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Abstract. The Monte Carlo calculation of dose for radiotherapy treatment planning purposes
introduces unavoidable statistical noise into the prediction of dose in a given volume element
(voxel). When the doses in these voxels are summed to produce dose volume histograms (DVHs),
this noise translates into a broadening of differential DVHs and correspondingly flatter DVHs.
A brute force approach would entail calculating dose for long periods of time—enough to ensure
that the DVHs had converged. In this paper we introduce an approach for deconvolving the statistical
noise from DVHs, thereby obtaining estimates for converged DVHs obtained about 100 times faster
than the brute force approach described above. There are two important implications of this work:
(a) decisions based upon DVHs may be made much more economically using the new approach and
(b) inverse treatment planning or optimization methods may employ Monte Carlo dose calculations
atall stages of the iterative procedure since the prohibitive cost of Monte Carlo calculations at the
intermediate calculation steps can be practically eliminated.

(Some figures in this article appear in colour in the electronic version; seewww.iop.org)

1. Introduction

With the advent of affordable high-speed computers and the development of faster Monte Carlo
based algorithms (Neuenschwander and Born 1992, Neuenschwanderet al 1995, Keall and
Hoban 1996a, b, Kawrakowet al 1996, Sempauet al 2000), the Monte Carlo (MC) method is
becoming an important tool for medical physicists performing photon and electron treatment
planning for radiotherapy cancer treatment (Bielajew 1994, 1995, Mohan 1997).

The information provided by a treatment planning system can be represented graphically
in a variety of different forms, for example isodose lines and dose volume histograms (DVHs).
Given a target volumeV within a patient’s body and certain irradiation conditions, the DVH,
sayp(x), is defined such thatp(x) dx equals the fraction ofV with a dose in the interval
[x, x+dx]. Thus, the DVH defines the probability density function (PDF) of finding a dosex

in V. The integral DVH

F(x) =
∫ x

0
dx ′p(x ′) (1)

is also an important representation, sinceF(x2) − F(x1) represents the fraction ofV that
receives a dose betweenx1 andx2.
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DVHs have been used as a test to compare the accuracy and performance of MC codes
(Hartmann-Siantaret al1997). To this end, the patient’s geometry, including the target volume,
is divided into voxels as provided by CT or MRI scans. Voxels are normally shaped as
rectangular boxes with a square base with characteristic lengths of the order of millimetres.
As the particle transport simulation is carried out, the dose in each voxel is scored in an
accumulator. When a sufficient number of particle histories has been processed, the calculation
stops and each voxel is assigned to a dose bin, to which it contributes with a count. The
histogram of counts in the different bins corresponds to the discretization of the underlying
continuous PDF,p(x). We note that the discretization is performed both in space (voxels) and
in dose (bins).

The remainder of the paper is organized as follows. In section 2 we give a general
discussion of the statistical noise in the calculated dose in a voxel. In section 2.1 we provide
a general proof that the variance of the dose is proportional to the dose and argue that
the distribution of dose should be distributed according to a Gaussian. We demonstrate in
section 2.2 that calculated DVHs and true (or converged) DVHs, those produced after an
infinite number of particle histories have been simulated, are related by a Fredholm equation
of the first kind, an integral equation that yields the calculated (finite number of particle
histories) DVH after integration over the true DVH and a ‘response function’, the Gaussian
derived in section 2.1. In section 2.3 we test our Gaussian response model and demonstrate its
usefulness and in section 2.4 we find practical lower limits of the number of histories for which
the model can be employed as well as a determination of the number of histories required to
ensure convergence of the calculated DVHs. In section 3 we develop a deconvolution method
that allows us to estimate the converged DVH from an approximate DVH obtained with order-
of-magnitude fewer particle histories. In section 4 we show how the new method performs on
a variety of test cases before the conclusions.

2. Monte Carlo generated statistical noise

2.1. Dose variance in a voxel

Let us suppose, as is usually the case, that MC simulations are carried out with the transport
of electrons and positrons turned on, either because they are the primary particles or because
they are produced when photons interact with matter. In any case, this implies that all energy
depositions are actually made by charged particles. For the sake of brevity, we will refer only to
electrons hereafter, since positron transport involves similar methods except for the possibility
of annihilation, which does not imply any direct energy deposition.

Various of the currently available MC codes rely on ‘mixed’ schemes to simulate electron
energy losses (Nelsonet al 1985, Baŕo et al 1995, Sempauet al 2000). The basic idea
is to separate inelastic interactions into two categories, depending on whether the energy
lost is above (hard) or below (soft) some threshold,Ecut. Hard events are simulated in a
detailed way, that is, they are processed one at a time. Soft events, on the contrary, are
simulated in a condensed way, which means that many soft interactions are accumulated in
a single fictitious event. Delta rays are generated only by hard events and therefore energy
losses larger thanEcut involve the generation of secondary particles but no deposition on
the spot. This motivates the definition of the restricted stopping power,Sr, or mean energy
lost per unit step length for energy losses belowEcut. For the majority of applications,
including radiotherapy, it is plausible to setEcut equal to the absorption energy,Eabs,
below which electrons are considered to be absorbed and their kinetic energy deposited
locally.
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MC calculations provide an exact solution to the Boltzmann transport equation except
for the fluctuations inherent in the random nature of the method. These fluctuations may be
made arbitrarily small by simulating a sufficiently large number of particle histories. Letx

be the dose deposited per primary particle in a given voxel when the number of simulated
particle histories is infinite, that is, when there are no statistical fluctuations, and let1V and
ρ be the voxel volume and average density respectively. After completion of a finite number
of histories,N , the average dosex defined as the quotient between the MC simulated energy
deposition per history,1E/N , and the voxel mass,ρ1V , is an unbiased estimator ofx.

A voxel will be said to have been ‘hit’ when an electron, either primary or secondary,
traverses it. Hereafter,n andε stand for the random variables representing the number of
hits produced in a given voxel and the energy deposited by a particle that hits this voxel,
respectively. As1E and consequentlyx are random variables, they have an associated mean
and variance. To investigate these quantities, considerx expressed in terms ofn andε, namely

x ≡ 1

N

1E

ρ1V
= 1

N

∑n
i=1 εi

ρ1V
(2)

whereεi is the energy deposited by theith hit.
For voxel sizes of the order of some millimetres, the probability of observing a multiple

hit on a single voxel is small compared with the probability of the voxel receiving a single
hit, P. Hence,n follows approximately a binomial distribution withN trials. Moreover, for
broad beams, such as those found in radiotherapy applications,P is small for the majority of
voxels andNP is rather large. These considerations lead to the conclusion that the binomial
distribution ofn can be approximated by a Gaussian with variance,σ 2(n), given by

σ 2(n) = 〈n〉. (3)

If n is distributed according to a binomial distribution, it is shown in the appendix that〈 n∑
i=1

εi

〉
= 〈n〉〈ε〉. (4)

That is to say, the average value of the energy deposited in a voxel is given by the product of
the average number of hits multiplied by the average energy deposition per hit on the voxel.

This allows equation (2) to be written as

〈x〉 = 〈n〉
N

〈ε〉
ρ1V

≡ x (5)

where we have redefinedx to make the notation a little less cumbersome. In the appendix it is
also proven that

σ 2

( n∑
i=1

εi

)
= 〈n〉σ 2(ε) + 〈ε〉2σ 2(n) (6)

indicating that the variance of the Monte Carlo estimated energy deposition in the voxel
originates from the two distributed quantities,n andε.

Substituting from equation (3) results in

σ 2

( n∑
i=1

εi

)
= 〈n〉(σ 2(ε) + 〈ε〉2) = 〈n〉〈ε2〉 (7)

which leads to an expression for the estimated variance of the dose in the voxel

σ 2(x) = 〈n〉〈ε2〉
N2ρ21V 2

= x

N1V

〈ε2〉
ρ〈ε〉 . (8)
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Figure 1. Restricted mass stopping power for water (full curve), bone (short dashed curve) and
air (long dashed curve).Ecut was set to 200 keV. Data have been obtained from the preparation
program associated with the DPM code (Sempauet al2000).

We note that only energy losses due to soft collisions are involved in the distribution ofε.
The energy straggling due to these soft collisions, which accounts for a dispersion inε when
electrons with identical initial conditions travel a given path length, can be neglected for lengths
equal to 1 mm or larger. This ‘continuous slowing down approximation’ (CSDA) has been
adopted successfully (Rogers and Bielajew 1990) for many medical physics applications by
the EGS4 Monte Carlo code (Nelsonet al1985), foranypath length. Mass restricted stopping
powers (Sr/ρ) for materials relevant to radiotherapy applications have a very small variation
with energy, except at low energies, and are fairly independent of the material as well. This is
seen in figure 1. It is plausible to approximateSr/ρ by a constant value for all voxels in the
estimate of the variance of the dose to a voxel.

Taking these approximations into account

ε = ρ
(
Sr

ρ

)
` (9)

where` stands for the path length traversed through a voxel. Consequently, equation (8) can
be rewritten as

σ 2(x) = x

N1V

(
Sr

ρ

) 〈`2〉
〈`〉 = x

(Sr/ρ)η

N1V 2/3
(10)

where the dimensionless parameter

η ≡ 1

1V 1/3

〈`2〉
〈`〉 (11)

can, in principle, change from voxel to voxel depending on the voxel shape and on the degree
of isotropy of the radiation field at the voxel location.

For all practical radiotherapy situations, however,η has a very restricted range of variation
and can be considered as approximately constant inside the target volume. To justify this
assertion it will be considered that, due to the voxel smallness, electrons travel along almost
straight lines and that particle flux is homogeneous inside a given voxel. Thus,〈`2〉, 〈`〉 and
thenη can be readily obtained by means of an MC numerical integration for any radiation
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field. Using this approach, we find for monodirectional beams and cubic voxels, thatη spans
the interval [0.86, 1.00] as the beam direction changes. As any electron radiation field can be
thought of as a continuous superposition of monodirectional beams,η is bounded by the same
interval for any field.

In practice, collimated radiation coming out of an accelerator head will enter the patient’s
geometry nearly parallel to a voxel face, sayz = 0 where thez-axis is directed along the
patient’s body. This includes the cases in which the direction is normal tox = 0 or y = 0
(which givesη = 1), or it goes along the diagonal (1, 1, 0) (η = 0.94). As electrons penetrate
deeper into the patient, the electron angular distribution becomes progressively more isotropic
as the kinetic energy decreases and the electrons scatter. For a completely isotropic field,
η = 0.90. It is interesting to note that, in the isotropic case, the mean value of` equals 4V/S
for anyregion of volumeV limited by a convex surface† of areaS. When the region is a cube
with unit side,〈`〉 = 4V/S = 2/3.

Hence,η is likely to have values close to 1 in the region where the radiation enters the
patient’s body and progressively decrease until nearly reaching the isotropic value 0.90 at the
end of the electron range. Taking into account that target volumes cover only a fraction of
the region where radiation is transported, it is clear that this range of variation will usually
be further limited. Moreover, the decrease inη may somewhat compensate for the increase
in Sr/ρ at low energies, keeping the product even less sensitive to variations across voxels.
All these considerations justify the plausibility of the assumption thatη may be treated as a
constant.

Taking this assumption into account, equation (10) can be recast as

σ 2(x) = x C
N

(12)

where the parameter

C ≡ (Sr/ρ)η

1V 2/3
(13)

is a constant for a given target. This equation demonstrates that the estimate of the variance
in dose in a voxel is approximately proportional to the dose itself, inversely proportional to
the number of histories and inversely proportional to the voxel surface. From the central limit
theorem (Lindeberg 1922, Feller 1967) it can be concluded that, when the number of simulated
histories is large enough,x has a Gaussian distribution. For the sake of notational simplicity,
the quantityσ(x) will be denoted byσ(x) hereafter.

It is important to notice that when electron transport is turned off so that photon interactions
produce energy depositions on the spot, equation (9) losses its validity and the expression for
σ(x) is no longer applicable. This is due to the fact that, in this case,σ(ε) comprises the
fluctuations of̀ and the fluctuations of the energy deposited by photons along a given path.
The second contribution can be made negligible for photons as well by using interaction forcing
or some equivalent method and the validity of the former analysis can be restored. A study of
the influence of variance reduction techniques on the present model will not be pursued herein.
It suffices to say that equation (12) seems unlikely to hold in general when non-analogue
methods are applied unless all particles entering any voxel carry similar statistical weights,
which will then appear as a multiplicative factor in equation (12) modifying the value ofC.

† Every element of surface area must be able to be joined to any other surface element by an uninterrupted straight
line.
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Figure 2. MC simulated DVHs for 10 MeV electrons impinging normally on a water phantom
formed by 128× 128× 128 1 mm3 cubic voxels. The electron field on the water surface was
collimated to a 5× 5 cm2 square. The target volume was defined as a field-centred parallelepiped
of 4 × 4 × 2 cm3, with the shortest distance in the direction of the incident beam and located
between 2 and 4 cm under the water surface. The dose bin width was roughly 1% of the full scale.
Different cases correspond to different numbers of historiesN .

2.2. DVH convolution

The statistical ‘noise’ produced by the fluctuation ofx about its mean can have a profound
effect on the DVH. An ideal calculation of the dose in each voxel would reproduce its true
value, sayy, and the corresponding true DVH, which will be represented byp. The MC
simulation represents such an ideal only when the number of histories,N , tends to infinity.
For finiteN , the calculated dosex fluctuates about its meany with the varianceσ 2 given by
equation (12). Consequently, the MC calculated DVH,p̃, may differ fromp.

Let us define a response functiong(x; y) such thatg(x; y) dx gives the probability that
a voxel with a true dosey yields a measure in the interval [x, x + dx] for a given value of
N . The MC calculated fraction of voxels with a dose in this same interval isp̃(x) dx. This
fraction includes contributions from voxels that have a true dosey not in the interval under
consideration, but that have been associated with it by virtue of the statistical fluctuations.
With this interpretation ofg, p̃ andp are related by

p̃(x) =
∫
D

dy p(y)g(x; y) (14)

with D representing the domain wherep(y) 6= 0. Consideringg andp̃ as known quantities,
the former is a Fredholm equation of the first kind (Arfken and Weber 1995) in the unknownp.
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Figure 3. DVHs obtained with DPM (full curve) and Penelope (dashed curve) for 105 histories.
Source, target and phantom are the same as in figure 2.

Alternatively,g(x; y) can be viewed as the MC calculatedp̃ obtained when the underlying
p corresponds to a delta function centred aty, that is, when the doses deposited in the different
voxels of the target volume have exactly the same expected valuey. According to equation (12),
this implies that all the voxels have nearly the same deposited dose PDF, a Gaussian centred
at y with a variance given by that equation. Therefore, from this point of view it is clear that
g(x; y) is also represented by this same Gaussian, namely

g(x; y) = 1

σ(y)
√

2π
exp

(
− (x − y)

2

2σ 2(y)

)
=
√

N

2πCy
exp

(
− N(x − y)

2

2yC

)
. (15)

AsN tends to infinity,σ tends to zero,g(x; y) collapses into a delta function,δ(x − y), and
p̃ converges top, which will be called the converged DVH hereafter. For values ofy much
larger thanC/N , g(x; y) can be approximated by a function of(x−y) only and the Fredholm
equation (14) becomes a familiar convolution integral. Although in practical situations this
limit may not be attained, the term convolution will be retained to designate the process that
transformsp into p̃.

The effect of this convolution is to makẽp wider thanp. Since the variance decreases
with increasingN , this widening is expected to be significant at relatively small values ofN .
In figure 2 a comparison of DVHs obtained for the same conditions but with different number
of histories presented. Even for the same value ofN , different mechanisms of simulating soft
energy losses can produce different values ofC and thus yield apparently different DVHs. For
instance, in homogeneous media, electron steps can be taken independently of voxel boundaries
and soft energy losses produced along a given step length can be deposited at some point chosen
randomly on the electron path. This means that all the energy lost in a step is deposited in only
one voxel, irrespective of the number of them that have been traversed. (This is the current
scheme adopted in the Penelope code.) Alternatively, the particle can be stopped every time it
crosses a voxel boundary, in which case some energy deposition is obtained every time a voxel
is hit. (This is the current scheme adopted in the DPM code.) Given a sufficient number of
histories, both methods produce the correct mean value, but their variances are different. The
Penelope scheme produces a larger variance. Our analysis strictly applies only to the DPM
approach. However, when DVH convergence is employed to compare the reliability of MC
codes the subtleties must be properly taken into account.
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Figure 3 presents an example of this danger. Two different MC codes, DPM and Penelope,
are used to calculate a DVH in water. These codes have shown very good agreement in
calculations of depth and lateral dose in water phantoms. Surprisingly enough, the two DVHs
present significant differences for the same number of histories. The reason is that, in this
particular case, Penelope’s energy-deposition model is less efficient than DPM’s.

It is important to realize that the effect of the convolution is essentially different from the
customary MC uncertainty that appears in the form of error bars, e.g. in the calculation of
depth dose profiles. In this case, uncertainties produce only fluctuations of the MC calculated
data points in the direction of the ordinate axis and therefore they can be denoted withvertical
error bars. In contrast, the convolution of DVHs is a process in which the uncertainty of the
dose in a voxel affects the abscissa value that will be assigned to it. Hence, this uncertainty is
horizontal.

The convolution of DVHs is a phenomenon somewhat analogous to the response of a
scintillation detector, where the spectrum of the deposited energy is convolved with a response
function, analogous to the action of the integral in equation (14), to produce the spectrum
actually measured. In this case, the fluctuations in the light yield and the response of the
photoelectric tube are responsible for the nearly Gaussian shape of the response function, which
also has a width roughly proportional to the deposited energy. In contrast to the scintillator
case, however, the width of the response function can be changed in the process of calculating
a DVH by changing the number of histories simulated or the voxel dimensions.

2.3. Testing the model

In this section we present some results intended to clarify the meaning of the model introduced
above and verify its accuracy. All of them have been obtained with a new MC code called DPM
(Sempauet al2000), an acronym for Dosimetry Planning Method. DPM is based on the physics
contained in EGS4 plus some newer developments intended to improve electron multiple
scattering and thus speed up the simulations considerably. It is optimized for radiotherapy
applications, and in the tests performed so far it has been found to agree to with about 3% with
other well-known standard codes. However, the inaccuracies that DPM or any other MC code
may have are irrelevant here, for what is being investigated refers to the basic nature of the
MC method.

In order to verify the accuracy of the approximations leading to equation (12), the variance
of the deposited dose,x, has been calculated using MC methods for each voxel. As the abscissa,
or dose axis,x, of the DVH is divided into a number of equispaced bins, a mean variance for
each bin can be obtained by averaging this quantity over all voxels falling within the bin.
Fitting a straight line to the data points representingσ 2 versusx yields a value of the constant
C and the the validity of the linear fit can be judged.

The variance of each individual voxel,σ 2, can be estimated using

σ 2 ' 1

N

[∑N
i=1 x

2
i

N
−
(∑N

i=1 xi

N

)2]
(16)

wherexi represents the dose scored in the voxel during the simulation of theith history and
N is the number of histories simulated. In principle, to carry out the sums in the numerators,
three different counters, sayxtmp, xscore andx2score must be defined.xtmp accumulates
the individual energy depositions produced by all the particles of only one shower. Once the
shower is completed, its value is added toxscore, which contains

∑
xi , and its square is

added tox2score, which represents
∑
x2
i . Thenxtmp is set to zero before a new shower

starts. Although this simple procedure represents an insignificant computational cost for the
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Figure 4. The variance in dose for the same arrangement as in figure 2 andN = 108. Dots
represent ‘experimental’ MC data and the full line is a linear fit of the typeσ 2 = xC/N . The
value of the fitting parameterC and the correlation coefficient are 181.6 MeV g−1 andr = 0.9998
respectively.

majority of MC calculations, this is not true for radiotherapy applications since the number of
counters is three for each voxel, and the total number may amount to many millions. Accessing
the computer memory after each history can slow down the execution of the code rendering
the calculation infeasible.

To overcome this difficulty, we employed the following method†. We define a counter, say
ihist, that identifies the current shower history. The novelty of the method consists in using
an integer label, saylast, for each voxel in addition to the three counters described above.
last identifies the last shower that contributed to the voxel by storing itsihist value. Every
time there is a depositionε in a given voxel, the currentihist is compared withlast. If they
match, the deposition is added to the temporary counterxtmp. If they differ, xtmp is added
to xscore, its square is added tox2score, the temporary counterxtmp is set toε andlast
is updated to the currentihist. This counting mechanism ensures that every time a shower
contributes to a voxel, the contribution from any former shower has been stored correctly. The
simulation time is not severely affected, because the new method involves only an additional
if every time a deposition is made, plus an additional array to store the integer labellast for
each voxel.

A calculation of variance is presented as a function of the dosex in figure 4. Our model,
equation (12), predicts a linear variation, in good agreement with what it is observed.

Since the Gaussian shape ofg is related to the validity of equation (12), which states that
all voxels with the same dose have the same variance, a test of the model consists in calculating
the dispersion of this variance. Suppose thatK of the voxels in the target volume happen to
be in a certain dose bin. Considering their variancesσ 2

k with k = 1 . . . K as a sample of some
population, the quantity

s2({σ 2
k=1...K}) =

K

K − 1

[∑
σ 4
k

K
−
(∑

σ 2
k

K

)2]
(17)

is a measure of the dispersion in the variance.

† We are indebted to Professor Francesc Salvat of the University of Barcelona for supplying us with the idea for this
method.



140 J Sempau and A F Bielajew

105

106

107

108

0 40 80 120 160

dose  (keV/g)

0

2

4

6

8

10

s(
σ 2

) /
 σ

 2
  

(%
)

Figure 5. Relative dispersion of the variance for different number of histories,N .
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Figure 6. The axial depth-dose profile for the same problem conditions as in figure 2. The two
vertical dashed lines indicate the location of the target volume and the horizontal dashed line sets
the limit that divides the target area in two regions, one with a one-to-one correspondence between
depth and dose (below the horizontal dashed line) and the other with a two-to-one correspondence
(above the horizontal dashed line).

Figure 5 presents the dispersion of the variance as a function of the dose. The small
relative dispersion seen validates, at least for this particular arrangement, the premise upon
which equation (15) was derived.

Note that asN increases the relative dispersion stops decreasing indicating that the DVH
has converged and hence, the fluctuations become too small to move voxels to neighbouring
dose bins. The bump observed at high doses in the cases 107 and 108 for a dose around
85 keV g−1 can also be understood as a consequence of the model. Figure 6 shows the
depth dose curve for the problem under consideration. For doses below a certain limit, the
correspondence between dose and depth is such that to each dose there corresponds only one
depth. Above this limit, however, every dose corresponds to two possible depths, one deeper
than the point where the maximum occurs and the other at a shallower depth. These two regions
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Figure 7. Comparison between a raw MC DVH (full curve) and the convolved DVH (dots) obtained
using equation (14) for the problem considered in figure 2 and two different values ofN .

have different radiation fields, the deeper one being more isotropic and with lower average
kinetic energies. Hence, the variance of the set of these two types of voxels will show larger
dispersions than the variance corresponding to doses where only one kind of dose-to-depth
correspondence participates. However, even in the dual case, the relative dispersion remains
quite low—about 3%. This same duality could also be the cause of the slight departure of the
MC calculated variance from the linear fit, due to the fact that at depths shallower than the
position of the depth-dose maximum, the lesser isotropy implies less variance, as reflected in
the high dose region of figure 4.

A numerical calculation of the convolution integral in equation (14) taking a known
converged DVH (p) as input data can be easily done. The comparison of the convolved
DVH obtained in this way with a raw MC-calculated DVH provides a more direct test of the
model. Figure 7 shows the result of this test. The agreement is excellent.

2.4. Convergence criteria

We may use the previous analysis to define robust DVH convergence criteria. A naive way to
decide when the DVH has converged is to simulate an increasingly larger number of histories,
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N1 < N2 < . . . up to a point where the variation ofp in every bin becomes smaller than a
predetermined valueδ. For an analytic functionf (z) with z ≡ 1/N , this procedure can be
justified by considering its truncated Taylor expansion aroundz∞ = 0

f (zi) ' f (0) + f ′(0)zi i = 1, 2, . . .. (18)

Consider nowzi+1 = zi −1zi . If

|f (zi+1)− f (zi)| = |f ′(0)|1zi < δ (19)

then

|f (zi+1)− f (0)| = |f ′(0)|zi+1 < δ
zi+1

1zi
= δ Ni

Ni+1−Ni (20)

which gives an upper limit for the error|f (zi+1) − f (0)|. For instance, if the number of
histories is doubled,Ni+1 = 2Ni with Ni large, and a variation in the quantity of interestf

of less than 1% is obtained, then the error associated withf (Ni+1) can also be expected to be
less than 1%.

A different approach consists in assessing the convergence by analysing the dose variance
associated with the voxels. Convergence is reached when a large proportion of voxels have a
σ much smaller than the bin width,1x, even for the largest dose participating in the DVH,
xmax. This method is somewhat superior to the naive scheme introduced above, because it
does not rely on the small magnitude of the (unknown) higher-order derivatives of the DVH
asN tends to infinity and also because the number of histories needed to reach convergence
can be readily predicted even before starting up the simulation. Indeed, since the variation of
the variance is known to behave as 1/N for largeN , from equation (12) we have

σ 2
max= xmax

C

N
� 1x2⇒ N � xmax

C

1x2
≡ Nlim . (21)

In order to ensure convergence, a number of historiesNconvlarger thanNlim should be simulated,
sayNconv = 10× Nlim . For the example shown in figure 2, this recipe givesNconv = 108. It
is advisable to validate this prediction with a direct evaluation of the varianceσ 2

max while the
simulation is in progress.

A convenient measure of the degree of convergence is given by the dimensionless
parameter

α ≡ N1x

C
. (22)

SubstitutingN with Nconv results in

αconv≡ Nconv
1x

C
= 10

Cxmax

1x2

1x

C
= 10

xmax

1x
= 10I (23)

whereI stands for the number of bins in which the DVH abscissa has been divided. For the
example of figure 2,αconv= 103.

A lower limit to the applicability of the analysis presented in this work can be established
in terms ofα. When the number of historiesN is small, the distribution of the dose in a given
voxel is not Gaussian, and our model fails to reproduce the observed results. This failure is first
noted in the low-dose region of the DVH, where our Gaussian model would predict standard
deviations larger than the dose itself, giving rise to unphysical negative doses. A practical limit
can be then found by imposing

σ(1x) < 1x (24)

which means that the standard deviation in the first bin has to be smaller than its width. This
condition yields

1x
C

N
< 1x2 ⇒ 1<

N1x

C
= α (25)
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which shows thatα = 1 is the minimum value of this parameter that needs to be considered.
In the example shown in figure 2 this limit impliesN > 105.

3. DVH deconvolution

3.1. Discretized Fredholm equation

Let us consider a discretized version of the Fredholm equation (14). Suppose that the DVH
abscissa is divided intoI dose bins. LetP = {pi}i=1...I be the discretized DVH array defined
by

pi ≡ 1

1x

∫
xi±1x/2

dx p(x) (26)

where the subscriptxi±1x/2 is shorthand for the interval [xi−1x/2, xi+1x/2]. Analogously,
the convolved DVH can be discretized to give the arrayP̃ , whose components are defined by

p̃i = 1

1x

∫
xi±1x/2

dx p̃(x) = 1

1x

∫
D

dy p(y)
∫
xi±1x/2

dx g(x; y). (27)

Substitutingp by its discretized representation,P , which by definition is constant over each
intervalxi ±1x/2, yields

p̃i '
∑
j

gijpj or P̃ = G · P. (28)

TheI × I matrixG has components

gij = 1

1x

∫
xi±1x/2

dx
∫
yj±1x/2

dy g(x; y) (29)

where

xi ≡ 1x(i − 0.5) and yj ≡ 1x(j − 0.5) (30)

are the centres of the corresponding bins.
Applying the change of variablesx = x ′1x, y = y ′1y transforms equation (29) into the

more compact form

gij (α) =
√
α

∫
[i−1,i]

dx ′
∫

[j−1,j ]
dy ′ exp

(
− α (x

′ − y ′)2
2y ′

)
(31)

whereα stands for the convergence parameter defined before. Forα→∞ the termgij tends
to δij , the Kronecker delta symbol, andP ′ = P . Notice that, apart from the number of bins
I , α is the only quantity needed to defineG and, consequently, the degree of convergence
reached.

It is worth noticing that the discretized̃p, equation (27), is correctly normalized to 1
provided that the largest dose present in the calculated DVHs,xmax, is large enough to ensure
that the integral ofg(x; y) over the interval [0, xmax] is also normalized for all values ofy in
the domainD wherep(y) 6= 0. Indeed, in this case

1x
∑
i

p̃i =
∫ xmax

0
dx p̃ =

∫
D

dy p(y)
∫ xmax

0
dx g(x; y) =

∫
D

dy p(y) = 1. (32)

Assuming thatD is fully contained in [0, xmax], the former condition is fulfilled for values
of α not too small, for then the corresponding Gaussian does not significantly extend its tail
beyondD.
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Figure 8. Condition number c(Q) as a function ofa for selectedα values.
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Figure 9. Value ofa∗ as a function ofα (full curve) and the corresponding minimum condition
number c∗(Q) (dashed curve) when the DVH contains 100 dose bins.

3.2. Inversion of the Fredholm equation

In principle, the converged DVH can be obtained from a MC simulation withanyfinite value
of N by inverting the Fredholm equation (28), which in turn involves the inversion of the
matrixG. Unfortunately, the solutionP obtained in this way is extremely sensitive to small
variations inP̃ except when convergence has been almost reached. Hence, the numerical
process is unstable for values ofα smaller thanαconv, given by equation (23).

In order to characterize this ill-posed problem it is convenient to introduce the ‘condition
number’ of a linear operatorA, c(A), defined as

c(A) = ‖A‖ ‖A−1‖ (33)

where‖A‖ stands for the spectral norm ofA (Lewis 1991), which measures how muchA
stretches or shrinks the length of a unitary vectorv̂. It can be seen that if c(A)� 1 then large
variations inv̂ can produce very small variations in its image, and therefore the inversion ofA

is an ill-posed problem. Actually, whenA is singular c(A) ≡ +∞.
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Figure 10. Comparison between the converged (full curve), deconvolved (dots) and rawN = 106

MC calculation (dashed curve) results for the water phantom problem described in figure 2. DVHs
correspond to figure labelled (a) and integral DVHs (F ) to (b). The MC measured value ofC used
in the deconvolution process was 181.3 MeV g−1.

The analysis of ill-conditioned matrices can be carried out with the aid of the Singular
Value Decomposition theorem, or SVD (Presset al 1992). SVD guarantees that any square
matrixG has a decomposition of the formG = TWS, whereT andS are square and unitary
andW is square and diagonal. The elements in the diagonal ofW are called singular values,
or SVs. SVs can always be chosen to be positive or zero. If there is a null SV,G is singular.
It can be shown that, sinceT andS preserve the Euclidean norm, the condition number c(G)

is the ratio between the largest and the smallest SVs.
For small and moderate values ofα, the condition number of the matrixG with elements

defined by equation (29) is very large. Indeed, the convolution process, except when the
variance is small, or equivalently, whenα is large, smears out the spikes present in the original
data and therefore, if consecutive components ofv̂ oscillate around zero, cancellations produce
an image with norm close to 0, which gives rise to a large value of‖G−1‖. As the norm ofG
is normally close to 1, c(G) is also very large (see equation (33)), that is,G is ill-conditioned.
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Figure 11. CT slice with a rectangular cut of the target volume to show its location. Densities in
the target range from 0.9 up to 1.6 g cm−3. The incoming 5× 5 cm2 normal electron field has an
energy of 10 MeV and is bounded to the region indicated by the arrows.

The instability of the solution found by inverting equation (28) shows up in the form of very
large oscillations in the deconvolved DVH, which completely mask the true solution. The fact
that this unwanted noise has an oscillatory behaviour suggests a different approach, namely,
an approximationp to the converged DVH can be found as the outcome of a minimization
problem. The quantity to minimize is

φ ≡
∫

dx

[
(p̃ −Gp)2 + a1x4

(
d2p

dx2

)2]
(34)

wherea is a dimensionless parameter. Fora = 0 the solution isp = G−1p̃ and the original
ill-conditioned inversion problem is recovered. For values ofa > 0, the participation of the
second derivative ofp in φ penalizes highly oscillating solutions, the penalty being somewhat
modulated by the value chosen fora.

The discretization of equation (34) yields

φ = (P̃ −GP)t (P̃ −GP) + a1x4P tDtDP = 1
2P

tQP +RtP + P̃ t P̃ (35)

whereD is the discrete second derivative operator

D = 1

1x2



1 −2 1 0 0 . . .

1 −2 1 0 0 . . .

0 1 −2 1 0 0 . . .

. . .

. . . 0 0 1 −2 1 0
. . . 0 0 1 −2 1
. . . 0 0 1 −2 1


(36)

which is singular, and

R = −2GtP̃ and Q = 2(GtG + a1x4DtD). (37)

Note thatQ is symmetrical.
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Figure 12. Comparison between the converged (full curve), deconvolved (dots) and raw MC
calculation withN = 106 (dashed curve) for the CT geometry shown in figure 11. DVHs correspond
to figure labelled (a) and integral DVHs (F ) to (b). The MC measuredC was 176.3 MeV g−1.

Setting the derivative of equation (35) to zero yields the exact solution

P = −Q−1R. (38)

The combination ofD andG produces a quadratic formQwhich, for suitable values ofa, is no
longer ill-conditioned and the inversion process becomes stable. A drawback of this approach
is that the resultingP is not guaranteed to be a valid PDF function, that is, the conditions

pi > 0 and 1x
∑

pi = 1 (39)

may not be fulfilled. A direct application of equation (38) shows that negative values and
unnormalized DVHs do appear, although the violation is, generally speaking, small. On the
other hand, it would be desirable to include in the calculation the constraints represented by
equation (39), for this information could probably improve the final solution by forbidding
small oscillations ofP around zero.

The minimization of the quadraticφ with the constraints in equation (39) renders the
problem to a form that is usually referred to as quadratic programming (Presset al 1992,
NAG: Numerical Algorithms Group, Inc.), or QP. Solving QP problems is a routine task that
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Figure 13. CT slice with two target volumes superimposed. Densities in target 1 span the interval
[0.85,1.94] g cm−3 and in target 2 [0.20, 1.40] g cm−3. Electrons impinged normally on a 5×5 cm2

square limited by the arrows. Their initial energy was 18 MeV.

can be performed with the aid of iterative algorithms contained in standard numerical libraries
(NAG 1996).

3.3. Optimizing the deconvolution

To completely defineQ, the value ofa must be chosen. Intuitively, a gooda should produce
a low condition number forQ, indicating the stability of the solution. To test this hypothesis,
the variation of c(Q), which is a function ofα anda, has been studied and is represented in
figure 8. It is found that for each value ofα there is a value ofa, nameda∗, for which the
condition number is at its minimum, c∗(Q). The functiona∗(α) is represented in figure 9.

Generally speaking, the deconvolution process turns out to work well witha = a∗,
provided that c∗(Q) does not exceed a few hundred. According to figure 9, this implies that
the deconvolution process can be initiated when a value ofα of some tens (for DVHs with
100 bins) has been reached. Notice that the relation betweenα anda∗ does not depend on
the target volume or on the irradiation conditions. A table relatingα with a∗ can therefore be
calculated beforehand and stored for later use.

4. Results

In the examples that follow, the DVH and its associated integral DVH,F , are studied. To this
end, a discretized approximation toF given by

F(x) =
∫ x

0
dx ′p(x ′) ' 1x

(x/1x)+1∑
i=1

pi (40)

is used. The maximum error made when comparing a certain approximatedF with the
converged value will be taken as a figure of merit of the agreement between the two curves.
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Figure 14. Converged (full curve), deconvolved (dots) and rawN = 106 MC (dashed curve)
results for target 2 in the CT geometry shown in figure 13. DVHs correspond to the figure labelled
(a) and integral DVHs (F ) to (b).

In figure 10 the deconvolution of theN = 106 MC calculation for the water phantom case
described in figure 2 is presented. The maximum error inF was reduced from 0.056 for the
raw MC simulation withN = 106, to 0.015 for the deconvolved result.

In the following examples the deconvolution analysis is applied to real CT data. These
data correspond to a 12.83 cm3 cube, which was extracted from the CT scans of a patient,
divided into 1 mm3 voxels. In each case, a cut of the full 3D geometry is presented to show
the location of the target volume and the incident beam. For the sake of simplicity, only three
materials were defined—air, water and bone. Thus, lung and soft tissue are considered as
water with variable density. Hounsfield numbers determined which material and density were
assigned to each voxel.

The first example corresponds to figure 11. The target volume covers a region
encompassing soft tissue and bone, thus presenting an additional difficulty of mixing materials
with significantly different average atomic numbers. The deconvolution process yielded the
results shown in figure 12. The maximum error inF was reduced from 0.026 for theN = 106
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Figure 15. Converged (full curve), deconvolved (dots) and rawN = 105 MC (dashed curve)
results for target 2 in the CT geometry shown in figure 13. DVHs correspond to the figure labelled
(a) and integral DVHs (F ) to (b).

MC to 0.013 for the deconvolved DVH. The enhanced flux of backscattered electrons in the
tissue located upstream the bone structure contained in the target gives rise to an increase in
the dose in that region. As a result, the DVH shows a shoulder next to the main peak, which
the deconvolved DVH cannot detect from the inputN = 106 simulation data. Despite this
fact, the integral DVH is considerably improved by the deconvolution algorithm. It is worth
noticing that the MC measured value ofC is now slightly lower than in the pure water phantom
case presented before. This is probably due to the smaller mass restricted stopping power of
the bone (see figure 1 and equation (13)).

The next example is presented in figure 13. The target volume 2 now covers bone, tissue
and lung, thus including large variations in both atomic number and density. The result of the
application of the deconvolution is shown in figure 14. The maximum error inF was reduced
from 0.030 to 0.015. Notice that since soft tissue is downstream of the bone, the DVH does
not clearly show a two-peaked structure as before. It is interesting to repeat the deconvolution
of the latter case but now taking as input data theN = 105 raw MC data. The result is shown
in figure 15. The maximum error inF was reduced from 0.142 for the MC to 0.062.
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Figure 16. Converged (full curve), deconvolved (dots) and rawN = 106 MC (dashed curve)
results for target 1 in the CT geometry shown in figure 13. DVHs correspond to the figure labelled
(a) and integral DVHs (F ) to (b).

As the deconvolution process penalizes high values of the second derivative, it is clear that
close sharp peaks will not be reproduced accurately. Integral DVHs, however, vary in a much
smoother way and, furthermore, cannot exhibit peaks sinceF is a monotonically increasing
function by definition, thus being much less sensitive to this problem. The following cases
exemplify this observation.

Let us consider target volume 1 in figure 13. As illustrated in figure 16, the deconvolved
DVH fails to ‘detect’ the presence of the two small peaks accompanying the central one.
Despite this fact, the associated integral DVH still closely matches the convergedF , with a
reduction in the maximum error from 0.103 for the raw MC to 0.051.

It is worth emphasizing that this loss of accuracy is due to the numerical difficulties
involved in carrying out the deconvolution algorithm (minimization of equation (34)) and
not to the failure of the convolution model, which is still in very good agreement with the
observations. Figure 17 proves this assertion. It represents the application of equation (14) in
the forward direction, that is, taking the converged DVH as the input data and comparing the
resultingp̃ for N = 106 with the MC result for the same number of histories.
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Figure 17. Comparison between the MC measured DVH forN = 106 (full curve) and the
convolved DVH (dots) for target 1 in the CT shown in figure 13.

Figure 18. CT slice with two target volumes. Densities in target 1 cover the range from 0.89 to
2.12 g cm−3 and in target 2 from 0.93 to 1.39 g cm−3. Electrons enter the geometry normally
through the 5× 5 cm2 square limited by the arrows. Their initial energy is 15± 3 MeV, Gaussian
distributed.

The CT data presented in figure 18 show another example of this loss of accuracy.
Figure 19 presents the comparison of DVHs for target volume 1. The deconvolution algorithm
is now capable of identifying the presence of two peaks, but reproduces their heights only
approximately. Despite this fact, the improvement in the integral DVH is still noticeable, the
maximum error being reduced from 0.027 for the raw MC to 0.019.

The same problem is also present to a lesser extend in target 2. Figure 20 presents the
corresponding results. In this case, the maximum error inF was reduced from 0.073 for the
raw MC, to 0.026 for the deconvolved DVH.
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Figure 19. Converged (full curve), deconvolved (dots) and rawN = 106 MC calculation (dashed
curve) results for target volume 1 defined in figure 18. DVHs correspond to the figure labelled (a)
and integral DVHs (F ) to (b).

5. Conclusions

The process of selecting of a radiotherapy treatment involves the examination of many
configurations before one is finally chosen. Although MC calculations, the most accurate
method known so far to obtain dose distributions, are starting to become fast enough for
employment in routine work, the excessive time that high accuracy calculations demand will
still limit the study of possible treatments to a few when an extensive search for an optimal
solution is undertaken.

The deconvolution procedure presented in this work remedies this problem. Approximate
DVHs and their corresponding integrals can be obtained in a time orders of magnitude smaller
than that of an equivalent MC simulation and hence a larger number of cases can be investigated.
This information can be employed to decide which treatments deserve a more extensive and
accurate MC analysis.



154 J Sempau and A F Bielajew

60 70 80 90 100 110

dose  ( keV/g)

0

0.02

0.04

0.06

PD
F

  (
g /

 ke
V

)

(a)

70 80 90 100

dose  ( keV/g)

0.0

0.2

0.4

0.6

0.8

1.0

F

(b)

Figure 20. Converged (full curve), deconvolved (dots) and rawN = 106 MC calculation (dashed
curve) results for target volume 2 defined in figure 18. DVHs are shown in (a) and integral DVHs
in (b).

The proposed method can be summarized in the following steps:

(a) The parametera∗ as a function ofα (figures 8 and 9) is calculated and stored in tabular
form for a mesh dense enough to allow numerical interpolation. This process can take
some time—of the order of 1 min on a 300 MHz UltraSparcII Sun workstation employing
100 dose bins. However, for a given number of DVH bins it has to be done only once and
for all.

(b) The numberN of histories to simulate, or equivalentlyα (equation (22)), are set such that
the minimum condition number c∗(Q),Q being the matrix defined by equation (37), does
not exceed some 300 units. For histograms with 100 bins, a convenient value isα = 10
(see figure 9), so that

N = 10× C

1x
. (41)

Notice that the constantC (see equation (13)), roughly equal to some 180 MeV g−1, may
vary slightly from case to case. It is then advisable to obtain an ‘experimental’ value of
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C for the problem in hand by fitting the varianceσ 2(x) to a straight line, as expressed in
equation (12).

(c) The deconvolution is carried out by minimizing the quadratic in equation (35) subject to
the constraints in equation (39). The outcome,P , is a medium-accuracy approximation
to the converged DVH. BothP and its associated integral DVH, can be used to assess
the relevance of the treatment under consideration, allowing a fast selection of the best
candidates.

In the examples presented above, the convergedαconvwas estimated to be 103 if DVHs were
to be obtained for 100 bins. On the other hand, the deconvolution is completed in a negligible
amount of time when compared with a full MC simulation. Hence, if the deconvolved result is
accepted as a good approximation to the converged DVH, the proposed procedure has reduced
the calculation time by a factor of the order of 100.

Alternatively, the former procedure can be used repeatedly for an increasingly larger
number of histories until thedeconvolvedDVH or, preferably, its integralF , has converged
in the sense expressed by equation (20). This approach ensures a high-accuracy result at the
expense of reducing the improvement in computational efficiency.

Acknowledgments

We would like to thank Drs Fraass, Lam, McShan and Ten Haken, from the Radiation
Oncology department of the University of Michigan, for fruitful discussions. One of
the authors (JS) gratefully acknowledges the financial support of the Direcció General de
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Appendix: the variance of a binomial sum

Let n be a binomial random variate (RV) corresponding toN trials with a probabilityP of
having a ‘hit’ in each trial. Its mean and variance can be written as

〈n〉 = NP σ 2(n) = NP(1− P) = 〈n〉(1− P) (42)

respectively. Letq be another RV with mean and variance

〈q〉 =
∫

dq p(q)q and σ 2(q) = 〈q2〉 − 〈q〉2 =
∫

dq p(q)q2 − 〈q〉2 (43)

respectively wherep(q) represents the probability density function (PDF) ofq.
Now letQ be the RV defined by

Q =
n∑
i=1

qi (44)

whereqi is the value obtained from theith sampling ofq. This is equivalent to definingQ as
the outcome of the following process:
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(a) An RV is sampled that yields 1 with probabilityP and 0 with probability 1− P.
(b) If it yields 1, q is sampled and the result added to a counter,Q. If it is 0, no action is

taken.
(c) If the process has been iterated fewer thanN times, start again.
(d) DeliverQ.

Q can also be expressed as

Q =
N∑
i=1

q ′i (45)

whereq ′ is a new RV with PDFp′ given by

p′(q ′) = Pp(q ′) + (1− P)δ(q ′) (46)

with δ being the Dirac delta PDF. Note thatq ′ is nil with probability 1− P and is equivalent
to q otherwise. The form of equation (45) is preferable because it contains a fixed summation
limit, which simplifies the analysis of its mean and variance.

From equation (46) it follows that

〈q ′〉 =
∫

dq ′ p′(q ′)q ′ = P〈q〉 (47)

and

〈q ′2〉 =
∫

dq ′ p′(q ′)q
′2 = P〈q2〉 (48)

where use has been made of equation (43).
Hence, according to equation (45) the mean value ofQ can be expressed as

〈Q〉 = N〈q ′〉 = NP〈q〉 = 〈n〉〈q〉 (49)

and its variance as

σ 2(Q) = Nσ 2(q ′) = NP[〈q2〉 − P〈q〉2] = 〈n〉[σ 2(q) + (1− P)〈q〉2]

= 〈n〉σ 2(q) + σ 2(n)〈q〉2 (50)

where equation (42) has been employed.
Equations (49) and (50) can be interpreted as follows. The expected value of the sum (Q)

of a ‘binomial’ number (n) of samples of a RV (q) is the same as ifnwere set equal to its mean
value. However, the variance ofQ has two terms. The first one corresponds to the variance
that we would get ifq were sampled afixednumber of times equal to〈n〉. The second term is
then the contribution to the variance due to the fact thatn is not fixed but fluctuates around its
expected value. This last term equals the variance ofn times the expected value ofq squared.
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