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ABSTRACT

This study considers the problem of approximating a prescribed
impulse response function, h(t), at a finite number of equally-spaced
discrete values of t, by a linear combination of exponential functions,
such that the resulting error is minimum in the Chebyshev sense.
Specifically, given a set of q values {h(ti)} of h(t), where
ti =t + (i-1)at, for i = 1,2,...,q; find the 2n complex constants

t
{a,,s}, k = 1,2,...,n, of the function h(t a e =~ so that
b k )

the Chebyshev error

A max o
letlly = 1<i<q MiEy) - hE)l
is minimum when q > 2n.

The 2n complex constants {ak, sk} are limited to a set having

the complex ak's and sk'.s occur in conjugate pairs. If the exponents

{sk} are not distinct, then for each repeated exponent, s s thet ap-
sk

proximating function possesses terms of the form {e

t
t:| 1 sk } where j denotes the order of the repeated exponent,

XXiv



{sk}. The approximating impulse response function is such that its
Laplace transform can be expressed in rational fraction form. If
each exponent, s , of the approximating function, has a negative or
zero real part, then this rational function can be realized as a linear,
passive, lumped, bilateral R-L-C network. ,

The discrete time domain approximation problem is formulated
in terms of an approximation in the finite dimensional vector space.
Such a formulation depicts the relation between the exponents of the
exponential functions and the orientation of the approximating subspace.
Prony's method for determining the exponents, when q = 2n, is re-
viewed and is formally extended to the case when q > 2n. The formal
extension of Prony's method is used to solve the Chebyshev approxima-
tion problem considered in this thesis.

A theorem guaranteeing the existence of the best Chebyshev ap-
proximation is proved. It is shown by means of examples, that the
best Chebyshev approximétiéﬁ nflvay: not be unique. Several properties
of the Chebyshev approxiﬁatioh ére obtained, including the bounds
within which the minimﬁl va.lvue v:of. ”‘?(ti)uds must lie. It is conjectured
that, in general, the best Chebjshev(apvajoximation is characterized
as that for which at least. (2n+1) valués,of.'v{c(ti)} are equal in abso-

It is Sh'bwn, \ﬁOWéver, that there are some

lute value to e(t,)] -

special cases which do not possess this property.

<



Finally, a computational algorithm for solving the Chebyshev
approximation problem is presented, along with some numerical
examples. This algorithm determines the optimum ak's and sk's

simultaneously.

XXvi



CHAPTERI

| INTRODUCTION

The time domain network synthesis problem consists of finding -
a practical network which yields the prescribetl impulse response
function. The solution to this problem is ’rarely an exact one because
of'the,following limitations: (1) ‘The resulting network must be physi-
cally realizable; and (2) it must ;employ only a finite number-of ele-
ments. Thus, the synthesis problem is basically an approximation
problem in which the physically realizable imp'ulse r‘esponse functions
are the approximating functions: This study is concerned almost en-
tirely with the approximation problem. Specifically, we shall be con-
cerned with "discrete-approximations' -where the prescribed impulse
response function is approximated at a finite number of equally-
spaced discrete values of the independent variable, time, by physi-
cally realizable impulse response functions.

In this chapter, after defining the notation used throughout this
‘thesis, we shall present the two steps which are essential to the
general approximation problem: (1) the select1on of a class of ap-
proximating funct1ons, and (2) the selection of a cr1ter1on wh1ch
measures the degree of the approx1mat10n Then we shall formu-' '

late the approx1mat1on problem and present the plan of th1s thes1s



1.1 Notation and Definitions

The prescribed impulse response funct1on to be approximated is
denoted by h(t), and the approx1mat1ng functlon is denoted by h(t a,s).
Both functions-are defined for all:t in the interval g , Where, if not
otherwi_sesment_ioned, - denotes the semi-infinite interval [0,). The
ordered pair of n-vectors (@, s) stand for the 2n pa.rame,ters1 of the
approximating function ﬁ(t'-oz ,8). ‘The approXimating“function ﬁ(t' a,s)
is selected from the set J = Ah(t;a,s) : te ,7; ged, 8¢ 1,
where? ”ds denotes: the parameter space of the vector a with respect
to a fixed's e -,aeandv-,?? denotes the parameter space of the vector s.
A precise definition of the spaceS« 54 S and W is given in the next sec-
tion. -

At this point, it is noted that there are two different types of ap-
proximations available. . One is called the "continuons-time" approxi-
mation in which we wish to-approximate the prescribed function for
allt ¢ J; and the other is called the "discrete-time' approximation
in which we wish to approximate the prescribed function only at a -

. finite number of ‘discrete values of t€: g.

1For our:purpose; ‘it is'necessary to denote the: parameters.of the:ap=
proximating function by the two n-vectors a and s, because the 2n
parameters are not independent. - This pemt will be clarified-in the -
next section, when the approx1mat1ng functlon w111 be fully defmed

2The subscrlpt s in .,d emphasmes the dependence of the parameter
vector a on the vector S.



- In the case of the "continuous-,time':!%-,approximat'ion;f.-the approxi-..
mation error function, at any time t e+ J , will be'denoted by
€(t; gﬂ,g_é),— and defined:by

ﬁ_(t;g,,_é) ‘3 h(t) - ﬁ,(t,;z,_é)‘ . (1.1)

The criterion or measure of the degree of approximation will‘be given
by the Lp-norm3 of €(t;a,s), denoted by ||e(t;_q,§)||p, where

J€(t;, )] is defined by

| | 1/p
e, = [ J Ie(t;_a_f:,:ﬁt)lp]‘- for 1 <p<ow,

I

and

lette,8)l, = fog Ie(t;ggg} -
It suffices to say, that in the case of the "continubdsitime" approxi-
mation, we are assuming that the error function €(t;a,s) is in the
L ,-space. ® This approximation will be called thé’Lp-apprOg;_ima.wtion.
In the case of the "'discrete-time" approxiﬁiati;)n, we shall be
concerned with the values of the functiaﬁS‘ B(t) andﬁ(t,g, é)‘at é. f1n1te B

number of discrete values of t € 4 . We shall denote thediscrete

3See Ref. 21, pp. 212-218.
More accurately, the following integral should be a Lebesgue integral.

5See Footnote 3.



values-of t €. J by the finite point set T :{{t‘i‘ 1i=1,2,...,q9}, and
represent the ordered set of values %h(tl)',:h(tzf),..'a ;%,fh‘(»t(i)}f‘of h(t) and
{fl(tl;g_,_s_), ﬁ(tz;_q,§),. .. ,h(tq;g,g)} of ﬁ(t;g,_s_){, ‘by-the g-dimensional
vectors h and _l:l(g, s), respectively. Her_lce,.in the "discrete-time"
approximation, we shall be concerned with réal vectors h and h(g, s)
in thg complex q-dimensional vector spa.ce6 UL, The approximation
err;)Lf‘ Véctor will be denoted by € (@,s) and déﬁned b3;

€(a,s) 2 h-he,s) | (1.2

Clearly, the vector €(e, ) must be a;real vector in v, The measure
of the degree of approximation will be given by the” ﬂg-norm of the

vector €(a,s), denoted by | €(a, _§)||p, where | €(a, _§)||p is given by

p
le@sll, =| L le@ol®) . forl<p<e
i=1

oRgy it

and

Nl 8)ligs g 2ie q leyessy

where ¢ .(a, s) denotes €(t;; 0, s).

6The reason for being concerned with real vectors in U4, rather than
vectors in E4, the real q-dimensional vector space, will become evi-
dent in Section 1. 4, where we shall express the vector h(a,s) by a
_ linear combination of complex vectors. Note that a real vector in
is a vector having only real components.



Note that in the case of the "'discrete-time’ approximation, we shall
assume that the error vector, €(a,s), is in the real !Zg-space. This

approximation will be denoted by the Q%—approximation.

Definition 1.1: The function ﬁ(t; _gp*, 8) is said to be the best
Lp-approximating function of h(t), defined on &, with re-
spect to the parameter vector & € "ds for a fixed s € &,
if it is selected from the class of functions {h(t;a,s) : a ¢ J[S}

and satisfies,
A A~ A
*(t, = |h(t) - h(t;a * < |/h(t) - h(t;
e H 9, 2 b0 - htsa %, 9], < ) - hit;2, 9],

for all (a,s) € "ds x s. The function ep*(t;g) is the re-
sulting approximation error function, and _gp* is the cor-
responding "best" parameterAvector in "ds' For brevity,
we shall denote the function h(t; gp*, s) by hp*(t; s).

Definition 1.2: The function ﬁ(t; gp**, _§p*) is said to be the

best Lp-approximating function of h(t), defined on J,

with respect to the ordered parameter vector pair
(a,8) e,,czls x &, if it is selected from the class

H = {h(t;a,5):ced, s}, and satisfies
e, Ol 2 a0 - At e+, 8,9l < 1) - Bitia, 9,

for all (a,s) e,,ds x &.

The function ep**(t) is the resulting approximation
error function, and (& _**,s *) is the corresponding "best"
ordered vector pair in ﬂs x &. For brevity, the func-

tion ht; a**,5,%) will be denoted by h **(t).



Definition 1.3: The real vector ﬁ(_qp*, 8) is said to be the best

!Zq-approximating vector of a real vector hin U? with re-
sgect to the parameter vector a E"ds for a fixed vector
S€ &, if it is selected from the set of vectors

{h(a,s): ae | and satisfies

e @, = - Be )i, < |- A, s,

for all (a, s) Eﬂs X S.

The vector € p*(g) is the resulting approximation error
vector, and gp* is the corresponding "best' parameter
vector in "ds' For brevity, the vector ﬁ(gp* ,8) will be de-

noted by Qp*(g).

Definition 1.4: The real vector ﬁ(g ** s *) is said to be the
best 12 -approximating vector OI; the geal vector h € Uq
with rgspect to the ordered parameter vector pair
(@,s) evqis x &, if it is selected from the set {h(e,s) :
deuf , 5 ¢ P} and satisfies

”e %k %

el = Ih-Ee, s, < b - e 9l

for all (o, s) e,,ds x .

The vector € p** is the resulting approximation error
vector and (_qp**, _s_p*) is the corresponding 'best" order

vector pair in ds x &.

For brevity, the vector ﬁ(gp**,'gp*) will be denoted by

p Kk
-Pp



Remark: From these definitions, it is clear that in general
the values of the ordered pair of parameter vectors

(a **, _s_p*) change as p is varied, a point which will

p
be further clarified later. Furthermore, it should
be mentioned that although we have ased the same
symbols (gp**, _§p*) to denote the best ordered vector
pair corresponding to the best Lp-approximation of
h(t) and the best ordered vector pair corresponding

to the best ﬁg-approximation of h, the values of

these two ordered vector pairs will usually differ !

In closing, it should be mentioned that to simplify our notation,
we shall drop the subscript p in gp**, §p*, hp*(t), ep*(t), etc. ,

whenever there is no danger of ambiguity.

1.2 Selection of the Approximating Function, Exponential

Representation

The first major problem encountered in obtaining an efficient net-
.work with an impulse response approximating the prescribed impulse
response is one of selecting the class of approximating functions. In
the network synthesis problem, the consideration of physical realiz-
ability enters at this poinf. - The fequiremenf. that the transfer func-
tion of a physically realizable linear, passive, lumped, fiﬁite net-

work be a rational function of polynomials in the complex frequency,

s, is well-known (Ref. 10). The coefficients of these polynomials



must be real; all roots of the denominator must have negative or zero

real parts; and the roots having zero real parts must be simple.
Translating these requirements into the time domain shows that

for physical realizability, it is sufficient that the approximating im-

pulse response functions have the form

where o and s, occur in Conjugate pairs and each 81 must have a
negative or zero real part. 7 Although this expression implies that

the transfer function possesses only first order poles, 8 it should be
noted that if the transfer function contains higher order poles, 9 then
the approximating impulse response function must possess terms of

the form {eSt, teSt ..., (i-1) ¢St} where j denotes the order of

the repeated root.

It is convenient to define the approximating functions ﬁ(t-; a,s) by

‘l;(t;_q,_s_) 4 Z o e (1.3)

7C1ear1y), the s 's krepresent the ‘poIe locations and the . 's represent
the respectiye residues of the transfer function in the complex fre-
quency domain.

8 That is, the roots of the denominator, of the rational function of
polynomials, are simple. ‘ o

9Reca.ll that the poles having zero real parts must be simple.



where the collection of the parameters {al,az, . ,ozn} and
{s 12590+ sn} of the approximating function h(t; a,s) are denoted

by the vectors @ and s, respectively, that is

I
np
—~~
=
N
N

and

np

(1. 5)

ln

S
n

— =

The number of parametérs {ak} or {sk} of approximating function
is denoted by n.

It should be noted that in this thesis, the approximating function
is not restricted to the form given by Eq. 1.3. In otherwords, if the
procedure yields repeated values of s, , then for each repeated 80
the function eSkt must be replaced by the set of functions

5t t t.

S -1 S :
e k, tek,...,tJ 1e k , where j denotes the order of the
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repeated s, . For example, if s, = s, = .. 5 then Eq. 1.3 is

written as

. 1 slt n skt
hit;a,s) = (a ya t+...+a. b )e + Z o e (1. 3a)
T 12 ] k=j+1 k

The set in which the parameter vector s lies is denoted by &

and is defined as follows:

Definition 1.5: The set &, of the parameter vector s, isa

set of all vectors s ¢ Un, the n-dimensional unitary space,

with complex components occurring in conjugate pairs, i.e.,
for each S = 0 +lw there ex;sts an s, 4 =0 - jo.
The set in which the parameter vector ¢ lies is denoted by g,ds
and is defined as follows:
Definition 1.6: The set ,,ds of the parameter vector ¢, is a

subspace of the n-dimensional unitary space U™ which con-

tains all vectors a € U" such that when s € &, then the

function

skt

n
hit;a,s) = ), o e
k=1

| is a real function of t.

From the above definition, it is seen that the set "ds depends on the

vector s ¢ &. Hence, it is convenient to denote the 2n parameters
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of the approximating functionvﬁ(t; a,s) by the ordered vector pair
(@, s) and the set in which the ordered pair (o, s) lies by "ds X .

At this point, it is noted that in defining the set & (Definition
1. 5), we have omitted the condition which guarantees that the approxi-
mating function ﬁ(t; a,s) represents an impuls; response function of a
stable network, i.e., the condition that Re{sk} < 0, for all
k = 1,2,...,n. Hence, the approximation problem in this thesis will
not be concerned with the physical realizability of the resulting ap-
proximation. 10

It should be mentioned that in the case of the ﬁg-approximation,
the real approximating vector ﬁ(_q, s) e U? is taken to be the ordered
set of values {ﬁ(tl;_g_z,§), ﬁ(tz;_g‘,_g),. .. ’H(tq;g’f)} of ﬁ(t;g,_s_) defined
by Eq. 1.3 (or Eq. 1.3a). The set in which the ordered pair of vec-
tors (a, s) lies is again the setdls x &, where the sets & and «szs
are given by Definitions 1. 5 and 1. 6, respectively.

One further observation about the selection of the approximating
function is that the complexity of the resulting network is directly

| proportional to n, the number of poles, 8y -

In summary, then, we shall be concerned with approximating

functions selected from the class ¢ = {ﬁ(t;_q,_g) tee gl 8¢ F

where ﬁ(t;g,_s_) is defined by Eq. 1.3 (or Eq. 1.3a).

10This point is discussed in Chapter VL
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1.3 Selection of the Criterion of ApproximatiOn

The second major step toward obtaining an efficient approxima-
tion is the definition of a measure of approximation. This measure
is generally expressed by the norm of the error function. The two
most widely used measures of approximation in the field of network
synthesis are the least-squares, and the Chebyshev (or the uniform-
norm) criteria.

The least-squares criterion is generally used when the specified
data are known to contain random errors. In the case of the
"continuous-time" approximation, the least-squares criterion is

represented by the L,-norm of the error function; that is,

2
- s /2
letsa,s)ly = | J Jeta,8) “at
LT
5 1/2
= f|h h(t; a, s)| dt] (1.6)

-gJ
In the case of the "'discrete-time' approximation, the least-squares
criterion is represented by the ﬂg-norm of the error vector, that is, 11

(ela,s), €(a, s) 1/2

lela, §)”2

- ([b- (e8], [b- he,s) Y2 @)

q
11We use the inner product relation, (¢,€), to denote Z 1€ >
(see Ref. 21, p. 245). i=1
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The Chebyshev criterion is generally used when a point by point
replica of the specified data is desired. In the case of the "continuous-
time' approximation, the Chebyshev criterion is represented by the

Loo-norm of the error function; that is,

d

leteas)l, = fog leas)]

- fiyp |hv(t)—ﬁ(t;g,_§)| . (1.8)

In the case of the "'discrete-time' approximation, the Chebyshev cri-

terion is represented by the ﬁ?o—norm of the error vector; that is,

le@ 9, = 1552 q 16@)l

max

- 1<i<q |b; - b

@,s)| , (1.9)

==

where ei(_g,g), h,, and ﬁi(g,g) denote the values of e(ti;_a_,g),
h(ti; a,s), and ﬁ(ti; a,s), respectively.

In this thesis, we shall be principally concerned with the best
Chebyshev approximation of a real vector h e vl , and so we shall

use the measure of approximation defined by Eq. 1. 19.

1.4 Formulation of the Problem

The problem of approximating a prescribed impulse response

function h(t) by a linear combination of exponential functions,
n s, t ‘
h(t;a,s) = 21 o e, at a finite number of discrete values of t,
&2 = L

may be formulated as follows: As mentioned before, the ordered
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set of real values {h(tl), h(tz), "y ,h(tq)} of h(t), and {ﬁ(tl;g,_g),
ﬁ(tz;g,§),. .. ,ﬁ(tq;_g,_g)} of ﬁ(t;g,_g) are represented by q-dimen-
sional real vectors in Uq; that is,

- . ~

h(t,) h(t;; 2, )
h(ty) h(ty; 2, 8)
h = . ; and .l.;(g,_s_) =
ht ht ; 1.10

s, t s t s t
The ordered sets of values {e k 1, e kz,...,e kq}
s t

tial function e k , are represented by vectors in Uq; that is,

of the exponen-

Sty
e

)
e

kq | (1. 11)

where k = 1,2,...,n, andq > 2n. It is evident that if the exponents

s, 's are complex, then the vectors, & » are complex vectors in .

k

Furthermofe, if the sk's are distinct, then the vectors, & k =1,

2,...,n, are independent and form a basis of a complex n-dimensional
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subspace12 Vn(g) of U4 A simple representation of the basis of
Vn(§) is given by the column space of a ¢ X n matrix [E(s)] defined

by

[E(s)] 2 [3192 ..._gn] . (1. 12)

where [E(s)] is of rank n if the set { gk} is an independent set of

vectors. Therefore, any real vector ﬁ(g, s) in Vn(_g) can be repre-

sented by
ia.s) = )
h(e,s) = ), a_e (1.13)
kel k =k
or, alternately, by
hg,s) = [E(s)] @ (1. 14)

where (g, s) evds x P

It should be noted that if the approximating function ﬁ(t; a,s) is

given by Eq. 1.3a (i.e., the case in which §] =8y = ... = Sj)’ then

the vector 1_;(2, s) is given by

. n
[T]]-1> e+ ) o & , (1.13a)

ﬁ(_g_s_) = (a +a‘[T]+.‘.+a.
= (1 2 ] k=j+1

12iI‘he notation Vn( ) emphasizes the fact that this subspace is a

function of the parameter vector s ¢ .? Where S represents
the ordered set of values {sk} K =1,.
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where [T] isa ¢ x q-diagonal matrix defined by

0 t~
' q

Clearly, the vector ﬁ(g, 8), given by Eq. 1.13a, can be represented

by Eq. 1.14, where now the matrix [E(s)] is given by

—— . —

e,, tie g71e e
11 1°%11 "1 %11 °1,541 0 Cm
€y toe€ gle e e
21 "2721 "' "2 721 V2,j+1 °°° T2n
[E@)] =

e . te. .. tle e . . ... e (1. 12a)
ql q7ql q ql Tq,j+l an |

where e, represents the i-th component of the vector e, , defined

ik K

by Eq. 1.11, Since we have assumed that the vectors {§j+1" ..,e_}

’=n

are independent, the matrix [E(s)], defined by Eq. 1.12a, is of
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maximal rank n. Hence, in this thesis, the approximating subspace,
spanned by the columﬁ space of [E(s)], is n-dimensional for all
se .

When the real vector h in U is not in V'(s), then it is related

to h(e,s) in V() by
h = h(g,s) + e(e,s) (1. 15)

where €(a, s) is some nonzero real vector in U%. The real vector

€(a, s) is the error vector, represented by the ordered set of values
{e(ti;_q,§) :i=1,2,...,q}, of the error function €(t;a,s).
~ Let us suppose that the discrete values of t are equally-spaced

at intervals At, so that ti = t1 + (i- 1)At. Then, each vector &

can be written as:13

A
L

2,971 (1. 16)

13This restriction to equally-spaced sampling points will be discussed
in Section 1. 5.
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skt s, At
where v,bk = e and Z, = e . Furthermore, the matrix

[E(s)], defined by Eq. 1.12, may be written as

[E(s)] = [2(z)] [¥] (1.17)
where
1 1
21 zn
[Z(z)] 2 ,
237 (1. 18)
_ZI-
A
E =
z, (1.19)
and
—wl )
[v] 2

0 ' v (1. 20)
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In the case in which [E(s)] is given by Eq. 1.12a, the matrix

[Z(z)] is defined by

1 ... g1 1 ... 1

2y .. [t +At]J_1z

1 1 j+1 n
2 -1 2 2 2
Zy e [t1+2At] z3 241 0 I

[Z(z)] 2

z‘}_l [t1+(q-1)At]j"1zq-:l 241 2471

SRR (1. 18a)

Note that if t; = 0, the matrix [Z(z)] of Eq. 1.18a can be simplified

as follows
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[ 1 0 0 1 1]
Zl Zl Zl ]+1 zn

2 2 -1 2 2 2
Zq 2z1 2 Zl» Zj+1 z,

q-1 , .\ q-1 -1 q-1 q-1 q-1
2p - @2y - @D ey 2y e 7y (1.18b)

It should be noted that the matrix [Z(z)] defined by Eq. 1. 18a (or
Eq. 1.18b) gives the form of the matrix [Z(z)] when the first j-com-
ponents of the vector z are identical, i.e., Zy=29=...= Zj'
Clearly, one can obtain, in a similar manner, a matrix [Z(z)] for
any other vector z with components that are not distinct. Rather
than obtaining the general form of the matrix [Z(z)], we shall say
that when the components of the vector z are not distinct, then the
matrix [Z(z)] is defined by Eq. 1. 18a.

At this point, it is convenient to replace the parameter vector
pair (a,s) of the approximating vector by another parameter vector

pair, denoted by (8,z); thus, f_l(g,_g), defined by Eq. 1. 14, will be

~ denoted by h(g,z) and defined by
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np

[2(z)] B (1.21)
where
g & [v]a, (1.22)

and where the q x n matrix [Z(z)] is defined by Eq. 1.18 (Eq. 1. 18a).
The set in which the parameter vector z lies is denoted by 3 and

defined by:

Definition 1.7: The set 3 , of the parameter vector z, is
a set of all vectors z € U", the n-dimensional unitary

space, with complex components occurring in conjugate

pairs, i.e., for each complex Zye there exists a zj = Zys
j # k.

Remark: It should be noted that the (q x n) matrix [Z(z)], de-
fined by Eq. 1. 18 (Eq. 1.18a), is of maximal rank n,

forall_z_eg.

The set in which the parameter vector g lies is denoted by &8 , and

defined by:

Definition 1.8: The set 332 of the parameter vector g is

a subspace of the n-dimensional unitary space U™ which
~ contains all vectors S e U" so that if ZE€ 3 , then the

vector
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h(g,z) = [Z(z)] 8

is a real vector in Uq, where [Z(z)] is the (¢ x n) matrix
defined by Eq. 1. 18 (Eq. 1.18a).

When the parameters of the approximating vector are given by
the vector pair (8,2) ¢ B g X 5 , then the error vector is denoted

by €(8,z). Furthermore, the vec_tor relation of Eq. 1. 15 becomes

h = h(g,z) +e(8,2)

= [2(z)] B + €(8,2) , (1.23)

where (8,2z) €RB , xg .

1.5 Statement of the Problem

This thesis will be concerned with the problem of approximating
a prescribed impulse response function, h(t), at a finite number of
equally-spaced discrete values of t, by a linear combination of ex-
ponential functions, so that the resulting error is minimum in the
Chebyshev sense. Specifically, we shall be concerned with the

following approximation problem:

Given a real valued function h(t) defined on the interval [t 1,'cq] ,
select the function ﬁ(t; a** g¥) from the class of functions
Jf = {ﬁ(t;_g-,_g) : Q e,,q{s, S € ,?} so that if

A . .
teT = {ti =ty +(i-1)At:i=1,2,...,q,q> 2n, At =[(tq-t1)/(q- 1)]},

<

then



23

1<i<q ) - htgasn] < 77 ) - Btge, 9l (1.29)

for all (2,8) €f X &.
For the purpose of our investigation, this approximation prob- |

lem is restated as follows:

Given a real vector h ¢ Uq, find an ordered pair of vectors'®

(B**,2%) ¢ B, x 3 so that if h** 2 [2(z*)] p**, then
Ih-m**|_ < |b-[2@]gl, (1.25)

for all (8,z) 633Z X 3 , and where [Z(z)] in the q x n matrix is
defined by Eq. 1. 18 (Eq. 1.18a).

Some of the limitations imposed on our time domain approxima-
tion problem of network synthesis by this precise mathematical

formulation are:
(1) The q values {h(ti)} of the prescribed impulse response

function, h(t), must be bounded; i. e.,

max
1<i<q |h(ti)! < o .

(2) The form of the matrix [Z] dictates that the q values {h(ti)}

of h(t) be equally spaced at intervals At, so that ti =t + (i-1)at.

14The ordered vector pair (8**,z*) € B z X } corresponds to the

optimum vector pair (@**,s*) €.of ¢ X
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(3) There is no guarantee that the approximating function
ﬁ(t; a**, s*) corresponding to the optimum vector pair
(B**,2*) € BB , X 9 will yield a network which is physically realiz-

able, even though the prescribed impulse response function h(t)

satisfies

o
[ I d < .
0]

(4) There is no control on the behavior of the error function,

np

e(t)

is performed only' at the values of t in the finite equally-spaced

h(t) - h**(t), for values of t ¢ Te’ since the approximation

point set Te .

1. 6 Plan of the Thesis

To :clarify the role which the theory of approximatioh is playing
in many current investigations in the theory of network synthesis,
Chapter II presents a brief summary of the theory of approximation
in the language of linear spaces, giving special attention to the singu-
lar mappings involved. Furthermore, the prévious attempts to apply
the theory of approximation to the problem of network synthesis are
reviewed. A thorough review of Prony's original work (Ref. 15), and
of Ruston's method (Ref. 20)‘}using_the Chebyshev norm criterion, are

* also presented in this setting.
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Chapter III presents the theory of extending Prony's original
work for solving exponential approximation problems in the ﬁg- space.
The theory which leads to the solution of the Chebyshev approxima-
tion problem, defined by Eq. 1.24, is presented in Chapter IV.
Special attention is given to the existence theorem and some special
properties of the solution are considered. Thé computational methods
leading to the sblution of this appzr'}(‘)ximav.tion problem are given in
Chapter V. This chapter aiso contains iterative procedures and illus-
trative examples which é.re worked out in detail.

In Chapter VI we apply the thedry presénted in the previous‘two
chapters to the network synthésis problem. Procedure and illustra-
tive examples are also given. |

A general discussion of the results with recommendations for
further study is presented in Chapter VIL. In the Appendix we‘ pré-
sent, in the language of vector spaces, Stiefei's algorithm (see Ref.
22) for finding the best Chebyshev solution to an over-determined

system of equations.



CHAPTER II

STATE-OF-THE-ART

2.1 Introduction

The theory of approximation in normed-linear spaces has been
extetisively studied by mathematicians for many yeers as is shown
by the many excellent papers and books written on this subject (Refs.
2, 17, ‘18, 19, 22). | In this chapter we shall first attempt to give the
reader an intuitive feeling for this su};bj‘ect, so that he may be able to
frame the whole problem more cl_early. Then, we shall present the
previous contributions to the time domain approximation problem of
network synthesis. Specifically, we shall review the following con-

tributions:

(1) Approximation techniques in the Lp-spaces; namely, the
works of Aigrain and Williams (Ref. 1), Kautz (Ref. 10), and
McDonough (Ref. 13), for p = 2; and the work of Tang (Ref. 23) for

p=o0.

(2) Approximation techniques in the ﬂg-spaces; namely, the
works of Yengst (Ref. 26) for p = 2; and the work of Ruston (Ref. 20)

for p = .

26
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Let us begin by showing that the approximation problem in the
Lp- space can be looked upon as an "Lp—projection, " or rather as a
singular transformation, which maps a point (or a function) in an
Lp— space into some point in the approximatin»g subspace of the Lp—
space, so that the distance between these points is minimum in
some sense. To illustrate this, we can use the finite dimensional
ﬁg- space, since many concepts of the approximation problem in the
Lp— spaces can be visualized in finite dimensional ﬂg- spaces.
Recall that any vector in ﬂg may be represented by a linear combi-
nation of a complete set of q basis vectors, where q denotes the
dimension of the space (Ref. 21, Section 43). Furthermore, any n
independent vectors in ﬂg , where n < g, span an n-dimensional
subspace V" of ﬁg.

We can now state the approximation problem in terms of the
"!Zp—proj ection" problem as follows: Let us suppose that a vector
f and a linear subspace V" are given in Q%. Then the vector f* in
v" which best approximates f in ﬂg with respect to the appropriate
ﬂp—norm, is the "ﬂp—projection" of f onto Vn, When p> L

The "!Zp-projection" defined here is a generalization of the
familiar orthogonal projection. The best way of illustrating this is to
recall that the familiar orthogonal projection, which represents the

best approximatioh of f in ﬂ% onto V" with respect to the ﬂz-norm,

(i. e., the best least-squares approximation of 1 onto V" in ﬂg) can
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be obtained by placing a q-dimensional sphere at f and expanding it
until it touches V". The point at which this hypersphere touches v
is the orthogonal projection of f onto Ve Furthermore, the radius
of this sphere is the ﬂz-norm of the error vector, i.e., |€ ||2 .
When p > 1, we can, in a similar way, define the»ﬂp—projection of
f onto V" as the point where the smallest q-dimensional convex body
described by | € ”p and centered at f touches the subspace V", This

ﬂp-convex body of radius | € ||p and center f, denoted by Kp( f, e Hp),

is defined by

K(L lely) = {g:t-gl, < lely, gim g}, p>1. @)

A simple iilustration of the various shapes of Kp, for: p =1,2, and
- o is given in Fig. 1. In the Chebyshev approximation problem, the
ﬂw-projection of f in ﬂ?o onto V" is the point where the smallest q-
dimensional cube, centered at f and having edges of length 2| € [
touches the subspace v

A similar "projection' problem exists when considering the
approximation problem‘ in the Lp—normed linear space, where in the
L -space a function represents a point in the Lp- spe.ce analogous to
the point in ﬂg—space described by a Vector. Here, however the
"Lp-prOJectlon" is more d1ff1cu1t to Vlsuahze since both the n- dlmen-

sional approx1mat1ng subspace V and the Lp convex body are def1ned

in terms of continuous functlons in the Lp space. Recall that any
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Fig. 1. The best approximation to f onto vPinEY
for p=1, 2, 0, where q=2, n=1.
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function £(t) in Lp(a,b)-spacel may be represented by a linear com-
bination of the complete set of basis functions which is infinite in
number since the Lp(a,b)-space is of infinite dimensionality.
Furthermore, the n-dimensional approximating subspace V" in the
Lp(a,b)-space is defined by the linear combination of n-independent
functions. The Lp-convex body of radius || e(t)”p and center f(t), is

defined by

Kp(f(t), [ e(t)up) = 18 : [€t)- )], < [€@)]], ) in L (a,b)}
(2.2)
For further discussion on this subject, see Rice (Ref. 15, pp. 10-14).
These éoncepts are not new in engineering. A well-known ex~
ample in engineering is the problem of approximating a function f(t)
in LZ(O’ 2m)-space by a finite set of sine and cosine functions. In the
formal language of linear spaces, this problem may be stated as
follows: Given a function £(t) e L2(0, 27) and a finite set of basis
functions, {cos kf, sinkt 1k =1,2,...,n} spanning a linear sub-
space V2n in the L2(0, 27)-space; determine the 2n parameters

{ak*,Bk*}, k =1,2,...,n, so that the function f*(t), defined by

/=1

tx(t) 2 ) (a * cos kt + & * sin kt) 2.3)
e e

k=1

1The notation Ly (a,b)-space, instead of L (J )-space, is used to
emphasize that the function f(t) is defined for all t in the finite
closed interval [a,b], rather than the semi-infinite interval

g' = [O,OO)-
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best approximates f(t) in L2(0,21r)- space in the least-squares sense.
Since this approximation is taken with respect to the L2-norm of the
error function, the solution is given by the orthogonal projection

(i.e., "Lz-projection”) of f(t) onto VZn. Hence, the 2n parameters
{ozk*, Bk*} can be obtained by taking the orth(;gonal projection of f(t)

on the respective basis vectors, namely,

ak* = (f(t), coskt), and (2.4)
Bk* = (f(t), sinkt), k=1,2,...,n (2. 5)

This is to say, that the set of best parameters {ak*, Bk*} given by
Egs. 2.4 and 2. 5, are equal to the coefficients of the appropriate
cosine and sine functions resulting from the Fourier expansion of
f(t). This result should be obvious because the infinite set of sine
and cosine functions forms a complete orthonormal set of basis
functions of the L2(O, 2m)-space. Another evident result is that the
sum of the squares of the coef_fic'ients of the sine and cosine func-

~ tions which do not lie in V2n gives the minimal value of the square
of the Lz-norm of the approximating error function, i.e.,

[ e(t)||: . At this point, it should be mentioned that the best approxi-
mation of f(t) onto V2n with respect to some other Lp-norm will not
yield the above relationship between the Fourier series coe,ffiéient

and the best parameters {a, *,8,*} .
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In recent years, under the impetus of the increasing need to
handle complicated signals, it has become evident that the concepts
involved may be best expressed in the language of linear space.

For example, considerable attention has been devoted to the problem
of representing signals in terms of various i)ases other than the fa-
miliar sine and cosine functions (Refs. 8, 12, 27). Thus, depending
on the particular application, the approximating subspace V" is de-
fined in terms of different typés of basis functions. In the field of
network synthesis2 the most efficient approximating subspace is the

one spanned by a set of one-sided exponential functions3

eskt:tg 0, Re{s } < 0f, k=12...,n (2.6)
Sinée the exponents {sk} are usually unknown, the approxi-

mating subspace is not fully prescribed, but given in terms of the

n-unknowns {sk} . Hence, the time domain approximation problem

of network synthesis involves th‘e determination of the best approxi-

mating function on an approximating subspace, Vn, which depends

on the set {sk :k=1,2,...,n}. Recall that in Chapter I we have

shown that such an approximation problem involves the determination

2S,ee Section 1. 2.

3Tha.t these functions are linearly indépendent when s 's are distinct
is obvious.
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of the parameter vector pair (a**, s*) of the best approximating
function ﬁ(t; a**, s*) which is selected from the class of functions
jf = {ﬁ(t;_q,§) (o€ ds, s €SP}, where ﬁ(t;g,_s_) is defined by
Eq. 1.3 (Eq. 13.a). It, thus, becomes clear that the parameter
vector s of the approximating function ﬁ(t; g,is) represents the
orientation of the approximating subspace Vn, a fact which is em-
phasized by representing V" by Vn(g).

In the following paragraphs, we shall review the previous con-
tributions to the problem of detei'mining the best parameter vector
pair (a**, s*) which will be referred to as Lp-approximation or
ﬂg-approximation problem depending on the particular criterion
used to measure the degree of approximation. In particular, we
shall review the approximation techniques that were based on either
the least-square, or the uniform norm (i. e. , Chebyshev) criterion,
since these are the most widely used criteria in the area of network
synthesis.

It is appropriate to mention here that many of the previous
works concentrated on the determination of the 6ptimum parameter
vector a € J{S, i.e., a*, for some ""good" estimate of the param-

eter vector s ¢ & which was considered known for the approxi-

mation problem.
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2.2 The Lp -A{ppr.oximatrion Problem of Network Synthesis

2.2.1 Lg-Approximations. The first significant application
of the approximation theory in the Lp— spaces to the time domain net-
work synthesis problem can be considered to have been made by
Aigrain and Williams (Ref. 1), and by Kath (Ref. 10). They sought
the best least-square approximation of h(t) where t is defined in the
interval & = [0,). If h(t) and the class of approximating functions
jf are in the Lz(g' )-space, then this is the familiar orthogonal pro-

jection problem. Here the measure of approximation is given by

: ; . o0 : .
lett; 2,9 = ({ le(t;2,8)] *dt (2.7)
© n skt 2
= [ [p®) - ) o e | dt (2. 8)
0 k=1

Aigrain and Williams recognized that the optimum ordered vec-
tor pair (a**, s*) denotes the stationary point‘1 of the function
| e(t; a, §)||: defined in Eq. 2.8. Unfortunately, to obtain this sta-
tionary point, one has to solve a system of 2n simultaneous nonlinear
equations a task which is, in itseif, formidable. Furthermore, this
is only a nécessé,ry condition; and a unique solution dbes not necees-

sarily result.

4The stationary point x* of a function f(x) is the point where
{ [of(x)]/[9x;]} = 0 foralli = 1,...,n.
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About a decade later, McDonough (Ref. 13) simplified the solu-
tion of the system of simultaneous nonlinear equations by linearizing
them. He used the orthogonality condition which exists in the L2-
space between the approximating function ﬁ(t; a,s) and the error
function €(t; @, s), and, thus, determined an expression for | €(t;q, s) ||:
in terms of the parameter vector s alone. This new function is zero
at the stationary point of the function | (t;q, _&_;)][2 . His work on this
subject contains an excellent review of other contributions to the time
domain approximation problem of network synthesis.

A different approach to this problem, developed initially by
Kautz (Ref. 10), uses a finite set of orthonormal functions con-
structed from the set of one-sided exponential functions given in
Eq. 2.6. The choice of the parameter vector s is somewhat arbi-
trary so that the resulting approximating function is not necessarily
the optimum approximating function, h**(t), of h(t) in the Lz(g )-
space. The choice of the parameter vector s is based on Tuttle's
interpretation of Prony's work. 5 Tuttle (Ref. 25) realizéd that
Prony's work, which constructs an nth-order difference equation
from a prescribed set of 2n equally-spaced values {h(ti) 1i=1,2,
ces ,Zn} of h(t), can be extended to construct an nth-order differen-

tial equation (having constant coefficients) by confining oneself to

Y

5A detailed analysis of Prony's original method is found in Section
2.3.2.
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the single point t = 0. The important step of proceeding from the
differential equation to the approximation problem in the Lz(g' )~
space was made by Kautz. 6 However, this method does not usually
yield the optimum parameter vector s*. Thus, Kautz's method is-
basically a two-step approximation proceci.ure. He first determines
the pole locations (i. e., the parameter vector s) which are not opti-
mum and then determines the optimum residues (i. e., the parameter
vector @) for this pole configuration.

The reason for the wide use of Kautz's method stems from the
fact that the final approximation error | e *(t)||: is relatively insensi-

tive to a variation in the parameter vector s. The significant con-

tributions which stem from Kautz's method include:

(1) The generalization by Carr (Ref. 5) which extends Kautz's
method to the approximation of any impulse response function
h(t) € Lz(g' )-space and not just those functions h(t) which have de-

rivatives through the n-th order in the Lz(g' )-space.

(2) The methods which improve the approximation by changing

the pole position (Ref. 4).

6Ka.utz's approximation method handles only functions h(t) being

everywhere smooth to a high-order in the interval [0,x) of t, i.e.,
' . d™h(t) :
the set of functions s m = 1,2,...,n; must be in the

Lz(g' )-space.
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2.2.2 LOo -Approximations. The time domain approximation

problem of network synthesis using the Chebyshev criterion has not
been studied as extensively as that using the least-square criterion.
One reason for this is that in Lw(g )-space, the "L_-projection" |
problem is not the familiar orthogonal projecfion problem defined in
Lz(g' )-space and, thus, is intuitively difficult to visualize. To the
author's knowledge, the only contribution using the Chebyshev cri-
terion has been made by Tang (Ref. 23). He shows how to obtain
h*(t, s) with respect to the L -norm if the vector s ¢ & is pre-
scribed to be a real n-dimensional vector. He, thus,‘ determines
the best RC network realization of h(t) in Loo(g )-space with respect
to only the parameter vector @ in "’ds'

At this point, we conclude the review of the synthesis techniques

in the Lp- spaces and turn to those in the ﬂg- spaces.

2.3 The !Zg -Appfoximation Problem of Network Synthesis

The two significant contributions to the problem of network syn-
thesis using approximation techniques at discrete points in the time
domain were made by Yengst (Ref. 26) and Rusfon (Ref. 20) who
measured their approximations by the leaSt-squares criterion and
the Chebyshev criterion, respectively. However, in no case, for
either criterion, was the optimum pole location (i. e., the vector s*)

‘obtained. To clarify this point, we shall analyze the approximation
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problem in the iczl-normed and ﬁgo-normed vector spaces, in rather
complete detail.

We shall begin by reviewing the approximation problem when the
pole locations of the network are initially prescribed, i.e., the case
when s € & is initially prescribed when usihg the formulation given
in Section 1.4. Clearly, when the components of the vector s € &
are prescribed to be real, this probiem is the usually considered
ﬁg-approximation problem in which a real vector in Uq is approxi-
mated 6n a prescribed subspace V" of UL, At this point, we note that
when the components of‘ 8 occur in conjugate pairs, and when the ap-
proximating vector must be real, then we need to make only a trivial
extension to the case in which the components of s are real. Then
we shall consider in detail the original work of Prony (Ref. 15) for
the case when q = 2n, and interpret the significance of extending this
formulation to the case in which @ > 2n, in terms of operations in
the vector space vl Finally, we shall analyze the works of Yengst
and Ruston in the same context.

In summary, the specific topics which we shall consider are
based on the three forms which the vector [E(s)] @ of the equation”

can take.

7The vectors h, [E(s)] 2, and ¢(g, s) of this equation are defined in
Section 1. 4.
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These are:

(1) The case in which the vector s € & is initially prescribed,
but the discrete values {ti :i=1,2,...,q} are not equally spaced.
This is the approximation problem frequently considered in the

theory of approximation in the ﬂg -space.

(2) The case in which the vector s € & is not initially pre-
scribed, but the {ti ti= 1,2,...,q} are equally-spaced, q = 2n, and

the error vector €(@,s) = 0, so that Eq. 2.9 can be replaced by8
h = [Z(@z)]8 (2. 10)

where (B,z) € B z X 9 . This is the original problem considered

by Prony (Ref. 15).

(3) The case in which the vector s € & is not initially pre-
scribed, but the {ti :i=1,2,...,q} are equally-spaced and q > 2n,

so Eq. 2.9 can be replaced by9

h = [Z@)]B + € 2) (2.11)

where (8,z) € B g X 3 . This is the problem -covnsidered by Yengst
and Rustbn using the least-square and Chebyshev c'riteria, respec-

tively. Moreover, this case is also the subject of this dissertation.

8T'he vectors h and [Z(g)] B of this equation are defined in Section 1. 4.

9S ee Footnote 8.
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It is hoped that this approach helps to unify the material and to set
the stage for the main contribution of this thesis which is presented in
Chapters III and.IV.

2.3.1 The Approximation Problem when the Matrix [E] is Initially

Prescribed. When the qxn matrix 10 [E] of Eq. 2.9 is initially pre-

scribed, the approximation problem may be stated as follows: Givena
real vector h in U% and a gxn matrix [E(s)], defined by Eq. 1.12 (1. 12a)
of rank n (n < g), and where s ¢ &, determine the vector gp* in e,ds,

so that if b * 2 [E] a ¥, then,

| Uﬁp*ﬂp < ﬂll'l‘p*ﬂp < Ih-[E] ol (2. 12)

for all 2 in "ds and where p = 2, cc.

This is the form which the approximation problem of Eq. 2.9 takes
when the pole location (i. e., the vector s) is initially prescribed and
when {ti: i=1,2, ..., q} are not equally spaced. A problem of this
nature, when instead of [E] we have any qxn real matrix [A], of rank
n, (n< q), has been discuss;edwin the literature. It can be shown that
if the prescribed vecfor s .is_ any element of ,?, then' the theoréms stated

below are simple extensions of those given in the literature for the case

10Hereafter, we shall denote the matrix [E(s)] by [E] if the parameter

vector s is prescribed and if there is no danger of ambiguity.
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in which [A] is a real matrix, =

2.3.1.1 The Least-Squares Approximation Problem, The most

familiar approximation problem in the literature is the least-square
approximation problem (i. e., the case when p = 2 in Eq. 2, 12). Here
the approximation criterion is the !Zz- norm of the error vector €. The
existence and uniqueness of the parameter vector o in A g 1s guaran-
teed by the Projection Theorem for a finite dimensional Unitary Space
(Ref. 6). Furthermore, the vector 9_1* may be determined directly with
the aid of the well-known pseudo-inverse matrix (Refs. 7 and 28). These

results can be summarized by the following theorem:

Theorem 2.1: For eachreal f in UY and each q x n matrix [E(s)],
defined by Eq. 1.12 (Eq. 1.12a), of rank n, (n<q, s € &),
there exists a unique n-dimensional vector a* € 574 g’ such that

it * 2 [E] o*, then

Te¥l 2 1f-t*1 < |
2 - - 2

t-[E]al (2. 13)

- - 2

for all @ # o* insf . Furthermore, the resulting best least-
square error vector, _g* & f-1 *, is always drthogonal to the best

approximating vector, ¥, i.e.,

t* e*) = 0 (2. 14)

11;[‘0 show this, it is sufficient to recall that the approximating vector,
h(e*,s) = [E(s)]a*, must be selected from a set of real vectors, i.e.,

if the components of @ and s are complex, then they must occur =
conjugate pairs,
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This theorem is again a trivial extension to the approximation theorem
which governs the least-squares approximation in the real vector
space, llg. (Ref. 6)

The important result of this theorem is that the best least-square
approximation of a real vector in vl by a real vector in the subspace
V", defined by the column vectors of the matrix [E], is the orthogonal
projection of f onto Vi Hence, the ’singular mapping involved is given
by the projection operator Et:ul- Vn, so that the n-dimensional vec-

tor _0_!* can be determined from
e* = [E] 1 (2. 15)
where [E] is the pseudo-inverse matrix of [E], defined by
€] - ETE]  [ET] (2. 16)

where [ET] is the transpose of the matrix [E].

2.3. 1.2 The Chebyshev Approximation Problem. The other

interesting approximation is the one that seeks the best Chebyshev

| approximation of a real vector { in U in some éubspace v®of U
defined by the column space of a prescribed qxn matrix [E(s)], se & .
Here, the approximation criterion is given by the ﬁoc- norm, i.e.,

lel = max le.l. A similar approximation problem, when in-
1<i<q

stead of [E] we have any qxn real matrix [A], has been discussed in
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the literature by Stiefel (Ref. 22) and Rivlin (Ref. 18). They have
shown that the best Chebyshev approximate solution exists, and they
also have developed an algorithm which yields this solution. Further-
more, they have obtained the conditions on the matrix [A] under which
the best Chebyshev approximation is unique. Applying their results to

the above approximation problem, we obtain the following theorem: 12

Theorem 2.2: For each real vector { in U9 and each (q x n) matrix
[E(_s_)], defined by Eq. 1.12 (Eq. 1.12a), of rankn (n<gq, s e&),
there exists an n-dimensional vector a* ¢ 84 S such that if

f* 2 [E] o, then

* A X _ _ * _
le*I £ 0g-g*1 = If- [E]le*l < Uf-[E]lal  (2.17)
for n-dimensional vectors & € & g TIhe resulting best Chebyshev
error vector € * has at least (n+1) components with absolute values

equal to lle* I, namely,

Ie;f I = le¥ll , for v=12, ..., n+l (2. 18)
\'A
Furthermore,
le’."l < le*l for v=n+2, ..., q
IV - - oC

Rather than proving this theorem, as is done in numerous places

in the literature (Refs. 18, 19, and 22), we shall present the essential

12Note that again we make a trivial extension to the approximation
problem which they considered.
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steps of the proof in the form which is most suited to our future appli-
cation. However, first let us offer some intuitive notions relating to

the results given by Eq. 2.18. Consider the real error vector € in Uq,

given by

€@ =£f-[E]la (2. 19)

Clearly this error vector is a function of the parameter vector
ae ¢ Since the vector f and the qxn matrix [E] have been initially
prescribed. Let us assume that the function [l e(a) IlOO is continuous
with respect to @. To satisfy Eq. 2. 17, we must determine a vector
a=a*e A so that the llg(@)ll  is minimum, that is,

x) A4 * : »
le¥l = lle(@®)l = min le(a)l (2. 20)
= T == T ==
aeof
= S
That this vector, ¢*, will have at least (n+1) components with absolute

values equal to lle * I , canbe illustrated as follows: 13 Select some vec-

tor @ = @' ¢ & and determine the vector ¢(a") from Eq. 2.19 and the

value of lle(a’) !loo. Let us assume that the jth component of €(a') has

the largest absolute value; that is,

le.(@)] = max e (a)] £ lle@)l (2. 21)
J 1<i<q - = .

13The following method is called the "method of descent’ (Ref. 19)

rather than the "method of steepest descent” since we shall not use
the maximum gradient of the function lle(a)ll .
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Clearly, we can reduce the value of li¢(@')ll  (or, equivalently,
lej(_q‘)l) by adjusting any one of the components of &', say a.', until
the absolute values of two components of ¢(a) are equal to lle(2)ll

Let us denote the corresponding vector @ by @" and assume that the jt_h

and k™ component of €(@") are equal to lle(@”)l . Hence, we have the

relation

lej(a")l = le (@) = lle( ”)llOC < e ')llOC (2. 22)

We now reduce the value of lle(a") Iloo further, by adjusting two compo-
- nents of @, say al" and 0(2". This process is continued until we have
adjusted all the n-components of g.v At this point it is found that the ab-
solute values of at least (n+1) components of ¢(a) are equal to lle(2)ll . 14
If any further adjustment in thevcomponents of the vector @ increases the
value of lle(e)ll , then, we have achieved the minimum value of le@1 ;
i.e., le*ll . The vector a with which we have achieved the minimum
value of lle(e)ll  is the vector a* of interest.

The characteristic property of the resulting Chebyshev error vector
€ * (given by Eq. 2. 18) suggests an alternate method for the solution of
the Chebyshev approximation problem. Such a method considers each

one of the (ngl) subsets containing only (n+1) equations out of the set of

q equations defined by the vector equations in Eq. 2.19. This method

14

That this can be done is evident from the fact that only n components
of €(@) are changed independently by varying the n-components of a.
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is based on the assumption that if, for each subset, the (n+1) components
of ¢ have their absolute values equal to some non-negative constant,

say lpl, and have their signs c:hosen15 to obtain the minimal value of
lpl; then, the values of lp| and the vector @ can be determined direct-
ly for each subset. '° Then, out of the set of (1) possible a's thus
determined, one selects the @ = @* which corresponds to the greatest
lpl. It can be shownr7 that this vector a* yields the minimum value

of le(@ll , i.e., the vector a* yields the vector e(@*) in U with

lle(a™) I , satisfying Eq. 2.20. This method of solution, sometimes
called the "method of ascent”, has been studied by Stiefel (Ref. 22) in
a geometric setting. Since we shall use some of the results of this
approach, let us now use it to sketch the proof of Theorem 2. 2.

Let us begin by defining the selection of a subset of (n+1) equations

out of the set of q equations, given by the vector relation
f=[Ela+e in UY (2. 23)

to represent a mapping of the vector space U9 onto an (n+1)-dimensional

15The appropriate choice of the signs of the (n+1) components of the
vector € in each subset will be given in Theorem 2, 3.

16That this can be done is evident from the fact that each subset con-

tains (n+1) equations in (n+1) unknowns, These (n+1) unknowns con-
sist of the n-components of @ and the one unknown representing the
absolute value of all the n+1 components of ¢ in this subset.

17See Corollary 2, 1.
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subspace of Uq, where the (n+1)-dimensional subspace of Uq is defined

as follows:

Definition 2. 1: (Reference subspace with respect to a fixed set

of basis vectors.) Let i{gi: i=1,2, ..., qf be an orthonor-

mal set of basis vectors of U%, so that gach vector g in U%

is defined by

g = Z gi g.i (2' 24)

and let _g_k':j =12, ..., m< qg be a subset of only m of

J
these basis vectors, where k denotes the kth subset out of the
possible (I(Ill) distinct subsets. These subsets are arbitrarily
ordered, i.e., k=1,2, ..., (r?x)' Then the m-dimensional

subspace, denoted by Uén , is said to be the kth reference sub-
space if it is spanned by the basis vectors in the % 3 K 1j=1,2,

J
. Furthermore, the projection operator Pk: vd- Ulin

o e ey m

is denoted by a qx m elementary matrix'S [Ik] and defined by

L] = [g_kl i, gkm] ~ (2.25)

(k)

Hence, the projectiong ™ of g in Uén is related to g in vl by

RN SR (2. 26)

18 . . .

"An elementary matrix represents a matrix having only one nonzero
element in each row and column, This element is equal to one (Ref.
24, p. 96),
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 In a similar manner we can denote, in vector notation, the sub-
sets of (n+1) equations out of the set of q equations defined by the vec-
tor equation of Eq, 2,23, Clearly, using Definition 2. 1, one can form
(ngl) disﬁnct (n+1)-dimensional reference subspaces, {U‘?J'l:v =1,2,

q
(n+1

the vectors f, [E] @, and ¢ in U% of Eq, 2.23 are related by

)} , from UY in which the (n+1)-dimensional projections of

o0y

iV 2 EV e M va2, (9 (2.27)
where

_f_(v) _ [IV]T.f. . U$1+1 (2. 29)

EV]a - n1T[Ele U™ and (2. 29)

Vo Te ey (2. 30)

Let us now summarize the approach which we shall use to sketch
the proof of Theorem 2,2, First, we shall state a theorem which will

establish the existence of a unique Chebyshev approximation in an (n+1)-

dimensional reférence subspace UliHl, where k € {v: v=12, ...,

),

(ngl)} . In other words, we shall show that for each real vector f

n+1
Uk

vector _o_zk* € Vds so that

and each (n+1)xn matrix [E(k) ] of rank n, there exists a unique

”_f_(k) _ [E(k)] gk “ : < Hi(k) _ [E(k)] gk* “ (2. 31)
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for all a = gk* € "ds' Then, using this result, we shall establish the
existence of a unique Chebyshev approximation in vl by showing that

the parameter vector a@* ¢ ds’ which defines the best Chebyshev
approximating vector f* 4 [E] g* of the prescribed real vector { ¢ Uq,
lies in the set { gv* v=12, ..., (n?-l)} , Where g_v* in st which satis-

fy Eq. 2.31.

To establish the existence of a unique Chebyshev approximation in

Un+1

K (or equivalently in UY) we need the following assumption:

Assumption 2. 1: Every nxn submatrix of the qxn matrix [E],

where q > n, is nonsingular,

It should be noted that this assumption will always hold when the
prescribed matrix [E] is of rank n and real. 19 Furthermore, if [E]
satisfies Assumption 2. 1, then every nxn submatrix of the (nx1)xn

matrix [E(k) ], defined by

E®] 2 117 [E] (2. 32)

must also be nonsingular.
We shall, henceforth, assume that the matrix [E] satisfies As-
sumption 2, 1, Let us now present the following lemma by de la Vallee

Poussin (Refs. 14 and 18) which we shall use to establish the existence

19See Eq. 1.12 (Eq. 1.12a) when the sk's are real.
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of a unique Chebyshev approximation to (k) in Ul? +1.

2 (

Lemma 2, 1: For each real linear function ¢(x) = (x,y) satisfying the

equation ¢(x) = ¢, where x and y are vectors in a real m-dimen-
. . m .

sional Euclidean space, E ', and where c is a real nonzero con-

stant and {yi #0:i=1,2, ..., m}, there exists a unique vector

x* in E™, with an £$— norm that satisfies

Ix*l < x| (2.33)
= T ="

for all x # x* in E™ satisfying ¢(x) = c.  Furthermore, the vector

x* is given by

x* = ay (2. 34)
wherezo
sgn y,
X = |%8"Y2 | | and (2.35)
sgny
b -
c A ril
a = , lyll, = ly. | (2. 36)
- Iy Titog v

y.
20By definition sgn y; = -]—3;1-1- if A #0, and sgn 0 = 0,
i
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The proof of this lemma is given in Refs, 14 and 18. However, an in-
tuitive explanation can be given with the aid of Fig, 2, where m = 2,
Here the linear function ¢(x) satisfying the equation ¢(x) = c is a straight
line in the 2-dimensional Euclidean space, E?, which is orthogonal to
the vector y. Since the points along this line xfepresent the various
choices of the vectors x, clearly then, the vector x with a minimal

value of [x]l  will have components which satisfy:

a) lxll = lle = lal; and

'b) sgn x, = sgny,, i=1, 2
This vector x has been denoted by x *.

Remark: Two points should be noted concerning Lemma 2. 1.
First, it should be noted that if ¢ = 0 then the lemma
is trivially true and Ix*Il =0 since a = 0. The sec-
ond point to be noted is that if y; = 0, whereje {i=1,

cey m}, then although Eq. 2. 35 gives the jth compo-
nent, x].*, of x* to be equal to zero, the equation ¢(x)
= ¢ can be satisfied by using any value of ‘x].* in the
interval [— Ix*1_, Ix* [loc] without affecting the final

value of llx* lloc. Hence, we shall say that if y, = 0.

for some i, then the uniqueness property of the vector

x * fails.
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2+

. | > 1
———— || x* Iloc———-’-l \

Fig. 2. Geometric interpretation of Lemma 2. 1.
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Let us now establish the existence and uniqueness of the best

Chebyshev approximation to (i) in Uliprl, where k € {V =12 ..., (n21)>’

when the (n+1)x n matrix [E(k)], of rank n, is initially prescribed.

Theorem 2.3: For each real fector _f_(k) in Ul?” ke {v =1,2,

(ngl)} , and an (n+1)xn matrix [E( )], of rank n (defined by Eq.

2.32), there ex1sts a unique n-dimensional vector ak* € ,,d SO

that if f*( E ] is a real vector in U] , then,
Y k

per®y 2 @y o ® o E®yay e

for all n-dimensional vectors @ # @ * ¢ &_. Furthermore, all the
components of the (n+1)-dimensional error vector € +(k) have abso-

x(k) I

lute values equal to lle o L€

, i=12, ..., n+l (2. 38)
o©

Proof: The proof of this theorem is based on Lemma 2, 1, Let us begin

by considering the relation

£® - EW) gy ® o gt - (2.39)

where the vector { (k) and the (n+1) xn matrix [E(k)] , of rank n, are pre-

scribed; and the vectors a and € (k) are unknown. It is evident that the

column space of [E(k)] , Cn(E(k)), describes an n-dimensional subspace

n+1
n Uk

Cn(E(k)) of U

This implies that the orthogonal complement subspace of

lis simply a one-dimensional subspace. If lw is a
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real vector in this one-dimensional subspace, then,
(m&h$1&5=0. (2. 40)
for all @ ¢ &/ ; that s,

E&MTA&)=0 | (2. 41)

Where2 1

A . (2. 42)

NG
"
kn+1

Equation 2. 41 can be solved for _@(k) with an (n+1)St component arbi-

trarily chosen to be equal to one;22 i, e., a normalization of the magni-

® _

(k) . .
tude of A" is made by takmg An+1 =

o

Let us now take the inner product of both sides of Eq. 2.39 with re-

spect to A(k). This yields

211t should be noted that the vector _A_(k) determined from Eq. 2. 41 will
always be a real vector because we have assumed that if the column
vectors of the matrix [E k ] are complex, they must occur in conjugate

* pairs.

22 Note that, by Assumption 2. 1, Ai(k) #£0, forall i =1,2,...,n+L
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=

«®,

Ay = (), ) (2. 43)

P

since ([E(k)] a, ]ﬁ(k)) = 0 from Eq. 2.40. Furthermore, the vectors

f ®) an Zx_(k) are both real and known, then Eq. 2. 43 has the form

(W, ) - ¢ (2. 44)
Where23
k
o = ((8,2%) (2. 45)
The inner product (¢ (k) ) A(k)) is a linear functional of € (k).
Let us represent it by
s 2 2%
. . () e . k) _ .
The totality of all points ¢ satisfying the equation ¢(e ) = c, isa

hyperplane in the space EliHl The problem now is to determine the

() _ (¥

= C is minimum.

(k)

so that lle*

point € (k) in the hyperplane, ¢(e IIOC

k’

Let us apply Lemma 2. 1 to Eq. 2. 44 taking m = n+l, x =€ and
y= A(k). From Lemma 2. 1, the minimal value of lle (k) I, is attained

when € (k) _ € *(k), where € +&) s defined by

RCIC 0. 46)

23If ¢, = 0 (i.e., the vectors _(k) and }_(k) are orthogonal), then

the vector (k? must lie in the approximating subspace, Cn(E ).
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and where

Py = m (2. 47)

and

o = (2. 48)

(k)

sen >‘n+1

o i

Knowing € (k) and substituting it into Eq. 2.39, will give the vector gk*.
Thus, the theorem is proved.

This theorem is illustrated geometrically in Fig. 3, where Ul? +1
is taken to be a real 2-dimensional space, E?, The prescribed vector

(k)

f (k) and the prescribed column space of the (2x 1) matrix [E are

depicted by the vector f and the line CI(E)’ réspectively., The vector
A, which lies along the perpendicular to the line Cl(E)’ represents the
vector A(k) which satisfies Eq. 2.41. In the figure, we show X to be

24 The straight line, denoted by ¢(e) = c,

directed in the first quadrant.
represents the relation of Eq. 2. 43; namely, the line along which the

orthogonal projections of f and € onto A are equal. The dashed straight

2411 ), is directed in the other direction, then ¢ < 0 in Eqs. 2.45
and 2.47. However, this does not change the procedure.
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/ Ez-space

SUN E T

Fig. 3. Geometric interpretation of Theorem 2.3.

() = ¢
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lines (é.t 450) represent the direction of the vectors ¢ having components
equal in absolute value (see Lemma 2, 1), Clearly, the vector ¢ with

lle Iloc minimum and satisfying Eq. 2. 43, must be the vector ¢* shown
in the figure. The vector 1 *, represents the best Chebyshev approxi-
mation and is given by the difference { - ¢ "?;

In summary, Theorem 2, 3 establishes the existence of a unique
vector g_zv* € ﬂs which defines thé best Chebyshev real approximating
vector f +(v) & [E(V)] _o_zv* to the real vector f (v) in UJHI. The vector
_f_(v) énd the (n+1)xn matrix [E(V)], v=12, ..., (ngl)’ are obtained

from the vector equation
f =[E]la+e in UY (2. 49)

The next step in the proof of Theorem 2, 2 is to show that the above

results imply the existence of a unique vector a* ¢ ﬂs which defines

the best Chebyshev approximating real vector, f* 2 [E] a* to the pre-

scribed real vector f € U? and the prescribed qxn matrix [E]. Let

N q
lle be the largest value out of the set {lpvl v=1,2, ..., (n+1)}
where P, is defined by Eq. 2. 47, that is,

| 2 max {lpVI:v=1,2, ., )} (2. 50)

IpM n+1
\'

Consider the relation
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or alternately,
n
| < f. - .Z e @ < lpyls 1212 ..., 4 (2. 51)

where {fi: i=12, ..., q} represents the q:components of f € Uq, and
{eij: i=1,2, ..., i=1 ...y n} represents the elements of the qxn
matrix [E]. The point sets in n-space, defined by Eq. 2.51, are con-
vex sets. Recall, from Theorem 2.3, that any (n+1) of these convex
sets have a point in common, namely g'v* € ds’ wherev =12, ...,
(ngl)’ Hence, by Helley's Theorem (Ref. 16), there exists a point
which lies in all the convex sets of Eq. 2.61. This point, _q*, is equal

to @. * which corresponds to the value of | le . Furthermore this a*

-M
is a unique vector in "ds’ since, by Assumption 2. 1, any other gv* €
ds, v=1,2, ..., (n?rl)’ violates Eq. 2. 51 for at least one i€
{i =12, ..., q}o This completes the sketch of Theorem 2. 2,
We can now state the method which yields the best Chebyshev ap-
proximating real vector f* 2 [E] a* to a real vector { in U9 by using

"the method of ascent” as follows:

Corollary 2. 1: Let £* 2 [E] a* be the best Chebyshev approximation

tof e U4, where [E] is a given gxn matrix of rank n, defined by
Eq. 1.12, and let f +(v) & [E(V)] _o_rvf" be the best Chebyshev approxi-

mation to f v) ¢ Ué“l, where the matrix [E(V)] is a (n+1)xn matrix,
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defined by Eq. 2.32, (V) is defined by Eq. 2.28andv=12, ...,

(q

n+1)‘ Then, there exists an (n+1)-dimensional reference sub-

space denoted by Ué”l so that the vector gc* of the best Chebyshev
approximation f +(c) & [E(c)] artof (c) ¢ Ucn+1 is equal to the
vector @* of the best Chebyshev approximation f* 2 [E]a* to

fe Uq; and

np>

nex(©)y

P TR P AL P R P B T P

(2, 52)

where f (c) , [E(c) ] gc*, and ¢ #(¢) are (n+1)-dimensional vectors in

n+1 ’ n+l . .
Uc . Furthermore, this reference space, Uc , is one which

maximizes the deviation e +(v) llOC of the best Chebyshev approxi-

(v) in Un+1
v

mation to f “among all the (n+1)-dimensional subspaces

n+l, q } .
{UV v=12, ..., (n+1) ; that is,

e*y > ey o1 (9) (2. 53)

The proof is along the same lines as the sketch of the proof of Theorem
2.2 (see Ref. 19, p. 66).
This corollary states that the problem of minimizing the value of

le@Il, & 1f - [E] @l with respect to @ ¢ &, that is,

le*l_ = min  le(@ll_ (2. 54)
oC geds
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where f, [E] @, and ¢ are vectors in Uq, may be replaced by the prob-

(V)( *)

lem of determining the largest value of lle from_ the set

1@ nn_ 2 1t - gV a kv, L, (O )}

-~V n+1
that is,

el = ™ eV

\'4 o

:v=1,2,...,(q)£ 2. 55)

where [E ] o, * is the best Chebyshev approximation to f () , in U‘I,Hl.

We are now in a position to illustrate a method of computing the
best Chebyshev approximation to a real vector { in Uq, based on Cor-
ollary 2. 1, One merely computes the set { gv*} , which defines the best
approximation of f (v) on Cn(E(V) ) in all the (n+1)-dimensional reference
subspaces {U‘;Hl} ,v=12 ..., (ngl)’ and then chooses the one gv*
which yields the largest deviation lle (V)(gv*) I

This is illustrated in Fig. 4, where U? is assumed to be a real 3-
‘dimensional space, E*. The vector { and the line CI(E) represents the
prescribed vector and approximating subspace, defined by a (3x1)
matrix [E]. The three distinct 2-dimensional reference subspaces U‘g,
where v = 1,2, 3, are the three coordinate planes 1-2, 2-3 and 3-1,
respectively. The projections of f and Cl(E) on the coordinate planes

are depicted by f (v) and C 1(E(V)), respectively, where v = 1,2,3, The
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cube shown represents the smallest cube which can be fitted between f
and CI(E)’ i.e., its edges are of length lle* Iloo. By comparing the
projection of this cube on the coordinate plane and the smallest square
of length lle (v) (g_v*) I, which can be fitted between f ™) and Cl(E(V)) for
allv=1,2,3, it is seen that the largest sq;are is obtained when v = 1,

There are methods of selecting the appropriate (n+1)-dimensional
subspace Ué“l out of the set of {U‘;H'l} which are more systematic
than the random search described above. One of these, 25 because of
Stiefel (Ref, 22), uses a point-by-point exchange procedure which sys-
tematically converges to the solution. Another‘algorithm, 26 because
of Remez (Ref. 17), Whinch converges faster to the Chebyshev aprproxi-
métion, is based on exchanging all the points at each step.

At this point, we conclu&e our feview of the approximation problem
when the pole location is initially prescribed; i. e., the vector sin &F
of the matrix [E(s)] is prescribed. However, before considering the |
contributions to the approximation problem when s is not prescribed
initially, we shall review Prony's original work, We do this for two
reasons. First, to introduce the formulation~and illustrate how the con-
straint which requires‘ that {ti: i=12, ..., q} be equally-spaced,

simplifies the mathematics, Second, to demonstrate that when q = 2n,

2f5-See Appendix A,

26The reader is referred to the treatment of this subject by Rice (Ref.
19, pp. 176-180),
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2
¢(1) CI(E(D)
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€i
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/
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Fig. 4. Approximation of f in E3 onto C 1(E) in the Chebyshev sense.
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we can obtain an exact representation of any real { in Uq, i.e,, when

q = 2n, then in general ¢ = 0

2.3.2 The Original Method of Prony. Prony (Ref. 15) solved the

following exponential interpolation problem: Given a set of measured
data points of a process; determine the inte;polation the values of the
intermediate points when the behavior of the process is governed by a
linear combination of exponential functions. In other words, he sought
the values of the parameters {afk, sk}, k=12, ..., n, of

) n ' skt ;
f(t) = 2. 56
( kgl o e (2. 56)

when the set of 2n points {f(ti)} were specified. To carry out this in-
terpolation, he suggested that the 2n points {ti} be equally spaced.
Hence, he determined the 2n unknowns {ozk, Sk}’ k=12, ..., nfrom

the system of 2n simultaneous equations ‘given by
_ ki .
f(t) = ) o e , i=1,2 ..., 2n (2. 57)

where ti = t1 + (i-1) At, and At is the interval between the equally spaced
{ti}’ At this point he observed that since there are 2n unknowns in

Eq. 2. 56 which must satisfy 2n independent conditions, an exact solu-
tion is possible.

Now before turning to a detailed consideration of Prony's method
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of solution, we observe that if the 2n unknowns { %) sk} must satisfy q
conditions, where q > 2n, then Eq. 2. 57 represents a system of over-
determined equations. Since, in general, an exact solution to such a
problem cannot be obtained, then one must seek an approximate solu-
tion, by using approximation methods. The ;xtension of Prony's ori-
ginal method to finding the approximate solution of such a system has
been attempted in the literature and is sometimes misnamed, "the Prony
method. " To avoid this misconception, we shall refer to Prony's initial
interpolation method as *Prony's Original Method, " and the approxima-
tion method based on this method as '"Prony's Extended Method. n2T
In this section, we shall review "Prony's Original Method" in terms
of operations in the vector space Uq, when q = 2n. It is hoped that this
approach will aid in clarifying the limitations of the previous works
(discussed in Section 2, 3. 3) in which this method is used to solve ap-
proximation problems of network synthesis. Clearly, Eq. 2.57 may
be stated in vector notation using the formulation of Section 1. 4 as fol-
lows:

Given a real vector f in Uzn, determine the ordered pair of

parameter vectors (B, z) in ‘%z X 3 so that

27The "Prony's Extended Method" should not be confused with the pre-
vious methods (to be discussed in Section 2, 3. 3), which use the

- approach of '"Prony's Original Method" to solve approximation prob-

" lems. The formal definition of *Prony's Extended Method” will be
given in Chapter III,
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f=[z@]8 (2. 58)
where28
1 1]
24 Zn 24 Bl
[Z(z)] = zl2 znz , z =%, and B = Py
2n+1 ’ 2n-1 _Zn h _B n |
1 ** “n ]
- (2. 59)

The essential contribution of Prony is in the method he employed in
finding the vector pair (8, z). He observed that if the (2nx n) matrix
[Z] is of rank n, he could replace the 2n unknowns { B, Zk} , k=12,
..., nbya new set of n unknowns, {ri}, i=0,. e n-1, which linearly
relate any (n+1) successive rows of the matrix [Z]. Furthermore, this

relation may be expressed by the nth—order polynomial equation

=0 (260

28Note that the matrix [Z(z)] defined here, represents the matrix de-

fined by Eq. 1. 18, where q=2n, that is, it illustrates the form of
[Z )] when the components of z e are distinct. If the components

-of z are not distinct then [Z(z)] takes on the format of Eq. 1. 18a,
where q = 2n.
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the roots of which are the n-unknowns {zk}. Hence, this method con-
sists of first determining the n unknowns { ri}, i=0,1, ..., n-1, and
then determining the 2n parameters, {8, zk}, k=1, ..., n. Thisis
illustrated as follows:

If the 2nx n matrix [Z], defined by Eq. 2: 59, is of rank n, then the
format of [Z] reveals that any n consecutive rows of [Z] are independent.
)st

Hence, any (n+1)” row can be represented by the linear combination of

the previous n rows, that is

n : _
’ n+v-1 Z v+i-2 k=12, ..., n (2. 61)
=1

Observe that the set {zk: k=12, ..., n} represents the n-roots of

the nth order polynomial equation given by

n A i-1 n
z - E C.Z = I (z- zk) =0 (2.62)
i=1 k=1 '

Hence, if we let c, =T, then Eq. 2.62 yields the polynomial equation

| given by Eq. 2.60, and Eq. 2.61 may be written as
(z)} =0, wv=12 ...,n (2. 63)

where Pn(z) is the nth- order polynomial defined by Eq. 2. 60,
At this point it should be noted that the polynomial Pn(z) is invari-

ant of the index v in Eq. 2,63. Furthermore, by specifying the
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n- coefficients {ri: i=0,1, ..., n-1} of Pn(z) one also specifies the
elements of the matrix [Z(z)] defined by Eq. 2,59, since the set of
values {zk: k=1,2, ..., n} can be determined directly from Eq. 2. 60,
We now have th.e problem of determining the values of the n- coeffi-
cients {ri: i=0,1,2, ..., n-1} of P (z) from the 2n prescribed data
points {fi: i=1,2, ..., 2n}. Recall that since the set of n-unknowns
{ri} linearly relate any (n+1) rows of the matrix [Z(z)], then by the
relation of Eq. 2,58 they must also linearly relate any (n+1) successive

components of the vector f, that is,
+# ) T f,0=0, v=12 ..,n (2. 64)

Clearly, Eq. 2,64 represents a system of n.simulta.neous linear
equations in n-unknowns. If these equations are independent, then they
yield a unique set of {ri} , which are real since the {fi} are real.
Knowing {ri} , the {zk} follow, being the roots of Eq. 2,60, (Note
that since the {ri} are real, then the roots, {»zk} , of Eq. 2,60, are
real or occur in conjugate pairs,) If all the roots of Eq. 2. 60 are dis-
tinct, then the {Bk} are determined from Eq. 2,58, where only the
first n-relations need be considered. On the other hand, if some of the
roots of Eq. 2.60 are repeated, then Prony shows that the {Bk} can be

* determined by using a modified form of Eq. 2. 58. This modified form

s, t
of Eq. 2,58 is obtained from Eq. 2. 56, by replacing the function e k ,



69

. St
for each repeated root of Eq. 2,60, by the function tJ-1 e x , where j

denotes the order of the repeated root. For example, if Zy=Zg = s

= z]. represents the jth order root of Eq. 2.60, then Eq. 2,57 is written

29
as
. s,t. n s, t.
B -1, T14 ki
fi—(a1+a2ti+“‘+ajti )e + Z o € -
k=j+1
i=12, ..., 2n

Since t, = t, + (i-1) At, then, if t, = 0, this expression yields the follow-
ing modified form of Eq. 2. 58,
1

: n
-1 i-
At' T B.] z4 + Z B z
7 k=j+1 k- k ’

£ = [B)+ (1) Aty + ... + (1372

i=12, ..., 2n
This is illustrated in the following example:

Example 2.1: Let usfit n = 2 exponential functions to the function
f(t) = 3 - t at the following 2n discrete points t = 0, 1, 2, 3, i.e.,

At = 1. In other words, given the vector

(o= —

3

2

1
LO_

293¢e Eq. 1. 132,
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find the vector pair (8, z) € 3’6’2 X 3 when n = 2,

Equation 2, 64 yields the following sets of equations

1
o

3r0+2r1+1

2r0+r1

Solving this system of equations, yields rg = 1, ry= -2. Hence Eq.

2. 60 becomes
22-22+1=0

the roots of which are zy= 1, Zg = 1. Since we have a double root, i.e.,
Zy= 2= 1 and since t; = 0 and At = 1, then from Eq. 1. 18b the matrix

[Z(z)] becomes

Ir—ll—nn—nn-a]

0
1
2
3d

Solving for the vector 8 which satisfies Eq. 2. 58, that is,

— —

By
By

._.._.._.]

3
2
1

0

0
1
2
3

N

—
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one obtains that § = [3, -1]. Therefore, the vector pair (8, z) is given

oo - ([ ]

by

Mapping the vector pair (8, z) into (g, s) yields30

wo- (] 3

Hence, the interpolating function, given by

-~ slt
f(t;e, s) = [a1+a2t] e

becomes
i) = (3-1)

Clearly, the interpolating function f(t) does indeed pass through all four
sample points. In fact, since the function f(t) is identical to f(t), the
interpolating function *(t) will pass through any .q- sampling points, where31
q> 2n=4,

At this point, we recast Prony's method in terms of vector opera-

tions in UZY, First, let us redefine the polynomial of Eq. 2.60 as

30This is discussed in detail in Section 6. 2 of Chapter VI.

31Note that this problem illustrates the case when t‘he approximation

problem yields a zero error,
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P(z) 2 Z r. z' (2. 65)
=0

Clearly, when T # 0, then the zeros of this polynomial are identical to
the zeros of the nth order polynomial Pn(z)... Hence, the choice of r = 1
in the definition of Pn(z) is arbitrary. If we denote the ordered set of

coefficients {rQ, Tys ooy rn} by the vector r € En+1, i.e.,

r=1. (2. 66)

then it suffices to say that Prony's method seeks only the direction of
Te En+1, and not its magnitude. In other words, Prony's method seeks
the vector r ¢ E™! which is restricted to the set defined by Izl p= L
The implications of this formulation will become evident in the next
sections, where the extensions to the "Prony's Original Method" are
discussed. For the present discussion we shall follow "Prony's Ori-
ginal Method" and assume that r = 1,

Let us now represent the set of n polynomial equations of Eq. 2.63

in vector form, namely,

z@]T:M =0, v=12 .., 0 (2. 67)

(v)

where the 2n-dimensional vector r'"’ is given by
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th
r -~ vV components

O ee s

It is evident from Eq. 2,67 that the set of vectors {E(V)} , v=012 ..., n

are orthogonal to the column space32 of [Z(z)], Cn(Z); that is,

(@)™ =0, v=12..,n (269
for all B e '%z' In fact, the set{ }, 2, ..., n, spans the
orthogonal complement subspace of C (Z) in U . In matrix form, this

orthogonal complement subspace may be represented by the column space

- of a 2nx n matrix, [R], which is defined by

32Recall from Section 1. 4, that the matrix [Z(z)], defined by Eq. 1.18

(or Eq. 1.18a), is of maximal rank n, for allz ¢ 3
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- —
Ty 0o .. 0o O
T %o 0
r2 Ty 0 .
r Ty 0
[R] é [5(1) _1:(2) v E(n)] = rn E I'1 I'O (2. 69)
0 Th Ty T
20 PoTy
0 . r .
L] n
0 0 . 0 r
- ]

We have thus defined an n-dimensional subspace, Cn(R), which is a

function of the (n+1)-dimensional parameter vector rin En+1, defined
by Eq. 2.66, Furthermore, this subspace is orthogonal complement
subspace33 of Cn(Z) in Uznn

In order to satisfy the equation f = [Z(z)] 8, the vector f must lie

in Cn(Z), or alternatively f must be orthogonal to Cn(R) ; that is,

R]T 1 - 0 | | (2,70)

Clearly, when r = 1, this expression represents the system of simul-
taneous linear equations of Eq. 2.64. Observe that Eq. 2,70 may also

be written as

33This will be discussed further in Chapter III.



[Flr =0 (2.71)
where
[ ]
f1 f2 fn+1
[F] = f‘z f.3 ne2 = nx(n+1) matrix
_fn fn+1 f2n~

This equation can be solved for r when one of the components of r is arbi-
trarily chosen to be equal to one. For example, if we select r = 1,
and if the first n columns of the matrix [F] yield an nx n nonsingular

matrix, then the other n components of r can be obtained from

— — -1
ro f1 fn fn+1

. = - : L : (2.72)
r o1 £ f90q f2

R _n n-l] |_4n_|

In conclusion, then, we have shown that Prony's original contribu-
- tion consists of determining a new parameter vector r which is related
to z by Eq. 2.65 and defines an n-dimensional orthogonal complement

subspace to Cn(Z) in Uzn. Using this setting, we are now in a position
to summarize the contributions by Yengst and Ruston to approximation

methods for network synthesis.
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2.3.3 The Approximation Problem when the Matrix [E] is Not

Initially Prescribed.. We shall now consider the previous contributions

to the problem of network synthesis using discrete approximation tech-
niques. This is the case described in Eq. 2.9 when the vector s € &

(i. e. , the q x n matrix [E(s)]) is not initially» prescribed and when q > 2n.
The two significant contr{butions towards the solution of this problem
were made by Yengst (Ref. 26) and Ruston (Ref, 20) who employed the
least-squares and the Chebyshev criterion, respectively, to judge the
degree of approximation. However, in no case, was the optimum pole
location (i e. , the vector s* ¢ &) determined,

Both Yengst and Ruston used Prony's approach to solve their re-
spective approximation problems. Therefore, their methods require
that the discrete values of the prescribed impulse response be taken at
equally-spaced points of time, Although they did not formulate their
problem in terms of the theory of approximations in Uq, it can be shown-
that they sought the best vector pair (§**, z*) ¢ 98, x 5 which mini-
mizes the ﬂg»- norm of the error vector (i.e., l€(B, 2) ‘Ilp with p = 2 for

Yengst's problem and p = « for Ruston's problem) of the equation

h = [Z(z)]g+eB, z) in U (2. 73)

where ¢ > 2n, Their methods of solution involve a two-stage approxi-
-mation process, by which they first determine an estimate of the polé

location (or equivalently, the parameter vector _g) by extending Prony's
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original method; they then determine the optimum residues (or equiva-
lently, the parameter vector _@*) for this pole location.

Now before turning to detailed consideration of their methods of
solution, | let us show that their approximation procedure yields an error
norm that is not necessarilvy the minimum possible. Recall, that when
q = 2n, '"Prony's Original Method" yields a system of n simultaneous

equations, given by Eq. 2.70; i.e.,

[R(r)]Th =0 in E" (2,74)

This system can be directly solved for the vector r. They argued that
when q > 2n, one obtains a similar system of equations; however, now
Eq. 2.74 characterizes an overdetermined system of equations since
[R]T h is a (g-n)-dimensional vector, where (g-n) > n. Being thus
denied an exact solution, they sought the best approximate solution to
this overdetermined system of equations, i.e., the vector z which satis-

fies the vector relation

R@)]Th = 8(r) in EID (2. 75)

when [5 I’Ip is minimum, By applying the operator [R] Tto Eq. 2,73,

one obtains for comparison, the result34

3410 emphasize the dependence of the vector € on r, the vector ¢(8, z)
is denoted by €(r).
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) = [R@)]Te@ in ETT (2. 76)

Clearly, minimizing the function I §(r)ll  with respect to r does not

p
necessarily minimize the function €(r) llp. Therefore, in general,
the vector '_i\'_', which represents the solution vector r when I15(r)ll is
minimum, will not be equal to the frector 5*, which represents the solu-
tion vector r when lle(r)ll p i minimum. |

Furthermore, it should be mentioned that Ruéton's and Yengst's
approximation procedure considers only the vectors r € En"'1 with the

(n+1)st component equal to one, i.e,, r_ =1, rather than the vectors
n

re En+1 which35 lie in the set defined by lirll p= 1. Hence, they mini-

mize the function I[5(r") |l with respect to r'e En, where the vector r'

= ""p
is defined by
r—ro —1
= |71 (2.77)
r
| ol

The consequence of this assumption will be discussed further in the next

sections, where their individual works are considered.

3 5See Eq. 2,66 of Section 2, 3. 2,
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2.3.3.1 The Least-Square Approximation Method of Yengst.

Yengst (Ref. 26) considered the network synthesis problem using dis-
crete least-square approximation techniques in the time domain. This
problem is stated by Eq. 2.73. By using "Prony's Original Method" and
the general least-square approximation theory: he was able to obtain an

approximate solution to this problem.

In the setting introduced above, Yengst determines the n-dimensional
vector r', defined by Eq. 2.77 which satisfies Eq. 2. 75 in the best least-

square sense; that is,

np>

R

- 2

IREN Bl < IREI] B (2.78)

for allr' in E". To elucidate the dependence of the vector 5 on the vector

r', let us rewrite Eq. 2.75 as

o) = [H ]r'+h (2.179)

where the (q-n)xn matrix [Hn] and the (g-n)-dimensional vector h are

defined by
r—'h - — —
1 hn n+1
_|h h
H o= |72 n+l |, and h = | "ns2 (2. 80)
h .o
q-n By-1 hq
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Since the £,-norm of 3 is given by

la@)l® = (B Ix'+h , [H ]z +h)

then, it follows from - 13(")I% = 0 that

— »

T T

H]r'=-H h (2. 81)

[Hn n -n

This expression is the vector equivaleht of Eq. 32 of Yengst's paper,
'(Ref. 26). The vector r ' represents the stationary point of the function
i _§(_I:')II: . If the nx n matrix [HnT Hn] is nonsingular, r ' can be deter-

mined from

t T -1 T
=-[H H]H h (2. 82)

=

Having determined f', Yengst proceeds to determine the vector g in

terms of the roots of the polynomial equation

n el i n ~
z + Z r'z = I (z-z)) =0
i=0 k=1

From the above, it is evident that the fesﬁlting pole locations (or
equivalently, the parameter vector _Z) depend on the stationary point of
the function {5(r") H: = | [R(_r_')]T €(r’) II: rather than on the stationary
point, r*, of the function Je(r) Il:. Hence, Yengst's approximation tech-

" nique does not necessarily yield an optimum least-square approximation

to the prescribed real vector h in v,
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Furthermore, since Yengst initially assumes that the (n+1)st

component of r € Em'1 is equal to one, then the vector given by

['171', '172', ces, 'f"n', I]T may not represent the vector r e E™ yhich

minimizes the function [|5(r)l , along the set defined by lrll D= 1, when

8(r) is defined by Eq. 2.75. This may be best illustrated by defining the

vector 5(r) of Eq. 2.75 interms of r € En+1, namely

o(r) = [H] r (2. 83)
where
hy e By
[H] - h2 0e o hn+2
h see h
q-n q

If one initially assumes that some other component of r is equal to one,
then Eq. 2. 83 clearly yields a relation which differs from Eq. 2,72 only
by the value of the elements of the matrix [Hn] and the vector h . For

example, if the component r(, = 1, then Eq. 2.83 may be written as

5(r") = [HO] +hy (2. 84)

where
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[, 7] K ]
T by
| . _|h
™= |, BG - 9
r |
n
il h
| 0
and
h2 ceo hn+1
[Ho] - | B3 oo Bpaf - (q-n)x n matrix
homet o+ By

Note that while the vectof 20 represents the vector to be approxima-
ted in Eq. 2. 84, it represents a vector which spans the approximating
subspace, defined by the column space of [Hn], in Eq. 2.79. To illus-
trate that the relations given by Eq. 2.79 and 2, 84 may yield two differ-
ent best least-squares solutions (after making a normalization with
respect to gllp), let us suppose that in Eq. 2.84 the vector h lies in
the column space of the matrix [Hﬂ]. Clearly then, Eq. 2.84 may be
solved exactly, so that the minimal value of 115(r") ﬂ’z =0, On the other
hand, Eq. 2.79 cannot be solved exactly (if the vector b does not lie in
the column space of [H ]), so that the minimal value of 13(r")1, £ 0,
Hence we note that, for this case, there existsanr ¢ g™ along the set
Il _1_'Ilp = 1 which yields a l8(r)ll, = 0, where 0(r) is defined by Eq. 4.84,

a result which is not obtained by using Yengst's formulation of Eq. 2,79,
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2. 3. 3.2 The Chebyshev Approximation Method of Ruston,

Ruston (Ref. 20) considered the Chebyshev approximation problem of
network synthesis defined by Eq. 2.73. His method of solution is simi-
lar to that used by Yengst. By using "Prony:s Original Method", and
Stiefel's work (presented in Appendix A) he was able to obtain an approx-
imate solution to this problem. His method involves a two-stage approxi-
mation where he first determines the parameter vector z and then deter-
mines the optimum parameter vector §* for this z. His procedure leads
to an approximation which gives a Chebyshev type error, but as will be
illustrated in the next paragraph, it is not the minimum possible Cheby-
shev error,

To determine the parameter vector z, Ruston begins by finding the

n-dimensional vector _?_" which satisfies Eq. 2.75, so that

1o@1, & 1RENThl, < IRE@)) A (2. 85)

for all r' in E" Actually, to determine f' he uses the alternate repre-

~ sentation of the vector 6(r') given by Eq. 2.79; that is,

3(x') = [Hn] r'+h (2. 86)

Since both the (q-n)xn matrix [Hn] and the (q-n)-dimensional vector gn
are known (see Eq. 2.80), the vector 0 is strictly a function of the n-di-
mensional vector r', defined by Eq. 2.87. Hence, if (@-n) > nand [Hn] is

of rank n, then the problem of finding the vector f ' ¢ E” which minimizes
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115

')IIOC, where the vector §(r') is defined by Eq. 2. 86, is simply the
Chebyshev approximation problem considered in Section 2. 3. 1, 2.

The existence of the best Chebyshev approximate solution vector
I'e E' is given by Theorem 2.2, where now that the vector h_and the
n columns of the matrix [Hn] describe vectors in a’(q—n)-dimensional
Euclidean vector space, E TN At this point, Ruston applies Stiefel's
algorithm to obtain the T ' ¢ E” which satisfies Eq. 2.85, Once the vec-
tor f' is attained, then Ruston determines the parameter vector z from
the roots of the polynomial equation

~ i

n-1
— n —
Pn(z) =z + i-_ZO r.z = 0 . (2. 87)

Let us denote the ordered set of roots of Eq. 2. 87 by the vector z.
Consequently, from the vector '_zv, the qxn matrix [Z(_'z:')] can be fully

determined. Denoting this matrix by [Z], he arrives at the second

approximation step which is defined by the equation
h=[Z]g+e | (2. 88)

where both the real vector h in U% and the qxn matrix [i] are known,
This step seeks the best Chebyshev approximate solution vector _@* € 36’2
so that Jle lloo is minimum. Clearly, the existence of a solution to this

. problem is given by Theorem 2. 2, so that Ruston again applies Stiefel's

algorithm to determine the vector p* e ‘%z’ It should be noted that the
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resulting error vector, given by

e*(z) = h-[Z] g* (2. 89)

will satisfy the conditions given by Eq. 2.18 of Theorem 2. 2; i. e., that
the absolute values of at least (n+1) components36 of € *(g) are equal to
leX(Z)]| » 2nd the absolute value of the others is less than | e *(_2)[[Oo

To illustrate Ruston's method, consider the following exa.mple:37

Example 2.2: Given: q = 9, n = 2, and

. 0000 |
. 4450
. 2500
. 1600
1110
. 0817
. 0625
. 0494
0. 0400 |

38 B*,z) e B , X F such that the real vector

Find the vector pair

h*(z) 4 [Z(z)] p* approximates h in the Chebyshev sense.

36In Chapter IV we shall show that in general the optimum solution to

this Chebyshev approximation problem yields an error vector having
at least (2n+1) components with absolute values equal to the £3-norm
of the error vector.
37The example we have chosen is presented on pp. 79-90 of Ruston's
thesis (Ref. 20). However, we shall present this example using the
notation developed above.

381t should be mentioned that Ruston intended to find the vector pair

(_@**, z*) € B z X, 3 , however, he only succeeded in finding the
vector pair (B*,z) ¢ B , x F . This is why we have stated the
approximation problem as shown.
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Let us begin by writing out the form of Eq. 2.86 as follows:

611 1.0000 0. 4450 0. 2500
0. 4450 0. 2500 0. 1600
0.2500 0.1600 | [r, 0. 1110
= |0.1600 0.1110 + | 0.0817
0.1110 0.0817| |r, 0. 0625
0.0817 0. 0625 0. 0494

o, 0.0625 0.0494 0. 0400 (2. 90)

This equation is Eq. 4. 106 of Ruston's report (Ref. 20, p. 78). The
vector f’ ¢ E? which yields the minimum value of |8 ”oo is found
using Steifel's algorithm (see Appendix A) to be

0. 2033
T o= = (2. 91)

-1.0128

and

0. 002707
-0. 002707
N -0. 000217
o8(r') = | 0.001801
- 0.002318
0. 002707
| 0.002671

It is noted that (n+1) = 3 components of the vector _g(f') have absolute
values which are equal to || (") = 0.0027 (i.e., |6,] = 8| =

|6 = 0.0027) in accordance with Theorem 2. 2. Substituting the

6l
* values of {;i'}’ given by Eq. 2.91, into Eq. 2.87, and finding the

roots of this polynomial equation yields
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o 0. 7369
E =
0. 2759
Hence, Eq. 2.88 becomes
— — — a— » —
1. 0000 1. 00000 1.00000 €4
0. 4450 | 0.73690 0.27590
0. 2500 0. 53402 0.07612 8 €9
0.1600 | _ |0.40015 0.02100 1 N
0.1110 | = |0.29487 0.00579 8
0. 0817 0. 21729 0.00160 2
0.0625 0.16012 0.00044
0. 0494 0.11799 0.00012
0. 0400_ 0. 08695 0.00003 ng

Solving this equation for g*, which minimizes [|._e_ “oo’ yields

0. 38427
B* =
- 0. 60917

0. 00656
-0. 00424
-0. 00504
_|-0.00656
€*¥(z) = |-0.00584
-0. 002717
0. 00070
0. 00399
0. 00656

Again, it is noted that only (n+1) = 3 components of € *(g) have abso-
lute values equal to [|e¥(2)]| = 0.00656, i.e., | | = |e,| = leg| =
0-00656.

This concludes the exposition of Ruston's method. However, the

following question now arises: Is the point g the stationary point, z*,
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of the function ll¢*(z)] ? It will be shown in Chapter IV that, in gen-
eral, the answer is no, so that ll_(l-:_*(g*)ll00 < le *@ ) lloc. Now, before
turning to a detailed consideration of this problem, it should be noted

that the comments, which were made at the end of the previous section,

»

concerning the vector [?1', ;2', ceey ;n" 1] T apply also to Ruston's

method.



CHAPTER III

PRONY'S EXTENDED METHOD

The purpose of this chapter is to study "Prony's Extended
Method”1 for solving exponential approximation problems in the
!Zg-spaceo Specifically, we shall consider "Prony's Extended
Method" for solving the following approximation problem: Given
a real vector f ¢ Uq, and a set of approximating real vectors
{i(ﬁ,g) e [Z(z)] 8 : (B,2) € B, x 3} , where [Z(z)] isa q x n
matrix, defined by Eq. 1.18 (Eq. 1.18a), of rank n(q > 2n). Find

the best parameter vector pair {@p**, _z_p*) € ‘%z X 3 so that

I£- (22,918,441, < £+ [2@)] 81, (3.1)

P

2
for all (8,z) € Qz X 3 , and where” p > 1.
The essential part of "Prony's Extended Method' for solving
this approximation problem is that it replaces the parameter vec-
tor z € 3 by a new real parameter vector r which is related to

'z by the nth order polynomial equation P(z) = 0, defined by Eq. 2. 65.

1See Section 2. 3.2 for "Prony's Original Method. " (Chapter II)

2Since "Prony's Extended Method" simply reformulates the approxi-
mation problem defined by Eq. 3.1, we may generalize the results
obtained in this section by using £4 -norm of € to judge the degree
‘of approximation where p > 1.

89
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Let us begin by defining a q x (q - n) matrix [R(r)], of rank
(9 - n) which depends on an (n+1)-dimensional vector r, namely,

-
T, 0 0
ry ry
T |
. r2 0
[R(r)] = r . ry
0 rn T
0 0
Q 0 ... r (3.2)
L -
where
_ro_
1
.E =
_rn_ ' (3.3)

* 3Note that this matrix [R(r)] becomes the matrix [R(r)] defined by
Eq. 2.69 when q = 2n.
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The set of all the parameter vectors r is denoted by R, and is de-
fined as follows:

Definition 3.1: The set &, of the parameter vector r, is the
n+l

set of all nonzero vectors r ¢ E* , the n+1-dimensional

real Euclidean space, so that the roots 1z,,2,,. .. ,zn} of

the nth-order polynomial equation
S
P(z) = 2 r.z = 0 (3.4)
i=0
represent the vector z ¢ 5 .

Clearly, Definition 3. 1 establishes the rela,tion4 between the vector

ZE€ 3 and the vector r ¢ 8. Consequently, if either one of these

vectors is known, then the other vector may be found from Eq. 3. 4.
Let us now establish a lemma which relates the subspaces

spanned by the columns of the matrices [Z(z)] and [R(r)].

Lemma 3.1: Let [Z(z)] bea q x n matrix, defined by Eq. 1.18,

(Eq. 1.18a), of rank n(q > 2n), and let [R(r)] bea q x (q-n)
matrix (defined by Eq. 3.2) of rank (q-n). Then the n-dimen-
sional subspace of UZ defined by the column space of [Z(z)],

Cn(Z), and the (q - n)-dimensional subspace of Uq, defined by

4Note that this relation is not one-to-one, since the vector z e 3 )
" represents an arbitrary ordering of the roots of the polynom1al
equation of Eq. 3.4.
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the column space of [R(r)], Cy-n(R), are orthogonal comple-

ment subspaces of Uq; that is,

C,(2) ® C_(R) = v (3.5)

where

c,@ | ¢, ®

if and only if, the components {ZI’ZZ’ ces ,zn} of the vector

Z € 9 are the roots of the nth-order real polynomial equation
P(z) = Z r, z' = 0 (3.6)

where the ordered set {ro,rl, . ,rn} define the vector

redR.

Proof: Let _f: g [Z(z)] 8 be a real q-dimensional vector in C (Z),

where g8 ¢ J8, and let g g [R(r)] y be a real q-dimensional vec-
tor in C q_n(R), where y ¢ EX"™, To prove the "if" part of the
lemma, we must show that when the vectors z € 9 and r ¢ R
are related by Eq. 3.6, then the inner product ( _f , _é) = 0, for all

BeB , and ¥ € E3™®  Since the inner product between the vector

f and g in U? yields

(f,) = zT [Re)] T [2(2)] g (3.17)
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then it suffices to show that the matrix product [R(r)] T[Z(g)] =0,
forallze 3 and r ¢ . Toshow this we shall consider the case
in which the components of z are distinct. The case in which the

components of z are not distinct will be considered separately.

»

(1) When the components of z are distinct, then the matrix
[Z(_z_)] is given by Eq. 1.18. In carrying out the matrix multiplica-

tion [R]T[Z], one obtains

— _

P(zl) e e . P(zn)

z1P(z1) . . s znP(zn)

z 12 Piz,) . . . zﬁ2 P(z )
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