distinguishing regions containing masses or normal tissue, which are 
manually localized. Although the accuracy of this method needs to be improved in order 
to be clinically practical, the results demonstrate the feasibility of using linear discriminant 
analysis in the texture feature space to differentiate masses and normal breast tissue on 
mammograms. 
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