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Abstract. Among other applications piezoelectric transducers are widely used for acoustic
wave generation and as resonators. These applications require goals in the transducer design
such as high electromechanical energy conversion for a certain transducer vibration mode,
specified resonance frequencies and narrowband or broadband response. In this work, we
have proposed a method for designing piezoelectric transducers that tries to obtain these
characteristics, based upon topology optimization techniques and the finite element method
(FEM). This method consists of finding the distribution of the material and void phases in the
design domain that optimizes a defined objective function. The optimized solution is
obtained using sequential linear programming (SLP). Considering acoustic wave generation
and resonator applications, three kinds of objective function were defined: maximize the
energy conversion for a specific mode or a set of modes; design a transducer with specified
frequencies and design a transducer with narrowband or broadband response. Although only
two-dimensional plane strain transducer topologies have been considered to illustrate the
implementation of the method, it can be extended to three-dimensional topologies.
Transducer designs were obtained that conform to the desired design requirements and have
better performance characteristics than other common designs.

1. Introduction

Piezoelectric transducers have the capability of converting
mechanical energy into electrical energy and vice versa.
They have been used extensively in acoustic wave generation
devices such as ultrasonic transducers, and as resonators in
measuring instruments, microprocessors and various kinds
of electronic equipment.

Depending on the application, there are different goals
for transducer design. For most acoustic wave generation
applications, the transducer is required to oscillate in the
‘piston’ mode (ideal for generation of acoustic waves) [1]. In
addition, the transducer must be designed to have a broadband
or narrowband frequency response which defines the kind
of acoustic wave pulse generated (short pulse or continuous
wave, respectively). In the case of resonator design,
the requirements include (1) an assurance of the specified
mechanical resonance frequency, (2) an absence of ‘spurious’
resonances close to the working frequency and (3) a high
quality factor (Qm) including minimum energy dissipation
in the material and in the attachments. The first requirement
is critical since very small deviations in the resonance
frequency may disable the electronic equipment. Regarding
the second requirement, the number of unwanted resonances
and their proximity to the working frequency determine
the performance of the resonator in terms of its frequency
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response. The design of single-frequency resonators is one
of the most important problems in piezoelectric engineering
[2].

These goals of transducer design are essentially related to
the transducer resonance frequency, vibration modes and the
electromechanical coupling factor (EMCC), which measures
how strong the excitation of a specific transducer mode is
in the transducer response. All these parameters depend
on many factors, the most important being the transducer
topology (or shape) and material properties. By changing
the transducer topology we can try to achieve the above-
mentioned goals.

In this sense, some previous papers have reported the
study of the dependence of the resonance frequency and
the EMCC on the dimension ratio of simple shapes of
piezoelectric transducers (such as cubic and cylindrical).
Using the finite element method (FEM), Kunkelet al
[1] built dispersion curves of resonance and antiresonance
frequencies and EMCC as a function of diameter/thickness
ratio for cylindrical transducers. These curves helped our
understanding of the different kinds of transducer vibration
mode, as well as the change in the EMCC for each mode
with the transducer dimension ratio. Other authors, such as
Challande [3] and Satoet al [4], discussed the optimization
of the dimension ratio of a piezoelectric element with
parallelepipedic shape that maximizes the EMCC for a
specific mode. The piezoelectric elements were embedded
as inclusions in the polymer matrix to build piezocomposite
transducers. No optimization method was used and the
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optimal ratio was obtained by building curves of the objective
functions (resonance frequency or EMCC) as a function of
the design variables (dimension ratios). The shape was fixed
and only the dimension ratios were changed, thereby limiting
the problem to a sizing optimization. To our knowledge, the
first work applying an optimization method for piezoelectric
transducer design was developed by Simson and Taranukha
[2] who optimized the thickness distribution of a piezoelectric
resonator to detune the working frequency from spurious
anharmonics. The problem consisted of a sizing optimization
since only the thickness distribution was optimized. Their
formulation is based on an eigenvalue optimization problem
that is solved by using mathematical programming integrated
with the finite element method. However, the piezoelectric
effect was not taken into account in their FEM formulation.

In this work, we intend to define the first steps
for designing piezoelectric transducers and resonators by
applying topology optimization techniques. Considering
the discussion presented before, the problem of designing
a piezoelectric transducer or resonator is posed as an
eigenvalue optimization problem in structural optimization.
The topology of the transducer is obtained by searching for
the optimal distribution of two phases (material and void) in
the design domain, assuming that the properties can vary from
one phase to another proportionally to a fraction parameterx

which is the design variable in the problem. Since complex
topologies are expected, the finite element method is used for
transducer modeling.

Although the method introduced in this work is general
and can be applied in the design of three-dimensional
(3D) transducers, the examples presented herein are limited
to two-dimensional (2D) plane strain models due to
lower computational cost. The plane stress condition
could also be considered, but it is less realistic (due to
manufacturing considerations) than the plane strain condition
for representing the transducer operation. The transducers
are considered to be surrounded by air, and no damping effect
is considered in the modeling.

This paper is organized as follows: in section 2,
we present a short introduction to piezoelectric transducer
modeling using FEM, and we define quantities such
as resonance and antiresonance frequencies and the
electromechanical coupling coefficient (EMCC). These
quantities describe the piezoelectric transducer behavior. In
section 3, the optimization problem and its parameters are
defined. In section 4, transducer topologies resulting from
the optimization are presented and the results are discussed.
In section 5, some conclusions are given. The symmetry
conditions considered for the 2D plane strain FEM model are
briefly presented in appendix A, and the sensitivity analysis
of the transducer eigenvalues necessary for the optimization
problem is derived in appendix B.

2. Piezoelectric transducer modeling

Since we expect topology optimization to result in complex
topologies, a general method such as the finite element
method is necessary for the structural analysis. Therefore,
in this section we describe briefly the finite element
formulation applied to piezoelectricity. We also define some

important quantities such as the resonance and antiresonance
frequencies and the electromechanical coupling factor
(EMCC). These quantities characterize the behavior of the
piezoelectric transducer.

2.1. FEM applied to piezoelectricity

The finite element equations for modeling a linear
piezoelectric medium were developed by [5], [6].
Considering time harmonic excitation, these equations may
be written as(
−ω2

[
M 0
0 0

]
+

[
Kuu Kuφ

KT
uφ −Kφφ

]){
U
Φ

}
=
{
F
Q

}
(1)

where M, Kuu, Kuφ and Kφφ are the mass, stiffness,
piezoelectric and dielectric matrices, respectively, andF ,Q,
U and Φ are the nodal mechanical force, nodal electrical
charge, nodal displacements and nodal electric potential
vectors, respectively. Since the piezoelectric medium is
considered to be an insulator,Q has non-zero terms only
in the electrodes [5]. This system of equations describes
the FEM model for piezoelectricity without considering the
damping effect, and assumes that the piezoelectric structure
is free in air, that is, it is not coupled to any propagation
medium. For more details, the reader should refer to [5], [6].

2.2. Characteristic frequencies

The two resonance frequencies that characterize the behavior
of the piezoelectric transducer for different vibration modes
are the resonance (ωr ) and antiresonance (ωa) frequencies.
Resonanceωr is the piezoelectric resonance for an excitation
by electric potential, and antiresonanceωa is the piezoelectric
resonance for an excitation by electric charge. In fact, these
frequencies correspond to the antiresonance and resonance
of the transducer electric impedance, defined as the ratio
between the voltage and electrical current in the transducer
electrodes [5, 6].

Using FEM, these frequencies can be obtained by
solving two eigenvalue problems generated by two different
electrical boundary conditions in equation (1), considering
F = 0 [7]. For the resonance frequency we consider that the
electrodes are short-circuited, that is, the electrical potential
degrees of freedom (DOFs) in both electrodes are set to zero
(Φe = 0) in equation (1) (potential boundary conditions).
For the antiresonance frequency (ωa) the transducer is an
open circuit, that is, the electrical charges are set to zero in
the electrodes (Q = 0). In the FEM model, considering
that one electrode is always grounded (Φe = 0), the two
eigenvalue problems can be obtained simply by changing the
electrical boundary conditions in the other electrode, that is,
the electrical potential DOFs are set to zero (Φe = 0) for
frequencyωr , and for frequencyωa they are constrained to
be equipotential and we considerQ = 0 [7, 5].

There are many ways of solving these eigenvalue
problems. The most direct way is just to impose
in equation (1) the boundary conditions discussed and
solve each of the eigenvalue problems. The advantage
of this method is that the band of the ‘total stiffness’
matrix, involving elastic, piezoelectric and dielectric terms,
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is preserved reducing the storage space requirements.
However, we have to deal with a mass matrix that is positive
semi-definite (due to the zero mass terms related to the
electrical degrees of freedom), and the ‘total stiffness’ matrix
is indefinite (negative and positive eigenvalues) due to the
negative diagonal terms of the dielectric submatrix. As a
consequence, a direct solution using traditional eigenvalue
solvers such as the subspace iteration method does not work
and an alternative method must be used. A solution for such
a case is proposed in [7], [8] and [9].

Another method for solving the eigenvalue problems is to
apply a static condensation to the system (1) to eliminate the
internal electrical potential DOFs (since the internal electrical
nodal charges are zero), keeping in the formulation only
electrical potential DOFs of the electrodes, as described
in [5]. The advantage of this method is that the matrices
obtained are positive definite, and therefore, the eigenvalue
problem can be solved by directly applying the usual solvers.
However, the band of the ‘total stiffness’ matrix is destroyed
and we must deal with a full matrix which increases the
memory requirements consisting of a high drawback if we
have to deal with large FEM models.

In this work, since the optimization method itself has
memory requirements, and in topology optimization we
usually need to deal with large models to try to get a clear
image of the final topology, the first approach proposed by
[8] was implemented using the program DNLASO by D S
Scott from the LASO package (available through NETLIB)
which is based on the block Lanczos algorithm.

2.3. EMCC

The electromechanical coupling coefficient (EMCC ork) is
defined for each vibration mode and measures the strength
of the mode’s excitation, that is, how strong the couple is
between the mode and the excitation. The most general
definition ofk is given by the expression:

k2 = E2
em

EmEe
= (UTKuφΦ)2

(ΦTKφφΦ)(UTKuuU)
(2)

whereEem,Ee andEm are the electromechanical, elastic and
electrical energy, respectively, defined in [5] and [6].U , Φ,
Kuφ ,Kφφ andKuu were defined above.

However, Naillonet al [5] showed that this expression
can be approximated by an equation involving the frequencies
ωr andωa (defined above):

k2 ∼= ω2
a − ω2

r

ω2
r

= λa − λr
λr

and λa = ω2
a λr = ω2

r (3)

where λr and λa are the resonance and antiresonance
eigenvalues, respectively.

Through the EMCCs for the different modes it is possible
to know which modes will predominate in the excitation. If
we want to increase the contribution of a specific mode we
must increase itsk [6]. Therefore, if we desire a narrowband
transducer we must design a piezoelectric structure with an
operational frequency that is not only far from the other
frequencies but that also has a largek, and the other modes

must have a lowk. For a multimode broadband transducer
we must have the resonance frequencies in the desired band
close to each other and with highk, and the other modes must
have a lowk.

3. Topology optimization

In this section, the procedure and numerical implementation
of topology optimization for designing piezoelectric
transducers is described. The objective functions, constraints
and material model applied are discussed.

3.1. Problem formulation

In this work, the problem of designing piezoelectric
transducers was posed essentially as an eigenvalue
optimization problem similar to the one described in [10, 11].
The main problem in the eigenvalue optimization is the
‘switching’ of the vibration modes during the optimization,
which makes it difficult to control the maximization (or
minimization) of the objective function if this is defined only
as a function of one eigenvalue. In order to overcome this
switching, Maet al [10] proposed multiobjective functions
written in terms of many eigenvalues. Therefore, even
though the modes switch during the optimization, the value
of the multiobjective function involving many eigenvalues is
maximized or minimized. Considering the typical goals in
transducer design described in the introduction, three kinds
of objective function are defined.

The first one consists of the maximization of the EMCC
(k) for a specific mode or set of modes. It is a multiobjective
function that is defined following the concept described in
[10], and is given by the equation:

F1 = α
(

m∑
i=1

wi

k2
i

)−1

andα =
m∑
i=1

wi (4)

wherewi is the weight coefficient,ki is the EMCC for modei
(i = 1, 2, . . . , m) andm is the number of modes considered
in the multiobjective function.

The second objective function is related to the design of
a transducer with specified resonance frequencies. It is also
a multiobjective function defined in [10], and given by the
equation:

F1 =
(

1

α

m∑
i=1

1

λ2
oi

(
λi − λoi

)2)1/2

andα =
m∑
i=1

1

λ2
oi

(5)

whereλi is the eigenvalue of orderi (i = 1, 2, . . . , m), λoi
is the specified eigenvalue for modei (i = 1, 2, . . . , m) and
m is the number of modes considered in the multiobjective
function. This problem is difficult to solve even for
mechanical structures (no piezoelectric effect). However,
it can be used, for example, to design a piezoelectric
transducer with undesired frequencies tuned out from the
main operational frequency, since in this case we do not need
to achieve the specified frequency values, but only make those
frequencies far from the operational frequency.

Finally, the third objective function is related to
the design of narrowband or broadband transducers. A
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narrowband transducer presents one mode with a strong
contribution to the transducer response, and the other modes
must have resonance frequencies far from the resonance
frequency of this strong mode with a weak contribution to the
transducer response. This characterizes a unimodal behavior
in the transducer response. For a broadband transducer, a
possible design could be to keep the resonances in the desired
frequency band close to each other, and with their respective
modes making a strong contribution to the transducer
response. The other modes (out of the desired band) must
have a weak contribution to the transducer response. This
characterizes not only a broadband but also a plurimodal (or
multimode) behavior in the transducer response (many modes
have strong contribution to the response). An application
would be the design of a multimode broadband Tonpilz
transducer as described in [12]. This type of transducer is
used in high accuracy and high resolution sonar systems that
require broadband transducers. Therefore, as a first step in
the design of a narrowband and broadband transducer, the
third objective function is a multiobjective function defined
as a linear combination of the previous ones. It is given by
the equation:

F3 = β ∗ F 1− (1− β) ∗ F 2

0< β < 1
(6)

whereβ is a weight coefficient, andF 1, F 2 are scaled values
of F1 and F2, respectively. The minus sign is required
because the functionF2 must be minimized. The objective is
to control not only the distance between the frequencies but
also how strongly their modes contribute to the transducer
response (EMCC of each mode).

Considering all these features, the final optimization
problem can be stated as:

maximize:F(x), wherex = [x1, x2, . . . , xn, . . . , xNDV
]

x

subject to:
(
Kr − λrMr

)
Wr = 0; andWr =

{
Ur
Φr

}
λr = ω2

r(
Ka − λaMa

)
Wa = 0; andWa =

{
Ua
Φa

}
λa = ω2

a

W > Wmin

0< xmin 6 xn 6 1

symmetry conditions

where Kr , Mr and Ka, Ma are the ‘total’ stiffness and
mass matrices (involving electrical and mechanical degrees
of freedom) of the resonance and antiresonance problems,
respectively. λr , λa andWr , Wa are the resonance and
antiresonance eigenvalues and modes, respectively.F(x)
is one of the functions defined earlier. The first and third
(F1 andF3) will be maximized and the second (F2) will be
minimized.

To reduce the amount of gray scale in the final design,
we define a ‘cost function’ constraint described by the
expression:

W =
∫
�

xp d� ∼=
N∑
n=1

xpn Vn (7)

Figure 1. Cost functionW as a function of densityxn in each
finite element.

whereVn is the volume of each finite element andN the
number of elements. A lower boundWmin is defined for this
cost function. The value of the lower bound determines how
efficiently the gray scale will be eliminated. A satisfactory
value forWmin can be achieved by performing a certain
number of trials (two or three) until we obtain a clear
topology. The coefficientp must be chosen to penalize the
intermediate values ofxn. In this work,p was chosen to be
eight. Figure 1 shows the cost function as a function of the
design variablexn for one finite element.

The value forp was chosen taking the behavior of the
objective function into account. Note that because of the
chosen value forp, the lower and intermediate values of
xn contribute almost equally in the cost function constraint.
Therefore, if the maximization (or minimization) of the
objective function tries to decreasexn, intermediate values
of xn will change for lower values. Larger values ofxn will
change to one to satisfy the lower bound constraintWmin. This
reduces the amount of gray scale in the solution. However,
the cost of eliminating the gray scale is a reduction in the
value of the objective function.

A lower boundxmin is also specified for design variables
xn to avoid numerical problems (singularity of the stiffness
matrix in the finite element formulation). In this work,
xmin was chosen to be 10−4. Numerically, regions with
xn = xmin have practically no structural significance and can
be considered void regions. Therefore, the bounds for the
design variable are 0< xmin 6 xn 6 1.

Finally, we address the constraint related to the
symmetry conditions. Since we are interested only in
symmetric modes in relation to thex axis andy axis,
only one quarter of the domain is considered. Symmetry
reduces the computational cost. The symmetry conditions for
displacements and electrical potential DOFs are expressed in
the boundary conditions which are stated in appendix A.

3.2. Material model for intermediate densities

To define the material distribution, we need a material
model that allows the properties in each element to assume
intermediate values. In this work, the material properties
in a given element are simply some fractionxn times the
material properties of the basic material. This is an ‘artificial’
material model for intermediate densities, but since we obtain
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an entirely solid material or void in each element, this is a
valid approach. However, during the optimization process
intermediate densities are allowed and consist of artificial
(non-existent) materials. By using this model the design
procedure is greatly simplified [13, 14].

The basic material has a stiffness tensorc0
ijkl ,

piezoelectric tensore0
ijk and dielectric tensorε0

ij . If the basic
material considered in the analysis is steel (isotropic), the
piezoelectric coefficients are zero, and the electric effect is
not considered in the finite element. Therefore, the local
tensor properties in each elementn can be expressed in terms
of one design variablexn times the basic material property:

cnijkl = xnc0
ijkl enijk = xne0

ijk εnij = xnε0
ij (8)

where xn represents the amount of basic material in that
element (local density) that ranges fromxmin to 1. For
xn = xmin the element is a ‘void’ and forxn = 1 the element
assumes the properties of the solid material.

Considering that the design domain was discretized in
N finite elements, the material type changes from element
to element during the optimization. The design problem
consists of finding the fractionxn of material in each element
such that the objective function is maximized or minimized.

3.3. Implementation of the optimization procedure

A flow chart of the optimization algorithm describing the
steps involved is shown in figure 2. The software was
implemented in FORTRAN. The initial domain is discretized
by finite elements and the design variables are the values of
xn (defined above) in each finite element.

In this work, we use the mathematical programming
method called sequential linear programming (SLP).
This method has been successfully applied to topology
optimization (see [13], [14]) and in addition, the first author
has previous experience with this method [15]. It consists
of the sequential solution of approximate linear subproblems
that can be defined by writing a Taylor series expansion for the
objective and constraint functions around the current design
point xn in each iteration step, as shown in equation (9) for
the constraint functionW .

W = W (xn0
)

+
∑
n∈S

(
xn − xn0

)
px

p−1
n0 Vn > Wmin

⇒
∑
n∈S

xnpx
p−1
n0 Vn > Wmin −W

(
xn0
)

+
∑
n∈S

xn0px
p−1
n0 Vn

(9)

where S is the set of elements considered in the design
domain.

The linearization of the problem (Taylor series) in
each iteration requires the sensitivities (gradients) of the
objective function and constraints in relation toxn. These
sensitivities can be expressed as a function of the sensitivities
of the resonance and antiresonance eigenvaluesλr andλa,
respectively, derived in appendix B.

In each iteration, moving limits are defined for the
design variables. Typically, during one iteration, the design
variables will be allowed to change by 5–15% of their original
values. After optimization, a new set of design variablesxn
is obtained and updated in the design domain. The linear

Figure 2. Flow chart of the optimization procedure.

programming subproblem in each iteration of the SLP is
solved using the package DSPLP from the SLATEC library
[16].

4. Results

In this section, we present results related to some typical goals
in transducer design, such as maximizing the EMCC for a
specific mode or a set of modes, designing a transducer with
specified frequencies and designing a narrowband transducer
and a broadband transducer. The values of EMCC obtained
are compared with those for simple designs of transducers.

4.1. Optimized piezoelectric transducers

In this work, we consider 2D plane strain piezoelectric
transducers. Since we are interested only in the symmetric
modes of the transducer, the design was conducted in only one
quarter of the domain by specifying the necessary boundary
conditions as described in appendix A.

Before presenting the optimized transducers, the
dispersion curves of the normalized resonance and
antiresonance frequencies, and of EMCC (ork), for a 2D
plane strain transducer of rectangular shape were built as a
function of the domain dimension ratio (width/thickness).
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Figure 3. Dispersion curves of the normalized resonanceWrT (cycles m s−1) and antiresonanceWaT (cycles m s−1) for a 2D plane strain
transducer of rectangular shape as a function of the domain dimension ratio width (W )/thickness (T ). (T is the distance between the
transducer electrodes.)

They are presented in figures 3 and 4. These curves show
the spectrum of normalized resonance and antiresonance
frequencies that can be obtained as well as the maximum
EMCC achieved by changing only the dimension ratio of
the transducer with a simple rectangular shape. Therefore,
they give us an idea of the characteristics achievable when
only the dimension ratio is changed for a simple shape. The
maximum values of EMCC for the simple rectangular shape
will be compared with the values obtained for some optimized
transducer topologies.

Piezoelectric materials used in transducer design are
usually ceramics, and if they have complex shapes they
are very difficult to fabricate. Therefore, two kinds
of initial domain are considered. In the first model,
there are two materials: steel and piezoceramic (PZT5A).
The piezoceramic domain remains unchanged during the
optimization. The steel is the design domain and thus the
transducer will have a complex topology only in the steel
domain. This model can be used, for example, in the

design of the Tonpilz transducer [12]. This configuration was
chosen to avoid the difficulty of manufacturing piezoceramics
with complex topologies. Reasonable changes in the
characteristic frequencies and EMCC (for different modes)
of the transducer can be achieved by merely adding a steel
coupling structure with complex topology to a simple shape
PZT transducer. It was concluded that materials such
as steel, aluminum and brass are better for this kind of
design because they have a stiffness and density of the same
order as piezoceramic, which allows large changes in the
transducer frequencies with a small amount of material. Steel
was chosen in this work. Figure 5 describes the relative
dimensions of the initial domain considered. Of course,
in practice, an insulator must be provided in the symmetry
plane for the steel part, otherwise the electrodes will be short
circuited. However, in the FEM model this effect does not
occur since electrical degrees of freedom are considered only
in the ceramic domain. In the second model, we consider
changes in the ceramic topology. Therefore, the entire
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Figure 4. Dispersion curves of the EMCC (k) for a 2D plane strain transducer of rectangular shape as a function of the domain dimension
ratio width (W )/thickness (T ).

Figure 5. Configuration for the model PZT5A/steel with its
relative dimensions. The piezoelectric domain remains
unchanged. The piezoceramic is polarized in the 3 direction.

Table 1. Material properties of PZT5A and steel used in the
simulations.

Piezoceramic PZT5A
cE11 (1010 N m−2) 12.1
cE12 (1010 N m−2) 7.54
cE13 (1010 N m−2) 7.52
cE33 (1010 N m−2) 11.1
cE1212 (1010 N m−2) 2.10
cE1313 (1010 N m−2) 2.30
e13 (C m−2) −5.4
e33 (C m−2) 15.8
e15 (C m−2) 12.3
εS11/ε0 1650
εS33/ε0 1700
ρ (kg m−3) 5000

Steel
c11 (1011 N m−2) 3.11
c12 (1011 N m−2) 1.53
ρ (kg m−3) 7800

domain consists of piezoceramic (no steel at all) and has a
square shape. For both configurations, the piezoceramic is
polarized in the 3 direction, as shown in figure 5. Table 1
describes the properties of the piezoceramic (PZT5A) and
steel used in the simulations. For resonator applications the
piezoelectric material quartz would be preferred to PZT5A
due to its highly stable properties. However, since we are
only interested in showing the design method, PZT5A was
considered for the sake of simplicity.

As an initial guess, the design variablexn is set to be
equal to 0.5 in both models. When the optimization process
is complete, the result is a density distribution over the mesh
with some ‘gray scale’ (densities between zero and one).
Even though the cost constraint implemented reduces the
amount of gray scale, it is difficult to eliminate it entirely
since the optimum solution requires some gray scale [17].
However, we need to interpret the results as a distribution of
two phases by eliminating the intermediate densities which
are difficult to implement in practice. This elimination can be
implemented by using techniques such as image processing
[11]. Independent of the interpretation technique used to
obtain a clean structure, there will always be a change in
the frequencies and objective function (EMCC for example)
since the gray scale is no longer present. Therefore, another
optimization process, such as shape optimization [18] which
produces small changes in the topology, would be necessary
to recover the objective function improvement and also to
provide a final design that can be manufactured.

The interpretation problem is less critical when we are
only maximizing (or minimizing) an objective function, since
at most the objective function will decrease (or increase)
due to the elimination of ‘gray scale’. However, it becomes
critical, for example, in the case where we specify the desired
frequencies for the transducer design since small changes
in the structure may cause the final resonance frequencies
to deviate from the desired values. In this work, a simple
threshold was applied to the densityxn of the optimized
topology to obtain the final topologies shown in the pictures.

The first design considered is the maximization of the
EMCC for a specific mode or more than one mode. Figure 6
shows a transducer topology that maximizes the EMCC for
the second vibration mode considering only piezoceramic
material in the design domain. Figure 8 shows the design
of the steel coupling structure that maximizes the EMCC
(or k) for the first mode using model PZT5A/steel. The
graphs showing the iteration history for the EMCCs (k), cost
constraint (W ) and objective function (F1) for the previous
designs are shown in figures 6 and 9, respectively. Six modes
(m = 6) were used in equation (4) for all results shown. The
weights (wi) in equation (4) were chosen to be 1000 for the
k coefficients we want to maximize and one for the others.
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Figure 6. Transducer topology that maximizesk for the second mode. Only piezoceramic is considered in the domain. Iteration history for
the first fourk, objective function (F1) and constraint (W ) is also presented.

Table 2. Electromechanical coupling coefficient (k) for the first
four modes of the transducers described in the figures. An asterisk
(∗) indicates maximizedk. ConstraintW is also given for each
design.

Design Figure 5 Figure 6 Figure 8 Figure 10

k1 0.425 0.128 0.501∗ 0.362∗

k2 0.082 0.580∗ 0.261 0.354∗

k3 0.120 0.123 0.135 0.346∗

k4 0.194 0.181 0.179 0.271
W > — 0.7 0.7 0.75

The corresponding ‘piston’ vibration modes, ideal for
generating acoustic waves, are presented for these topologies
in figures 7 and 8, respectively, considering only one quarter
of the domain (due to the symmetry). These modes are
important if the transducer will be applied for generation
and reception of acoustic waves. Figure 10 presents the
resultant transducer topology that simultaneously maximizes
the EMCC for the first three vibration modes. The iteration
history is also presented. This gives a plurimodal behavior
in the transducer frequency response.

Table 2 describes the values for the first four electrome-
chanical coupling coefficients (k) for the transducers pre-

sented in the figures and also for the initial domain described
in figure 5 (consideringxn = 1). By comparing the value
of the EMCC achieved for figure 6 with the values described
in the dispersion curve in figure 4, we can see that the im-
provement obtained is larger than the one obtained if only
the dimension rate is changed for the simple rectangular
shape. Also, comparing the EMCC for figure 8 with the trans-
ducer without the coupling structure (see dispersion curve for
W/T = 2.33), we can verify the improvement in the EMCC
due to the coupling structure with complex topology added to
the PZT transducer. Notice also that almost all of the ‘piston’
modes described above have high values of EMCC which in-
dicates a high coupling of these modes with the excitation.

Sometimes, the goal could be to design a transducer
with the same value of EMCC as given in dispersion
curve 4 for a specific aspect ratio (W/T ), but considering
a different aspect ratio of the design domain. An
application of this would be the design of piezoelectric
elements for 1–3 piezocomposite transducers. In these
transducers, considering parallelepipedic shape elements, a
good performance usually can be achieved only for a ratio
width/thickness around 0.6 [4, 6]. This makes it difficult to
build these piezocomposites for low volume fractions without
increasing the lateral periodicity of the piezocomposite in
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Figure 7. Thresholded image of the topology in figure 6. The
corresponding second and third resonance modes are also
presented using a 20× 20 mesh for one quarter of the domain.
Dashed lines indicate undeformed structure.

relation to the thickness (equal to operational wavelength). If
this happens, scattering will occur inside the piezocomposite
making it difficult to model its behavior [19]. A new design
for the piezoelectric element within a domain aspect ratio
constraint may be sought to avoid this limitation.

The next step consists of designing a transducer topology
with specified frequencies. This is an important goal in
the transducer design, since it allows us, for example,
to place some undesired modes (such as spurious modes)
far from the transducer operational mode, as described in
[2]. The presence of these modes close to the operational
frequency could cause some undesired change in the
resonator operational frequency, for example.

Figures 11, 13 and 15 show the topologies obtained
for the specified resonance frequencies described in table 3,
which also shows the initial frequencies and the achieved
resonance frequencies. Figures 11 and 13 present transducer

Figure 8. Transducer topology that maximizesk for the first mode
considering PZT5A/steel configuration. Piezoceramic domain
remains unchanged. The corresponding first and third resonance
modes are also presented using a 20× 20 mesh for one quarter of
the domain. Dashed lines indicate undeformed structure.

Table 3. Initial, specified and achieved resonance frequencies for
the transducer designs shown in the figures.

Design Figure 11 Figure 13 Figure 15

ωr1 4.6 4.6 5.7
Initial ωr2 5.9 5.9 8.3
103 (cycles s−1) ωr3 8.4 8.4 10.5

ωr1 3.0 4.58 4.0
Specified ωr2 7.0 12.0 7.0
103 (cycles s−1) ωr3 9.0 16.0 9.0

ωr1 3.03 4.97 4.07
Achieved ωr2 6.99 10.5 7.03
103 (cycles s−1) ωr3 7.92 11.2 9.10

designs considering only piezoceramic in the domain, while
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Figure 9. Iteration history for first fourk, objective function (F1)
and constraint (W ) for figure 8.

Figure 10. Transducer topology that maximizesk for the first
three modes considering the PZT5A/steel configuration.
Piezoceramic domain remains unchanged. Iteration history fork,
objective function (F1) and constraint (W ) is also presented.

figure 15 considers model PZT5A/steel (piezoceramic is kept
unchanged). The graphs showing the iteration history for the
resonance and antiresonance frequencies for the designs in
figures 11 and 13 are shown in figures 12 and 14, respectively.
A graph showing the iteration history for cost constraint (W ),
and objective function (F2) for figure 11 is shown in figure 12.
Three modes (m = 3) were used in equation (5) for all results
shown. The corresponding ‘piston’ vibration modes, ideal for
generating acoustic waves, are presented for these topologies
in figures 11, 13 and 15, respectively, considering only one
quarter of the domain (due to the symmetry). As discussed,

Figure 11. Transducer topology obtained for specified resonance
frequencies described in table 3. Only piezoceramic is considered
in the domain. The corresponding second and third resonance
modes are also presented using a 20× 20 mesh for one quarter of
the domain. Dashed lines indicate undeformed structure.

Table 4. Antiresonance frequencies and electromechanical
coupling coefficient (k) for the first three modes of the transducers
described in the figures.

Design Figure 11 Figure 13 Figure 15

ωs1 3.17 5.38 4.35
Antiresonance ωa2 7.16 10.81 7.32
103 (cycles s−1) ωa3 8.43 11.47 9.35

k1 0.308 0.415 0.377
EMCC (k) k2 0.222 0.245 0.290

k3 0.365 0.221 0.236

Constraint W > 0.7 0.7 0.5

these are ideal for generating acoustic waves if the transducer
is applied for acoustic wave generation.

Table 4 presents the first three antiresonance frequencies
and EMCCs for these transducers, as well as the constraint
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Figure 12. Iteration history for resonance (fr ) and antiresonance (fa) frequencies, objective function (F2) and constraint (W ) for figure 11.

W specified in the optimization. We can see that the ‘piston’
modes described above have high values of EMCC which
indicates a high coupling of these modes with the excitation.
Notice that the frequency units are Hz in the graphs and
cycles s−1 (equal to 2π Hz) in the tables. The gap among the
desired frequencies and achieved frequencies in figures 11
and 13 is probably due to the small relaxation given by
the material model used, therefore not all combinations of
specified frequencies can be achieved.

As discussed above, the final interpretation of this design
is critical since small changes in the topology may cause the
final frequencies to deviate from the desired ones; however,
this kind of objective function plays an important role in
the design of a narrowband (or a broadband) transducer (the
next design considered) since usually we are more interested
in making the resonance frequencies far from (or close to)
each other (as explained above), rather than equal to specific
values.

The final design considered is the design of a narrowband
and a broadband transducer. It consists of combining the
previous objective functions: maximization of the EMCC
(k) for a specific mode or modes and design of the transducer

with specified frequencies. Of course, in this multiobjective
function the result will be a compromise between these two
goals, which means that the desired frequencies will not be
achieved exactly nor will the EMCC be maximized as much
as in the first case, depending on the chosen weightβ.

Figure 16 shows a transducer with the first resonance far
from the others and with the largest EMCC, as described in
the EMCC response spectrum in figure 17. This provides
a narrowband behavior in the transducer response. The
corresponding two ‘piston’ mode shapes, considering only
one quarter of the domain (due to the symmetry), are
presented in figure 16. Figure 18 shows the topology of a
transducer with a broadband frequency response. The three
resonance frequencies are close to each other, each of them
with large k. This example illustrates the application of
the third objective function in the design of a multimode
broadband Tonpilz transducer [12] as discussed before.

The graphs showing the iteration history for the
resonance and antiresonance frequencies, EMCCs, cost
constraint (W ) and objective function (F3) for the design in
figure 18 are shown in figure 19. The corresponding ‘piston’
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Figure 13. Transducer topology obtained for specified resonance
frequencies described in table 3. Only piezoceramic is considered
in the domain. The corresponding first resonance mode is also
presented using 20× 20 mesh for one quarter of the domain.
Dashed lines indicate undeformed structure.

Table 5. Initial, specified and achieved resonance frequencies for
the transducer designs shown in the figures.

Design Figure 16 Figure 18

ωr1 4.6 5.7
Initial ωr2 5.9 8.3
103 (cycles s−1) ωr3 8.4 10.5

ωr1 3.0 3.0
Specified ωr2 7.6 4.6
103 (cycles s−1) ωr3 12.3 6.0

ωr1 3.09 3.07
Achieved ωr2 6.62 4.40
103 (cycles s−1) ωr3 7.04 5.80

mode shapes, considering only one quarter of the domain
(due to the symmetry), are presented in figure 18.

Table 5 describes the first three initial, specified and
achieved resonance frequencies and specified constraint
for the topologies presented. Table 6 presents the
corresponding first three antiresonance frequencies andk for
these transducers. The weight (β) used in the multiobjective
functionF3 (6) is 0.3 and 0.8 for the designs in figures 16

Figure 14. Iteration history for resonance (fr ) and antiresonance
(fa) frequencies for figure 13.

Figure 15. Transducer topology obtained for specified resonance
frequencies described in table 3 considering the PZT5A/steel
configuration. The corresponding first resonance mode is also
presented using a 20× 20 mesh for one quarter of the domain.
Dashed lines indicate undeformed structure.

and 18, respectively. The weights (wi) of F2 in equation (6)
were chosen to be 10 000 for thek coefficients we want to
maximize and one for the others. Five modes were used in
equation (6) (m = 5) for figure 16, and three modes (m = 3)
for figure 18. Notice that the first ‘piston’ mode in figure 16
and the second one in figure 18 have the largest EMCC values
showing a high coupling with the excitation.
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Figure 16. Transducer topology obtained using the third objective
function. Only piezoceramic is considered in the domain. The
corresponding first and third resonance modes are also presented
using a 20× 20 mesh for one quarter of the domain. Dashed lines
indicate undeformed structure.

Table 6. Electromechanical coupling coefficient (k) for the first
three modes of the transducers described in the figures. An
asterisk (∗) indicates maximizedk.

Design Figure 16 Figure 18

ωa1 3.49 3.18
Antiresonance ωa2 6.64 4.82
103 (cycles s−1) ωa3 7.08 5.98

k1 0.53∗ 0.27∗

EMCC (k) k2 0.08 0.45∗

k3 0.1 0.25∗

Constraint W > 0.6 0.7

5. Conclusions

A method for designing piezoelectric transducers with high
performance characteristics has been proposed. It is based

Figure 17. EMCC response spectrum for the transducer in
figure 16.fr is the resonance frequency.

Figure 18. Transducer topology obtained using the third objective
function considering the PZT5A/steel configuration. The
corresponding second and third resonance modes are also
presented using a 20× 20 mesh for one quarter of the domain.
Dashed lines indicate undeformed structure.
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Figure 19. Iteration history for resonance (fr ) and antiresonance
(fa) frequencies, EMCCs (k), objective function (F3) and
constraint (W ) for figure 18.

upon topology optimization techniques and the finite element
method (FEM). Three kinds of objective function were
defined: maximization of the response of a specific mode
of the transducer operation (by maximizing its EMCC),
design of a transducer with specified resonance frequencies
and design of the transducer frequency response spectrum
(narrowband or broadband transducer). This method can be
applied to design transducers for acoustic wave generation
and resonator applications.

The proposed design method allows us to obtain trans-
ducers with specified frequencies and better performance
characteristics than the ones achieved with simple geomet-
ric shapes. Improvement of the electromechanical coupling
factor (EMCC) was obtained in relation to simple designs
of piezoelectric transducers (such as a rectangular shape);
however, complex piezoceramic topologies are obtained as
a result. The manufacture of these complex ceramic shapes
can be achieved by using rapid prototyping techniques that
have been developed by [20]. The model PZT5A/steel is an

Figure A1. Design domain considering one quarter symmetry.

alternative approach that allows us to change the transducer
characteristics by adding a coupling structure with complex
topology to a simple shape PZT transducer, which is easier
to manufacture. This model can be used for the design of a
Tonpilz transducer [12].

In future work, we intend to extend this method to
3D transducer design. A shape optimization applied to the
piezoelectric medium [18] must be implemented in order to
be able to obtain a clear final design. The material model can
be changed for a more complex one (microstructure defined
in [10]) which enlarges the solution space of the problem
(increases the problem ‘relaxation’). Furthermore, other
kinds of objective function, or modifications of the current
ones, can be implemented depending on the specific goal
of the piezoelectric transducer application and other initial
design domains can be considered.
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Appendix A. Symmetry conditions

In this appendix, we present the symmetry conditions
imposed in the FEM model that allow us to solve for the
resonance and antiresonance frequencies by considering only
one quarter of the transducer domain. The domain is shown in
figure A1 and the specified boundary conditions are described
in table A1 in terms of displacements and electrical potential
degrees of freedom.

Table A1. Boundary conditions for the FEM model considering
one quarter symmetry.ui is the displacement in thei direction and
φ is the electrical potential.

Side Resonance Antiresonance

γ = 0 uγ = 0; φ = 0 uγ = 0; φ = 0
y = t φ = 0 equipotential
x = 0 ux = 0 ux = 0
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Appendix B. Sensitivity analysis

Appendix B.1. Sensitivity of the resonance and
antiresonance eigenvalues

The resonance and antiresonance eigenvalues are obtained
by solving the eigenvalue problems resulting from applying
boundary conditions to equation (1):

(K − λM)W = 0; andW =
{
U
Φ

}
λ = ω2 (B.1)

whereK and M are the ‘total’ stiffness and mass matrices
involving electrical and mechanical degrees of freedom that
take into account the boundary conditions of the resonance
or antiresonance problem (see appendix A).

The sensitivity of the resonance and antiresonance
eigenvalues is calculated by deriving equation (10) in relation
to the design variablesxn following a procedure similar to that
described in [21]. For the resonance eigenvalueλr , we obtain

∂λr

∂xn
=
W T

r

(
∂Kr
∂xn
− λr ∂Mr

∂xn

)
Wr

W T
r MrWr

λr = ω2
r (B.2)

For the antiresonance eigenvalueλa, we obtain:

∂λa

∂xn
=
W T

a

(
∂Ka
∂xn
− λa ∂Ma

∂xn

)
Wa

W T
a MaWa

λa = ω2
a (B.3)

where Kr , Mr , Ka and Ma are the total stiffness and
mass matrices reduced for the boundary conditions of the
resonance and antiresonance problems, respectively, andWr

andWa are the resonance and antiresonance modes obtained
from the solution of the eigenvalue problem (10) for different
boundary conditions.

Due to the material assumption described in section 3.2
the matrices∂Kr/∂xn, ∂Mr/∂xn, ∂Ka/∂xn and∂Ma/∂xn are
proportional to the individual element matrices [Kr ]n, [Mr ]n,
[Ka]n and [Ma]n, and are given by the expressions:

∂Kr
∂xn
= [Kr ]n

xn

∂Mr

∂xn
= [Mr ]n

xn

∂Ka
∂xn
= [Ka]n

xn

∂Ma

∂xn
= [Ma]n

xn
. (B.4)

Appendix B.2. Sensitivity of objective functions

The sensitivity of objective functions can be obtained by
deriving equations (4), (5) and (6) in relation to design
variablesxn and expressing the result as a function of the
sensitivity of the resonance and antiresonance eigenvalues.
The derivation of equations (4), (5) and (6) is straightforward;
therefore, it will not be presented here.
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