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Abstract. Despite recent advances in efficiency, current methodologies for space structure
control design still engage significant human resources for engineering development and
routine maintenance. The adaptive neural control (ANC) program is part of an effort to
develop neural network based controllers capable of self-optimization, on-line adaptation and
autonomous fault detection and control recovery. This development in addition supports the
long-term space exploration objectives for which autonomous spacecraft involving
self-reliant control systems are a necessity.

The ANC program comprises two phases. The first, basic phase focused on the
development of efficient and completely autonomous neural network feedforward control for
the case of broadband disturbances. Algorithms were developed that work with no prior
modeling information about the system to be controlled and adapt to changing conditions,
while minimizing or eliminating the introduction of extraneous training signals.
The algorithms were demonstrated experimentally on an optical structure testbed at Harris.
The second phase of the program demonstrated a more complex neural controller on the
advanced space structures technology research experiments (ASTREX) test facility at the Air
Force Research Laboratory capable of the fault-tolerant adaptive control of multiple sensors
and actuators. This system used six actuation channels of the existing ACESA struts on the
ASTREX structure to simultaneously cancel three independent tonal disturbances in the
10–15 Hz band, measured at non-collocated sensors on the secondary tower of the structure.
The system demonstrated impressive fault-recovery performance, maintaining good
cancellation performance with successive actuators disabled. Cancellation of individual tones
was between 25 and 55 dB, with over 27 dB attenuation realized root mean square.
The algorithm required very low computational throughput, operating at a sample rate of
1/20 Hz.

The results of the ANC program show that adaptive cancellation systems can reduce
vibrations in precision structures without prior modeling information and can adapt
successfully to certain failures in actuators or sensors, optimally reconfiguring themselves
without human intervention. These capabilities should significantly reduce the expense of
designing and maintaining vibration control systems for spacecraft.

1. Introduction

Modern engineering technology is leading to increasingly
complex space structures with ever more demanding
performance criteria. Currently advocated control design
approaches, however, mandate a high fidelity, if not exact,
dynamic model containing identified system parameters.
These methodologies which call for an iterative process
of finite element analysis or system identification are time
consuming and computationally expensive to validate [1]. In
addition, time-critical control recovery due to catastrophic
failures is often left unresolved [2]. The ultimate pursuit
of a higher degree of autonomous behavior that provides
constant health monitoring and fault tolerance for structure
platforms with minimum human intervention has high

priority in order to achieve a successful flight mission
[3, 4]. To increase the ability to accommodate anticipated
as well as unexpected dynamic variations in the complex
interrelated components of structure platforms, a totally
autonomous neural control system based solely upon on-
board sensor instrumentation is actively pursued [5–7].
The work reported here is part of an effort to analytically
design and experimentally validate an innovative adaptive
controllers based on neural network technology that is
capable ofself-optimization, on-line adaptation, autonomous
fault detection and controller reconfiguration. The advances
achieved in adaptive neural control (ANC) has translated into
greater cost-effectiveness for control design, implementation
and verification and a significant expansion of DoD and
commercial applications.
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Figure 1. ANC executes simultaneous system identification and
adaptively optimized control.

The near term development of adaptive systems for
control is made possible by the rapid growth in pure and
applied neural network research that has occurred in the
last decade [8, 9]. Much of previous work in adaptive
control via neural networks concerned highly nonlinear but
low dimensional systems [10–12]. In contrast, the ANC
architecture developed in [13–15] concentrates on neural
schemes particularly geared to structural vibration control
problems. These problems involve high-order systems
exhibiting very broadband dynamics. As indicated in
figure 1, the ANC system combines tapped delay lines with
static neurons to perform on-line system identification and
adaptive control. The system adapts in the presence of
unknown, persistent plant disturbances and instrumentation
noise and requires no detailed prior modeling information.

There are several key features of this neural architecture
that have made it particularly attractive. First, although the
architecture can be visualized as a neural network, the control
scheme is fundamentally a massively parallel, decentralized
adaptive control algorithm that need not beimplemented
literally as a collection of artificial neurons. Secondly,
these ‘neural’ algorithms feature learning capability that
is distributed down to the smallest computational unit.
Decentralization (distributed learning) imparts the ability
to autonomously recover from hardware failures, including
damage to the neural processor itself. A third key feature
is that the basic neural building blocks are hierarchically
organized into a set of standardized modules. Analogous to
a ‘Lego set’, modules can be combined to build an enormous
variety of systems and permit complex systems to be built
up from simpler components in a transparent way. Finally,
modularity and parallelism yield implementation flexibility.
Specialized hardware isnot required for implementation of
the developed ANC architecture. The entire identification or
control algorithm can be distributed among several parallel
processors, and hardware suitable for this purpose is currently

Figure 2. NASA/LaRC Mini-MAST test facility.

available and is being used for engineering development.
This means that we can progress in orderly fashion from
the use of existing processors to ultimately dedicated neural
VLSIs [16, 17], thereby building our capabilities gradually
and systematically.

We will present in section 2 a brief overview of our efforts
dedicated to this technology and in section 3 we describe a
new multi-input multi-output (MIMO) controller for tonal
disturbances that is capable of optimal controller recovery
following actuator or sensor failures. The capabilities of
this control system are demonstrated by experimental results
obtained on the ASTREX test facility located at the USAF
Research Laboratory (formerly Phillips Laboratory). This
will be followed by the concluding remarks in section 4.

2. ANC for system identification and adaptive
control

The ANC modular architecture is a set of building blocks and
rules for combining them so as to achieve massively parallel
and decentralized identification and adaptive control [13, 14].
The hierarchy starts, at the lowest level, with tapped delay
lines andindividual neurons. This is fundamentally a two-
way device with a forward and backward signal path. The
basic neuron is the starting point in defining the hierarchy
of modular structures. The key to applying such neurons to
dynamic system identification is to organize them into larger
building blocks, thedynamic ganglia. A ganglion is an array
of neurons allocated to establish temporal ordering within the
network so as to process time histories of signals. Ganglia are
interconnected by bundles of synapses, which are sometimes
constrained so that their weights formToeplitz matrics[18].
Toeplitz synapses, characterized by upper triangular weight
matrices, are designed to preserve temporal ordering and
causality within the network. With the above principles of
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Figure 3. Mini-MAST replicator for system identification.

Toeplitz networks in mind, we can describe the next level
in the structural hierarchy, namely thereplicator network.
Replicator units are composed of several dynamic arrays and
represent the simplest functional configuration of Toeplitz
networks. The fundamental task of a replicator is to duplicate
the output of a previously unknown sampled data dynamic
system when both replicator and system are stimulated by the
same training inputs. Thus the replicator is the basic module
for system identification. Several forms of replicator units are
available depending on whether the system to be replicated
is known to be linear, nonlinear, FIR, IIR, time-domain or
frequency-domain. The work in identification methods using
systems observer Markov parameters led to discovery of a
new model form for dynamic systems, the ARMarkov model,
so-called because it combines features of impulse response
(Markov parameters) with ARMA (auto regressive moving
average) models [19, 20].

The replicators are fundamentally time-domain repre-
sentations of dynamic systems. For linear systems, par-
ticularly, all time-domain forms can be generalized to fre-
quency domain or mixed time/frequency domain forms.
Generally, one obtains a frequency-domain version of a par-
ticular time-domain replicator by replacing the time series
inputs or the time series error signals by the outputs of fast
Fourier transform (FFT) filters having these signals as inputs.
This operation is equivalent to inserting a multiplication by a
unitary matrix within the replicator structure. However, this
superficially trivial change allows the replicator to address

frequency-weighted output matching and direct frequency re-
sponse identification. To illustrate the operation of a neural
replicator, consider an example involving the NASA/LaRC
Mini-MAST testbed [21, 22]. The Mini-MAST as shown in
figure 2 is a vibration control facility in the form of a 60 feet
high truss beam cantilevered to the floor. Instrumentation in-
cludes torque wheel actuators at the top platform to provide
control torques and accelerometers to measure lateral vibra-
tion. In this example the data acquisition system is operated
at 40 Hz sampling rate. Training signals are inputs to the
torque wheels and the system outputs consists of the linear
accelerometer measurements. In this numerical simulation,
we use a 17-state model of the Mini-MAST which was de-
rived from actual test data. The system replicator’s task is
to duplicate the torque wheel-to-accelerometer transfer func-
tions (that characterize the testbed for purposes of control
design). We initialize the weight matrices at zero and set the
learning rate to 1.0. Figure 3 illustrates the results obtained
under these assumptions. We show a sequence of compar-
isons between the actual system frequency response and the
neural network frequency response at various time instants
during the learning process. The neural replicator is seen to
progressively lock on to one vibration mode after another,
starting with the dominant modes near 10 Hz and finishing
with the lowest frequency modes near 1 Hz. A period of
100 s of adaptation produces an excellent neural replica and
essentially exact agreement is reached after five minutes of
adaptation [23].
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Figure 4. A basic adaptive neural control scheme.

Figure 5. Mini-MAST open-loop against ideal closed-loop plant responses.

In general, the experiments performed by the authors
involve multiple inputs and outputs and nearly all involve
fairly complex structures with many modes in the frequency
band of interest. The laboratory experiments also tested
the algorithm under such real-world complications as sensor
noise and ambient steady-state disturbances. Summarizing
these experience, we can say that reasonably complex multi-
mode systems can be identified with excellent accuracy with
convergence times ranging from a few minutes to fractions
of a second.

Several replicator units are combined in order to form
the ANC system. An ANC performs on-line, simultaneous
system identification and adaptively optimized control.

The most basic ANC architecture shown in figure 4 for
simultaneously replicating an unknown plant and adapting
an output feedback controller so as to match the closed-
loop input/output characteristics with a prescribed reference
system has two parts: (1) the closed-loop modeller and (2) the
control adaptor. In figure 4, MU stands for memory units
andξ is for the training signal. The closed-loop modeller
uses training signals and the plant sensor output to adapt
the weightswM , so that the closed-loop is replicated. After
convergence (̄εM → 0), the modeller output matches the
closed-loop system, in effect the modeller identifies the plant
within the closed loop. Note that in the modeller,wC is
constrained to be equal to the current values being updated
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Figure 6. Feedforward against feedback ANC architectures.

in the control adaptor. In the control adaptor,wM is a
copy of the value currently arrived at by the modeller, while
wC is unconstrained.wM is a neural copy of the plant.
Thus the control adaptor can, in effect, back-propagate least
mean square (LMS) error through the plant to the controller
output location. With its internal model of the plant, the
adaptor uses the training signal, its own output and that of the
reference system to adjustwC so that the reference system is
asymptotically replicated. The reference system in the form
of model reference adaptive control (MRAC) framework
described all desired closed-loop control specifications (e.g.
a linear and highly-damped system).

To-date, several demonstrations have been validated
for closed-loop adaptive control via ANC. To illustrate the
operation of the ANC we consider the adaptive control of

the Mini-MAST test facility. The only difference from the
set up discussed above is that the accelerometer signals are
lowpass filtered to produce approximate rate measurements
that are to be used for control feedback. Figure 5 shows
the open-loop plant frequency response (from torque wheel
to rate measurement) and the reference system frequency
response. As indicated, the control objective is simply to
attenuate the first bending mode response by a little over
20 dB while leaving higher frequency dynamics unaltered.
The experimental result shows the exact agreement with
control objective achieved within 7.5 s of adaptation.

The above form of ANC addresses the feedback type
of control architecture. It is useful to note the two
quintessential architectures for adaptive control:feedforward
cancellationandfeedback control. Figure 6 illustrates these
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two basic disturbance suppression strategies. In feedforward
cancellation, the system motion measurements (the error
sensor outputs) are used only to adjust the feedforward gainF.
OnceF converges, the actuators are driven by the disturbance
measurements or a synchronization signal or timing pulse (if
the disturbances are periodic). In contrast, adaptive feedback
uses the motion measurements not only to adjust feedback
gain B but also to drive the actuators. This is the most
suitable architecture for systems wherein disturbances are
not accessible to direct measurement.

A large subset of applications, however, involve
disturbance sources (e.g. motors, engines, and rotors) that
are accessible todirect measurement and, hence, can be
suppressed via adaptivefeedforwardcontrol. The primary
input to the neural controller is a synchronization signal
taken directly from the vibration source or some indirect
disturbance measurement. The neural controller adjusts
its parameters, using the outputs of error sensors, (which
measures noise or vibration at points where quiescence
is desired) and transforms the disturbance measurement
into the actuator drive signal, using its identified models
of the transfer functions from disturbance measurement
and actuator command to error measurement. Once the
algorithm has converged, the output of the actuators cancels
the disturbance at the locations of the error sensors. The
ANC architecture is readily applied to handle this situation.
The adaptive neural controller for feedforward is able
to simultaneously identify all needed transfer functions
and adapt the actuator inputs without interrupting normal
operation or injecting an extraneous broadband test signal
(dither). Moreover, the adaptive algorithm is fast: with no
previous identification completed cancellation is achieved.
Thus the neural controller is able to autonomously react to
rapid changes in the disturbances or in the system dynamic
characteristics.

All experimental results are further validated using a
Harris in-house facility, multi-hex prototype experiment
(MHPE). The MHPE as shown in figure 7 has the form of a
four meter Cassagrain telescope and consists of a base plate
(supported by an air bag) connected by a six member truss to
the primary mirror support structure, holding a tripod tower
which supports the secondary mirror assembly. Disturbances
are injected using a proof-mass actuator (LPACT) affixed
to the primary mirror support structure. Three additional
LPACTs with collocated accelerometers are mounted on
the secondary mirror platform to provide actuation and
motion sensing. The objective is to suppress vibrational
accelerations at the secondary mirror platform that are excited
by the forces applied to the primary support structure.
Experimental investigations proceeds in several stages,
beginning from ‘harmonic’ or single-tone disturbances to
‘broadband’ or continuous spectrum disturbances with the
following results:

• Single-tone (harmonic) disturbances. Disturbance
sources for many applications are dominated by a
fundamental harmonic component, where the amplitude
may vary over time. Examples include fan noise,
automobile engine noise, aircraft cabin noise, etc.
In many of these cases the disturbance source is
directly accessible to measurement, whether through a

Figure 7. Harris MHPE test facility.

synchronization or timing pulse pick-off directly from
the noise source or by use of motion sensors located on or
very near the source. The ANC algorithm for harmonic
noise cancellation was implemented with a PC interfaced
digital signal processors (DSPs) and demonstrated on
three entirely different laboratory test stands: an acoustic
duct, a test rig for a force cancellation proof mass
actuator and the MHPE testbed, a precision optical
structure. Starting with no prior identification data, the
system converges in a fraction of a minute. Over 20 dB
noise or vibration reduction is achieved in all cases.
• Multi-tone (several harmonics) disturbance. This

is a significant feature in most applications (e.g.
nonlinearities in engines and motor mounts produce
higher harmonics and subharmonics in addition to the
fundamental tone produced by the rotary source). In
many cases, the multi-tone disturbance is truly periodic.
There are other cases where the constituent tones
are incommensurate. The ANC system for this case
combines a fast neural demodulator unit with an array of
single tone cancellors. Over 30 dB and approximately
45 dB attenuation is achieved on the three tones.
Starting with no prior transfer coefficient information,
simultaneous identification and control are achieved in
approximately one minute.
• Continuous spectrum disturbances: Broadband distur-

bances are defined as having continuously distributed
power spectral densities. This class of disturbances is
a non-negligible component in many applications; e.g.
fluid sloshing noise in dish washers and washing ma-
chines. In many cases, these disturbances are not acces-
sible to direct measurement so that the feedback control
architecture must be used. In other cases, even though
the disturbances are amenable to measurement, the broad
spectral distribution of the disturbances make acom-
binedfeedforward and feedback control architecture the
most efficient, robust approach. The ability to implement
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Table 1. Candidate ANC designs on MHPE testbed (‘time’—time-domain; ‘frequency’—frequency domain; ‘time and frequency’—mixed
time and frequency; ‘SISO’—single-input single-output; ‘MISO’—multiple-input single-output).

Program Configuration Result

ANC 1 Off-line checkout of delay line replicator
‘time’ code segments
ANC 2 SISO ARMA series-parallel ID Used a shaker input, got good match of I/O
‘time’ behavior using feedback system output
ANC 3 2× 2 MIMO ARMA series-parallel ID Required 3–5 min to converge (for
‘time’ unaccounted time delay)
ANC 4 2× 1 MISO ARMA ID with algebraically Unstable—puzzling because of apparent good
‘ time’ constrained control (deadbeat control) input/output behavior match prior to control.

Note possibility of non-minimum phase
model

ANC 5 Off-line checkout of FFT/replicator code
‘frequency’ segments
ANC 6 SISO FFT/replicator ID Matched primary path well with a 1 Hz
‘frequency’ resolution
ANC 7 2× 1 MISO ID with FFT/replicator, Distributed 5–30 Hz band, error and drift in
‘frequency’ control via division of identified primary the weights below 5 Hz caused large drifts in

and secondary path weights to form FFT control
based controller

ANC 8 2× 1 MISO ARMA ID, control via pre- Drifting/unstable controller adaptation
‘frequency’ filtered replicator adaptation of FFT

controller weights
ANC 9 SISO FFT weight filter with fixed, user- Verified ability to implement a specified FRF
‘frequency’ selected FRF with this type of FFT filter
ANC 10 2× 1 MISO ARMarkov series-parallel Revealed serious sensitivity to roundoff error
‘time’ ID, control via explicit FRF computation (due to finite match precision) with weight

and assignment to FFT weight controller updates and delay-line filter computations
ANC 11 SISO ID of a single frequency bucket Computes good results as compared with
‘frequency’ using cross and auto spectral density spectrum analyser, but would like a little

averaging based on recursive FFT more speed
ANC 12 SISO ID of multiple frequency buckets Good results, desire increased speed and
‘frequency’ using ANC 11 algorithm, estimates decreased complexity. Also, improved rigor

accuracy of each bucket ID, adjusts FFT needed in ID (really need twice the resolution
control of each bucket independently of control FFT in order to improve

reliability)
ANC 13 SISO FFT replicator with adjustable Reliable convergence on center of channel,
‘frequency’ learning rate for ID (twice resolution of but poor performance in between

control), control algorithm requires no ID
accuracy estimate

ANC 14 Replicator with adjustable learning rate Reliable convergence, good overall
‘time and also used for control updates performance compromise achieved over
frequency’ whole frequency band

adaptive feedback and combined feedforward, feedback
control architectures is a unique strength of ANC tech-
nology. The broadband ANC cancellor was successfully
demonstrated in the laboratory using the MHPE testbed.
Dozens of resonances near 10 and 15 Hz were reduced
to the instrumentation noise floor within a few minutes.

The above results demonstrate fast, adaptive cancellation
for all principal classes of disturbance. When disturbances
are accessible to (at least indirect) measurement, a unique
feature of the ANC architecture is that it can combine
feedforward control with feedback loop. These two
forms of control have synergistic benefits. First feedback
greatly improves transient response and this permits faster
feedforward convergence. Also, closed-loop feedback
smooths out the system transfer functions. This allows
the feedforward control to track much more rapid system
changes, e.g. disturbance frequency variations due to motor
acceleration/deceleration. Alternatively, smoother transfer
function variations permit a simpler and cheaper feedforward
system to be used.

Table 1 shows a complete list of the developed
architectures in chronological order. The thirteen major
experimental tests that were performed on MHPE testbed
using both time- and frequency-domain versions. For details
of the analytical and experimental developments, please refer
to [18].

The general situation pertaining to adaptive feedforward
control is illustrated in figure 8. The most basic assumption
is that disturbance sources are accessible to measurement,
either through a sensor very close to the disturbance or
through a direct synchronization pick-off signal. This
produces a disturbances measurement signalm(t). A
second inputz, to the control system is provided by the
set of error sensors which measure system response at
locations where quiescence is desired. We considered the
class of disturbances consisting of a combination of several
sinusoids and assume that the correspondingsynchsignals
are provided. In addition to the adaptation operationsper se,
there are two ancillary operations that must be performed
(assumingL harmonics in the disturbance): (1) using
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Figure 8. Adaptive feedforward neural control for the ASTREX experiment.

the L synchronization signals from the several harmonic
disturbance sources, generate sine waves, both in phase and
quadrature at theL frequencies; and (2) given the error sensor
outputs, decompose these measurements into the separate
components at each of theL frequencies (i.e. demodulate the
error measurements).

3. MIMO feedforward control of tonal
disturbances—ASTREX

As described in the preceding section, extensive results
have been achieved for system identification, for adaptive
feedback control with a modest number of inputs and
outputs and for adaptive feedforward control for single-
input, single-output (SISO) systems. However, there remain
many developments of ANC to be completed. For example,
although feedforward control was demonstrated for both
tonal and continuous spectrum disturbances, only SISO
systems have been extensively tested. The most recent
work reported here advances ANC development by the
experimental demonstrations on multi-input, multi-output
(MIMO) feedforward control of tonal disturbances. The
MIMO aspect of the problem offers distinct challenges that
must be addressed for successful real-world applications.
Among the practical benefits being sought are reliable, self-
reliant and self-contained vibration isolation for sensitive
payloads. The control scheme developed assumes only that
the error sensor signals and frequencies of the sinusoids are
measured. All system dynamics are determined on line, and
the error sensor outputs are to be optimized in a least squares
sense following failures of arbitrary subsets of actuators and
sensors.

3.1. ASTREX experiment setup

The ASTREX test facility (as seen in figure 9) is located at
the Air Force Research Laboratory, Kirtland Air Force Base,
New Mexico [1, 25–27]. The ASTREX structure consists of
two major parts: a pivoting test article and vertical pedestal
which supports the test article through an air-bearing system.
The test structure is designed to accommodate the concepts of
a typical space-based beam expander or a space-based radar.
The test article’s primary truss consists of graphite/epoxy
(Gr/Ep) composite modular tubes with aluminum joints. The
front section of the test article is connected to the primary
truss by a tripod support. The rear section, called tertiary,
houses electronics and balances the secondary. On the
primary truss, six triangular plates on the front represent
the inertia of a 5 m diameter mirror, and two cylindrical
masses on the sides represent the inertia of two tracking
telescopes. The total weight of the test article is about
10 000 pounds and it floats on the air-column. The test
article is equipped with a variety of actuators and sensors.
The actuators installed on the structure include: a reaction
wheel, twelve reaction control system (RCS) thrusters, three
linear precision actuators (LPACTs), four control moment
gyroscopes (CMGs) and three advanced composites with
embedded sensors and actuators (ACESA) smart struts with
embedded piezoelectric actuators [28]. In addition, four 100
pound shakers are available for system identification and
modal survey.

A summary block diagram of the experimental
demonstration is shown in figure 10. It consists of six
major components: the ASTREX structure, the ACESA
secondary mounting struts and electronics, the LPACTS and
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Figure 9. AFRL ASTREX test facility.
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Figure 10. Block diagram of the ASTREX experimental demonstration.

servoamps, the three-tone disturbance source, the motion
sensors and amplifiers, and the ANC control system. Three
sinusoidal disturbances are generated, scaled and summed
in the disturbance source block. These sums are fed to

two of the three LPACTs on the secondary tower of the
ASTREX test bed as system disturbances. Meanwhile, three
pulse trains, synchronized with each of the three sinusoids,
are passed to the ANC controller. Thus, the controller

761



L Daviset al

Mirrors

Laser Sources

Targets

Figure 11. Performance visualization system for the ASTREX
demonstration.

knows the frequency, but not the amplitude or phase of the
disturbance inputs to the LPACTs. The controller synthesizes
six canceling control signals to feed to the ACESA struts, one
for each bending axis of the three struts. The resulting motion
of the structure, which is to be canceled out, is sensed and
fed to the ANC controller as a training signal.

The demonstration emulates a precision optical system
that is disturbed by independent disturbances such as might
originate from three CMGs with slight imbalances. The
motion of key optical subsystems that contribute to line-
of-sight (LOS) error are sensed and canceled by the ANC
controller using actuators capable of controlling the relevant
substructures (i.e. ACESA struts). In addition to the
components shown in figure 10, an independent scoring
system shown in figure 11 was installed to enable visual
observation of the vibration cancellation. Two laser sources
are mounted near the mass of telescope trackers. These aim
at two small mirrors mounted on the secondary assembly.
The laser beams are reflected on to paper targets mounted
on the primary structure. This provides complete monitoring
of the effects of the secondary mirror assembly on the LOS
performance and is entirely independent of the sensors used
for training the ANC.

The ACESA struts were developed by TRW [28]. The
interface to the ANC system is via six analog inputs, which
command the three struts, each in two bending axes. The
struts are labeled for convenience as the 12:00 strut, the
4:00 strut and the 8:00 strut according to their positions as
viewed by an observer looking in theZ-direction (down the
boresight from the secondary mirror assembly towards the
primary). Each strut has two inputs: one to cause motion of
the secondary in theX-direction, and one to cause motion in
theY -direction. For safety reasons the inputs were limited
to±3 V to prevent damage to the structure or struts.

The motion sensing for ANC adaptation consisted of
three angular velocity sensors mounted near the mirrors on
the secondary. These were insensitive to translation of the
tower and provided a much better indication of the effect
of the secondary on the visually observed spot motion of
the laser beams on the targets. The velocity sensors had
sensitivities of approximately 400 mV s rad−1.

The disturbance generation system works according to
the block diagram shown in figure 12. Three signal generators
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Signal
Gen. 2

Signal
Gen. 3

+

LPACT 3 LPACT 1
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X

Y

synch
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synch
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sin
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summed
disturbance
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Figure 12. The disturbance generation system for the ASTREX
demonstration.
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Figure 13. Block diagram of the ANC system.

provide individually adjustable sinusoids, which are summed
and input to the LPACTs used for disturbance generation.
The summing function is provided by a simple op-amp
circuit. The same disturbance signal is input to LPACT servo-
amps. The LPACTs provide approximately 10 lb maximum
output for a maximum input of approximately 5 V at 10 Hz.
Slightly more output is available at higher frequencies.

The ANC system has the structure shown in the block
diagram of figure 13. Except for the VME computer
peripherals (i.e. disk units and terminal), the whole assembly
fits in a VME card cage. This implementation of the ANC
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Figure 14. The basic system notation.

system is based on the observation that if the control system
and the disturbance inputs are the sum of three sinusoids,
then the motion sensor outputs must also be the sum of
three sinusoids. This is certainly true if the system is linear.
Furthermore, the required cancellation signals must be the
sum of three sinusoids in this case. Note that any sum of three
sinusoids is specified by the six coefficients of the cosines and
sines of which it is comprised. The ANC cancellation system
is built to determine and operate on these coefficients. The
three disturbance synchronization signals are converted in
the largest analog circuit card into sine and cosine signals at
each of the three disturbance frequencies. These are used as
the fundamental basis functions to process both the motion
sensor signals and the control commands. The motion sensor
inputs are amplified and low-pass filtered and then are fed
into the adaptive demodulators. The demodulators determine
what combination of the three sine and cosine signal pairs
are in each of the three motion sensor signals. For each of
the three sensors there are six coefficients which are then
fed into the analogue-to-digital (A/D) converters. It takes
approximately 20 s for these signals to reach their final values
once a new set of demodulated strut commands are issued by
the VME computer.

The A/D converter system, residing on one master
A/D card and two slave multiplexer cards, converts the 18
coefficients used by the cancellation algorithm to the VME
computer for processing. The resolution is 12 bits. The 12
bit D/A converters, residing on two VME cards, issue six
commands for each of the six strut bending axes. The six
commands per axis are the proportions of the three pairs of
sine or cosine signals which are desired in the strut command
for a single strut axis. The modulator multiplies the six
coefficients per channel times the appropriate sine and cosine
signals to compute the command for each strut’s two bending
axes.

3.2. ANC control algorithm

The general situation pertained to adaptive feedforward
control is illustrated in figure 14. The most basic assumption
is that disturbance (i.e.d(t)) frequencies are accessible
to measurement (i.e.ωi , i = 1, . . . , n), either through a
sensor very close to the disturbance or through a direct
synchronization pickoff signal. A second input to the control
system is provided by the set of ‘error sensors’ which measure
system response (i.e.y(t)) at locations where quiescence is
desired. The disturbance to the system and the control signal

Disturbance
L harmonics

L  Sync.
Signals

Sine Wave
generators

Single Tone
 Cancellor

Single Tone
 Cancellor

cosω 1n
sinω 1n

cosω Ln
sinω Ln

Analog Neural
 Demodulator

ε1

εL

ε

µ

µ 1

µL

Figure 15. ANC controller block diagram for multi-tone.

(i.e.u(t)) are assumed to be the sum ofn sinusoids. In brief,

d(t) =
n∑
i=1

Re(d(i) e−jωi t ) (1)

u(t) =
n∑
i=1

Re(u(i) e−jωi t ) (2)

where Re(·) denotes the real part of a complex argument.
Control is accomplished individual ‘epoch’ consisting of
the application of a set of complex weights to be used in
constructing the control signal, followed by a waiting period
to allow a new steady state to be achieved. The control system
then records the complex components of the various sinusoids
present in the output, and computes a new set of complex
control weights. The analog control modulator constructs
the control input sum from the commanded complex weights
and the sinusoids provided. The analog demodulator decodes
what combination of complex components of each sinusoid
are present in the error measurements. Figure 15 show the
block diagram of the ANC system for multi-tone vibration
cancellation.

Once a steady state has been reached, it is clear from
basic system theory that the complex components present in
the output at the end of thekth epoch can be written, in the
absence of noise, simply as

y(t) =
n∑
i=1

Re{G(−jωi)d
(i) e−jωi t + P(−jωi)u

(i) e−jωi t }

=
n∑
i=1

Re{(g(i) + P (i)u(i)) e−jωi t }

=
n∑
i=1

Re{y(i) e−jωi t } (3)

whereg(i) ≡ G(−jωi)d(i), P (i) ≡ P(−jωi) and y(i) =
g(i) + P (i)u(i). The goal is to set they(i) to zero for each
of the n tone (i.e.i = 1.2. . . . , n). Note that the problem
for each of the three tones is entirely independent. It is
evident from this expression that the various frequencies
may be considered independently and that the ‘plant’ to be
controlled, as viewed from the digital controller is the static,
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Table 2. Test cases on the ASTREX facility.

Active Convergence
Case actuators time (min)

1 1, 2, 3, 4, 5, 6 10
2 1, 2, 4, 5, 6 5
3 1, 2, 4, 5 5

linear, complex mapping shown in equation (3). In the above,
one usually refers tog(i) as the ‘direct path’ dynamics since
it specifies the open-loop transfer function fromd(t) to y(t).
Analogously,P (i) is termed the ‘secondary path’ dynamics
since one might view it as the transfer function fromu(t)
which is a ‘secondary disturbance source’, toy(t). In the
absence of noise equation (3) makes it obvious that our goal
is to construct a control weight such that

u(i) = −P (i)+g(i) (4)

where(·)+ denotes the group generalized inverse. This choice
minimizes the output in a least-squared error sense. The
problem addressed herein is how to synthesize the above
optimal actuator commands withouta priori knowledge
of g(i) or P (i) and to implement and demonstrate such
a controller in real hardware under numerous practical
constraints. With regard to the digital algorithm indicated in
figure 15, a wide selection of algorithms have been devised
and experimentally tested on a simpler testbed as listed in
table 1. The version utilized here on the ASTREX test article
consists of two parts.

• A set of components from the ANC architecture designed
to simultaneously identifyg(i) andP (i) given the past
histories ofy(i) andu(i). On-line Kalman filtering of the
measurements is used [29, 30], consideringg(i) andP (i)

to be a single parameter vector to be estimated. Please
see [18] for the details of the Klaman filter cancellation
algorithm.
• Computation of the optimum control as in equation (4)

via the singular value decomposition, with an
appropriate tolerance for robust determination of the
numerical rank.

Note that equation (4) allows optimum inversion even
when P (i) is singular or changes rank owing to actuator
or sensor failures. Thus the neural algorithm cannot
only ‘track’ smooth changes in system dynamics, it can
achieve the greatest possible degree of control performance
recovery following sensor-to-actuator hardware degradation
or catastrophic failures.

3.3. Experimental results

In summary, the control problem posed for ASTREX was to
nullify the three components of line of sight (LOS) error using
the six bending motion control channels of the active struts.
Thus, the system of equation (4) has six control inputs and
three performance outputs. The ANC hardware interfaced
with the active strut electronics was tested on the ASTREX
facility. In these tests, the disturbance had three harmonics
at 10.15, 10.625, 12.725 Hz and three basic cases were
considered as indicated in table 2. Note that the convergence

Figure 16. Open loop accelerometer PSDs.

Figure 17. Case 1, closed loop angular velocity PSDs.

time is proportional to the number of actuators and the time
required to reach steady state after application of a control
signal.

Open-loop results are shown in figure 16. There are
the power spectral densities (PSDs) of the voltages, after
amplification, of the three angular velocity sensors mounted
on the tower. The additional spurs at 12.25 Hz are due to
small nonlinearities in the disturbance system, which cause
mixing of the frequencies. Case 1 is intended to show
convergence to the optimal feedforward controller beginning
with a blank slate (i.e. starting with no modeling information
and all neural weights zero). Figure 17 shows the open-loop
performance as the sum of the PSDs of the separate motion
sensors and the corresponding closed-loop responses after
10 min of convergence time. The ANC algorithm achieved
excellent cancellation of the tones: 33 dB at 10.15 Hz,
34 dB at 10.625 Hz, and 44 dB at 12.725 Hz. Since our
initial algorithm emphasizes identification accuracy without
attempting to optimize computational efficiency, all cases in
table 1 required 5 to 10 min to converge to within a few per
cent of the final controllers. In case 1, the system converged to
a response giving 27 dB RMS attenuation over the frequency
band of interest.
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Figure 18. Case 2, closed loop angular velocity PSDs—actuator 3
disengaged.

The remaining cases demonstrate the ANC’s capability
to recover performance when actuator failures are simulated
by disengaging subsets of actuator channels. We
progressively disengage more and more actuator channels
until there are too few left to achieve full cancellation
authority of all disturbance frequencies. Figure 18 shows
that happens when actuator 3 is disengaged. The adaptive
algorithm immediately detected a change in the plant and
reconverged in 5 min with 29 dB RMS attenuation. Note that
since the controller is feedforward, instability cannot result,
rather there is a sudden degradation of performance following
removal of actuator 3. The ANC system then reconfigures the
control to restore performance to the maximal possible extent.
Similarly figure 19 shows what happens when a second
actuator, actuator 6, is also disabled. Again, the reconverged
response with 27 dB RMS attenuation shows essentially no
performance degradation relative to case 1. All of these
results are fully consistent with the least-squares solutions
to the feedforward control problem given the number of
actuators that are operational. In all cases, regardless of
the number of actuators that were operational, the control
adaptation proceeded autonomously with no prior modeling
information or human intervention.

4. Conclusion

In this paper we have provided a brief review of our analytical
and experimental work in the development of the ANC
architecture. Further, we have highlighted the most recent
demonstrations of ANC for MIMO feedforward control of
tonal disturbances on the ASTREX test facility. These
preliminary test results demonstrated the capability of ANC
to accomplish partial to full controller recovery following the
simulated failure of up to one third of the control actuators.
In addition, the system developed used an architecture that
combined analog and digital ANC elements. This resulted
in the very low throughput required. Further testing efforts
on the ASTREX facility will concentrate on streamlining the
current algorithms so as to significantly increase convergence
speed and be ready for flight demonstration. The next
step in the development of ANC technology should be to

Figure 19. Case 3, closed loop angular velocity PSDs—actuators
3 and 6 disengaged.

demonstrate broadband adaptive cancellation using a small
flight-like processor such as the active control patch. This
would give potential users confidence that the technology
could be integrated into their existing or planned systems with
little overhead in terms of cost, volume, weight, or power.
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