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Abstract. A synthesis of Hartree-Fock and spin density functional theories yields a fully 
correlated many-electron energy minimisation method which avoids orbital self-interaction 
without requiring the use of localised orbitals. The new method is designed primarily for use 
with extended systems and may facilitate calculation of the band structure of semiconductors 
and insulators. 

The rather successful local spin density functional (LSDF) theory of the non-uniform 
electron gas (Kohn and Sham 1965, Von Barth and Hedin 1972, Gunnarsson and 
Lundqvist 1976) has an unphysical feature; it permits a localised electron to interact with 
itself (see Perdew and Zunger 1981 and references therein). Non-local theories (e.g. 
Gunnarsson et a1 1979) partially remove the difficulty, but the most computationally 
tractable remedy to date has been to subtract the self-interaction of localised orbitals 
directly, after LDF or LSDF calculations have been performed (Perdew and Zunger 1981). 
This remedy has the drawback that it requires use of ‘the most localised’ orbitals, which 
can be an inconvenient, and even an ill-defined, prescription. 

The method which we propose here does not have this drawback, yet it removes 
self-interaction identically. The essential idea stems from the observation that 
Hartree-Fock (HF) theory avoids orbital self-interaction completely, because such 
effects cancel identically between the direct and exchange terms. H F  contains no cor- 
relation between unlike spins, however, and it incorrectly estimates the manner in which 
like spins avoid each other. One could imagine formally replacing the Coulomb potential 
eylr - r ’ /  by some effective spin-dependent potential ~ ( r s  : r’s’) throughout the HF 
energy expression; this will maintain the cancellation of self-interaction terms. U can be 
softer than the Coulomb potential at short range, to simulate repulsive correlation, but 
it must reduce to e2/lr - r’1 at long range to maintain charge neutrality. In the following 
paragraphs we derive a theory of this type. One could also imagine similarly softening 
the Coulomb interaction in the Hartree-Fock-Schrodinger equation for each spin orbital 
p ( r ,  s); we have not, however, found a convincing derivation of this latter type of theory 
so far. 
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Let the true electronic Hamiltonian contain external potential u(r) and external 
magnetic field B(r) = b ( r ) / p ~  (where p~ is the Bohr magneton), plus the Coulomb pair 
potential e2//r - r ’ / .  We consider a set of spin orbitals {q;(r ,  s)} which are the lowest N 
eigenfunctions of a fictitious one-electron Hamiltonian 

3k1 = 2 d3rGt(r, s) [ ( g T 2  + ul(r))  &,, + bl(r) . uss,] $(r, s’). (1) 
ssf i 

In what follows, ul(r) and bl(r) are treated as variational parameters (see Rose and 
Shore 1976 for a discussion of this strategy in the context of LSDF theory). We construct 
the trial spin density 

N 

p(r, s, 3 ’ )  = 2 q x r ,  s> vi., s’). (2) 
i = l  

The inhomogeneous energy formula of Gunnarsson and Lundqvist (1976), gener- 
alised to include spin, can then be used to provide the following bound for the energy E 
of the true ground state (assumed non-degenerate): 

Here 

is the (normal-ordered) pair distribution in the groundstate /A) of a Hamiltonian con- 
taining a reduced Coulomb pair interaction Ae2/lr - r ’ /  plus a local spin-dependent 
potential ws,.(r, A) = ul(r,  A ) & t  + bl (r ,  A). uss, sufficient to maintain the given trial spin 
density p(r , s , s ’ )  at each A. (For discussion of the uniqueness of /A) and the non- 
uniqueness of wss, see Von Barth and Hedin 1972). The Hohenberg-Kohn kinetic energy 
functional To[p(r, s, s’)] is the ground-state KE of a non-interacting electron gas with 
sufficient local potentials to produce the given trial density a(r, s, s’). Since we con- 
structed p from the lowest eigenstates {ql} of the trial local one-body Hamiltonian (l), 
we can immediately write 

The usual LSDF theory can be derived (see Gunnarsson et a1 1979) by starting with 
the Hartree expression for n 2 ~  in equation (3), then using an additive exchange-corre- 
lation correction based on uniform-gas data. By contrast, we use a Hartree-Fock 
expression for n2*, corrected by a multiplicative factor to allow for correlation: 

n2*(r, s:  r ’ ,  s’) = ng:(r, s: r’ ,  s‘)C,(r, s: r’, 3 ’ )  

N 

= 2 cpl*(r,s)q~(r’,SI)CQ)I(r’,S1)97l(r,;S) - qt(+,s’)%(r,S)I 
l , ]  = 1 

x C*(r, s: r‘,  3 ’ ) .  
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Our chief approximation consists of replacing the ratio CA by its value in a suitably 
chosen uniform gas with ‘spin-up’ and ‘spin-down’ densities p’ : 

(7a) CA(r, s: r’, s’) = nz!’( /rl - r21, s, s’: p’, p-)/nZA HF,uni ‘ ( lr l -  rzl, s, s’: p+, p-). 

We construct p’ from the two eigenvalues p’(r) ,  p-(r)  of the 2 x 2 trial spin density 
matrix p(r, s, s’) defined in equation (2): 

p’ = B(p+(r) + p+(.’)) (7b) 

and similarly for p- .  Such an average-density ansatz has proved useful elsewhere (see 
e.g. Gunnarsson et a1 1979 and Rose and Dobson 1981). 

With the approximation (7a), (7b), equation (3) will no longer give a rigorous 
ground-state energy bound, but in the spirit of density functional theory we should still 
obtain a useful energy expression: 

N 

E < s,s’ 2 i =  2 1 1 qF(r, s) [ ( g V 2  + U(.) 

where 

The right-hand side of equation (8) is exactly of Hartree-Fock form, except that the 
Coulomb pair potential has been replaced by the effective spin-dependent potential U 

of equation (9). U differs from e2/ir - r’ I at short range where the Hartree-Fock and true 
pair distributions differ significantly. The self-interaction (i = j )  terms in equation (8) 
are manifestly self-cancelling. This arises because the direct and exchange terms in nFF 
were kept together when applying the correlating factor CL in equation (6). This feature 
is lost if, for example, the exchange is screened, or if the correlation correction is applied 
additively. We note also that, for full bands, a Wannier transformation from localised 
to Bloch states preserves the right-hand side of equation (8), for the same reasons as in 
HF theory. Thus our approach does not depend on the use of localised orbitals. 

The simplest way to apply the energy formula (8) is to choose the trial potentials 
ul(r),  bl(r)  in equation (1) to be the self-consistent effective potentials from a prior LSDF 
calculation, so that the {vi} are the LSDF spin orbitals. Equation (8) then gives an 
improved ground-state energy estimate. Alternatively u1(r) and bl(r) can be varied 
independently, giving an even lower approximate energy bound. As in LDF theory, we 
are only justified in using the formalism derived here for total electronic ground-state 
energies, but experience with the LDF approach strongly suggests that we interpret the 
eigenvalues of the optimised trial one-electron Hamiltonian (1) as band energies, In 
a similar spirit we might also seek a set of eigenfunctions {@i} and energies { E i }  of 
canonical Hartree-Fock equations using our modified potential u(r, s: r’ , s’) of equation 
(9) in place of the bare Coulomb potential ez/lr - r ’ / .  The {@i} will not, however, belong 
to a common local one-body Hamiltonian, so it is not obvious that equation ( 5 ) ,  and 
hence equation (8), will hold. 
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We should mention that the ansatz (6), (7) does not satisfy the exchange-correlation 
hole normalisation criterion of Gunnarsson et a1 (1979) and Gunnarsson and Lundqvist 
(1976). We have shown, however, that as the number Nof electrons approaches infinity, 
the spurious extra density An(r, s) obtained by integrating equation (6) is everywhere 
of O(e/V) + O(n(r, s) /N) .  Hence a total spurious charge of O(e) is harmlessly spread 
over the entire volume V ,  with negligible effect on the Coulomb energy per electron. 
Thus the method should work well for crystals. For small systems one might contemplate 
an explicit hole-normalisation factor in equation ( 6 ) ,  but it is not clear that this will lead 
to a consistent theory. 

Our work is somewhat complementary to that of Stoll et a1 (1980), who discussed 
self-interaction but used unmodified HF theory for like spins in small systems. We should 
also mention two papers which do not discuss self-interaction, but which do introduce 
a correlating factor via arguments of the Jastrow type. Colle and Salvetti (1975) fit their 
correlating factor to atomic rather than electron gas data, while Berrondo and Goscinski 
(1981) discuss the uniform gas but do not appear to account for kinetic correlation 
energy. 

In summary, we have given an energy scheme (equations (8), (9) and (7)) which: 

(i) includes both potential and kinetic correlation energy (via a Feynman integration) 
for electrons of either spin, using local spin density ideas; 

(ii) avoids self-interaction in an HF-like manner, which does not rely on the use of 
localised orbitals; 

(iii) should work well for large systems, possibly also giving improved insulator and 
semiconductor band structures. 

It remains to choose an adequate existing uniform-gas pair function nzYf from the 
literature, and to try some band calculations. Velocity-dependent correlating factors are 
also under consideration. 
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