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Abstract
A low-cost wireless sensing unit is designed and fabricated for deployment
as the building block of wireless structural health monitoring systems.
Finite operational lives of portable power supplies, such as batteries,
necessitate optimization of the wireless sensing unit design to attain overall
energy efficiency. This is in conflict with the need for wireless radios that
have far-reaching communication ranges that require significant amounts of
power. As a result, a penalty is incurred by transmitting raw time-history
records using scarce system resources such as battery power and bandwidth.
Alternatively, a computational core that can accommodate local processing
of data is designed and implemented in the wireless sensing unit. The role of
the computational core is to perform interrogation tasks of collected raw
time-history data and to transmit via the wireless channel the analysis results
rather than time-history records. To illustrate the ability of the
computational core to execute such embedded engineering analyses, a
two-tiered time-series damage detection algorithm is implemented as an
example. Using a lumped-mass laboratory structure, local execution of the
embedded damage detection method is shown to save energy by avoiding
utilization of the wireless channel to transmit raw time-history data.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Many benefits can be gained from monitoring the ambient
and forced response of civil structures such as buildings,
bridges, and dams. For example, determination of a structure’s
dynamic properties from ambient recorded responses can
help engineers to identify structural vulnerabilities to large
external disturbances. Recorded response data obtained by

5 Author to whom any correspondence should be addressed.

structural monitoring systems during earthquakes have proven
helpful in identifying response discontinuities attributable
to structural damage [1]. As the structural engineering
field progresses towards performance-based design principles,
structural monitoring systems can provide extensive empirical
data that can be used to refine building codes and improve
structural models. Structural monitoring can also provide
structure owners with rapid insight into the level of seismic
excitation exerted on their structures, identify whether their
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structures are safe for occupants following an earthquake and
what can be done to improve structural integrity for long-term
risk management [2].

The current California Building Code (CBC), based
upon the 1997 Uniform Building Code (UBC), recommends
installation of structural monitoring systems in structures
situated in zones of high seismic activity. A minimum of three
accelerometers is suggested for buildings with dimensions
of six or more stories and total floor areas greater than
5500 m2 [3]. In addition to buildings, long-span bridges
and dams have been instrumented with monitoring systems
to measure their responses to earthquakes. In California,
over 900 sensing channels have been installed on 60 long-
span bridges by the California Department of Transportation
and over 100 dams have been instrumented by the California
Division of Safety of Dams [4]. Internationally, structural
monitoring systems are also widely used to monitor broad
classes of structures.

Today, the cost of installing structural monitoring systems
in civil structures can be characterized as high. For example,
structural monitoring systems installed in buildings can cost
$5000 per channel with typical installations using 12 sensing
channels resulting in total system costs of over $60 000 [5].
The expensive nature of structural monitoring systems is a
direct result of the high installation and maintenance costs
associated with system wires. For example, just the installation
of the monitoring system can represent up to 25% of the
total system cost where 75% of the installation time would
be focused solely on the installation of the system wires [6].
In outdoor applications such as bridges, potentially harsh
environmental conditions necessitate additional efforts to
install system cables in weatherproof conduits, thereby raising
installation costs further. A direct result of high installation
costs is that system end users often elect to install a small
number of sensors throughout the structure. Small-scale
installations are often found to be insufficient for high-rise
structures where structural responses are characterized by
high-frequency modes with strong participation factors [5].

In cable-based monitoring systems, sensors embedded in
the structure communicate their measurements to centralized
data repositories. Sensors have no means to locally process
their data; rather, the centralized data server is responsible for
the aggregation, storage and processing of all measurement
data. With engineering analyses, such as damage detection
procedures, ordinarily performed by the centralized data
server, the monitoring system can become overburdened
with computational tasks if the system is comprised of a
large number of sensors and stringent real-time demands are
imposed on the analysis.

In response to the cost and performance shortcomings
of centralized cable-based structural monitoring systems,
advanced embedded system technologies have been explored
for adoption in recent years. For example, the use of
wireless communications to transfer sensor measurements to
a centralized data acquisition server was first illustrated by
Straser and Kiremidjian [6]. Their work was instrumental
in proving the reliability and cost-effectiveness of wireless
communications in lieu of extensive cabling in a structure.
More recently, Lynch et al [7] have extended their work
to couple computational power in the form of low-cost

microcontrollers with wireless sensor nodes. The intended
purpose of integrating computational power directly with
sensors is to permit localized execution of embedded
engineering analyses by sensors. Many benefits can be
immediately reaped from a wireless monitoring system with
embedded computational power. First, decentralization of
computational power permits an efficient infrastructure for
parallel processing of data. Second, because wireless radios
consume large amounts of battery power, processing data at the
sensor and transmitting only the results reduces the quantity of
raw time-history data to be wirelessly transmitted. Therefore,
limited use of the wireless radio can dramatically improve the
overall energy efficiency of the wireless structural monitoring
system. Energy efficiency is of primary concern because
portable batteries with finite operational durations represent the
most likely power source for the system’s sensor nodes. Other
research teams in both academia and industry are producing
wireless sensing networks for a variety of applications [8–11].
However, many of the systems developed are generic and do
not address the unique demands of the structural monitoring
domain where low-power consumption characteristics need
to be balanced by far-reaching communication ranges and
sufficient computational capabilities for autonomous data
processing.

The objective of this research is to present a state-
of-the-art wireless sensing unit that is designed for use as
a fundamental building block of energy-efficient wireless
structural monitoring systems. The research aims to develop a
hardware design that is low-cost, low-power yet functionally
comparable to current cable-based structural monitoring
systems. The embedded intelligence of the wireless sensing
unit is in the form of a sophisticated dual-processor core that
can be used for localized data interrogation. Interrogation
of data directly at the sensor node reduces the demands on
the wireless radio thereby preserving the life span of portable
power supplies. To illustrate the strength of the computational
core, a realistic engineering analysis is embedded in the sensing
unit and executed on raw time-history data obtained from a
simple lumped-mass laboratory test structure. The embedded
analysis chosen for this study is a two-tiered time-series
damage detection procedure based upon a statistical pattern
recognition paradigm [12]. Damage detection is chosen in
this study for inclusion in the wireless sensing unit core
because the autonomous execution of such an analysis by the
monitoring system nodes is a first step towards developing
a comprehensive structural health monitoring system for civil
structures. Energy consumed by the wireless sensor in carrying
out the embedded damage detection procedure is compared to
the energy needed to transmit a raw time-history record. The
paper concludes with a brief discussion of the study results and
presents current research efforts to embed a broader class of
algorithms in the wireless sensing unit core.

2. Design of a wireless sensing unit for structural
monitoring

A wireless sensing unit is designed as the cornerstone
component of a wireless structural monitoring system for
civil structures [13, 14]. At the outset of the design process,
functional requirements of the sensing unit are specified that
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reflect the demands of structural monitoring applications.
First, low-power consumption characteristics of the wireless
sensing unit are sought to ensure long-lasting autonomous
operation before battery replacement is required. Furthermore,
the range of the wireless communication channel must be on
the order of 100 m to permit sufficient separation of the units
in large-scale structural systems. An additional motivation for
seeking wireless radios with long range is that they exhibit
superior propagation properties within enclosed structures
such as buildings and dams. A low-cost wireless sensing
unit is sought, thereby encouraging installation of structural
monitoring systems defined by high sensor densities.

A modular approach is taken in the design of the wireless
sensing unit. Principally, the design of the sensing unit can
be divided into three functional modules: sensing interface,
computational core, and wireless communications. A modular
design approach results in a sensing unit that can easily
be upgraded as embedded system technologies continue to
mature. In addition, dividing the sensing unit design into
functional categories favors optimization of each module with
respect to cost, desired functionalities, and power consumption
characteristics.

2.1. Sensing interface

A plethora of sensors can be used to measure the environmental
loading and response of structural systems. The wireless
sensing unit should be capable of permitting easy interface
of traditional sensors such as accelerometers and strain gages
as well as new sensors potentially relevant to structural
monitoring applications. A sensor transparent interface is
designed with multiple channels to accommodate sensors with
both analog and digital outputs. Such a multi-channel interface
supports multi-sensor data fusion where the outputs of some
sensors are used to attain accurate calibration or enhancement
of another [15].

The key hardware component of the sensor interface
is a single-channel, 16-bit analog-to-digital (A/D) converter
that is chosen to accommodate external sensors with analog
outputs. With a maximum sampling rate of 100 kHz, the
Texas Instruments ADS7821 A/D converter can even be used
to collect the local response of structural members whose
dynamics are defined by high-frequency modes. At the
maximum sampling rate of 100 kHz, the converter draws
16 mA of current. For lower sampling rates (20–200 Hz), the
current draw of the A/D converter will be on the order of 1 mA.
Two additional sensor channels are provided by the interface
for external sensors with digital outputs. In total, three sensor
channels are provided by the sensing interface.

2.2. Computational core

The most important component of the proposed wireless
sensing unit design is the computational core. Core
responsibilities include overall operation of the wireless
sensing unit in addition to the processing of acquired
time-history data. The core is comprised of embedded
microcontrollers and their appropriate support circuitry.
Commercial microcontrollers come in different sizes (internal
bus size), speeds and costs. Low-power microcontrollers
tend to be found in eight-bit architectures. While such

microcontrollers could easily accommodate the operation of
the sensing unit, computationally intense engineering analyses
embedded in the core would be difficult to implement. To
address the need for high analysis throughput, higher-end
microcontrollers, namely 32-bit architectures, are required.
Unfortunately, the power consumption characteristics of 32-
bit microcontrollers exceed design requirements and would
drain portable power supplies rapidly. A balance can
be attained by designing a computational core with two
processors: a low-power eight-bit microcontroller for overall
unit operations and a 32-bit microcontroller for execution
of embedded engineering analyses. Normal operation of
the wireless sensing unit would rely upon the eight-bit
microcontroller. When data are ready for processing, the eight-
bit microcontroller would turn the 32-bit microcontroller on
and command it to interrogate the data. Upon completion
of the prescribed analyses, the eight-bit microcontroller will
record the results and turn the 32-bit microcontroller off.
This master–slave relationship exploits the strengths of the
two microcontrollers, resulting in an overall low-power core
without sacrificing computational capabilities.

A low-power eight-bit microcontroller is selected to
control the data acquisition operation of the wireless sensing
unit. Specifically, the Atmel AVR AT90S8515 microcontroller
is chosen [16]. By leveraging the internal services provided
by the AT90S8515, reliable acquisition of sensor data from
the sensing interface can be performed in real time. The
wireless communication channel is directly accessed through
the AT90S8515’s serial port. With only 8 kB of read-only
memory (ROM), 512 B of random access memory (RAM) and
limited computational speeds available on the AT90S8515,
a second microcontroller is selected for inclusion in the
computational core. The Motorola MPC555 PowerPC, a high-
performance 32-bit microcontroller, is selected for the task of
local data interrogation [17]. With 448 kB of ROM and 26 kB
of RAM onboard, in addition to a faster clock rate of 20 MHz,
intensive data processing not possible on the AT90S8515 can
now be performed with ease by the PowerPC. The AT90S8515
(at 4 MHz) draws 8 mA of current when turned on and active
while the MPC555 (at 20 MHz) draws 110 mA. When placed
in sleep mode, both microcontrollers draw reduced currents of
2.5 and 4 mA for the AT90S8515 and MPC555 respectively.

When data are collected from an externally interfaced
sensor, the measurement data can be stored in two memory
locations. A static random access memory (SRAM) chip is
added to the computational core to hold long time-history
records. A Hitachi HM628512B SRAM chip, with a 512 kB
capacity, is selected for this purpose because of its rapid
read and write times, as well as its low-power-consumption
characteristics. For shorter time-history records, the internal
RAM of both the Atmel AVR and Motorola PowerPC
microcontrollers can be used.

2.3. Wireless communications

In exchange for reliable cable-based communications, a low-
cost and flexible wireless communication system is chosen.
For installation in civil structures, wireless communication
components must have node to node ranges of over 150 m
and employ spread spectrum techniques to ensure reliability
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in the face of channel interference, multi-path reflection, and
path losses. Furthermore, wireless communication requires
adequate penetration characteristics through typical civil
engineering materials such as heavily reinforced concrete [18].

The Proxim RangeLAN2 7911 radio modem is selected to
serve as the wireless technology for the sensing unit. Operating
on the 2.4 GHz unregulated FCC industrial, scientific, and
medical (ISM) band, the RangeLAN2 communicates at a data
rate of 1.6 Mbps. A standard RS232 serial port interface
is provided by the modem for direct communication with
the computational core. By employing a 1 dBi omni-
directional antenna, open space communication ranges of
over 300 m can be attained, which is a suitable range for
the installation of sensing units on bridges. However, the
shielding behavior of heavy construction (e.g. concrete)
could reduce the range to approximately 150 m when used
in the interior of structures. The wireless modem draws
190 mA of current while actively receiving and transmitting.
Compared to the power consumption characteristics of the
computational core, the large power demands of the wireless
modem provide additional motivation for performing as many
data interrogations as possible using the sensing unit.

2.4. Wireless sensing unit construction and validation

To house the chosen circuit components, a two-layer printed
circuit board is designed and fabricated. The circuit board
is designed to keep the form factor of the wireless sensing
unit low and to minimize the electrical noise environment. A
limitation of the two-layer circuit board design is its inability
to sufficiently separate analog and digital circuit components,
resulting in low levels of injected noise in the A/D conversion
process. As a result, the effective resolution of the conversion
is on the order of 13 bits. The loss of A/D resolution is
regained by the wireless sensing unit by over-sampling the
sensor output with consecutive samples averaged to eliminate
electrical noise. The wireless sensing unit can be powered by
a 6 V or higher direct current (DC) power supply. In particular,
a high-energy-density (Li/FeS2 cell chemistry) 7.5 V battery
pack is chosen to power the completed wireless sensing unit. A
conservative estimate for the anticipated life expectancy of the
wireless sensing unit using this battery pack is approximately
50 total hours; duty cycle usage in the field could extend the
50 h battery life to the order of a year.

The completed wireless sensing unit, as pictured in
figure 1, has been previously tested and its performance
validated in both laboratory and field settings. Simple
laboratory test structures have been used to successfully
collect data from microelectromechanical system (MEMS)
accelerometers in addition to locally calculating the frequency
response functions of time-history data [7]. The unit has
also been taken to the field for instrumentation upon the
Alamosa Canyon Bridge in southern New Mexico in parallel
to a commercial cable-based data acquisition system. The
accuracy of the wireless monitoring system has been shown to
be comparable to that of the commercial system. In addition,
installation of the wireless sensing units on the bridge was
completed in less than half the time required for the cable-
based system [19].

3. Embedded algorithms for local data interogation

Nearly an infinite number of engineering analyses can be
envisioned for embedment within the proposed wireless
sensing unit. For instance, data interrogation tasks associated
with damage detection, system identification, and structural
control can be of primary interest to the structural engineering
community. All of the methods mentioned share the common
task of processing raw time-history records to extract pertinent
results of great interest to the system end user. Currently, these
analyses would be carried out by an engineering professional
off line and often long after the data was collected. A
distinctive characteristic of the wireless sensing unit is its
ability to execute in real time embedded engineering analyses.
This characteristic is attractive from a functional standpoint
because the individual nodes of the wireless monitoring
system can interrogate their measurements, resulting in parallel
processing of time-history data. As will be shown, an
additional attraction of using the wireless sensing units for data
processing is the tremendous gains made in the overall system
power efficiency. To illustrate, this study will focus upon the
implementation of a promising damage detection algorithm
to assess the amount of power saved by the wireless sensing
unit in locally processing raw time-history records in lieu of
transmitting those records to a centralized data server. It should
be noted that other embedded analyses could have easily been
used to draw similar conclusions.

An extensive body of literature has illustrated the
successes and failures of different potential damage detection
algorithms that have been applied to a broad class of structural
systems [20]. Early damage detection methods that relied
upon modal properties and finite element representations
of the structural system have been difficult to apply to
civil structures because of environmental and operational
variability. As a result, statistical time-series approaches
that do not require information on the system variability
have been proposed for detecting possible damage in civil
structures. For example, statistical time-series approaches
have been successfully applied to laboratory test structures and
the hull of a high-speed patrol boat [21, 22]. The statistical
time-series approach has also proven successful in identifying
structural damage that is in the vicinity of accelerometers
collecting response data of a benchmark steel civil structure
during ambient and forced vibrations [23]. An attractive
feature of the time-series approach is that it is intended for
implementation with measurement data collected from a single
node of the dynamic system to detect damage in the vicinity
of the measurement point. Without requiring raw time-history
data to be exchanged between sensor nodes, the computational
self-sufficiency of the wireless sensor is preserved by the
analysis methodology.

3.1. A statistical time-series damage detection algorithm

By viewing the detection of damage in a structural system
as a pattern classification problem, many tools available for
statistical pattern recognition can be evaluated and deployed.
The success in applying those tools lies in judiciously choosing
appropriate indicators of the structural system that exhibit
change to damage. From a structural dynamics standpoint,
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Figure 1. Fully fabricated unit (left) and organizational design (right) of the wireless sensing unit.

time-series models commonly used in system identification
studies are natural candidates that exhibit sensitivity to
structural damage.

As proposed by Sohn et al [22] the time-series analysis
begins with some response measurements, y, of the structure
at a particular sensor location. Assuming the response to be
stationary, an auto-regressive (AR) process model is used to
fit the discrete measurement data to a set of linear coefficients
weighing past time-history observations:

yk =
p∑

i=1

by
i yk−i + r y

k . (1)

The response of the structure at sample index k, as denoted
by yk , is a function of p previous observations of the system
response, plus a residual error term, r y

k . Weights on the
previous observations of yk−i are denoted by the bi coefficients.
A large number of AR models can be derived for an undamaged
structure under a variety of operational conditions to populate
a database consisting of AR model coefficients (bDB

i ). This
database is important since it provides a statistical basis for
judging whether future AR models represent statistical outliers
(and hence indicate possible damage). If the structure is
damaged, an AR model fit to time-history data would not
be in agreement with the database models that correspond
to the undamaged structure. Model agreement, D, can be
calculated by determining the Euclidian distance between
coefficient vectors of the AR model calculated and those
in the database. Essentially a nearest-neighbor approach,
small distances between coefficient vectors suggest very strong
agreement between two time-series models:

D =
p∑

i=1

(
bDB

i − by
i

)2
. (2)

It is assumed that the residual error of the AR model, r y
k , is

influenced by the unknown excitation input to the system.
As a result, a second time-series model is chosen to model
the relationship between the residual error and the measured
response of the system. For this second model, an auto-
regressive with exogenous inputs (ARX) model can be chosen:

yk =
a∑

i=1

αi yk−i +
b∑

j=0

β jr
y
k− j + ε

y
k . (3)

Coefficients on past measurements and the residual error of
the AR model are αi and βi , respectively. The residual of

the ARX model, ε
y
k , is a damage sensitive feature used to

identify the existence of damage in the structure regardless
of its operational state. Statistics of the residual error in the
ARX model will then be used to hypothesize damage in the
structure.

3.2. Implementation of the two-tiered time-series damage
detection algorithm

To implement the statistical pattern recognition approach, the
structure is observed in its undamaged state under a variety of
environmental and operational conditions in order to populate
a database of AR models of dimension p (denoted as AR(p))
paired with ARX models of dimension a and b (denoted as
ARX(a, b)). The standard deviation of the residual error of the
database ARX model, σ(εDB), is also stored. Prior to using the
raw time-history records, the mean and variance of the records
are normalized to zero and one respectively. After measuring
the response of the structure, yk , in an unknown state (damage
or undamaged), an AR(p) model is fitted. The coefficients of
the fitted AR model are compared to the database of AR–ARX
model pairs previously calculated for the undamaged structure.
A match is determined by minimizing the Euclidian distance,
D, of the newly derived AR model and the database AR model
coefficients, by

i and bDB
i , respectively. If no structural damage

is experienced and the operational conditions of the two models
are close to one another, the selected AR model from the
database will closely approximate the measured response. If
damage has been sustained by the structure, even the closest
AR model of the database will not approximate the measured
structural response well.

The measured response of the structure in the unknown
state, yk , and the residual error of the fitted AR model, r y

k ,
are substituted into the database ARX model to determine the
residual error, ε

y
k , of the ARX model:

yk =
a∑

i=1

αDB
i yk−i +

b∑
j=0

βDB
j r y

k− j + ε
y
k . (4)

The residual error of the ARX(a, b) model is the damage
sensitive feature in the analysis. If the structure is in a state of
damage, the statistics of the ARX model residual, εy

k , will vary
from that of the ARX model corresponding to the undamaged
structure. In particular, damage can be identified when the
ratio of the standard deviation of the model residual error
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Figure 2. Functional illustration of the autonomous damage detection procedure.

exceeds a threshold value established from good engineering
judgment [22].

σ(εy)

σ (εDB)
� h. (5)

Establishing a threshold, h, that minimizes the number of
false-positive and false-negative identifications of damage is
necessary for robust damage detection.

The wireless sensing unit will be used to embed the
statistical time-series damage detection method presented.
Given the memory limitations of the wireless sensing unit,
storage of a database of AR and ARX coefficients is done
using a remote data server. The implementation details using
the wireless sensing unit are presented in figure 2. The wireless
sensing unit is chiefly responsible for the determination of AR
model coefficients as well as processing the data through the
ARX model that would be obtained from the remote server.
The wireless sensing unit, after calculating the ARX residual
error, would make the ultimate decision if damage is potentially
present in the system within the vicinity of its respective node.

3.3. Embedded firmware development

An abstraction layer approach is taken for writing embedded
software (also termed firmware) for the wireless sensing unit.
The lowest layer of firmware is written to directly interact
with hardware subsystems of the sensing unit thereby hiding
implementation details from upper software layers. An upper
software layer that sits upon the lowest layer is reserved for
embedded engineering analyses. At both layers, the unique
programming demands of the wireless sensing unit such as
limited on-board program and data memory must be addressed
to deliver an optimized program.

Software is written to allow the wireless sensing unit
to autonomously execute the statistical pattern recognition

damage detection method. The code will be responsible for
data normalization, determination of statistical means and
variances, and the calculation of predicted outputs from time-
series models. However, the most challenging component of
the analysis is the code required to determine the AR model
coefficients based on a segment of the recorded time-history
data. Numerous computational options are available for the
determination of AR model coefficients. For example, if the
auto-regressive model is written for each of the system’s N
outputs, a matrix form of the auto-regressive process can be
written:



yp yp−1 · · · y1

yp+1 yp · · · y2
...

...
. . .

...

yN−1 yN−2 · · · yN−p







b1

b2
...

bp




=




yp+1

yp+2
...

yN




. (6)

Assuming the measurement matrix to be over-determined
(N � p) and invertible, a least-squares solution to equation (6)
could be taken to calculate the coefficients of an AR model.
In this study, an alternative approach to determining the AR
model coefficients is taken. In particular, Burg’s method
is selected because it is more stable and ensures greater
accuracy compared to the least-squares approach which
involves complex matrix inversion operations [24].

The maximum entropy method (MEM) of spectral
estimation as proposed by Burg can be used to find an AR
time-series model of measurement data equally spaced in
time. Burg’s method begins by finding a single-coefficient
AR model by minimizing the power of the model’s prediction
error. Subsequent steps find AR models of increasing order,
m + 1, that minimize the prediction error power based on the
measurement data and the previously calculated AR model of
order m [25]. This process is repeated until an AR model of
the desired order, p, is achieved.
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Figure 3. Experimental lumped-mass test structure with damage induced by bumpers between adjacent masses.

4. Validation of the embedded time-series algorithm

Raw time-history measurements taken from previous testing
of a lumped mass laboratory test structure are used to illustrate
the successful execution of the embedded time-series damage
detection procedure. The lumped mass model is comprised
of eight cylindrical aluminum disks (25.4 mm thick, 76.2 mm
diameter) that are free to slide along a common steel rod with
coil springs placed between adjacent masses. Each aluminum
disk is 419.4 g, except for the first whose mass is 559.3 g,
while the spring constants of the coil springs are 56.7 kN m−1.
Structural damping is derived from Coulomb damping between
the aluminum disks and the steel rod. Endevco 2251A-
10 accelerometers are firmly attached to each mass of the
system to measure transverse acceleration responses from
input excitations imparted by a 215 N electro-dynamic shaker.
To induce damage to the structure, adjustable bumpers are
placed between masses that make contact when the system is
excited by a large force. A picture of the complete test set-up
is presented in figure 3 with the aluminum disks numbered.

Sohn and Farrar [12] have extensively used the laboratory
test structure to test the proposed time-series damage detection
method. In their study, a cable-based laboratory data
acquisition system was used to collect the acceleration
response of the system to white-noise excitations of prescribed
standard deviations. Their time-history records are each 4096
points in length and have been collected at a sampling rate of
512 Hz and a resolution of 16 bits. The response time-history
records collected by their study are stored in their 16-bit digital
representations within the wireless sensing unit memory banks
for analysis by an embedded damage detection analysis. To
simulate the effective 13-bit resolution of the wireless sensing
unit A/D converter, Gaussian white noise equivalent to 3 bits
of resolution is added to the time-history data.

For both the undamaged (no bumper) and damaged
(bumper) states of the structural system, the force transducer
is set to exert forces at two operational levels (white-noise
forcing functions characterized by standard deviations of 26.6
and 31.1 N). Using response data obtained from the undamaged
structure, a database of AR(30)-ARX(5, 5) model pairs is
populated. Selection of 30 coefficients for the AR model
is determined from the lag value where the autocorrelation
function of the response is below a critical threshold near zero.
Likewise, the dimensions of the ARX model are chosen to be
smaller than the dimension of the AR model as recommended
by Ljung [26].

Damage in the structural system is modeled by adjusting
the bumper between selected masses to ensure contact during
the external excitation [12]. The bumper on the first mass

is adjusted to induce contact between mass 1 and 2. The
complete two-tiered time-series analysis embedded in the
wireless sensing unit is locally executed. Table 1 shows the
analysis results, as determined by the wireless sensing unit,
with the ratio of standard deviations of equation (5) tabulated.
As presented in table 1, damage is easily identified by the
peak in the standard deviation ratio for the data processed
in the vicinity of mass 2. The computational core of the
wireless sensing unit has successfully executed the time-series
algorithm for detecting the possible existence and location of
damage in the system.

5. Energy efficiencies gained from local data
interrogation

The proposed wireless monitoring system places a strong
emphasis upon leveraging the computational strengths of the
unit’s core to first interrogate data and to then communicate
the results to adjacent wireless sensor nodes. Transfer
of long records of measured time-history data is not an
efficient use of the wireless medium and should be avoided
for real-time communication when possible. Results that
sufficiently represent the original raw time-history data and
that can be communicated to the wireless network include
modal frequencies, location and severity of potential structural
damage and sensor status information. While transmission of
analysis results is preferred from an energy standpoint, raw
time-history data can still be locally stored and queried for
transmission at a later time.

The rationale for employing the wireless sensing unit’s
computational core to attain energy efficiency is best explained
through the use of an example. Consider an operational
scenario where the wireless sensing unit is used to collect
a raw time-history record of 4096 points. Since each data
point produced by the A/D converter is represented by a 16-bit
integer, the resulting record is in total 65 536 bits (8192 B).
The RangeLAN2 radio is capable of sending data packets with
a maximum size of 1462 B (including 14 B of overhead per
packet). As a result, the entire time-history record can be sent
using six packets. At a communication baud rate of 19 200
bits per second, the wireless radio requires 4.3 s of time, t , to
transmit the data during which time the radio draws 190 mA of
current, i . The internal electrical circuit of the wireless radio
is regulated at a voltage, VREG, of 5 V. The total amount of
energy, E , consumed by this operation is then

E = VREGi t = (5 V) (0.190 A)(4.3 s) = 4.09 J. (7)

Alternatively, consider the scenario where instead of
transmitting the raw time-history record, the MPC555
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Table 1. Analysis results of the damaged lumped-mass structure (damage induced in the vicinity of mass 2).

σ(εy)/σ (εDB)
Operational state
Excitation σ (N) Mass 1 Mass 2 Mass 3 Mass 4 Mass 5 Mass 6 Mass 7 Mass 8

31 1.0196 2.5181 1.3289 1.1240 1.1170 0.9780 1.0249 1.0401
31 1.0034 2.4547 1.2561 1.0320 1.0961 1.0022 1.0116 1.0050
31 0.9989 2.4823 1.3454 1.0820 1.0942 0.9799 1.0272 0.9996
26 1.0053 2.3187 1.2603 1.1133 1.0876 1.0605 1.0330 1.1117
26 1.0039 1.9954 1.0219 0.9573 0.9765 1.0209 0.9873 0.9875
26 1.0173 1.9762 1.1441 0.9707 1.0533 1.0463 1.0053 1.0021

microcontroller is used to execute an engineering analysis and
only the results wirelessly transmitted. The MPC555, powered
by a direct current power source that is internally regulated at
3.3 V, draws 110 mA of current. The time required, tMPC555,
for the MPC555 to consume the same amount of energy as that
used by the wireless radio in transmitting a 4096-point record
is given by

tMPC555 = E/(V i) = (4.09 J)/(3.3 V × 0.110 A) = 11.27 s.
(8)

In this assessment, the amount of energy expended by the
wireless radio in transmitting results with sizes of 100 B or
less is negligible. As a result, embedded engineering analyses
that can be performed in less than 11.27 s represent a direct
energy saving in the wireless monitoring system.

To empirically determine the energy efficiency of the
wireless sensor unit in carrying out the entire statistical
pattern recognition damage detection procedure that has been
embedded in the wireless sensing unit core, the execution
time of the procedure is precisely timed. In particular, steps
2 through 4 and 8 through 10, as shown in figure 2, are
individually timed. The 32-bit clock of the PowerPC’s internal
time processing unit (TPU) is employed to serve as a precise
means of timing the execution time of each component of
the procedure. The execution times measured are required
to calculate the amount of battery energy consumed by
the PowerPC processor in executing the damage detection
analysis. The battery energy consumed by the wireless
sensing unit when carrying out the embedded damage detection
algorithm will be compared to the energy required to transmit
the original raw time-history measurement data to a central
data repository.

5.1. Energy consumed by the wireless transmission of raw
time-history data

The experimental data of the lumped-mass structure is stored
within the wireless sensing unit memory bank as floating point
numbers. With each measurement point requiring 4 B of
memory, a 4000-point time-history record represents 16 000
bytes of stored data. To wirelessly transmit these data using
the unit’s RangeLAN2 modem, 11 transmission packets are
used, each with an overhead of 14 B. In total, 16 154 B are
sent to the wireless channel using the serial interface between
the computational core and the modem. This transfer of data
takes 6.73 s using the modem’s 19 200 bits s−1 transfer rate.
Therefore, the energy consumed by the wireless modem can
be determined as follows:

E = VREGi t = (5 V)(0.190 A)(6.7366 s) = 6.400 J. (9)
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Figure 4. Total time of the PowerPC in determining AR coefficients
using the embedded Burgs algorithm (please note the time
discontinuity at 1600 points delineating internal and external
memory usage).

5.2. Energy consumed by the local damage detection analysis

Before an auto-regressive time-series model can be fitted to
the experimental data, the data are first normalized to a zero
mean and unit standard deviation. The execution time required
by the PowerPC to normalize a raw time-history record is a
linear function of the number of data points in the record. A
time-history record of 1600 points stored in external memory
requires 0.0177 s for the PowerPC to normalize while a record
of 4000 points takes 0.0441 s.

Once the time-history record is normalized, an AR time-
series model is fitted to the measurement data. Determination
of the AR model coefficients using Burg’s method will place
the greatest computational demand on the PowerPC processor
and will therefore result in the longest compute time compared
to the other analysis steps. To observe the dependence of
the energy consumed upon the complexity of the algorithm,
the number of data points in the time-history record and the
number of AR coefficients will both be varied. As shown
in figure 5, larger time-history records require more time to
calculate a desired number of AR coefficients. Similarly, for
a fixed number of time-history data points, a larger number
of AR coefficients translates into increases in the processing
time. From a time complexity analysis of the coded algorithm,
both relationships exhibit linear dependences as observed in
the empirical data. For a 4000-sample time-history record,
determination of an AR model of 30 coefficients requires
8.351 s which is orders of magnitude greater than the time
needed to normalize the data.
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Figure 5. Percentage of energy consumed by the PowerPC in
executing the entire damage detection method compared to
wirelessly transmitting raw time-history data.

In figure 4, a discontinuity in the time required for
execution of Burg’s algorithm is witnessed at 1600 data
points. This discontinuity results from data being stored in
two locations on the wireless sensor unit: in internal and
external memory. For shorter time-history records (namely,
those smaller than 1600 data points), the internal RAM of the
PowerPC microcontroller can be used for storing raw time-
history data during Burg’s algorithm. The major advantage of
using this memory is that a minimal amount of time is required
to read and write data, but its disadvantage is its limited
size. For longer time-history records, external memory is
required for storage. Using the wireless sensing unit’s Hitachi
HM628512B SRAM chip that has been incorporated in the
computational core, longer time-history records can be stored
and processed. A clear disadvantage of the external SRAM
is that for every read and write operation approximately four
clock cycles are required, thereby adding time overhead to the
execution of Burg’s embedded algorithm. This is manifested in
the significantly larger execution times for time-history records
greater than 1600 points.

The time required by the wireless sensing unit in
normalizing the time-history data and calculating the AR
coefficients is then used to calculate the total energy consumed
for steps 2 and 3 of figure 3. Equation (10) presents the
energy consumed by the PowerPC in normalizing a time-
history record of 4000 points and subsequently determining
30 AR coefficients:

E = VREGi t = (3.3 V)(0.110 A)(8.351 + 0.044 s)

= 3.047 J. (10)

Once the AR model coefficients have been found by the
wireless sensing unit, the computational core encodes the
coefficients in a single communication packet for transmission
by the wireless modem. Each coefficient is stored as a
floating point number and requires 4 B of memory. The time
required by the wireless modem to wirelessly communicate the
coefficients using a transfer rate of 19 200 bits s−1 is a linear
function of the number of coefficients. For an AR model of
ten coefficients, the RangeLAN2 requires 0.0225 s to transmit.
However, when 30 AR coefficients are considered, the modem
requires 0.0558 s. Once the central data repository has received

the AR model, the AR model is compared to a database of AR
models of the structure in an undamaged state. The closest
model from the database is identified and the AR database
model’s corresponding ARX model is wirelessly transmitted
back to the sensing unit. To receive the ten coefficients of an
ARX(5, 5) model, the wireless modem requires 0.0242 s of
operation. Therefore, to complete steps 4 and 8 of the damage
detection analysis, the wireless modem will consume 0.076 J
of energy:

E = VREGi t = (5 V)(0.190 A)(0.0558 + 0.0242 s)

= 0.076 J. (11)

In the final stages of the damage detection analysis, the
normalized time-history data stored in the wireless sensing
unit are applied to the ARX time-series model to determine
the model prediction error. Again, the analysis time of the
PowerPC is found to be a linear function of the time-history
record size. For records of 1600 points, 0.0609 s are required to
determine the model error while records 4000 points in length
take 0.1514 s. The standard deviation determined using the
model error is calculated in step 10. Again, a linear relationship
is found between the energy and the size of the time-history
record. Records of 1600 and 4000 points require 0.0136
and 0.0338 s respectively. In total, the energy consumed
during steps 9 and 10 using a 4000-point time-history record
is approximately 0.0672 J.

Table 2 summarizes the energy schedule of the wireless
sensing unit in determining damage from a time-history record
of 4000 points using an ARX model of order p = 30. As
shown, the total energy consumed by the wireless sensing
unit in locally executing the embedded damage detection
algorithm is approximately 3.19 J. Requiring 3.031 J of energy,
determination of the AR model coefficients by Burg’s method
consumes 95% of the total energy required for the analysis.
None the less, the 3.19 J of energy needed to execute the
embedded analysis is slightly less than 50% of the 6.4 J of
energy consumed by the wireless sensing unit in transmitting
the raw time-history record to a central data repository
without performing any local data interrogation. This serves
as an illustration of the energy efficiencies associated with
locally processing raw time-history data in lieu of its wireless
transmission. In this case, a 50% saving in energy can be
reaped.

Figure 5 presents the total energy consumed by the
PowerPC in executing the damage detection method as a
percentage of the energy required for transmission of the data
using the wireless modem. With Burg’s method controlling
the energy consumed, the energy analysis is considered for
various AR model sizes and record lengths. As shown,
significant gains in energy efficiency of the wireless structural
health monitoring system are gained by local processing of
measurement data. However, the energy saved by localized
data interrogation is a function of the number of AR coefficients
desired and not of the length of the time-history record. This is
because increased energy consumption during interrogation of
larger time-history records is cancelled by the increased energy
needed to wirelessly transmit the record.
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Table 2. Summary of energy consumed by the wireless sensing unit in executing the embedded damage detection analysis on a 4000-point
time-history record.

Execution time Power consumed
Analysis step Component used (s) (J)

2—normalization PowerPC 0.044 0.016
3—AR model fitting PowerPC 8.351 3.031
4—send AR coefficients RangeLAN2 0.056 0.053
8—receive ARX model RangeLAN2 0.024 0.023
9—process ARX model PowerPC 0.151 0.055
10—find model error STD PowerPC 0.034 0.012

Total — 8.660 3.190

6. Conclusions

The development of a wireless sensing unit for deployment
in future structural monitoring systems is presented. A
major innovation of the proposed unit is the convergence
of wireless communications and embedded microcontrollers
with sensors. Wireless communications eradicate a need
for expensive cabling in a structure while microcontrollers
facilitate localized processing of raw time-history data prior
to transmission in the wireless network. Distributing
computational power throughout the sensor network in this
manner attains higher energy efficiency, thereby preserving
portable battery operational lives.

This study has focused upon illustrating the performance
of the wireless sensing unit computational core by embedding
a promising approach to the damage detection problem:
statistical pattern recognition damage detection using AR and
ARX time-series models. Details unique to implementation in
the limited resource microcontroller are addressed. An eight-
degree-of-freedom laboratory test structure, whose response
data are readily available, is used. The wireless sensing
unit is configured for autonomous execution of the embedded
damage detection algorithm. With damage introduced in the
vicinity of mass 2, the wireless sensing unit was successful
in observing significant elevations in the ratio of the ARX
model’s residual error standard deviation. The study explored
the amount of energy consumed by the wireless sensing
unit in carrying out the damage detection analysis. The
energy saved by performing the damage detection at the
sensor node as compared to wirelessly transmitting the original
raw time-history data is shown to be on the order of 50%.
Burg’s recursive procedure for determining optimal AR model
coefficients consumes the majority of the analysis energy. As a
result, the size of the AR model should be judiciously selected
so as to further reduce the total energy required by the sensing
unit, thereby extending the battery life.

Many lessons were learned by performing an energy
analysis of the wireless sensing system. End users of the
proposed wireless monitoring system must be conscious of
the complexities of their embedded analyses with algorithm
execution times calculated and empirically verified. For
example, it is possible for some exhaustive analyses to
consume more energy than that required to wirelessly transmit
the data to a remote server for processing. These observations
underscore the importance of writing embedded algorithms
that have been optimized to perform as rapidly as possible.
Another important observation to be made is that analyses
that can be performed solely within the internal RAM of

the PowerPC processor will be highly desirable as a means
of saving energy. With respect to the chosen hardware
components of the wireless sensing unit, further energy savings
could have been gained by choosing different components with
better power consumption characteristics. For example, Min
et al [9] have considered the energy attributes of the hardware
design of a wireless sensor network for the attainment of a
low-power solution.

Plenty of opportunity exists for extending this work
to encompass additional embedded algorithms for localized
execution in the wireless sensing unit. Previous work has
explored embedding fast Fourier transforms in the wireless
sensing units to derive the frequency response function of
structural systems from raw time-history data. For example,
frequency response functions calculated by the wireless
sensing unit have been used to estimate the modal frequencies
of the Alamosa Canyon Bridge in New Mexico [13]. As the
field of damage detection matures, additional damage detection
methods can be considered for embedding as they arise.
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