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Abstract. This article presents a method for measuring three-dimensional mechanical
displacement and strain fields using stimulated echo MRI. Additional gradient pulses encode
internal displacements in response to an externally applied deformation. By limiting the mechanical
transition to the stimulated echo mixing time, a more accurate static displacement measurement
is obtained. A three-dimensional elasticity reconstruction within a region of interest having a
uniform shear modulus along its boundary is performed by numerically solving discretized elasticity
equilibrium equations. Data acquisition, strain measurements and reconstruction were performed
using a silicone gel phantom containing an inclusion of known elastic properties. A comparison
between two-dimensional and three-dimensional reconstructions from simulated and experimental
displacement data shows higher accuracy from the three-dimensional reconstruction. The long-
term objective of this work is to provide a method for remotely palpating and elastically quantitating
manually inaccessible tissues.

1. Introduction

1.1. Motivation

Palpation has long been used by physicians as a means to detect disease. The underlying basis
for this detection is the presence of ‘hard’ tissue. Evidence suggests that Young’s (or shear)
elastic moduli may differ by orders of magnitude within soft tissues in various physiological
states (Sarvazyan et al 1995, Skovoroda et al 1995b). In addition, manual self-examination
is the first diagnostic line of defence against both breast (Hill et al 1988, Newcomb et al
1991) and testicular cancers. With breast cancer, manual detection of a new mass often merits
excisional biopsy, even if uncorroborated by other tests, as nodule hardness raises suspicion
of malignancy (Foster 1996). Palpation of superficial lymph nodes and abdominal organs is
also routinely performed. Although the touch of a skilled physician is a powerful diagnostic
tool, palpation sensitivity is relatively poor within deep, dense or heterogeneous tissue. Thus,
most manually detected lesions are either superficial, relatively large or both.
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1.2. Elasticity imaging

Currently, many scientists are working on extending the range and sensitivity of palpation by
using various methods to image tissue elasticity. The basic method for creating an elasticity
map involves two steps. First, the internal displacements within tissue under an applied
mechanical stress are measured. The (usually externally) applied deformation may be either
dynamic or static. Then, from these data, a reconstruction of regional variations in tissue
elasticity is performed, either directly or after calculating internal strains. Although both
internal displacements and strains are related to the elastic properties of tissue, they are also
strongly affected by geometry. Thus, some form of reconstruction is necessary to uniquely
determine the elasticity distribution.

To date, two major medical imaging modalities have been used to measure tissue
displacement: ultrasound and magnetic resonance imaging (MRI). The phase sensitivity of
these methods lends itself to tracking tissue motion. Most elasticity imaging has been carried
out using ultrasonically measured tissue displacements. These data have been obtained by
tracking specular reflections (Dickinson and Hill 1982, Tristam et al 1986, 1988), by Doppler
techniques (Lerner et al 1990, Parker et al 1990, Parker and Lerner 1992), by cross-correlation
of acoustic echoes (Ophir et al 1991, Garra et al 1997) and by speckle tracking (Adler et al
1989, O’Donnell et al 1994, Emelianov et al 1995). Other efforts employ MRI for measuring
tissue motion, as discussed below.

1.3. MRI measurement of tissue displacement

In the past, myocardial motion and strain have been measured using spatial magnetization
tagging (Axel and Dougherty 1989, Zerhouni et al 1988), and phase-based velocity encoding
(Pelc et al 1995). More recently, methods have been devised to measure tissue displacement
specifically for elasticity imaging. These measurements can be separated based upon the nature
of the applied deformation.

1.3.1. Dynamic deformation. With these methods, a periodic excitation is applied to the
tissue near the region of interest, and the entire system may be allowed to reach steady state.
One or several ‘snapshots’ of mechanical wave propagation within the object are produced
by controlling the relative phase between the mechanical excitation and the motion-encoding
gradients. The local displacement information in these images is then used as an input for
an elasticity reconstruction algorithm. Initial experiments used a shear excitation, and the
elasticity reconstruction was performed assuming the recorded image contained only shear
waves (Muthupillai et al 1995). If only shear waves are present in a purely elastic medium,
local elastic modulus variations are determined via the relation µ = ν2λ2ρ, where µ is
the local shear modulus, ν is the frequency of the applied deformation, λ is the measured
local strain-wave wavelength and ρ is the density of the medium. Although attractive in
its simplicity, this approach is compromised by frequency-dependent viscoelastic effects and
strain-wave wavelength, interference from reflections off of elastic inhomogeneities and the
possible presence of longitudinal mechanical waves in the medium. Despite these limitations,
this method has been applied in vivo (Dresner et al 1999, Lawrence et al 1999). Recently, a
more general elasticity reconstruction from a series of ‘instantaneous’ steady state mechanical
wave images has been developed (Sinkus et al 1999, 2000). This and another technique
(Van Houten et al 1999, Weaver et al 1999) rely on a more complete viscoelastic tissue model
than that presented in Muthupillai et al (1995).
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1.3.2. Static deformation. Another method of producing an internal strain field in an object is
to deform it and allow the material to relax to equilibrium before measuring the displacement
field. The displacement field has been accessed using spatial magnetization tagging, but this
method suffers from spatial resolution limited by the tagged grid size and typically measures
only two-dimensional (2D) motion (Fowlkes et al 1995). A quasistatic method using bipolar
gradient phase encoding of 2D motion is presented by Plewes et al (1995, 1996). Stimulated
echo MRI has also been used to measure 2D displacement fields (Reese et al 1996), from
which elasticity images have been reconstructed (Chenevert et al 1998). This method has
been extended to study myocardial motion (Aletras et al 1999b). With these techniques,
viscoelastic effects are generally ignored, making the reconstruction more straightforward.
Care must be taken, however, to justify the use of a static model, especially when repeated
deformations are needed to acquire a complete data set.

In general, MRI has several advantages over ultrasound with respect to elasticity imaging.
Although ultrasound accurately measures motion along the beam axis, lateral motion is
measured with a resolution given by the depth-dependent beam width. Out-of-plane motion is
generally not considered, given the problems with three-dimensional (3D) image registration
in ultrasound. These restrictions compromise the quality of displacement data available and
constrain the type of model used to produce an elasticity image. Ultrasound does, though,
offer the advantages of low-cost and real-time imaging. MRI, on the other hand, gives one
the ability to measure 3D displacements within an object, and does this at a higher overall
resolution than clinical ultrasound.

In this paper we present a method for encoding the full 3D displacement field within
an object undergoing an externally applied static (or quasistatic) deformation. Local strain
estimates are calculated from the measured displacements, and the strain tensor is used to
numerically solve differential elasticity equilibrium equations, ultimately producing a 3D
elasticity image.

2. Reconstructive elasticity imaging from static displacement fields

The goal of elasticity imaging is to produce a map of the tissue elastic modulus in a region
of interest using available measurements of displacement components. In this work, the
reconstruction approach taken is based upon a model of linear, elastic, isotropic media
(Skovoroda et al 1995a, 1999). The central equations and concepts are covered briefly here.
A more detailed discussion can be found in the references mentioned. Note that some tissues,
such as skeletal muscle, exhibit anisotropic elasticity (Fung 1993). For anisotropic media, a
more generalized reconstruction method is needed.

2.1. Linear elasticity and reconstruction

In linear elasticity, the components of the strain (εij ) and stress (σij ) tensors in a medium
undergoing small deformations are given by

εij = 1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
(1)

σij = pδij + 2µεij (2)

where ui is a component of the displacement vector U = (u1, u2, u3) in Cartesian coordinates
r = (x1, x2, x3), p is the product λ∇ ·U for compressible media or the static internal pressure
for incompressible media, δij is the Kronecker delta function, λ andµ are the Lamé coefficients
and µ = µ(r) is the shear elastic modulus.
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A medium undergoing static deformation obeys the equilibrium condition:
3∑
j=1

∂σij

∂xj
+ fi = 0 i = 1, 2, 3 (3)

where fi is the body force per unit volume acting in the xi direction. In addition, if a medium
is incompressible, volume conservation leads to the following relation:

∇ · U = ε11 + ε22 + ε33 = ∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
= 0. (4)

Although not necessary in the development that follows, soft tissue is approximately
incompressible (Sarvazyan et al 1995).

Using equations (1) and (2) in (3), the unknown p(r) can be eliminated to yield a set
of differential equations depending only on U , first- and higher-order spatial derivatives of
U , and the elasticity distribution, µ(r). This set of equations is then numerically solved to
estimate the unknown shear elasticity distribution.

2.2. Importance of three-dimensional reconstruction methods

Several approaches have been proposed to estimate tissue elasticity from the experimentally
measured spatial distribution of internal displacements within an object. The simplest method
is a one-dimensional (1D) estimation of normalized tissue elasticity, expressed as

κ1 = 1/ε (5)

where ε is longitudinal strain (Ophir et al 1991, Garra et al 1997). Indeed, a loaded object
generally exhibits low longitudinal strain in relatively hard regions and high longitudinal strain
in relatively soft regions.

A 2D elasticity reconstruction, based on a plane-strain assumption and all necessary in-
plane strain components, provides a more accurate representation of the object’s elasticity
(Skovoroda et al 1995a, 1999). The theory of reconstructing clearly bounded and spatially
distributed tissue inhomogeneities has been demonstrated by Skovoroda et al (1995a) as well.
However, inaccurate estimates may result by using either a 1D or 2D reconstruction of a 3D
object.

To demonstrate these inaccuracies, consider a spherical inclusion of radius R in a
uniaxially, uniformly loaded, infinite, homogeneous medium (Goudier 1933). For an
incompressible medium, the distribution of longitudinal strain along the x3 axis (orthogonal
to the applied deformation), is (Skovoroda et al 1994):

ε =




5β

3 + 2κ0
x3 � R

β

{
1 +

κ0 − 1

2(3 + 2κ0)

[
5

(
R

x3

)3

− 9

(
R

x3

)5]}
x3 > R.

(6)

Here β is the magnitude of the applied strain and κ0 = µ/µ0 is the ratio of the inclusion to
background shear moduli. Normalizing (6) by β, which corresponds to the axial strain in the
tissue far from the inclusion, and substituting into (5) we obtain

κ1 =




3 + 2κ0

5
x3 � R

(3 + 2κ0)

{
3 + 2κ0 +

κ0 − 1

2

[
5

(
R

x3

)3

− 9

(
R

x3

)5]}−1

x3 > R.
(7)

Note that κ1/κ0 = (3 + 2κ0)/5κ0 within the inclusion. That is, for a very hard inclusion
(κ0 large), the relative modulus obtained from a 1D reconstruction will only be 40% of



3D static displacement NMR elasticity imaging 1637

(a) κ(x
1
,x

2
)

P
la

ne
 x

3/R
 ≈

 1
.0

5
(b) κ

2
(x

1
,x

2
)

x
1

x 2

(c) κ
3
(x

1
,x

2
)

10 20 30

−0.5

0

0.5

1

1.5
(d) Central profiles

x
2
 [mm]

(e) κ(x
1
,x

2
)

P
la

ne
 x

3/R
 ≈

 0
.9

5

(f) κ
2
(x

1
,x

2
) (g) κ

3
(x

1
,x

2
)

10 20 30

−0.5

0

0.5

1

1.5
(h) Central profiles

x
2
 [mm]

Figure 1. Simulated elasticity distributions, κ(x1, x2), and corresponding 2D, κ2(x1, x2) and 3D,
κ3(x1, x2), elasticity reconstructions from the x3/R ≈ 1.05, (a)–(d), and x3/R ≈ 0.95, (e)–(h),
planes of a phantom with a single hard, spherical inclusion of radius R. Also presented are the
central vertical profiles of each distribution, where (——) is κ , (· · · · · ·) is κ2, and (- - - -) is κ3.
All are presented on a log scale where black corresponds to a relative shear modulus of 0.5 and
white to 4.5. The background has a relative shear modulus of 1, and the inclusion, 4.

its actual value. On the other hand, for a soft inclusion (κ0 small), the relative modulus
estimate will approach 3

5 , no matter how much softer the inclusion is than the background.
Obviously, the inaccuracy of a 1D elasticity estimation may not be acceptable for many
applications.

Now consider a 2D reconstruction. Figures 1(a) and (e) show the exact relative elasticity
distribution, κ(x1, x2), for two infinitesimal planes in our pedagogic phantom with κ0 = 4.
Figure 1(a) presents κ for x3/R ≈ 1.05, that is, outside of the inclusion, while figure 1(e) is
the x3/R ≈ 0.95 plane. The corresponding relative 2D reconstructions, κ2(x1, x2), are shown
in figures 1(b) and (f ). The reconstructions were performed using the algorithm presented by
Skovoroda et al (1999). For comparison with experimental results (see section 5), an analytic
model was used to generate displacement data which were sampled with the x2 resolution of the
experimental displacement encoded data discussed in section 4.2. The strains used as input for
the reconstructions were calculated as described in section 4.3, and the reconstructions were
performed over a region of interest identical to the one discussed in that same section. The
positions of the two reconstructed planes were selected to approximately correspond to the
experimental planes considered in section 5. As evidenced here, neglecting out-of-plane strain
components in the reconstruction produces geometrical distortions in the elasticity image.
Specifically, the spherical inclusion is reconstructed as a prolate spheroid. The inaccuracy
of a plane-strain based reconstruction is small near the central plane, and increases with the
distance between the imaging plane and the centre of the inclusion. Far from the inclusion, a
2D reconstruction would again be accurate.
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It is clear that a 1D or 2D reconstruction may lead to significant inaccuracies in tissue
elasticity estimations, especially when complicated in vivo geometries influence displacement
and strain measurements. This points to the need for an accurate 3D elasticity reconstruction.
A general unknown shear elasticity distribution, µ(x1, x2, x3), must satisfy the equation
(Skovoroda et al 1995a, 1999):

∂2(µε12)

∂x2
1

− ∂2(µε12)

∂x2
2

+
∂2[µ(ε22 − ε11)]

∂x1∂x2
+
∂2(µε23)

∂x1∂x3
− ∂2(µε13)

∂x2∂x3
= 0. (8)

Thus, in order to compute all the necessary components of the strain tensor, εij , in (8), all of the
displacement components (u1, u2, u3) must be measured as a function of spatial coordinates
(x1, x2, x3). This requirement exists in both the differential-based 3D reconstruction (8), as
well as in the more stable integral based 3D approach (Skovoroda et al 1999).

The 3D elasticity reconstructions from the two planes previously discussed are shown in
figures 1(c) and (g). The reconstruction was performed as discussed in section 4.3. Although
not perfect due to the relatively large x3 step size, the 3D reconstructions clearly exhibit
fewer geometric distortions than the 2D estimates. This is particularly well illustrated by
the central vertical profiles through the analytic, 2D, and 3D shear distributions presented
in figures 1(d) and (h). In the x3/R ≈ 1.05 plane, the 2D reconstruction estimates that an
inclusion is present, when indeed it is not, while the 3D reconstruction shows little evidence
of the presence of an inclusion. The estimate of the extent of the inclusion in the x3/R ≈ 0.95
plane is also improved over the 2D estimate. As with the 2D reconstructions, the strain data
and reconstruction parameters used for the 3D reconstruction were identical to those of the
experimental parameters described in sections 4.2, 4.3 and 5.

3. Static displacement measurement via stimulated echo MRI

Static displacement measurements for elasticity imaging avoid several confounding factors that
may be present if dynamic displacement measurements are used. Since shear wave propagation
speed in soft tissue is approximately 1–20 m s−1, shear waves launched into a medium by an
applied deformation may require tens of milliseconds to traverse an object approximately
100 mm in size. Reflected waves may take much longer to dampen. To appropriately measure
an object’s internal static displacements, the object must be in mechanical equilibrium—that
is, it must satisfy (3)—during both the pre- and post-deformation measurements. A stimulated
echo MRI sequence using displacement encoding gradient pulses is employed to achieve
this (Reese et al 1996, Chenevert et al 1998). Figure 2 presents a schematic of this pulse
sequence. The mechanical transition from the pre- to post-deformational states occurs during
the stimulated echo mixing time, TM. Because the relevant magnetization is longitudinal
during TM, it is unaffected by the object’s motion during the mechanical transition period.
This allows a more accurate measurement of static internal displacement. Additionally, precise
synchronization of the motion and applied gradients is not necessary as long as the mechanical
deformation begins after the second radio-frequency pulse, and internal motion stops before the
third. A long delay in the echo time, TE, could also be used to let the object reach equilibrium,
but this would likely lead to prohibitive signal loss from T2 decay.

Local displacements are encoded in the magnetization’s phase via pulsed-field gradients.
The displacement sensitivity, in radians/distance, of the sequence is

Φd = γ
∫ τ

0
Gd(t) dt = γGdτ (9)

where γ is the gyromagnetic ratio of the proton, Gd(t) is the encoding gradient waveform and
τ is the duration of the encoding gradient. However, for accurate displacement measurements,
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Figure 2. Displacement encoding, stimulated echo pulse sequence waveforms. RF = radio
frequency,Gd = displacement encoding gradient, andGro = read-out (x1),Gpe = phase-encode
(x2) andGsl = slice (x3) directed gradient waveforms. TM is the mixing time, TE is the echo time
and τ is the duration of the displacement encoding gradient. Note that the displacement encoding
gradient may be applied to any of the directional waveforms.

phaseshifts unrelated to the applied deformation must be removed. This is done by acquiring
a phase reference data set using the same pulse sequence, but with the object maintained in
the post-deformational state for the entire experiment. Note that all spatial encoding takes
place with the object in the post-deformational state for both the displacement encoded and
reference acquisitions. Therefore no image registration or tracking algorithms are required to
use the reference data, Sr, to correct the displacement encoded data, Sd. The corrected data
set, Sc, is then:

Sc(r) = Sd(r)Sr(r)
∗

|Sr(r)| ≈ |Sd(r)| eiφ(r). (10)

Most sources of phase error, such as static field inhomogeneities, tend to be slowly varying
functions of position. Thus the phase reference data may be acquired at relatively low spatial
resolution to reduce scan time.

The unwrapped phase of (10) is related to the local displacement vector, U , via

φ(r) = Φd · r = Φd · U(r) (11)

where  r is the local displacement from pre- to post-deformational states. The displacement
sensitivity, Φd, may be made sensitive to motion in an arbitrary direction based upon
appropriate combination of displacement encoding gradients in the read-out, phase-encode and
slice directions. Hence, this pulse sequence readily extends to acquiring three-dimensional
displacement data.

4. Methods

4.1. Phantom

Elasticity imaging experiments were performed on a phantom with a spherical hard inclusion.
Semicosil 921 silicone gel (Wacker Silicones Corporation, Adrian, MI) was used to construct
a phantom qualitatively simulating the mechanical properties of soft tissue. The Semicosil 921
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consists of two components, A and B, wherein different ratios of these components are used
to vary the mechanical properties of the gel. A tissue-mimicking phantom was constructed
in several steps. First, background material was prepared by thoroughly mixing components
A and B in a 1:1 ratio, and then pouring the mixture into a 154 mm by 80 mm rectangular
mould. The mixture was degassed and cured for 24 h at room temperature to produce a 22 mm
thick layer. Then a 25 mm diameter hard sphere was prepared from a 1:2.5 mixture of A and
B and was placed on top of the layer in the middle of the mould. Finally, another batch of
background material (1:1 ratio) was poured into the mould resulting in a 64 mm by 80 mm by
154 mm phantom with a single, hard, spherical inclusion roughly in the centre. At the same
time, three samples of each batch were taken to independently assess the elasticity contrast
between the inclusion and surrounding materials. These measurements were performed using
the force-deformation system described in Erkamp et al (1998), and showed that the inclusion
was four times harder than the background, and that both background materials were elastically
equivalent.

4.2. Data acquisition

To provide repeatable deformation, the phantom was placed under moderate pre-load pressure
between two acrylic plates in a pneumatically driven device. Air-filled neoprene boots in a
push–push configuration provided the necessary force to the top plate to keep the phantom in
this pre-load state, and aided the vertical recoil of the phantom to the post-deformation state.
Pneumatic pressure was delivered via two solenoid valves whose timing was controlled by
an external transistor–transistor logic circuit triggered by the pulse sequence. Quick-release
valves aided in depressurizing the boots. Both the pre-load and recoil positions of the top
acrylic plate were set by adjustable stops; the bottom plate’s position was fixed. The applied
vertical deformation was approximately 2.4 mm, or about 6% strain, between the pre-transition
(greater deformation) and post-transition (less deformation) states.

During data acquisition, the displacement encoding gradient pulse duration, τ , was 1.5 ms,
and the amplitude,Gd, was 40 mT m−1 in the read-out (x1) and phase-encode (x2) directions,
and 60 mT m−1 in the slice (x3) direction. Here, the x3 direction was along the bore’s axis,
and the x1 and x2 directions were perpendicular to x3 in the horizontal and vertical directions
respectively. By (9), the displacement sensitivity,!d, was approximately 5.11 π mm−1 in the
x1 and x2 directions, and about 7.66 π mm−1 in the x3 direction. The displacement encoding
direction was cycled each pulse repetition between the x1, x2 and x3 directions. The pulse-
to-pulse repetition time was approximately 0.98 s, the mixing time (TM) was 270 ms, and the
echo time (TE) was 45 ms. Two averages were taken of a 256 × 256 × 32 matrix covering an
80 mm by 110 mm by 48 mm field of view. The phase reference data were collected using
a 256 × 32 × 32 matrix while keeping all other parameters the same. All experiments were
performed on a 2 T, 18 cm bore MRI system (Bruker, formerly GE NMR Instruments) using
a 150 mm transmit/receive birdcage coil.

4.3. Data processing

All time-domain data were transferred off-line for processing. For phase correction, the phase
reference data set was zero-filled to a 256 × 256 × 32 matrix. Then this and the displacement
encoded data were 3D Fourier transformed and corrected as in (10). The resulting phase maps
were then used to estimate the spatial derivatives to compute the strains, via (1), necessary
for the elasticity reconstruction. Phase unwrapping of the displacement data was not strictly
required since only phase derivatives were used in the strain calculations. The displacement
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derivative at the ith point in the j direction was computed from the angle of the complex
multiplication of the i + 1th point with the conjugate of the i − 1th point, then scaling by
1/2!jd, where !jd is the magnitude of the displacement sensitivity in the j direction. For
convenience, the strain data were decimated to the x2 step size in each x3 plane in order to
have equal resolution in both the x1 and x2 directions. The strain images were then median
filtered with a 5 × 5 window, resulting in a slight decrease in spatial resolution. These strains
were used as input for the elasticity reconstruction.

The 3D elasticity reconstruction was performed using the least-squares error minimization
algorithm discussed in Skovoroda et al (1999), with a second-order, one-sided finite derivative
approximation in the x3 direction. The reconstruction of µ(r) is a boundary value problem,
therefore a unique solution is obtained only with boundary conditions. So a square 35 mm by
35 mm region of interest, which contained the inclusion in several x3 planes, was identified
in the x1 and x2 directions. Along the boundaries of these regions, and in the two x3 planes
furthest from the centre of the inclusion (which did not contain the inclusion), the value of the
shear modulus was set to 1, resulting in a relative shear modulus reconstruction.

5. Results

Representative magnitude and corrected phase images of the Semicosil phantom for a 1.5 mm
thick plane centred about x3 = 0.75 mm, or x3/R ≈ 0.05, are shown in figure 3. Knowing that
!d ≈ 5.11 π mm−1 in the x1 and x2 directions, the number of 2π phase wraps in figure 3(c)
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Figure 3. Representative magnitude and phase images from the x3/R ≈ 0.05 plane of the 3D
displacement encoded data set from a phantom with a single, hard, spherical inclusion. S1, (a), is
the magnitude of the x1-displacement encoded data, and φi , (b)–(d), are the phase images of the
xi -displacement encoded data.
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Figure 4. Representative strain images from the x3/R ≈ 1.05, (a)–(d), and x3/R ≈ 0.95, (e)–(h),
planes from the 3D displacement encoded data of the phantom with a single, hard, spherical
inclusion. One normal strain, ε22, the in-plane shear strain, ε12 = ε21, one through-plane shear
strain, ε13 = ε31, and the trace of the strain tensor, ε11 +ε22 +ε33, are presented for each plane. The
lack of features in (d) and (h) indicate that the phantom is nearly incompressible. Linear scales for
each image are, from black to white: (a), (e): [−6%, 0%]; (b), (f ): [−2.5%, 2.5%]; (c), (d), (g),
(h): [−1.6%, 1.6%].

indicates a vertical deformation of approximately 2.3 mm, and those in figure 3(b) a horizontal
deformation of about 2.0 mm. Reduced phase slope in the region of the hard inclusion is
clearly visible in these figures as well. Due to the central location of this plane, there is little
feature in φ3 (part (d)).

Figure 4 shows representative strain maps from the planes centred around x3 = 15.75 mm
and x3 = 14.25 mm. Due to the loaded state of the phantom during imaging, the sphere became
prolate, therefore these planes correspond to the x3/R ≈ 1.05 and x3/R ≈ 0.95 locations
respectively. One normal strain, ε22 (parts (a) and (e)), the in-plane shear strain, ε12 = ε21

(parts (b) and (f )), and one through-plane shear strain, ε13 = ε31 (parts (c) and (g)), are shown
for each plane. These components are all required to perform the elasticity reconstruction in
(8). Note that the presence of through-plane strains in (8) necessitates measurement of the full
3D displacement field. In addition, although elasticity-specific details are seen in the strain
maps, features related to geometry and the applied deformation are also clearly present. This
points to the need for a proper elasticity reconstruction to disentangle these factors. Also
shown is the trace of the strain tensor, ε11 + ε22 + ε33, for each plane (parts (d) and (h)). The
relative lack of features in the trace of the strain tensor indicates that the phantom is nearly
incompressible (like soft tissue).

Magnitude images of the 35 mm by 35 mm regions of interest in the same two planes, along
with two different shear modulus reconstructions of these planes, are presented in figure 5.
In the magnitude images, the hard inclusion is clearly present in the x3/R ≈ 0.95 plane,
while it is essentially absent in the x3/R ≈ 1.05 plane. Note that the magnitude images only
convey geometric information. Figures 5(b) and (f ) show 2D elasticity reconstructions of these
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Figure 5. x1-displacement encoded magnitude images, S1(x1, x2), and corresponding 2D,
κ2(x1, x2), and 3D, κ3(x1, x2) elasticity reconstructions from the x3/R ≈ 1.05, (a)–(d), and
x3/R ≈ 0.95, (e)–(h), planes of a phantom with a single hard, spherical inclusion. Also presented
are the central vertical profiles of each distribution, where (· · · · · ·) is κ2, and (- - - -) is κ3. All
are presented on a log scale where black corresponds to a relative shear modulus of 0.5 and white
to 4.5. The background has a relative shear modulus of 1, and the inclusion, 4, from independent
measurements. For geometric reference purposes, parts (d) and (h) include plots of S−1

1 (filtered
and normalized) as (——).

two planes, while figures 5(c) and (g) show the corresponding 3D elasticity reconstructions.
As in figure 1, one sees an overestimate of the 3D spatial extent of the inclusion in the
2D reconstructions. This overestimate is corrected with the 3D reconstruction. For ease
of comparison, vertical profiles through the centre of the inclusion from the 2D and 3D
reconstructions are presented, along with plots of S−1

1 for geometric reference, in figures 5(d)
and (h).

6. Discussion

The stimulated echo sequence presented here phase encodes internal displacements using
gradient pulses. An externally applied deformation, synchronized with the pulse sequence,
produces an internal displacement field. This deformation is actively driven with a pneumatic
device, and the mechanical transition from pre- to post-deformation occurs during the sequence
mixing time, TM, while the relevant magnetization is longitudinal. Because longitudinal
magnetization decays only as T1, the mechanical transition period may be extended to allow
potentially long-lived or ill-defined motions within the object to dampen. With a sufficiently
long TM, the encoded displacement will be approximately static. However, signal loss due to
T1 relaxation sets a practical limit on the length of TM. To determine an appropriate mixing
time, a series of 2D displacement encoded images was taken, varying TM from 50–750 ms.
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From the phase maps of these data, one could see that the top acrylic plate of the deformation
device completed its excursion in under 200 ms, and the internal motion in the phantom
became negligible by 250 ms. To ensure that (3) was reasonably satisfied, a 270 ms mixing
time was chosen for subsequent data collection. Although the deformation device used here
provides adequate transition speed, an even faster device would allow a shorter TM, yielding
more signal. While absent in the phantom used here, water diffusion in the presence of
displacement encoding gradients will be another source of signal loss in in vivo experiments.
This loss can be mitigated by reducing the displacement sensitivity, !d, or by shortening TM.

The quality of the shear modulus reconstruction ultimately depends on the local phase,
as in (11), induced by the encoding gradients and the local displacement. More specifically,
the quality depends on the spatial derivatives of the encoded phase. A study of the effects
of displacement sensitivity, applied deformation, relative hardness and diffusion loss on the
signal-to-noise ratio (SNR) of the elasticity reconstruction has been presented in Steele et al
(1999). This study demonstrates that increased intra-voxel phase wrap will increase the
reconstruction SNR, up to a π intra-voxel phase distribution. Note that the reconstruction
SNR increases despite a reduction in the nuclear magnetic resonance (NMR) signal from the
object. Assuming a linear phase distribution of θ radians across a voxel, the signal modulation
from that voxel will be |sinc(θ/2)| = | sin(θ/2)(θ/2)−1|. However, the phase gradients (that
is, the displacement derivatives) will be maximized without aliasing as the intra-voxel phase
wrap approaches π , and this is the signal that is important in the reconstruction. A π phase
wrap may be achieved through many combinations of applied deformation and displacement
sensitivity. However, increasing !d will increase signal loss due to diffusion, as discussed
above. Hence, a smaller displacement sensitivity and increased deformation would appear to
be optimal. Again, there is a trade-off: as deformation increases, the model of linear elasticity
discussed in section 2.1 will become less and less valid. Elasticity reconstructions from finite
displacement fields have been demonstrated in Skovoroda et al (1999), but these are obviously
more computationally intensive than the linear reconstructions used here. In relation to the data
presented here, the number of 2π phase bands across the phantom in figure 3 clearly indicate
that these data were acquired with a suboptimal displacement sensitivity/applied deformation
combination. Because neither the encoding nor the deformation used here were extreme, the
elasticity reconstruction’s SNR should be improved merely by optimizing the intra-voxel phase
wrap.

Relative hardness, object geometry and deformation geometry also affect the displacement
phase gradients. In general, the phase gradients increase near soft/hard interfaces and are higher
in relatively soft regions of tissue. Excessive phase wrap (i.e. strain) can lead to regions of
significant signal loss in a manner analogous to flow dephasing in conventional MRI. The
resulting reconstructions would suffer from this signal loss. Hence, the applied deformation
and displacement sensitivity should be optimized for the regions of highest strain in an object.
Increased intra-voxel phase wrap in regions of lower strain may be obtained by integrating the
signal from several voxels; in essence, applying an adaptive voxel size based upon local phase
gradients. This increase in signal would come at the expense of spatial resolution. Additionally,
signal loss due to intra-voxel phase wrap in the displacement encoded magnitude images may
be useful for identifying regions of high strain in tissue.

Another factor affecting the displacement signal is the reproducibility of the applied
deformation. For multistep acquisitions, such as those presented here, good deformation
reproducibility is essential. Variations in the applied deformation will lead to phase instability,
motion-like artefacts, and errors that will propagate through the elasticity reconstruction.
Adequate reproducibility has been achieved with the current deformation system. However,
irreproducible or asynchronous motions within the imaged object may be problematic.
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These would include physiological cardiac and respiratory motion present in in vivo
experiments. In some ways, the problems associated with undesired motion would be similar
to those encountered in diffusion MRI. Because the applied deformation is external, though,
the displacement encoding can be tailored to it, reducing the effect of undesired motion on the
displacement data. Further complications arise because phase derivatives of the displacement
data, approximated by finite differences, are required for reconstruction. In addition to
choosing an appropriate deformation/encoding combination, methods should be devised to
reduce the effects of undesired motion on the displacement derivatives.

Clearly several advantages justify performing a 3D elasticity reconstruction rather than a
2D reconstruction. As illustrated in figures 1 and 5, and as discussed in sections 2.2 and 5, a
3D reconstruction provides a more accurate representation of the elasticity distribution than
a 2D reconstruction in the simple phantom used here. Complicated in vivo geometries will
only increase the likelihood that neglecting out-of-plane strain components will result in an
inaccurate elasticity estimate. This increased accuracy comes, though, at the expense of
increased computational complexity and increased scan time. For instance, a single acquisition
of the 3D data discussed in section 4.2 takes over 6 h! This far exceeds any clinically feasible
scan times. The total experiment time may be lessened through the use of echo-planar imaging
(Mansfield 1977) or fast spin-echoes (Hennig et al 1986) for spatial encoding (Chenevert et al
1999). A fast scan implementation has already been used to study cardiac motion (Aletras et al
1999a). The number of planes of data acquired may also be significantly reduced while still
allowing a 3D reconstruction, shortening the scan time further. It should be mentioned that a
classic 3D stimulated echo sequence was deliberately chosen in part due to SNR considerations,
since a fast scan implementation of the method would generally have a lower SNR than one
classically phase encoded. Being an inverse problem, the 3D reconstruction is sensitive to the
SNR, and we wanted the initial test of the reconstruction to be done with the highest SNR data
possible using this technique. Also, note that the reconstruction in (8) does not rely on the
assumption of incompressibility, although making this assumption provides another means of
regularizing the inverse problem.

Additionally, a reconstruction of static displacement data offers several advantages over
a reconstruction of dynamic displacement data. A static reconstruction allows one to ignore
viscoelastic effects as well as the longitudinal or shear nature of the applied deformation. Static
methods also provide high SNR displacement and strain estimates. Dynamic methods, on the
other hand, provide a potentially very simple reconstruction (Muthupillai et al 1995). However,
this reconstruction may be compromised by interference from elastic inhomogeneities,
attenuation of shear waves, mixing of longitudinal and shear waves, and resolution limits
imposed by noise when determining the shear-wave wavelength. Reconstruction models that
include viscoelastic effects allow a more accurate interpretation of dynamic data (Sinkus et al
1999, 2000, Van Houten et al 1999), but these are necessarily more complicated than static
models (Skovoroda et al 1995a, 1999).

Choosing a contour of constant shear modulus for appropriate boundary conditions for (8),
though, can in practice be a challenge. In the applications discussed here, a priori knowledge
of phantom geometry was employed in the reconstructions. This may be possible in vivo as
well, albeit more complicated. For instance, in breast elasticity imaging, such a contour may
be defined in the subcutaneous fat surrounding the parenchyma using the boundary detection
procedure described in Skovoroda et al (1995a). The elasticity reconstruction would then be
relative to the shear modulus of the fat boundary, assuming that it is constant. Alternatively, a
high signal cuff of known elastic modulus could be used to surround the breast. This would
provide an absolute image of shear modulus variations if the boundary contour were chosen
inside the cuff.
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The 3D shear elasticity reconstructions presented above contain artefacts both inside
and outside of the inclusion due to the finite SNR in the measured displacement strain
components, and due to the step size used in the finite approximation to the derivatives in the
reconstruction. In contrast to the 2D elasticity reconstruction, where the elasticity distribution is
reconstructed independently in each plane, the 3D reconstruction uses the elasticity distribution
in neighbouring planes. Therefore, in addition to in-plane error propagation problems
discussed elsewhere (Skovoroda et al 1995a), error propagation in the through-plane direction
may occur due to inaccurate elasticity reconstructions in the preceding planes. This is
particularly true if the 3D elasticity reconstruction is performed, as in this paper, by solving an
initial value problem in the through-plane direction. Even though the more stable integral based
approach (Skovoroda et al 1999) was employed to solve for µ(r) in each plane, the results
of the 3D elasticity reconstructions in subsequent planes exhibit significant error propagation
in the x3 direction. Given a particular spatial discretization of the displacement data, this
error propagation can be reduced by several approaches. These include more appropriate data
filtering and reducing the reconstruction’s sensitivity to noise, but these considerations are
beyond the scope of this paper.

7. Conclusions

The ultimate goal of quantitative elasticity imaging is to provide physicians with a method
of remotely palpating soft tissue to detect disease. The three-dimensional elasticity imaging
technique demonstrated here is a step toward extending the range and sensitivity of palpation,
a powerful diagnostic tool. One possible application of this technique would be measuring
the elasticity of breast tissue normally inaccessible to manual palpation. A large elastic
modulus difference between normal and pathological breast tissue has been measured in situ.
A previous study indicates that soft tissues in different physiological states display shear
modulus variations of one to two orders of magnitude (Sarvazyan et al 1995). If these elastic
changes pre-date calcification formation, elasticity imaging may increase sensitivity to and
characterization of malignant breast masses, complementing existing diagnostic tools. The
relatively high cost of MRI may hinder using this approach as a general screening technique.
However, additional work to define the role of this modality as a primary or complementary
diagnostic tool in diseases of soft tissues seems worthwhile indeed.
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