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ABSTRACT

Baroclinic instability of ultra-long waves (wave numbers 1, 2, and 3) is
studied with a 4O-layer, geostrophic, hydrostatic, adiabatic model which is
later modified to include Newtonian heating. The assumption of a meridionally-
varying zonal current linear in pressure upon which arevsuperimposed wavelike
perturbations traveling in the west-east direction and static stability depen-
dent only upon the inverse of pressure allows the reduction of the basic equa-
tions to a single second-order homogeneous ordinary differential equation in
vertical pressure velocity having latitude as an implicit parameter. The
"shooting method," a numerical search procedure to determine the eigenvalue,
perturbation phase velocity, is employed under the simplifying boundary con-
ditions that vertical pressure velocity is zero at the top and bottom of the
atmosphere. This method requires one exact solution, and a procedure is given
to determine it. A discussion is also included of the uniqueness of the
unstable eigenvalues. Three separate cases for both the adiabatic and
Newtonian models are considered, based upon zonal wind means of January, July,
and the annual average, 1963 from 20°N to 85°N.

Investigation of instability as measured by the imaginary component of
phase velocity reveals no dependence upon wave number for adiabatic flow, while
instability increases as wave number increases for Newtonian heating, which
itself exerts a stabilizing effect, becoming more pronounced with increasing
instability. At all wave lengths in adiabatic and Newtonian flow greater

instability is found over most latitudes in January, than in July or for the

xvi



annual average, having a meximum at 25°N in January, at LO°N in July, and at
35°N for the annual average. In the adiabatic model this corresponds to e-
folding times for the third harmonic of L, 7:1/2, and 6 days, respectively.

The phase speed, defined as the real part of the phase velocity of the
perturbation wave, is the same for both adiabatic and Newtonian flow and is
independent of wave number. Values of the phase speed for the most unstable
waves are 8.6, 5.2, and 6.3 m/sec in Jénuary, July, and for the annual aver-
age, respectively.

Vertical wave structure of the most unstable waves is investigated and
is found strikingly similar for the adiabatic and Newtonian models. Virtually
no variation with wave number or time is observed. Phase angle and normalized
amplitude variatioﬁ with pressure of perturbation geopotential, vertical pres-
sure velocity, and temperature reveal a westward tilt with decreasing pressure,
Newtonian phase angles 5° west of their adiabatic counterparts at every level,
and negligible difference in normalized amplitude between the models.

Instantaneous energetics of the adiabatic and Newtonian models is studied
(1) by calculation of the vertical variation and total over the entire atmo-
sphere of the normalized conversion from zonal to eddy available potential
energy, C(AZ,AE), and normalized conversion from eddy available potential

energy to eddy kinetic energy, C(AE,K ), and (2) by calculation of the vertical

E

variation and total in a latitudinal strip 10° wide centered on the latitude
of maximum instability of the same energy conversions. In this strip it is

found that, with the soie exception of C(AE,K ) < 0 in the January-Newtonian

E

model, C(AZ,AE) > 0 and c(AE,KE) > 0 which agrees with the time-averaged

xvii



energetics as observed in the atmosphere. This is not so for the energy con-
versions over all latitudes, where the energetics of the stable perturbations
apparently dominate that of the unstable perturbations and the models' validity
may be questioned in the high-latitude regime. Here, however, addition of New-
tonian heating does cause the instantaneous energetics to conform more closely
to the time-averaged empirical energy conversions, providing some support for

the inclusion of Newtonian heating in an ultra-long wave model.

xviii



CHAPTER I

INTRODUCTION

1.1, BACKGROUND AND PURPOSE OF THE STUDY

On hemispherical weather charts atmospheric motion can be described as
zonal (west-east) flow on which are superimposed disturbances. These dis-
turbances represent the superposition of components having horizontal scales
in a very wide range. On hemispheric 500 mb maps of mid-latidudinal westerly
flow one clearly observes the existence of very long waves having wave lengths
from 10,000-20,000 km. In this study ultra-long waves are synonymous with
very long waves, specifically those waves having wave numbers 1, 2, or 3,
where wave humber indicates the number of waves of given wave length around
a latitude circle. While some authors use the term "planetary" waves to
describe waves with length comparable to the planet's radius, i.e., ultra-
long waves, others use it to describe any wave occurring in a planetary atmo-
sphere. To avoid confusion we shall refrain from using it in this study. The
observed ultra-long waves are either stationary or slow-moving. Eliasen
(1958) describes these waves as slowly-moving systems whose amplitude doubles
in a few days, oscillating around certain preferred geographical positions. For
the purpose of mathematically modeling the ultra-long waves we consider a
superposition of two distinct wave types—the stationary or quasi-stationary
waves and the transient, traveling, or free waves. The former necessarily
result from constant large-scale external forcing such as terrain or heat

sources and sinks, while the latter may be subdivided into barotropic and

1



baroclinic modes, the barotropic describing the vertically-averaged component
and the baroclinic the deviation from the vertical average.

It is the purpose of this study to show how a baroclinic, adiabatic,
frictionless, geostrophic model describes the transient ultra-long wave dyna-
mics of the atmosphere and how the addition obf linear diabatic heating modi-
fies the solution. Analysis of our models with regard to the stability and
structure of ultra-long waves reveals the existence of unstable solutions.
Thus, the presence of baroclinic instability in the atmosphere may be a
factor accounting for the fact that ultra-long waves often seem to be excited.

Mathematically, the hydrodynamic instability problem is as follows:
Suppose the system of hydrodynamic equations has a steady-state solution for
the components of velocity, pressure, and temperature. We consider an initial-
vallue problem with these variables slightly different from those in this time-
independent solution. If the solution approaches this steady-state solutior
as time t + », the motion is stable. Otherwise, it is unstable. Baroclinic
instability is a hydrodynamic instability arising from the existence of a
meridional temperature gradient (and thus, a thermal wind) in the atmosphere
in which potential energy of the basic flow is converted into kinetic energy
of the unstable perturbation. We distinguish this from barotropic instability,
a hydrodynamic instability arising from certain distributions of relative
vorticity in two-dimensional flow in which kinetic energy is the only form of
of energy transferred between the basic current and perturbation. Baroclinic
instability is considered to be one of the factors responsible for the develop-

ment of wave disturbances within strong westerly wind flow which frequently



occurs in middle and high latitudes. Growth of the disturbances is character-
ized by ascent of warmer, and descent of colder, air masses, representing a de-
crease in disturbance total potential energy and its associated release of
kinetic energy.

In order to formulate the mathematical problem of hydrodynamic instability
we take, from the many possible steady-state solutions of the equations of
motion, one which is mathematically expedient and superimpose upon it a dis-
turbance of a suitable kind, generating a set of nonlinear disturbance equa-
tions governing the behavior of the disturbance. By assuming the disturbance
or perturbation amplitude small, i.e., the square of the amplitude is negli-
gible in comparison with the amplitude, and derivatives of the perturbation of
the same order of magnitude as the perturbation, we employ the method of small
perturbations to linearize the disturbance equations. This eliminates the nonlin-
ear advective terms in the perturbation hydrodynamic equations. The resultant
linear system of equations contains time t only through derivatives with respect
to t, and hence solutions containing an exponential time factor eGt may be
expected. Boundary conditions on the disturbance equations vary considerably
with the nature of the problem but usually require vanishing of at least one
of the perturbation velocity components at the boundaries. In general the
boundary conditions, like the disturbance equations, are homogeneous, i.e.,
each term is proportional to a dependent variable or one of its derivatives,
and we therefore have an eigenvalue problem for the determination of 0. If ¢
has a positive real component, the flow is unstable according to linear theory,

the greatest instability occurring at the maximum value of 0; otherwise, the



flow is stable. When ¢ is known, the structure of the perturbations can

. usually then be determined. An unstable nonlinear system may or may not
approach another steady state. The method of small perturbations is incapable
of making this prediction. Despite this and other limitations the method out-
lined is the most common way of treating an instability problem and has met
with considerable success. Cowling (1957) has pointed out: "The perturbation
method is not altogether adequate, particularly in problems of the stability
of flow: flow is sometimes stable for small disturbances but unstable for

large. But no method superior to the perturbation method has yet been devised"

(p. 57).

1.2. BRIEF REVIEW OF PREVIOUS WORK

In 1939 Rossby déveloped a theoretical treatment of the motion of long
waves. He assumed uniform zonal flow and wave perturbations independent of
latitude in a barotropic atmosphere. To simplify the problem he introduced the
B-plane in which the only effect of the earth's curvature considered appears
in the north-south variation of the vertical component of the earth's rota-

tion. This model gives stable waves moving at speed

where U is the basic current, A is the wave length, and p = QQcosw/a. Here,
a is the earth's radius, @ the earth's rotation rate, and ¢ the latitude. In
comparing his results with observations we find reasonable agreement for moder-

ately long waves. His predictions for the very long waves, however, of strong



retrograde motion and ¢ highly sensitive to small changes in wave length are
not confirmed. In delineating behavior of very long waves, Eliasen (1958)
describes them from zonal harmonic analysis as slowly moving systems which
oscillate around certain preferred geographical positions. Haurwitz (1940)
modified Rossby's model by considering his problem on a sphere.

The first analysis to include all the essential features of zonal-wind
instability was undertaken by Charney (1947). It is probably safe to say
that subsequent analyses are elaborations of this model. He incorporated
Rossby's B-plane approximation, but assumed a baroclinic hydrostatic atmo-
sphere in which a perfect gas was undergoing adiabatic motion having small
Rossby number (Ro) and large Richardson number (Ri). Traveling wave distur-
bances were assumed to move along parallels, while vertical or meridional
variation of certain parameters was eliminated by taking appropriate averages.
Solutions were obtained in terms of confluent hypergeometric functions. Among
his important results he showed the existence of large-scale unstable waves in
a zonal current having vertical shear (or, equivalently, horizontal tempera-
ture gradient) exceeding a critical value and described the structure of these
waves. He did, however, find his unstable regime to be bounded by a long wave
limit due to the B-effect. By neglecting the B-term Eady (1949) presented a
short wave 1limit to instability due to static stability and obtained the most
preferred scale of the unstable waves. A numerical calculation to extend the
class of stability problem as posed by Charney and Eady was performed by Green
(1960). He examined stability properties of a baroclinic zonal flow bounded

above and below by two rigid boundaries, and concluded that there are neither



short nor long wave limits to instability. This was supported by Burger (1962)
who showed that extrapolation of linear vertical wind shear from the troposphere
into the stratosphere leads to unstable disturbances for all but a finite number
of isolated wave lengths. Further, Miles (1964), in a general study of baro-
clinic instability in which he assumed an obliquely traveling small disturbance
relative to a zonal wind, found disturbances of all wave lengths in typical
flows always unstable for sufficiently small wind speeds. He suggested that
small disturbances of typical zonal-wind configurations are unstable for almost
all wave lengths. Other related studies were undertaken by Kuo (1952), investi-
gating generalizations of Rayleigh's Theorem, which states that an inflection
point in a velocity profile is a necessary condition for instability of an
inviscid, hemegeneous s?ear flow, and by Charney and Sterr (1962), who preved
Rayleigh-like theorems for jets.

Another class of theorems of unstable disturbances referred to as semi-
circle theorems relates to their rate-of-growth. Howard (1961) constructed a
general quadratic integral for the instability of gravity waves in stratified
shear flows from which he derived a semi-circle theorem stipulating that com-
plex wave speeds for unstable gravity waves in stratified shear flows must lie
within the semi-circle based on the range of the basic zonal wind speed as
diameter. Shortly after, Eckart (1963) extended Howard's theorem to adiabatic
jets. His extensions were less explicit than the several semi-circle theorems
for unstable disturbances contained in a study by Miles (1964) devoted to the
general baroclinic instability problem. A year later Miles (1965), considering

limiting cases of his 196h paper, proved a theorem for very long waves in a



zonal flow nearly identical to Howard's for gravity waves in a stratified shear
flow: complex wave speeds for unstable waves must lie within the upper half of
a circle having its center at the minimum wind speed and its radius equal to
the range of wind speeds.

Study of the effects of large-scale external forcés on the existence of
quasi-stationary long waves was pioneered by Charney and Eliassen (1949), who
showed the importance of large-scale mountains and friction, and Smagorinsky
(1953), who studied the ultra-long waves created by large-scale heat sources
and sinks and modified by frictior. Later, long wave studies by Doos (1962),
who included diabatic heating; Saltzman (1965), who incorporated mountains and
heating; and Derome (1968), who investigated the effect of lower boundary to-
pography, distribution of heat sources and sinks, and friction on the mainten-
ance of the time-aéeraged standing eddies, augmented these works.

Recent studies of transient ultra-long waves and their representation
by a barotropic model include those of Deland (1964, 1965) and Eliasen and
Machenhauer (1965, 1969). Deland's (1964) study is strictly observational. A
Fourier zonal harmonic analysis of the 500 mb height field is made, with
quadrature spectra calculated for the amplitudes of the cosine and sine har-
monic components. This is amplified in his 1965 study in which he makes a
comparison between wave speeds calculated from daily surface-spherical har-
monic expansions of 500 mb height in the Northern Hemisphere and theoretical
nondivergent Rossby-Haurwitz wave speeds. It 1s observed that there exists a
systematic difference between these wave speeds, i.e., all of the observed

waves show greater eastward, or less rapid westward, motion than the Rossby-



Haurwitz predicted wave speeds. A similar study over the Northern Hemisphere
by Eliasen and Machenhauer (1965) uses the spherical harmonic expansions of
500- and 1000-mb height to obtain a representation of the nondivergent part of
the large-scale horizontal motion in terms of the spherical-harmonic components
of the stream function. Memn values of the velocity of propagation obtained
from the stream field for the different harmonic components are then compared
with the velocities determined by the Rossby effect modified by weak diver-
gence and found nearly in accordance. In Eliasen and Machenhauer (1969) the
large-scale waves are represented by spherical harmonic components of the
height field for the whole earth as well as for each of the two hemispheres
and no attempt is made to compute stream function components. Velocities of
propagation and amplitu?es of fluctuations of the very long waves are then,
as in thelr earlier work, compared with the Rossby effect combined with a
divergence effect and essential agreement realized. These studies of Deland,
Eliasen, and Machenhauer thus conclude that the transient part of the ultra-
long waves to some extent can be described by a divergent barotropic model.

In attempting to explain characteristics of the very long transient waves
in the baroclinic mode through the use of a mathematical model, both the analyt-
ical and numerical approaches have been applied. Burger (1958) derived through
the vehicle of scale analysis a quasi-stationary vorticity equation in the very
long wave regime, an expression derivable from the geostrophic relations. This
effectively threw doubt on the simplified vorticity equation from which most
earlier baroclinic theories began. Phillips (1963) later amplified Burger's

conclusions in a review of the general problem of baroclinic instability within



the framework of geostrophic motion. Welander (1961) found analytically
explicit solﬁtions for only neutral traveling waves of very long wave length
in & model in which both wind speed and density were linear in pressure.
Assuming strong rotational constraint (Rossby number (Ro) < < l),

strong dynemic stability (Richardson number (Ri) > > 1), and weak stratifi-
cation or static stability (fractional change with height of potential temper-
ature < < 1), he obtained for waves having wave length > 10,000 km, a general
wave equation for small, frictionless, adiabatic perturbations in zonal atmo-
spheric flow. His solution, worked out for the beta-plane approximation,
consisted of slowly-moving waves, independent of wave number.

Another analytical attack on the internal dynamics of ultra-long baro-
clinic transient waves was launched by Wiin-Nielsen (1961) which might be
considered an extension of Welander's (1961) study containing more simplifi-
cations but no restriction to neutral waves. Utilizing Burger's (1958) quasi-
stationary vorticity equation he investigated the stability and structure of
the waves. In the two-parameter model he showed that the stationarity of the
vorticity equation (neglect of d(/dt) acts as a filter to eliminate Rossby
waves from the solution of the linearized equations, while the remaining
waves move with a speed independent of wave number. Expanding to the three-
parameter model, the smallest resolution allowing for the possibility of un-
stable solutions, he found only slowly-moving waves possible and the appearance
of unstable waves for sufficiently large vertical wind shears.

The studies by Miles (1964, 1965) referred to above are both analyt-

ical. In the earlier study, for adiabatic, nonviscous motion of a perfect
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gas with small Ro and large Ri, the equations are reduced to a singular
Sturm-Liouville problem and approximations deduced for small and large wave
numbers. The latitude (@) appears as an implicit parameter. Much attention

is devoted to the singular Sturm-Liouville problem, but no physical interpre-
tations of unstable waves such as their structure or energy conversion process
are offered. Miles (1965) formulated the eigenvalue problem governing baroclinic
disturbances relative to zonal flow of waves having length comparable to the
circumference of the earth. Several theorems governing the existence of such
disturbances were deduced, but calculations of the complex phase velocity were
made in only two limiting cases: £ = O, o wherep = Ro Ri cot @

Most recently Hirota (1968), using the quasi-geostrophic equations,
investigated numerically the stability of a zonal current and characteristics
of wave perturbations by a finite difference approximation of the linearized
perturbation equations applied to a multi-layer model. He found three types
of baroclinic transient wave solution: (1) a pair of amplifying and decaying
waves, (2) neutral waves without steering levels (levels where the basic
zonal current and wave speed are equivalent) in the basic current, and (3)
neutral waves with a steering level. Thorough discussion is given to the
nature of the unstable waves—their vertical structure and energy conversion
process—~and to the comparison between the characteristics from theory and

those of the ultra-long waves observed in the atmosphere.
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1.3. OUTLINE OF THE STUDY

Of the research papers referred to in the previous section this study most
nearly resembles the most recent, Hirota's (1968). Like him a numerical solu-
tion to thelinearized perturbation equations for a wave perturbation on a
zonal current»in a multi-layer model is obtained and much effort given to the
vertical structure and energy conversion process of the unstable, baroclinic
transient waves. Unlike him, however, we assume geostrophy rather than quasi-
geostrophy and, besides investigating adiabatic flow, obtain complete solutions
for the unstable waves modified by the addition of Newtonian heating. De-
tailed comparison between the two models is made with the intent of deter-
mining the effect of Newtonian heating on the wave stability, structure, and
energetics. Although the assumption of a basic zonal wind speed linear with
pressure breaks no ﬂew ground, the consideration of its meridional variation
as determined from observation for three specific cases--January, July, and
the annual average, 1963--between 20°N and 85°N forges into unfurrowed terrain.
This, incorporated into both the adiabatic and Newtonian heating models in the
ultra-long wave regime (wave number = 1, 2, 3) is the major contribution of
this study to the state-of-the-art.

In Chapter II the assumptions and basic equations to be used for adiabatic
flow are presented, manipulated, linearized, and reduced to a single second-
order ordinary differential equation. Numerical solution of the equation re-
quires one exact solution, and a procedure is given to determine it. Deriva-
tions of a semi-circle theorem and sufficient condition for stability follow.

Modification of the equations to include Newtonian heating and a simple
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technique to compute its eigenvalues from the adiabatic solutions are then
given. The chapter concludes with a description of the numerical method
used to compute the adiabatic eigenvalues. In Chapter III the results ex-
cluding energetics are presented and discussed. Stability of the waves as a
function of latitude is first considered followed by the variation of phase
speed with latitude. The chapter concludes with the vertical structure of
the most unstable waves in January, July, and the annual average as indicated
by the phase angle and amplitude variation with pressure of geopotential, ver-
tical pressure velocity, and temperature.

Chapter IV focuses on the energetics of the two models, specifically the
pressure variation of two parameters: conversion from zonal to eddy available

potential energy, C(AZ, A_), and conversion from eddy available potential-te

E
eddy kinetic energy, C(AE’ KE). In Chapter V, the results of the study are

reviewed and some suggestions for future improvements are offered.



CHAPTER II

FORMULATION AND METHOD OF SOLUTION
2.1. FORMULATION

2.1.1. Assumptions and Basic Equations

We assume that the gravitational field, which includes centrifugal forces
due to the earth's basic rotation, is uniform and directed vertically toward
the earth's center; thus, we let the acceleration of gravity, g = 9.8 m sec-z.
Consistently, we imply a spherical earth. We neglect mountains and friction,
not that these are of no importance, but partly for convenience in solving the
equations and partly because we desire to isolate the system's internal dyna-
mical factors. For ultra-long waves we consider wave number n = 1, 2, 3,
giving a horizontal scale of motion, L ~ 1O7m, the order of magnitude of the
radius of the earth, a = (2/x) x lO7m. The vertical scale of motion, H,
approximates loum, while we assume the characteristic horizontal and vertical
speeds, from observation, to be V ~ 15m sec_l and W < 0.1 V, respectively.
For these scale values the equation for the vertical component of velocity
can then be approximated by the hydrostatic relation, in which case it is con-
venient to use pressure instead of height as vertical coordinate. By using
Pressure as vertical coordinate we eliminate density from the equations of
motion and continuity.

For Rossby number, Ro = V/fL << 1, where the Coriolis parameter f = 2 0 -

5

=l - - -
sin ¢ ~ 10 sec . for mid-latitudes and Q0 = 7.3 x 10 sec L is the earth's

15
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angular velocity, the horizontal pressure and Coriolis forces in the horizon-
tal equations of motion nearly balance each other so that the geostrophic
approximation is well satisfied as shown by Burger's (1958) and Miles' (1965)
scale analyses. Further, the type of motion we consider is an example of geo-
strophic motion of type 2 (see Phillips (196%)) and, as shown by Phillips, use
of the R-plane is invalid. In spherical coordinates the basic equations take

the form

1 0

- 'm?ﬁ (2.1)
Vo 20 a sii ¢ cos @ %% (2.2)
g_i I (2.3)
> ———@%i—ar‘@ (2.1
2(2 +a_£s_$§(§§)+§£<g%v+ow - 0 (2.5)

where we assume the equation of state is the ideal gas law,

pa = RT (2.6)

Equations (2.1) and (2.2) express the geostrophic relations, (2.3%) the hydro-
static equation, (2.4) the continuity equation, expressing conservation of
mass, and (2.5) the thermodynamic energy equation, expressing conservation of
energy as embodied in the First Law of Thermodynamics, where we first assume
adiabatic flow. The independent variables are time (t), latitude (), longi-

tude (M), and pressure (p), where latitude and longitude increase northward
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and eastward, respectively. The dependent variables are the velocity compo-

nents (u,v,w), where u increases eastward, v northward, and w = dp/dt is the

"vertical velocity"; geopotential & = gz, where z is the height above mean

sea level of isobaric surface p; and specific Volume o T represents the tem-
. .-l -1, .

perature and R = 287 kj t = deg ~ is the gas constant for air. In Eq. (2.5)

o, a measure of the static stability, is expressed as

d1ln 6

3 (2.7)

o = -0

where © is potential temperature, the temperature a parcel of dry air would
have if brought adiabatically from its initial state to standard pressure po,

usually 1000 mb. From Poisson's equation

b
o

o - T@)-R/ Cp (2.8)
where cp is the specific heat capacity at constant pressure for air. Substi-

tuting (2.3), (2.6), and (2.8) into (2.7) we obtain

2

o/
(]

(2.9)

Q

|

ol

+
oI e
o] <
g =
&

op

where cV = cp - R is the specific heat capacity at constant volume for air.

2.1.2. Linearization and Reduction of the Basic Equations

Inserting (2.1) and (2.2) into (2.4) we find

w 1 00 (2.10)

® 5 08® sin%

k=

In solving (2.1), (2.2), (2.5), (2.9), and (2.10) we desire to linearize the
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equations by perturbation theory in order to simplify the mathematics such

that, with appropriate additional assumptions, we can reduce the set of equa~-
tions to a single second-order ordinary differential equation in one unknown.
Consider a steady, axially symmetric basic state having only zonal wind with

perturbations superimposed upon it,

u = Ulp,p) + u'(t,\,0,p) (2.11a)
v = v'(t,\,0,p) (2.11b)
o = o'(t,N,o,p) (2.11c)
2 = o (9,p) +2'(t,0,p) (2.114)
o = o (9,p) * o' (t,2,0,p) ) (2.11e)

where the primed terms are perturbations. Because we work with spherical coor-

dinates, it is convenient to define the basic state angular velocity,

Nop) = bl (2.12)

In determining the basic state solution we assume U(p,p) is given and express

®Z(@,p) and oz(¢,p) in terms of it. From (2.11) into (2.1) and (2.9), we find

ol
—S% = -20asineU = -20 a2 sin @ cos ¢ A (2.13)
52@2 Cv 1 6@2
5 = + Sz _2 (2.1k)
z 2 ¢ 9

Differentiating (2.1%) with respect to pressure gives

/oD
53(\f8§ = -20Q a2 sin ¢ cos @ §§ (2.15)
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while by integrating (2.1%) with respect to latitude we get

<I>Z(<P,p) = <I>ZL(p) -20a fiL U(p',p) sin @' d o' (2.16)

where ¢ is the lower latitude limit, either 20°N or 25°N depending on the data
used, @' the integration variable, and ° . =0 at P, - Inserting (2.16) into

(2.14) completes the basic state solution,

olo
Qg i<

2
_ ? in oY LN o
o, = o,-20a f@L sin o <;p2 + - a€> a o (2.17)

where

OzL = oz at @L

To obtain perturbation equations we substitute (2.11) and (2.12) into

(2.5) and (2.10), giving

at< > A*@Q v:g%( >+0 @' = 0 (2.18)

w' 1 0
- = T " (2.19)
op 20 a2 sin2 0) A

After re-expressing the third term of (2.18) using (2.2) and (2.15), (2.18)

becones,

9 6@ 0 .
s a}\< to @ =0 (2.20)

Using the method of the separation of variables we introduce perturbations of

the form

() = (Melnlr-ct) (2.21)
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where (A) is assumed to be a function of ¢ and p, n is the zonal wave number,
and ¢ is the phase velocity of the perturbations and is in general complex,
c=c, +1 c, - We thus assume that the perturbations are wavelike disturbances,
periodic in the east-west direction and time, and that the flow can be repre-
sented by a single component of a Fourier series in A. For ultra-long waves

we consider only n = 1, 2, and 3. For c. > 0 the rate of growth is n Css the
motion being unstable through the growth factor, e G t, multiplying all the
dependent variables. For c, = 0, we term the flow neutral and for ¢, <0,
stable.

Equation (2.21) into (2.19) and (2.20) gives

A .

_g"ﬁ . oin 4 (2.22)

4 20 a sin~ o

in[(A—c) Q@_Q{}@J +9 & = 0 (2.23)
dp Ip z

2N A a
(A-c)é—%)-éé%Jr———f—T& = 0 (2.2L4)
op PP 508" sin 0

In Eq. (2.24) ¢ enters only as an implicit parameter, not as an independent
variable. In physical terms this means the behavior of the ultra-long waves

is determined essentially by the vertical and not the horizontal structure of
the atmosphere. Because we solve (2.2L) or related forms for given ¢ and U(p),
we may consider & at the specified latitude to be solely a function of pressure,
and thus could replace the partial derivatives by total derivatives. Equation

(2.24) and related forms would thus become ordinary differential equations in
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this localized sense. We shall, however, continue to express (2.24) and
related forms as partial differential equations to emphasize the in-the-large

dependence of & on latitude and pressure.

i

We specify the boundary conditions for & to be & = Oatp=0and p-= po
= 1000 mb. The lower condition 1is obtained by expanding w in the z-coordinate

system, removing the horizontal pressure advection through the geostrophic

approximation, and assuming a negligible pressure tendency to arrive at
D
w~w
- oz

as shown in deriving Eg. (L4.5). Assumption of level terrain at pressure pO
implies W(p=po) = 0 from which we get the desired boundary condition.
In seeking a numerical solution we enhance the accuracy of our calcula-
tions by eliminatihg in (2.24) the first derivative, recasting the eigenvalue
. . R . LA
problem in canonical form. This is achieved by letting w ='Jﬁ W for M = A-c

and substituting in (2.24) to get, after dividing by M5/'2

I (et A (i

2 [9)
v 11 31 6M>2+______z__ 0 (2.25)

=
=
]

290 a2 sin2 Q

It is convenient to nondimensionalize pressure and phase velocity by

P, = —E: Ce © |C, (2.26)

where ]Ab] = SAb’ implying that s = +1 for AO >0 and s = -1 for Ab < 0.

We assume a linear variation of U with pressure at each latitude,

ule,p,) = U (0)(1-p,) or Ale,p,) = A (9)(1-p,) (2.27)

*
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Given @

0 ViV Uo U,A

To illustrate the validity of this, we compare below (see Welander (1961))
normalized profiles of U;, where U* =1 - P, is the assumed linear profile, and

the observed is computed from mean winter conditions at 50°N.

Py

Obs

k .
From observations o, is proportional to b, where k varies between -1 and -2.
For mathematical expediency we choose the former,

a

= 2
UzL - p* (2.28)

We use throughout this study o =1 in the MIS system, this being based upon
results obtained by Peixoto (1960) in which the difference between computed
values of 9% at L5°N from average data for the winter and summer of 1950 was

very small compared with the average of the two seasons. It being always
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desirable to have analytical solutions wherever possible to check our numerical
results, we consider in Appendix A.1l the barotropic limiting case, A = Ab(m),
oz = o = constant, while in Appendix A.2 we investigate a more realistic baro-
tropic limiting case more similar to our model, A = Ab(¢), cz = co/p*. The
results from these, pertaining to perturbation phase speed, will be compared
with our model in Section 3.2.

It has earlier beenstated that in the limiting case of Ro = V/fL << 1,
i.e., for the horizontal scale of wave motion--here assumed in the west-east
direction—comparable to the radius of the earth, scale analyses of Burger
(1958) and Miles (1965) showed the geostrophic approximation to be well satis-
fied. That is the assumption used throughout this study. Assuming the earth's

> km, Figure 1 illustrates that, for 20° <

radius to be approximately 6.6 x 10
¢ < 85°, the wave léngth of wave numbers 1, 2, and 3 is greater than or equal

to the earth's radius over much of the latitude range considered, but that,
especially for wave number 3 in the higher latitudes, the radius of the earth
does exceed the wave length and the geostrophic approximation thus becomes
strained. This is one justification for not including wave number 4 in this
study. Another approach is to obtain analytical solutions for simple quasi-geo-
strophic and geostrophic models and to compare the phase velocities as a func-
tion of wave length. This is demonstrated in Appendix A.3 for the basic state
of no motion and it is shown that at 45°N the percentage errors in assuming
geostrophy for wave numbers 1, 2, and 3 are 1.6, L4.69, and 10, respectively.

Thus, for the limiting case of no motion in the basic state, wave number U4 must

be excluded in the geostrophic model at 45°N if errors less than 107, are to be
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obtained, further justification to restrict the wave numbers in this study to
the first three.
Now substituting (2.17), (2.26), (2.27), and (2.28) into (2.25) gives us,

where M = Ao(l—p*-sc )s

*
2w o p2
d 1 // 0 0 € cos @ O
— - + /T U sing' d ¢
api p*[p*-(l—sc*)]\g 0 1\_o 02 sin2 o UO sin2 ® %, °
5 1
R — = .
2 W =0 (2.29)

where ¢ = cv/cp.

The boundary conditions are W = 0 at p, = 0, 1. We avoid regularity difficul-
ties at the equator by confining the range of latitudes to 20-85°N. Further,
we examine only cases(ﬁaving Uy % 0, precluding a similar type of singularity.
Finally, investigation of (2.29) reveals the existence of singularities at

b, = 0 and b, = 1 - SCy . The former is avoided by virtue of the fact that it
coincides with the upper boundary where (2.29) is not applied. The latter will
only occur when cy, is real. For all the cases considered only three ylelded

real cy;

Period Latitude Uo Cx

Annual 25° 14 m/sec (-.3521928,0)
Winter 20° 25.60 (-.187%492,0)
Summer 30° 2.16 (-.7394156,0)

In each s = +1L. The eigenvalue c, < 0 as above implies that singularity can

only occur for p > 1. Thus, all singularities are avoided in the numerical
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solution of (2.29). For given ¢ and UO(@'), o, < ¢' < ¢, we solve for c_(¢)
using the "shooting method" (see 2.2, Method of Solution). This is & numerical
search procedure in the complex plane which requires an exact solution c*e for
some er at latitude ¢e to start it and provide a test condition for the search

procedure. We now desire to find this exact solution.

2.1.%. Determination of an Exact Solution

Inserting (2.17), (2.26), (2.27), and (2.28) into (2.24) we obtain
2A A o 2
po(loge )] 20 . B 1 oo
Py * 2 Jp P .
op * * |120A a sin o
* o
sS85 9 (@ U sing' d g b = o . (2.30)

U si
o sin @ L

Transforming to a new independent variable, £ = p_/l-sc (2.30) becomes
) %

2
%, @b "o’
e(e-1) —5 - 65 - 2 .2
55 : 20 Ab a sin o

2
U i L
o sint o

n

under the boundary conditions & = 0 at ¢ = 0, l/l-sc*, Equation (2.31) is
Gauss's differential equation, known also as the hypergeometric equation, a
special case of the generalized hypergeometric equation. The standard form of
Gauss's equation is

2A A

£(e-1) éJE + [(oBtl)e + 7]‘%? tap b
ok

i
o

(2.32)

Equating (2.31) and (2.32),
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y = 0, a+p+l = -1 (2.33)

°° s£CO59 @ U sing' do (2.34)

2 0A a.2 sin2 o U sin2 0) L
0 0
For ¢ = ¢_ =0, (2.%4) becomes

aB = -q (2.35a)

where

2
0

Oop
5 (2.35b)

2
20A a sin ¢
oe e

Combining (2.3%) and (2.3%a),

¢ = -1+r, p = -l-r (2.36)
where
r = Y1t (2.37)

From Kamke (19A1), page 467, for y = 0 and & and B as determined in (2.36), the

solution to (2.32) is

& = ¢ b +c b (2.38)

where

£ F (r,-r;2;¢€) (2.3%.)

=>
1l

e>
1l

2
(1-r7) & 1n ¢ 2Fl(r,-r;2;§) + power series in g
) starting with "L" (2.39p)
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Gauss's function is

2Fl(a,b;d;x) = L

where (a)n = a(atl) (at2) ... (atm-1) and a, b, d, and x can be real

but d cannot be a negative integer.

From (2.39a) and (2.39b), for the upper boundary condition at ¢ =

A
0 and = 1.
ny wé

condition we seek ¢ = go such that

Fy (e rs2se ) = 0

where c  is determined from go = l/l-sc*. Thus,

gt

* S
gO

From Kamke (1961), for integer n,

R
c(et+l)...(c*n-1) dgn

[éc+n—l(1_g)a+n-?]

EFl(n"'a,-n;C; 'é)

Combining (2.41) and (2.43),

which, with (2.37), gives
— 2
n =4l or g = n -1

Replacing q from (2.35b),

(2.40)

or complex,

A

0, w =

1

Since & = O here, C, must be 0. To satisfy the lower boundary

(2.41)

(2.42)

(2.43)

(2.4k)

(2.L45)
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2
Oopo 2

= n -1 (2.L€)

2 QA a2 sin2 0]
oe e
which, using (2.12), enables us to calculate Ube’
o - cos
%o P

U = (2.h47)
oe 20a sin2 P, (n2-l)

Given @e = mL, this varies only with arbitrary integer n > 1. Combining

(2.39a), (2.43), and (2.4k4) we now get

2 n
R e el A T (2.18)
a

from which we can easily determine C*e' Let us consider several special cases.

~

Equation (2.48) ‘simplifies to ﬁh><§(l-§)d. At the lower boundary condi-
tion, & = 0 obtains from go = 0, 1 whichsubstituted into (2.42) and discarding

the meaningless solution at go = 0 gives c_)ee = 0.

Equation (2.18) simplifies to de< £(1-£)° (1- -Z— £). To satisfy the

lower boundary condition, £ =0, 1, 2/5 which gives Cpo = 0, -1.5.

(3) n=1b
. . R A 2 2
Equation (2.48) simplifies to we<&(1-t)" (7 €7 - 6t + 1). The lower
boundary condition is satisfied when go =0, 1, 5/7 i~J§/7 which gives c*e =

0, -2 +v2.
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2.1.4. Derivation of a Semi-Circle Theorem

For M = A-c and p = P, Py (2.24) becomes

2A A
M?.s*a_)-_a_M.ai.Ms&: 0 (2.49)
) Py Py
*
where
2
Ozpo
i e (2.50)
20a sin ¢
and
c = o_~-20a fw sin m'(jéfg + = ég) aeo' (2.17)
{ 5 .
Z zL @L 3 p op
Condition (2.27) gives
w o N9 &
»  TTp 0 27 °
) op
while condition (2.28) is OZL = co/p*. As stated earlier’co = 1 for all calcu-

lations while UO(@) > 0 in all cases except ¢ = 20°N, 25°N, and 85°N for July,
where IUO(@)I <10 m sec’l, while Uo(w) > 10 m sec™> for ® = 35°N - 70°N in
July. In proving GZ > 0 for all ¢ and p, we thus need only consider in detail
the July case at 25°N, as o, = 20°N for July. For UO(20°N) = -8.06 m/sec,
UO(25°N) = -6.08 m/sec, and o, = 1 in MTS (meter-ton-second) units, we find,
on evaluation of (2.17), the amplitude of the first term several orders of
magnitude greater than the second, confirming the assertion that, for every
case considered, oz > 0, implying S > O from (2.50). Combining the first two

terms of (2.49) we get
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2 5 /1 W A
M .\ 5p*>-+s w = 0 (2.51)

In assuming there are unstable solutions, i.e., ¢, > 0, we express

= + .
c c *ic, (2.52a)
A A N
= + .
w @ *io (2.52b)
& = &b -1ib (2.52¢)
T i
M = (ArCr) -ic (2.52d)
M = (A—cr) + i c, (2.52e"

where () represents the complex conjugate of ( ) and () « () = | ( )|2.

~

Dividing (2.51) by Me, multiplying by & and integrating over P, from 0 to 1,

we obtain, after applying the boundary conditions for (./J\.),

2
1.-2 (A2
ap, + [ M sla]” ap, = 0 (2.53)

A
- fl M'l ’__5_(_1)
o} ap*

which can be alternately expressed as

a& 2
Si)_ A2
l ~
_fOM *2 dp+fi‘M2S.l_u_)l_L.Ldp*=o (254)
| M| M|
where
~p 2 2 .
M = [(Arcr) - ci] +1i2 ci(Arcr) (2.55)
Let
6@) 2
%,
Q = 5 >0 (2.56a)
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and

(2.56b)

where we apply the fact that S > 0 in (2.56b). Dividing (2.54) into real and

imaginary parts, after inserting (2.52e), (2.55), (2.56a), and (2.56b), we

obtain the set,
1 1 2 2
- - + - - =
[5 (e )q dp, + [0 [(Ac )" - c/IRdp, = O
iec, [~ fl Q dp + fl 2(A-c )Rdp ] = 0
i o) * o) T *

For ¢, >0 and Q >0, (2.58) now becomes

[0}

1 11
fo (Apcr)g dp,, > fo Q dp, >0

which implies, for R > O,

Further,
[SaRap, = ¢ [iRap, +Z [ qap,
From (2.57) we get
fi A R dp, = -ci fi R dp, + ci fi R dp, + 2¢_ fi AR dp,
+fiAde*-cr/ide*

which, applying (2.61), simplifies to

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)
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2. 2, .1 1
j A% R dp, = (cr + ci) fo Rdp, + fo A Q dp, (2.63)

Denoting A =band A, = a and recalling that R > O, we have for A #
max min max
A'min’
1
fo (A-a) (A-D)R dp, <O (2.64)
which, expanded, gives
1 1
f 22 R dp, - (a+b) fo AR dp, + ab fo R dp, <O (2.65)
Substituting (2.61) and (2.63%) into (2.65), we find
2 2 1 1
+ - (a¥ + +
[cr o} (a+b) c. ab) fo R dp, fo AQdp,
a+b

f Q dp, <O (2.66)

By suitable manipulation the following identity can be established,

cf + cf - (atb) c +ab = (cr-a)2 + cf - (b-a)2
+ (b-c_)(b-a) (2.67)

which, inserted in (2.66), gives

[(c,-a)% + o - (6-)] /L R ap, + (b=c ) (b-a) ] R dp,

+ ] (a- g ap, <0 (2.68)

From the definition of a as A .
min
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1 b b- 1
p, >/ (a-Padp, = - ["adp,  (2.69)

Now, substituting (2.61) into the right side of (2.69), recalling that b =

A, we obtain
max

2 (a-EDeap, >~ (b-a) [T (Ac )R dp, > - (b-a)(b-c ) [ R ap,

which transforms to

[2 (- E2qap, + (b-2)(b-c ) [T R dp, >0 (2.70)

It now follows from (2.68) that

)2

(cr-a)2 + cf < (b-a (2.71)

Thus, for ¢y > 0 the point (Cr’ci) must fall inside a semi-circle with center

(a,0) and radius, b-a, as illustrated below.

°1 ‘ (a;b‘a)
. T
(2a-b,0) (a,0) (b,0) cp
For our linear profile
A = Ab(l-p*) (2.27)

we investigate two cases.
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(1) A >0

Here a = 0, b = ./\.o and we find

A <c <+A, ¢ <A
(0] r (o] 1 (0]

which gives, for c, = c/|Ab|

-1 <ec, <1, c,. <1
*r *1

We conclude that, in westerlies, dimensionless complex wave speeds for unstable

waves must lie within the upper half of the unit circle centered at the origin.

(2) A <O

" Here a = Ab’ b = 0 and we find

2A <c <0, e, <=-A
0 r

which gives, for c

i

(@]
-~

o>

Thus, in easterlies, dimensionles complex wave speeds for unstable waves must
lie within the upper half of the unit circle centered at -1 on the real axis.
While this semi-circle theorem specifies that unstable dimensionless wave
speeds must lie within a particular region of the complex c*-plane, it makes
no statement about the uniqueness of the solution of (2.29) for given ¢ and UO
subject to the specified boundary conditions. Discussion of the uniqueness of

our unstable eigenvalue solutions is shown in Appendix A.L.
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2.1.5. Derivation of a Sufficient Condition for Stability
We define stability by the condition c, = 0. For M = A-c, (2.22) and

(2.23) may be re-expressed as

A .
N (2.22)"
po * 20a sin o
i X M
—EMa——-—a——A>+o&=o (2.23)"
12 P, op, z

. . A . - A
Whereas we earlier eliminated ¢ from this set, we now choose to eliminate w,

giving
) M A
MS—-S——CD
N O I S
T dp 2 - 2 .2
*
UZPO 20a sin o
which is easily transformed to
56 M A
M=—-=—20
3 op, Ip,
A
3. 5 +2 = 0 (2.72)
* O’p
ke
2
20a sin ©
subject to the boundary conditions, using (2.25)',
B M 4
M—™-7T——¢ = 0 for = 0 and = 1 2.
%, " oo, D, D, (2.73)

Substituting (2.50) in (2.72), we now find

A
5@&@ L Ma) s - o

55; ) b, S 3p,

which expands to
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AW PO S NN
Bp ap S ap S ap ap ap* S 5p*

Cancelling and collecting terms, we arrive at

1 1 _
S ap;> { S Bp } 2 =0

which may be put in the form

ap(g 2.1

where

_ 9 (1 _M
o=l dp, Sap*>

After multiplying by © and integrating over P, (2.74) becomes

1 3 /a1 3 11| |°
fo ap*<®s p)dp*-fos op, | ar

*

A2
+fiNI\7IJ-9—L§dp* = 0
| |

Integrating the first term and applying (2.73), we get

L1 g _l__l_é_a._>
s, ¥ \ee, )y LT s M ep, )

A A2
11| 902 1.~ 19
- = + =
/ ap' dp, + [ N M= dp, 0
* |

where

(2.74)

(2.75)

(2.76)

(2.77)
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—
~
]

il
[

()atop,

—~
~
1}

n
(@)

()atop,
Combining (2.50), (2.17), and (2.28), we arrive at the boundary condition
§, >wasp, >0 (2.78)

Taking the imaginary part of (2.77) and applying (2.78), (2.52d) and (2.52e),

we obtain

A2
<5A> -—--+f w 2L 4 0 (2.79)
lIMI °

2 Tk
| ]

Thus, if N has the same sign as (BA/ap*)l in the interval 0 <p <1, (2.79)
can only be satisfied if ci = 0. This gives us the sufficient condition for
stability that N ané (BA/Bp*)l, have the same sign for 0 < p, < 1. For our
linear profile, aA/ap* = -A.o and is negative for westerlies, positive for

easterlies. From (2.75) we find
1
N o= 1+A 5= 3 (2.80)

which, after substituting (2.50), (2i17), (2.28), and (2.27) gives us

(20 a2 sin2 P)A

0

2 20ac O . i
+ £ 02 = ' ' 1

2o #2225 Py (g1) st dcpJ

N o= 1+ (2.81)

0 ¢
P, L
where S > O for all cases implies that the denominator is positive for all

cases. Thus, N is positive for westerlies and either positive or negative for

easterlies, depending on the relative magnitudes of the two terms in (2.81).
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To conclude, for the linear profile the sufficiency condition for stability

can never be satisfied for westerlies but may be for easterlies.

2.1.6. The Newtonian Heating Model
Here we retain all of the assumptions made previously except the adiabatic

assumption. Thus, the thermodynemic energy equation, (2.5), now becomes

3 o0 u 900\ , v _o/0
Ry, u  9( ap)

R
ot \.dp a cos @ O\ c

1
—— 2. 1
pQ (2.5)

Le]

where Q is the diabatic heating per unit time and unit mass. We consider the

diabatic heating to be Newtonian in form so that
= T -T 2.82
@ = e Q(T,-T) (2.82)

where q is the heatiné or cooling coefficient and TE (m,p) is the equilibrium
temperature toward which the diabatic processes are driving the atmosphere.
This is the hypothetical temperature which would be established in the abgence
of large-scale motion but in the presence of radiation and small-scale convec-
tion. A value of 0.4 x 10-6 s,ec-l for g was obtained by Wiin-Nielsen,
Vernekar, and Yang (1967) using the calculated value of the generation of eddy
available potential energy from observations. This constant value for q will
be used throughout this study.

The Newtonian heating assumption, Eg. (2.82), says that the atmosphere is
heated in regions where the temperature is below the equilibrium temperature,
while it is cooled where the temperature exceeds the equilibrium temperature.

It certainly represents an oversimplification of the heating in the atmosphere,
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especially so because of the role of condensation in large-scale flow patterns
as studied by Fjortoft (1959). However, Eq. (2.82) does agree with the
average behavior of the atmosphere, and it is on this basis that we justify
its use.

Expressing temperature as a steady, axially symmetric basic state upon

which is superimposed a perturbation, we have

T = Tz(w,p) + T'(t,N,9,p) (2.11r)

Inserting (2.1la)-(a.11lf) and (2.82) into (2.5)' we obtain

j(??;_qoz;)u_a 2y, o +z;__a<i“’_a+§g
ot \\ op 9 a cos @ AN \ Op op. a d \_op p

At = =R _mo_mo
+ (oz+c )w' > (TE TZ T') (2.83)

which gives the basic state expression

“RAm =
> (TE TZ) 0 (2.84)

In seeking a revised perturbation energy equation we first express T' as a
function of d9'/dp through the ideal gas law, Eq. (2.6), and hydrostatic

equation, Eq. (2.%),

T =

l
1
g

0"
> (2.85)

and then substitute (2.12) and (2.85) into (2.83) to get

ECPURTCINE T

5 Uop S\ w3 oo e T Ty (2.16)"
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Introducing perturbations of the form (2.21) into (2.18)' we arrive at

lnEA—C)Bp—6p$+sz_-q5P

Eliminating @ by (2.22), it follows that

. 2N A o]
(o) + 2 S5 - DB e b = 0
Yot PP 508" sin" g

which is easily transformed, after applying (2.17), (2.26), (2.27), and (2.28)

to
2A A o e
{; - (L-sc, ) + —— %} dw o 1 o’
* * 2
, N nAb ap* Bp* Py 20 Ab a2 sin2 0]
‘
+ € cos ¢ fCP UO sin @' d @' <./1\) = 0 (2~50)|

2
U si
o_s1n ® L
where C*N is the nondimensional phase velocity for the Newtonian heating model.

In seeking to determine C*N it is very useful to compare (2.30)' with its

adiabatic equivalent,

2
% 01 %% € cos @
[p, ~ (l-sc, )] —F - — - — +
* 2 P Puloon 8%gin’e U sind
P S o U ¢
I U sing' dg|d = 0 (2.30)

where C*a is the nondimensional phase velocity for the adiabatic model. We

note the equivalence of the two equations in all terms but the coefficient of
2/\ 2 . . .

5) @/ép* which, for the Newtonian heating model, may be expressed as {p* -

[1 - s(c*

N-f(q/sn Ab)i)]} as compared with [p, - (l-sc*a)] for the adiabatic

model. It is therefore clear that, for given ¢, n, and Ab’ a solution C e
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will suffice to calculate c _ from the equality,

W
q .
+ =
c*N sn A * *a,
o
or, applying (2.12),
_ _gacosQ.
Cen Cn = U i (2.86)

This precludes the necessity to apply the "shooting method" for the Newtonian
heating model once the adiabatic phase velocities have been obtained. We note

that, whereas Cra, is independent of zonal wave number n, c,

N is dependent upon

it in the sense that increasing n tends to cause perturbations in both wester-
lies and easterlies to become more unstable, as s UO > 0 in either case.

In contrasting the two models we shall show that complex values of phase
velocity necessariiy occur in complex conjugate pairs for the adiabatic model

but not for the Newtonian heating model. As derived earlier for adiabatic

flow,
2A A
1
[p -(1-sc)]§—9-—a‘—‘—’-——F&= 0 (2.30)
p-)(-
where
2
Oopo € COS @
F = + I U sing' d g

2
20 A.O a2 sin @ Uo sin2 ) L

A .
In general, c and w are complex, i.e.,

so that (2.30) can be expressed as two separate equations, one for the real
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components,

2%, B, B,
-1+ -~ -— - = = .8
(p,-1 sc*r) - 5 " 50, ) 5 - . Fo 0 (2.87)
P* p* p*
and the other for the imaginaries,
2 2
3, o W,
(p,-1l+sc. ) + sc, -T——-—F®w, = 0 (2.88)
* * 2 * 2
T Bp* i Bp* Sp* P, i

If we now consider the complex conjugate eigenvalue and eigenfunction, c, =

~

. A A LA . . X . ~
C*r - 1 C*i’ w = a} -1 aa and substitute into (2,j0), replacing c, by c, and

~

& by &, and resolve into real and imaginary components, we arrive at (2.87)
explicitly and (2.88) with each term multiplied by -1. Thus, in the adiabatic
model for given ¢ and Uo, each eigenfunction & with its eigenvalue c, has a
corresponding comple§ conjugate eigenfunction & with its eigenvalue E;,
illustrating that to each damped stable wave there corresponds an amplified -
unstable wave, and vice versa.

For Newtonian heating Eq. (2.86) gives us, for each adiabatic pair of
complex conjugate eigenvalues, the Newtonian counterpart in which only the
imaginary components are affected. We thus obtain two eigenvalues which
necessarily are not complex conjugates, one of which must represent damped
stable wave motion. The other eigenvalue may represent either damped stable
or amplified unstable wave motion, aepending upon the degree of instability of

its unstable adiabatic counterpart and the magnitude of the stabilizing effect

of Newtonian heating.
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2.2. METHOD OF SOLUTION

For given ¢ and UO(@'), ¢, < @' < ¢, we desire to solve

2
QEH 1 0opo L _€CosQ
ape p,lp,-(1-sc,)] 20 A a° sin® ® U sin® ®
* (0] o)
f$ U sin o' 4o’ +% L S| W o= o (2.29)
L [p,-(1-sc,)]

under the boundary conditions, W = 0 at p, = 0, 1, for c*(m) by a numerical
search procedure in the complex plane. This search procedure is referred to
as both the "shooting method" and the "Biblical method," the latter deriving
from the Scriptural text, Matthew 7:7, "Seek and ye shall find," for the pro-
cess is based upon an iterative algorithm whereby a crude eigenvalue is con-
tinuously changed until the boundary conditions are "satisfied." After the
finite difference equivalent of (2.29) is obtained and the atmosphere divided
into N levels—N = L0 was chosen for all eigenvalue calculations—W = 0 is
specified at the upper boundary and an arbitrary value at the first level
below the upper boundary. Successive values of W are then calculated from the
finite difference equation at lower levels until W at b, = 1 is determined.
This absolute value is then normalized by dividing by the maximum absolute
value of W. We notate this normalized W at the lower boundary by G. In the
absence of computer round-off and truncation errors, G = O for each eigenvalue.
This not being the situation, however, a small number,d, must be calculated to
serve as an upper limit for the lower boundary condition in eigenvalue calcula-
tions. It is in the determination of & that an exact solution, Cre for some

er at latitude P, to (2.29) is required. To eliminate the integral in (2.29)
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@e is chosen as @L.
In calculating U, from (2.47),

2
0P cos @
U = — - o | (2.47)
oe , 2 2 :
2 0 a sin P, (n"-1)

for positive integer n > 1, there is a choice to be made in our selection of n.
As shown in Section 2.1.3., Cre is also a function of n whose dependence is

summarized below;

n Sre

2 0

3 O) ’1'5 -
b0, -2 +J2, -2 =42

In determining the optimum selection of n and c*e we tabulate & and, for @L =

25°N and UO = 14 m/sec as the annual average of zonal velocity at ¢ for

1’ %

each combination of n and Cont
e

2 Efi 5 c*(m = 25°, UO = 14 m/sec)
2 0 .52% x 1072 -.3499997
z 0 .157 x 10-1 -.3499997
5 -1.5 518 x 1074 -. 5524882
L0 597 x 10'3 -. 3499997
ko -2+4J2 560 x 1070 -.3521928
L -2 -2 .82 x 107% -. 3524940

It is clear that the smaller the value of &, the more accurate the computed
eigenvalue will be. At the same time errors in the value of UO preclude more
precise calculations of c, than to three significant figures. As computation

time will increase for a more restrictive convergence criterion, it is desired
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to select the largest ® giving accuracy of c, to the third significant figure.

From the table we see that this condition is satisfied for n=l, ¢  =-2 +V2,

3

8 = .560 x 10 7. All eigenvalue calculations were based upon this convergence

criterion. The search procedure follows for latitude @L and zonal velocity UO:
(1) For grid increments Ac*r = .05 and Ac*i = .01 integrate the finite

difference equation and evaluate G at each of the eight points surrounding c*e.

(2) Find the point for which G is & minimum. Call this Pl and the value

(3) Test Gl <d

(a) If true, P_ is the desired eigenvalue and we are through.

1

(b) If false, repeat step #1, replacing Cpp DY Pl.

(4) Repeat step #2, replacing ( )l by ( )2.

(5) Test G2 <d
(a) If true, P2 is the desired eigenvalue and we are through.

(b) If false, test G2 < Gl.

[1] If true, repeat step #1, replacing Cre by Pe.
[2] If false, halve Ac*r and Ae, s and repeat step #1, replacing

b .
C*e Y Pl

Continue in this manner retaining the most recent values of Ac*r and Ac*i about

Pn+l if Gh+l < Gn, or halving the most recent values of Ac*r and Ac*i about Pn
i i 5.
if Gn+l > Gn until G <

Once an eigenvalue has been determined, it is used as the starting point
in computing the next, for new ¢ and Uﬁ’ while refinements in Ac*r and Ac*i,

based upon the relative positions of the two preceding eigenvalues, can be
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applied to quicken convergence. In the event that convergence does not occur,
implying that the real eigenvalue is in another portion of the c*-plane , the
values of Ac*r and Ac*i used at the beginning of the unsuccessful computation
are increased and the search procedure repeated. If convergence still eludes
us, we increase Ac*r and Ac*i once more and repeat. In every situation this

technique succeeded in zeroing in on the elusive eigenvalue.



CHAPTER III

PRESENTATION AND DISCUSSION OF RESULTS

3.1. THE STABILITY ANALYSIS

It is useful, in order to more readily ascertain the wave length of the
perturbations considered, to plot wave length (A) vs. latitude (¢) as shown
in Figure 1 for the range of latitude, 20-85°N, of the data and wave numbers,

n = 1,2, and 3, for the ultra-long waves. Clearly,
N = 21 acosQ / n

where 2 n a cos @ is the length of the latitude circle at o.

Having assumed a linear variation of basic zonal velocity with pressure,

u(p, ) = U (9) (1-p,) (2.27)

o)

where UO(¢) = basic zonal velocity at latitude ¢ and p, = O, we obtain the
meridional distribution of UO by doubling values of the zonal average of U at
500 mb from data taken during 1963. We consider three separate cases— Janu-
ary, July, and the annual average. Figure 2 displays UO vs. ¢ for these
cases. It should be noted that, in a large range of latitude (45° < ¢ > 75°)
UO for the annual average is not sandwiched by corresponding UO in January and
July. If the January and July profiles represented six-month averages for
winter and summer, this would certainly be the case, but the fact that pro-
files of ten other months are averaged with those of January and July to yield

the annual average evidently causes the anamoly in which, at certain latitudes,

b5
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Figure 1. Wave length as a function of latitude for wave numbers 1, 2, and 3.
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Figure 2, Zonal wind at p = O as a function of latlitude as calculated for a
linear profile by doubling 500 mb data of January, July, and the annual aver-

age, 1963.
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UO for the annual average exceeds corresponding values in January and July and,
at other latitudes, is exceeded by both. Thus, we should not expect the degree
of instability for the annual average to fall between values for January and
July at every latitude. Future graphs confirm this. The greater resemblance
between UO(@) for July and the annual average than either with January hints
that instability results should in general portray the same agreement, a con-
jecture which is also confirmed in future graphs when comparing the three cases.
In expressing degree of instability we choose to use two parameters based

upon the assumed exponential form of the perturbations,

()= (") theet) (2.21)

They are ci, the imag%nary component of the generally complex phase velocity
of the perturbations, and Te’ the e-folding time or time it takes for the
amplitude of the perturbations to increase by a factor of e (=2.7). Some
authors prefer the parameter T = (4n 2) Te, the time for the perturbation

amplitude to double, but we shall utilize the more common Te. From (2.21)

it follows that T = l/nc.. Here, c, = EA ] * c,, is expressed in radians/
e i i o) *i
sec. To convert into m/sec we multiply by a cos ¢, noting that IUOI = a cos ¢

[Ab’. From (2.29), inclusion of fg UO sin @' d @' indicates that, for given
L

latitude, the computed eigenvalue will be dependent upon, not just UO at that

latitude, but on wind profiles to its south. Thus, the eigenvalue calcula-

tions are not independent of each other. One sees further from (2.29) that

¢, and thus c , in the adiabatic case is independent of wave number n, while
i
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(2.86) relating c, in the Newtonian and adiabatic models, expresses dependence
of the Newtonian ¢, upon n. If Te is chosen as the measure of instability, it
is obvious from its expression above that, whether the model be adiabatic or
Newtonian, there will be dependence upon n.

Figure 3 compares instability as measured by Ci in m/sec as a function of
latitude for adiabatic flow in the three cases—January, July, and annual aver-
age. Its equivalent in terms of Te for n = 1 is shown in Figure L4, where the
vertical scale is inverted in order that instability increases as the upper
part of the graph is approached, as in Figure 3. 1In specifying the latitude
of maximum instability we are faced with a selection of basing our criterion
on the maximum positive value of ci or on the minimum value of Te. Comparing
Figures 3 and 4 one readily sees that the criteria give, in general, different
latitudes. In deter;ining which is more valid, we first express Te in the

following way;

1 1 a cos @

e ne ., n{Ablc*i nonlc*i

(3.1)

This indicates that, regardless of c*i, Te+O as the North Pole is approached

which is physically untenable. Thus, maximum instability will be determined
b .
N Ci

Examining Figure 3 we note greater instability occurring in January than

in July or for the annual average over most latitudes, with a maximum of

5.76 m/sec at 25°N. In comparison, the July curve peaks at 40°N with

o
[t}

2.46 m/sec while the curve for the annual average peaks at 35°N with

(@]
1}
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Figure 3. Imaginary component of phase velocity as a function of latitude for

adiabatic model—January, July, and annual average, 1963,
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ci = 3.33 m/sec. This is not surprising in view of the fact that, from Fig-
ure 2, UO (January) surpasses UO (July) and UO (annual) for all @ except

L5° <o < 60° and that vertical wind shear tends to make waves unstable, a
result found or stated in many works on baroclinic instability, in particular
Derome and Wiin-Nielsen's (1966) recent study. In each case there is an appro-
ximate monotonic structure on both sides of the peak. It is of interest, in
comparing Figures 2 and 3, to note that ci is a maximum, not at the latitude
where UO is a maximum, but 5° to the south. This is undoubtedly due to the
effect of all profiles to the south of ¢, although the particular reason why
is not clear. Figure 5, which plots ci vs. Uo’ shows more vividly the influ-
ence of vertical shear on instability. Here, the distributicn of UO with @'
as displayed in Figur? 2 is applied for all ¢'< ¢, while UO at ¢ is varied
arbitrarily between O and 50 m/sec. Eigenvalues are then computed for January
at U5°N, July at 30°N and 60°N, and the annual average at 75°N. Clearly, in-
creasing UO at ¢ brings about greater instability.

Returning to Figure 3 we observe absence of instability at only low lati-
tudes, in particular 20°N for January, 30°N for July, and 25°N for the annual
average. This corresponds to infinite Te and is not represented in Figure L.
From Figure 2 it is apparent that the only easterly zonal wind profiles occur
in July at @ = 20°N, 25°N, and 85°N where, from Figure 3, instability is
slight. This supports the assertion by Kuo (1952) that "a negative vertical
shear is relatively more stable than a positive shear." These results also

indicate that the amplitude of the very long waves should be a maximum in
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Figure 5. Imaginary component of phase velocity as a function of zonal wind
at p = 0 for adiabatic model-January, @ = 45°; July, ¢ = 30° and 60°; and
annual average, ® = T5°, 1963.
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middle latitudes and be of very small magnitude in low latitudes.

Perhaps the most startling feature of Figure 4 is the pronounced maximum
in Te at 55°N for January which is hardly expected from Figure»B. The expla-
nation lies in the relative magnitude of two effects working against each other—
TéﬁCCOS ¢ and Teocl/ci (m/sec) as seen in Eq. (3.1). Thus, as the North Pole
is approached the first effect, one of pure geometry, tends to decrease Te
while the second is inverse to the magnitude of ci from Figure 3. The fact
that there is a secondary minimum in ci at 55°N dominates the latitudinal
effect and we have a maximum in Te.For ® > 55° the latidudinal effect domin-
ates (decreases more rapidly than) ci, inducing a tendency toward smaller Te.
The reverse takes place for @ < 55°. For this reason there is a strong resem-
blance between Figures.3 and 4 for January, July, and the -annual average in
low and middle latitudes. We note also in Figure 4 that Te (July) exceeds at
every latitude Te (annual average) and at all but 50°N and 55°N, Te (January),
indicating greater stability during the summer, which is seen clearly from
Figure 3.

Figures 6, 7, and 8 illustrate the inverse relationship of Te to n for
January, July, and the annual average profiles. In each the shape of the
curves is very similar for all n. Thus, as the perturbation wave length de-
creases, the instability as measured by Te increases, with a minimum Te of
approximately four days for January, T 1/2 days for July, and six days for
the annual average, all of course, for the third harmonic. It is interesting

to compare this with the results from Wiin-Nielsen's (1961) three-parameter
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model having linear vertical wind shear and increasing static stability with
decreasing pressure, where he predicts a doubling-time of the order of two to
three days for n = 1, 2, and 3. When advection of relative vorticity is in-
cluded in his vorticity equation, he predicts a minimum e-folding time of
about five days for the meteorological range of vertical wind shear, very much
in agreement with results from this study. In many baroclinic instability
studies in which meridional variation of instability is not considered, charac-
teristics of the instability are portrayed in what is called a stability dia-
gram in which contours of Te are drawn on a graph having vertical wind shear
as the ordinate and wave length as the abscissa. On this a éurve representing
wave length of maximum instability is often constructed, generally a function
of vertical shear. Due tc the meridional variation of vertical shear in the
real atmosphére which we consider, it is not possible to construct a stability
diagram representing significant information. Suffice it to say that at any
latitude, of the three wave numbers we consider, wave number 3 has maximum in-
stability. In comparison with this representation of instability by Te we re-
call that instability for adiabatic flow as measured by ci is independent of
wave number. It follows that Figure 3 represents n = 1, 2, and 3.

In determining eigenvalues for Newtonian heating, c from those computed

*N’
for adiabatic flow, Cyyr WE recall
_ _9.acos 9,
Cyn e T s U i (2.86)
o
For ¢ > 0 and s UO > o in westerlies or easterlies it is clear that (C*N)u <
i

(C*a>*’ indicating that heating tends to stabilize the flow. The degree of
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stabilization is directly proportional to q, the heating or cdoling coefficient,
and cos @, while inversely proportional to wave number and amplitude of basic
zonal velocity. Figures 9, 10, and 11 compare c, for the adiabatic and New-
tonian models in the three cases—January, July, and the annual average, re-
spectively. We immediately note the similarity in shape between the adiabatic
and Newtonian waves for each case. As wave number increases, the Newtonian
curves approach the limiting adiabatic curve, crowding closer together. Fur-
ther, whereas the minimum c; in adiabatic flowwasnon-negative, for Newtonian
heating ci can be negative, indicating damping or stable flow at particular
latitudes and wave lengths. Maximum damping occurs of course for n = 1 and
approximates c. = -2.4 m/sec at 20°N for January, -2.25 m/sec at 20°N for July,
and -2.3 m/sec at 25°N for the annual average. In comparing the adiabatic and
Newtonian curves we observe that the maximum stabilizing effect of heating
occurs when the degree of instability is maximum, while the difference between
adiabatic and Newtonian instability diminishes with increasing latitude to less
than .5 m/sec at 85°N. Clearly, all values of Te for Newtonian heating exceed
corresponding values for adiabatic flow. For ci <o, Te cannot be defined.

Its upper limit of infinity is approached as ci + 0 from above.

Figures 12, 13, and 14 illustrate, for Newtonian heating, the variation
of ci with latitude for the three cases—January, July, and the annual aver-
age—at each wave number. As with adiabatic fiow ¢, (January)> ¢, (July),
ci (annual) for all n and all latitude§ except 50°N and 55°N where Ci (January)
dips sharply. Despite the variation of Ci with n the curve shapes for each

case are strikingly similar, approximately independent of wave number.
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In discussing the dependence of instability on wave length (or wave num-
ber) for assumed ¢ and Uy (p), if e, is used as a measure of instability, we
recall from Figure 3 no dependence for adiabatic flow. This is in agreement
with Wiin-Nielsen's (1961) three-parameter model having zonal wind increasing
linearly and static stability increasing with decreasing pressure. From Fig-
ures 9-11 instability or ci increases as n increases or wave length decreases
for Newtonian heating. If we select Te as our instability parameter, (3.1)
expresses the decrease of Te (or increase of instability) as n increases or

wave length decreases for both adiabatic flow and Newtonian heating for given

¢ and UO (o).

%.2. THE PHASE SPEED

We define the phase speed, cr, as the real part of the phase velocity of
the perturbation wave. It is the speed with which the wave travels eastward
relative to the rotating earth. It is not the speed of the wave relative
to the basic zonal velocity, U. A wave is termed retrogressive if cr and U
are of opposite sign, i.e., if the wave moves in a direction opposite to that
of the flow in which it is embedded.

Based upon statistical studies by Eliasen (1958) and Martin (1958 of
motion based on zonal harmonic analysis of observed patterns of geopoter:ial
in the troposphere, planetary or ultra-long waves appearing in the westerly
flow of middle latitudes are slowly moving systems which oscillate around
certain preferred geographical positions, moving to the east or west. Eliasen

shows that at 500 mb and 50°N for wave numbers 1, 2, and 3, the deviation of
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the wave from its mean position exceeds one-fourth of the wave length in only

a few cases. Occasionally displacement during one day is relatively large, but
this always coincides with small values of amplitude. As a consequence of the
semi-permanence these waves are maintained on monthly mean charts as well as

on normal charts for individual months, which indicates that the mean positions
of the waves are nearly the same from year to year. Motion of waves at 40°N
and 60°N parallels rathey closely motion at 50°N. Hirota (1968) suggests from
these studies that there are two kinds of ultra-long waves in the middle-lati-
tude westerlies. One is a quasi-stationary or forced standing wave and the
other is a traveling or free wave. Due to the absence of any geographical or
terrain features in this study tending to induce standing waves, we conclude
that the phase speeds computed refer to the traveling waves.

Figure 15 displays the relationship of phase speed to latitude for
January, July, and the annual average. The curves represent all wave lengths
of the ultra-long waves, both for adiabatic flow and Newtonian heating. This
is apparent when we recall that c, for adiabatic flow is independent of wave
number and, from (2.86), that the real parts of Cor and c,, are identical.
Only their imaginary parts differ by a factor dependent upon wave number.
Comparing Figures 15 and 2 we note a striking resemblance between UO vs. @
and cr vs. @. Maximum values of phase speed are 13.9 m/sec for January at
35°N, 6.7 m/sec for July at 45°N, and 8.2 m/sec for the annual average at
LO°N. For the most unstable waves as determined by C.s phase speeds are 8.6

m/sec at 25°N in January, 5.2 m/sec at LO°N in July, and 6.3 m/sec at 35°N
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for the annual average. These values are in good agreement with those obtained
in the empirical study by Bradley and Wiin-Nielsen (1968) where the phase
speeds ranged from 5-15 m/sec.' While most of the waves move eastward rela-
tive to the earth, some do not, i.e., the waves in January at 20°N, in July

at 20°, 25°, %0°, and 85°N, and for the annual average at 25°N. Of these only
the waves in January at 20°N, in July at %0°N, and for the annual average at

o5°N are retrogressive. The maximum speed to the west is 5 m/sec.

In Appendixes A.1l and A.2 phase speed of stable perturbations in the baro-
tropic limiting cases, A = Ao($), (l)GZ =0 = constant and (2) o, = oo/p* is
determined analytically and it is found in both models that the waves move at
a slower eastward (or faster westward) speed than the basic current at any
latitude, the tendency toward westward motion increasing with decreasing lati-
tude. High latitudes evidence little discrepancy from the basic current. Com-
paring the models one finds that inclusion of inverse pressure dependence of
static stability increases the tendency toward westward motion by a factor of
about 3. In contrasting these limiting cases with our results as presented in
Figure 15, where the basic zonal wind profiles are shown in Figure 2, it is
clear that, while the shapes of the curves in Figures 2 and 15 are similar for
the respective January, July, and annual average cases, the magnitudes of
phase speeds are in general considerably less than the basic zonal winds, most
of which are westerlies. The vertical scale shows this most graphically. This
completely agrees qualitatively with the barotropic model results. To obtain

a quantitative estimate of this tendency, we tabulate UO (Figure 2) - c

-1
(Figure 15) in m sec =~ as follows;
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¢ (deg) 20 30 b5 60 7
January 30.4 31.2 14.6 8.6 10.7
July - 3.6 3.8 k.0 8.3 5.3
Annual average -- 17.0 16.0 9.% 5.1

This reveals, when compared with Tables Al and A2, baroclinic tendencies
toward westward motion considerably greater than those in the limiting baro-
tropic cases with the sole exception of 20°N in the second barotropic model at
mode number 1. We note decreasing discrepancies at higher latitudes in con-
sonance with the barotropic models.

In the quasi-geostrophic 10-layer model of Hirota (1968), having
GU/bp =2 m/sec/lOO mb and constant static stability the amplifying waves with
A > 5000 km, which hé terms the second type of unstable waves, have phase
speed almost independent of wave length, Cr - U= -5 m/sec. Here U is the
basic zonal velocity at 500 mb and is thus, 10 m/sec, giving c. = 5 m/sec. In
our notation, the Uo corresponding to this would be 20 m/sec. The closest
vertical wind shears we have to this occur in July at 40°N, where UO = 18.5 m/
sec and for the annual average at 30°N, where Uo = 20 m/sec. The phase speeds
for each are 5.2 and 3 m/sec, respectively, which is in good agreement with
Hirota. While phase speed is very nearly constant with wave length for UO =
20 m/sec, Hirota finds that, as the vertical wind shear increases in magnitude,

c_ becomes less constant with wave length, increasing as A increases. This is
T

exemplified in his 20-layer model where , for U = 40 m/sec, ¢ = 12 m/sec for
) o) ) r

A = 12,000 km and 13 m/sec for A = 20,000 km. In comparison, we find, for
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u =39 m/sec in January at 25°N, c. = 8.6 m/sec, not as good agreement as in

the former comparison.

3.3 THE WAVE STRUCTURE

If our model is at all an approximation to reality, the unstable waves
which are solutions to the linearized equations should have a vertical struc-
ture which is in a gross sense comparable to the structure of ultra-long waves
in the atmosphere. 1In particular we investigate the vertical structure of the
most unstable waves as determined by a maximum in ci. We recall that these
occur, for adiabatic flow and Newtonian heating, at 25°N in January, LO°N in
July, and 35°N for the annual average at n = 1, 2, and 3. One of the striking
results of this study is the pronounced similarity in the structure of the waves,
especially in regard to the vertical variation of amplitude, and approximately
for the vertical variation of phase angle.

The assumed form of the perturbations, from Chapter II, is

o nlh-ct) (2.21)

where ( " ), a function of @ and p, describes the variation in perturbation
amplitude and is in general complex. Given eigenvalue c, due to the fact that
( )", multiplied by any constant will satisfy the perturbation equations, we
choose to normalize the amplitude function at given ¢ by dividing by the maxi-
mum amplitude of ( " ) for all p. Let us denote this by |( " )‘max and the

normalized amplitude function and perturbation,
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For a = Re[ ( " )N}, b = Im[ ( " )N], we obtain, where ¢ = c, + ici,

Re[ ( )&] = exp(ncit). [a cos n(h-crt)-b sin n(X-crt)] which represents the

physical quantity. It is an easy matter to show that

Re[ ( )ﬁ] = A exp(ncit) * cos (X - 8)

where X = n (A-c t)

1
and & = tan = (—)

Thus, at time t = 0, Re[( )!] = A cos(m\-5)

W
For given latitude, amplitude A and phase angle & depend solely on pressure.

It is clear that, on a given latitude circle and isobaric surface, & is the
value of n\ at which the real component of the normalized perturbation will be
a maximum or, according to some authors a ridge. In describing the wave struc-
ture we plot A and ® vs. pressure for the normalized perturbation geopotential,
vertical velocity, and femperature. It should be noted that there are several
ways we could present phase information. As stated above cos(n\-8) is maxi-
mum when n\ = dor A\ = %. For n = 1 the position of the ridge is specified by

&

]
8, while E and g‘represent ridges for the higher wave numbers 2 and 3. In

]
addition, for n = 2 a ridge is located at > + 180°, while for n = 3 there are



13

~

two additional ridges, at % + 120° and % + 240° around a latitude circle. Rea-
sonably enough for wave number n we have n ridges. Analogously, we could de-
pict troughs, where cos (n\-d) is a minimum. Here, nh =& + 180° or A = &/n +
180°/n. Thus, for wave number 1 a trough is displaced 180° from the ridge,
while for wave numbers 2 and 3, troughs are located 90° and 60° from ridges,
respectively. For wave number n, there are n troughs. Because knowledge of the
vertical distribution of & is sufficient to determine ridge and trough positions
for any wave number, we elect to use it to display phase information. Other
writers choose to plot ridges and/or troughs. This latter selection does have
the advantage of presenting the cellular structure of perturbations around a
latitude circle which is most evident for n > 1. In this study it hap-
pens that & is virtually independent of n, enabling us to represent all phase
information for a particular parameter in one figure rather than three, one for
each wave number.

Eliasen (1958) explains the existence of the long, semi-permanent waves
as resulting from the combined effort of the large-scale distribution of heat
sources and large mountain barriers, i.e., the Rockies and Himalayas. These
will effect both the phase angle and amplitude of the ultra-long waves. Con-
sidering first the phase angle, in the winter continents largely act as cold
sources and oceans as warm sources, while the reverse holds during the summer.

This should cause a phase shift for corresponding waves from January to July.

From observations we find in the lowest layers of the troposphere phase
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differences to be considerable between January and July. This qualitatively
agrees with the phase shift due to heat sources. However, in the atmospheric
layer from 700-500 mb phase differences between winter and summer become much
smaller. This constitutes an essential argument for ascribing an important
role to large mountain barriers which would not tend to induce any phase
differences during the year.

Effect of diabatic heating and cooling on the amplitude of ultra-long
waves is included in Derome's (1968) study on the basis of quasi-geostrophic,
linearized, steady state equations. Here, the most prominent feature, a trough,
was found to be about three times deeper at 25 cb than at 75 cb. Perturbations
caused by mountain barriers have been investigated for the equivalent-baro-
tropic level by Charney and Elidssen (1949) and Bolin (1950) and considerable
agreement with the real 500 mb perturbations demonstrated. Eliasen (1958)
reports that by extending the computations to a baroclinic atmosphere and
utilizing the confluent hypergeometric functions tabulated by Charney (1947),
it is found that amplitudes of orographically-induced waves increase with
height, the amplitudes at the 500 mb level being between two and three times
the 1000 mb level amplitude. To conclude, large-scale distribution of heat
sources is important fdr the formation and structure of the quasi-stationary,
ultra-long waves in the lowest part of the troposphere, while the effect of
large mountain barriers is predominant in the middle and upper troposphere.
As discussed, however, in an earlier section there is another kind of ultra-

long wave, the traveling or free wave. Our neglect of large-scale heat sources
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and mountain barriers in the models studied indicates that it is the structure
of this second kind of wave disturbance which we examine.

Figures 16-21 portray the vertical variation of the phase angle and ampli-
tude of normalized geopotential, vertical velocity, and temperature, respec-
tively, for the most unstable waves in January, July, and for the annual aver-
age in the adiabatic and Newtonian models. As alluded to earlier there is
striking similarity between the profiles, so much so that seasonal variations
and changes in wave number are deemed negligible in each model, a single
curve on each plot representing January, July, and the annual average for n =
1, 2, and 3. Further, amplitude deviations between the models are effectively
infinitesinal, leaving us with just one curve on the amplitude figures and
two on the phase angle graphs, where the differences between the adiabatic
and Newtonian models are large enough to be significant on the plots.

In Figure 16 depicting phase angle of geopotential, the most striking
feature in the‘east—west tilt with decreasing pressure is the maximum rate
of change for .5 < Py < .5 1in both models, with less rapid change occurring
in the lower and upper atmosphere. As shown in Appendix A.5 the existence
of a westward tilt in the most unstable waves indicates northward sensible
heat transport. The range of ® is approximately 220°. This compares very
favorably with an empirical study on the transient part of the ultra-long
waves undertaken by Bradley and Wiin-Nielsen (1968) in which the tilt of
surface harmonics of both forced and free modes of geopotential was calculated

to be westward from 850 to 500 mb and approximately vertical from 500 to 200 mb.
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Extrapolating their values in the 850 to 500 mb regime for the free mode to
the rest of the atmosphere we find the range of & to be 233° for n = 1 and 2
and 156° for n = 3, in good agreement with our computed value of 220°. Phase
angle for Newbtonian heating is about 5° west of that for adiabatic flow. This
agrees well withHirota's (1968) waves in his second (long waves and strong
shear) and third (weak shear) unstable regions, where waves exhibit a strik-
ing westward tilt in the middle layers, and the upper and lower half of the
wave are out of phase with each other.

Figure 17 depicts the vertical variation of normalized geopotential, the
single curve representing adiabatic and Newtonian heating conditions for either
January, July or the annual average and is independent of wave number. Here
we note a maximum in the wave's intensity at the top of the atmosphere, a
secondary maximum at the ground, and a minimum around p, = b, We thus see
in comparing Figures 16 and 17, that the wave exhibits amplitude maximg
where the tilt is least, and an amplitude minimum where the phase angle change
in the vertical is greatest. These amplitude characteristics agree well with
Hirota's (1968) unstable wave solution for weak shear conditions (.U m sec—l/
100mb) for A = 5000 km, referred to as the third unstable region, in his 20-
layer model, while there is less qualitative resemblance with his 10-layer
model unstable wave solutions under strong shear (3.0 m sec_l/lOOmb) where
the waves with A = 10,000 and 15,000 km have monotonically increasing ampli-
tudes from the ground to the top of the atmosphere. We recall that in both

of these cases there was good agreement with our phase angle variation.



*STOpPOW UBTUOIMSN PUB OTIBABIPE JCJ sanssaad JO uofaoung
B SB 9ABM 9[(BISUN 3SOW JO TeTIUs30dos8 uoijedqanigad Jo spnatrdue PazfTewWIoN LT 2an8TJd

xow
el 12l |
00l S6 06 S8 08 SL OL €9 09 6§ 0S¢ St OF Sg 0Og G2 02 SI° O SO O
_ 1 _ 1 _ L _ _ _ _ _ _ _ _ ol
2%
—11
- o




9

Wiin-Nielsen's (1961) three-parameter model including the advection of rela-
tive vorticity displays vertical amplitude variation very similar to our own
but having variation with wave number. Finally, in Derome and Wiin-Nielsen's
(1966) quasi-geostrophic model having constant static stability and Coriolis
parameter one finds normalized amplitude of unstable stream functions or geo-
potential waves (since they are assumed porportional) maximum at p, = 0 and
1 and minimum at P, = 1/2 with virtually no wave number dependence, excellent
agreement with our own results. The phase angle variation in this model also
agrees well with ours with the exception that the tilt increases with increas-
ing wave length.

In Figure 18 we plot phase angle of vertical velocity, &, VS. pressure.
Here as with,&, both,the tilt is greatest in mid-troposphere and the phase
angle for Newtonian heating is about 5° west of that for adiabatic flow, but
the range of & is very much less, approximately hO°, indicating a slight east-
west slope of & compared with ®. Derome and Wiin-Nielsen (1966), in their
constant static-stability and Coriolis parameter quasi-geostrophic model
alluded to above, found a very similar vertical variation, the primary dispa-
rity being that the range of & increased with increasing wave length, approxi-
mating 60° at 18,000 km. As with our study, the slope was nearly constant as
pressure decreased, having a slight maximum in mid-troposphere. They con-
cluded that, although the effect of static stability is to decrease the slope
of the waves, this effect is felt to a smaller degree as the wave length in-

creases such that the slope of the ultra-long waves is not affected appreciably.
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Turning to normalized amplitude of & in Figure 19, we observe a vari-
ation very nearly opposite to that of %. Here, minima occur at the bottom and
top of the atmosphere to satisfy the lower and upper boundary conditions, res-
pectively, while the maximum appears at p, = 4. Derome and Wiin-Nielsen
(1966) find the same structure, with a maximum, however, at p, = -5 and negli-
gible variation with wave length. They conclude, as above, the static stability
of the basic flow does not affect appreciably the variation with pressure of
the unstable w wave amplitude.

Like the phase angle variation of () and &, we observe in Figure 20 a
maximum slope of % in mid-troposphere, with Newtonian heating phase angle 5°
west of that for adiabatic flow. The range of & is 85-90°. 1In contrast with
%, % has a maximum-tilt for .5 <p, < .7, below the layer of maximum slope for
%. The variation of the normalized amplitude of % is seen in Figure 21, where
there is a maximum at the bottom boundary and minimum at the top of the atmo-
sphere. This is reasonable due to of the fact that i “p, from the ideal gas
law. Further, we observe a secondary maximum around p_ = .4, which, from
Figure 17, is the level of minimum in l%]. Combining the perfect gas and

hydrostatic equations, we obtain T e d0/dp or,alternatively, T « d3/3(1n p)

which supports this behavior.
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CHAPTER IV

ENERGETICS

L.1. GENERAL CONSIDERATIONS

In the study of unstable waves it is of paramount importance to consider
the energetics or energy transfer processes involved, in particular how the
amplifying perturbation obtains its energy. The foundation of most current
energy studies was laid by Lorenz (1955), included in which he considered
energy conversion processes of unstable long waves associated with maintenance
of the general circulation. He divided the atmosphere's energy into four
forms: zonal kine;ic energy (KZ); eddy kinetic energy (KE);,zonal available
potentijl energy (AZ); and eddy available potential energy (AE). Kinetic
energy (KE), expressed as one-half of the square bf the speed of a fluid
parcel of unit mass, % v2, is the energy the parcel possesses as a conse-
quence of its motion.

Potential energy is the energy which a body possesses as a consequence of
its position in the field of gravity and is given by gz for a parcel of unit
mass. Internal energy, written as cVT for a parcel of unit mass of perfect
gas, is defined as the sum of the electromagnetic potential energy of electrous
and nuclei and the kinetic energy due to the molecular motions. Under hydro-
static equilibrium Haurwitz (1941) has shown that the potential and internal
energy of an atmospheric column are proportional. Therefore in an hydrostatic
atmosphere it is convenient to combine these into one form, the sum being

called total potential energy. Lorenz (1955) introduced the concept of
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available potential energy (APE), defining it as that portion of the total
potential energy which may be converted to kinetic energy in a system across
whose boundaries no heat or mass is transported. The minimum state of total
potential energy is characterized by horizontal stratification .of the potential
temperature surfaces.

Any parameter a(\,p,p,t) can be expressed as the sum of the zonal average,
az(w,p,t), and eddy component, aE(k,@,p,t), where a_ is defined as

1 2=n
/

, = ol (4.1)

Lorenz (1955) showed that the energy transfer scheme for an atmosphere in baro-

clinic instability in its normal state is;

A, K,
C (AZ,AE) '
A - K
E C(Ag,Kg) E

Here, C represents an energy conversion quantity and has the units of time
rate of change of energy; thus, C(AZ,AE) is the conversion from zonal to eddy
APE and C(AE,KE) is the conversion from eddy APE to eddy KE. Potential energy
of the bagic flow (AZ) is therefore converted into kinetic energy of the

unstable perturbation (KE) through the intermediary, AE. This stands in
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marked contrast with the barotropic instability mechanism, where kinetic energy
of the basic current (KZ) is the energy source and is converted directly into
KE. The mechanism for energy conversions in baroclinic instability is related
to the three-dimensional structure of the unstable wave. This implies a defi-
nite relationship between the results in Chapter IIT and in this chapter which
will be examined in following pages. Saltzman (1959) suggested that ultra-
long waves receive part of their kinetic energy from smail-scale motion in
addition to the baroclinic mechanism referred to above. The absence of non-

linear interactions in this study precludes examination of his thesis.

L.2. CONVERSION FROM ZONAL TO EDDY AVAILABLE POTENTIAL ENERGY, C(AZ,AE)
For an hydrostatic atmosphere it can be shown that

1 1.
o da V)Z cos @

as dp (h.2)

for a layer of atmosphere between pressures pl and p2 bounded by the latitude
limits P and Py where o = 20°N, Py = 85°N for the January and July cases,
while ¢, = 25°N, ? = 80°N for the annual average. Here S represents surface

area, a differential element of which satisfies

ds = a2 cos @ d @ dA

while ( ) = area average of ( ) over a given isobaric surface and ( )" = () -
(—), the deviation of ( ) from its area average. Because all perturbation

parameters may be expressed in terms of eigensolution &, by normalizing with

respect to the maximum of ]&I over all ¢ and p_, and then calculating the other
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perturbation parameters in terms of the normalized &, we are enabled to com-
pare, not just the signs of C(AZ,AE), but also the magnitudes for the adiabatic
and Newtonian heating models and their respective seasonal cases.
The term in (4.2), (a"v)z, can be re-expressed and simplified by recalling

that

1 00
_ 2 2.2)
v 2 0 a sin @ cos @ N (

from which we find Vg = 0. It follows that
E'z

(a"v)z = (a; v ")

Eliminating the first term by [( ) ]Z = 0, we arrive at

E

('), = () vy),
which, on an isobaric surface, is proportional to the meridional transport of
sensible heat by the wave perturbation, as these eddy parameters are synonymous
with the perturbations in Egs. (2.11), denoted there by primes. We retain the
( )E notation to conform with current practice in energetics.

Graphs of normalized C(A,,Ap), denoted Cyg(A,,Ag), Vs. pressure are pre-

sented in Figures 22-29 illustrating the dependence upon the model, either
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adiabatic or Newtonian heating, the season, and the wave length of perturbation.
The expression in Eq. (4.2) is numerically integrated for a given isobaric sur-
face over the entire range of latitude and then computed for ten layers in the
vertical, each of 100 mb thickness. In order to eliminate the exponential de-
pendence upon time in the perturbation parameters we have taken t = 0, thus
giving instantaneous values of CNO(AZ,AE). Figures 22 and 2% depict the adia-
batic and Newtonian models in Jamvary for n = 1, 2, and 3. The difference is
striking. CNO(AZ,AE) under adiabatic flow is < O for p < .88, all but the
lower troposphere where there is conversion from A, to Ag. The minimum at the
top of the atmosphere results from the inverse dependenée of Eé on pressure,
while the secondary minimum in |Cyo(A,,AR)| around p, = .55 may be explained

A
by the secondary minimum in normalized [T[ from Figure 21. The similar shapes

of CNO(AZ,AE) for n =1, 2, 3 follow from the equivalence of the zonal or basic

state contributions for each model and wave length in (N.Q), while

5 = 20 a2 sin2 Q

in

SIS

(2.22)
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requires that eddy meridional heat transport bé inversely proportional to the
wave number, since o% and vy are proportional to derivatives of QE (or Q‘),
while vy, from Egs. (2.2) and (2.21), is also directly proportional to n.

For all wave lengths the summation of CNO(AZ,AE) through all layers is
< 0 for adiabatic flow, indicating transfer from Ay to A,. The reverse is
true in the Newtonian model, where the magnitude of Cyy(A,,Ap) approximates
that for adiabatic flow, but the energy flow is from A, to Ag.

Figures 24 and 25 portray Cyg(A,,Ap) vs. p, for July in the two models at
n =1, 2, and 3. In both there is negligible conversion above approximately
400 mb and C(A,,Ap) < O for all lower layers. The difference in shape of the
curves is very noticeable, approaching asymptotically a limiting value of
CNO(AZ,AE) with increasing pressure for adiabatic flow, while in the Newtonian
model increasingly larger negative values of CNO(AZ,AE) result. In spite of
this asymptotic behavior the greater magnitudes of CNO(AZ,AE) in the adiabatic
model at all pressures result in net conversions from Ap to A, more than an

order of magnitude larger than for Newtonian heating. Comparing the adiabatic
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winter and summer cases in Figures 22 and 24, we see an increase in the magni-
tude of the total conversion from AE to AZ of some three to four times from
January to July, while Figures 23 and 25 for Newtonian heating reveal for each
wave number a change in both the direction of energy transfer and in the magni-

tude. While at all levels conversion in January is from AZ to A_, in July the

B’
reverse is the case, at a rate five to ten times less than its winter counter-
part. In each model the northward meridional heat transport and amplitude of
a; in January usually exceeds that in July.

Figures 26 and 27 reveal the variation of C (AZ,AE) with pressure for the

NO
adiabatic and Newtonian heating models, respectively, when the annual average
of UO(@) is considered. Interestingly, there is a strong resemblance between
each and Figure 22 for the January adiabatic case. Here, however, the pressure
level dividing the regimes is somewhat higher than the p, = .88 in Figure 22.
For the annual-adiabatic model CNO(AZ,AE) < 0 for p, < .83, while in the

annual-Newtonian model, C (AZ,AE) <0 for p, < .76. Significantly, the net

NO
conversion in the annual-adiabatic model is from AE to AZ for all wave numbers
while, on a scale an order of magnitude smaller, the annual-Newtonian model
energy conversion is from AZ to AE. Although this represents an instantaneous
energy conversion, it does agree with the time-averaged behavior of the atmo-
sphere and supports the validity of inclusion of Newtonian heating in the
numerical modelling of ultra-long waves.

Figures 28 and 29 combine for n = 1 the graphs appearing in Figures 22-27

for the adiabatic and Newtonian heating models, respectively. These illustrate

more clearly the agreement and disparity between CNO(AZ,AE) for January, July,
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and the annual average in each model. It is of interest that the annual vari-
ation of CNO(AZ,AE) is considerably more similar to the Januvary than the July
curve in the adiabatic model while the reverse is true for Newtonian heating.

Similar curves for n = 2 and 3 are not constructed, for their shapes would

closely resemble their n = 1 counterparts with a diminution in amplitude as

can readily be seen in Figures 22-27.

4.%. CONVERSION FROM EDDY AVAILABLE POTENTIAL TO EDDY KINETIC ENERGY,
C(ag k)

For an hydrostatic atmosphere it can be shown that

D
Clag,Ky) @ % [ o o a8 ap (4.3)

for a layer of atmosphere between pressures pl and p2 bounded by the latitude

limits wL and @U. As stated earlier ( )_ is equivalent to the primed perturba-

E

tion, ( )', as expressed in Egs. (2.11). Because wp and OE are physical quan-

tities we take only their real parts in
(2.21)

for t = 0, M =™ +1(M).. It is now an easy matter to show 5% = 0 from

integrating cos nA and sin n\ around a latitude circle, implying OE = O@.

By expanding w in the z-toordinate system we find

dp _ o, u @, v @, W o (b.h)

at 3t Ak dy dz

w =

where w = dz/dt, the vertical velocity in the z-system. In these coordinates

the geostrophic wind approximation as expressed in (2.1) and (2.2) becomes
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_ _ lop
YT OT o Yy
_ Llop

voE of x

where p = density,
from which the horizontal pressure advection in (4.L4), u dp/dx + v dp/dy = O.

Assuming for geostrophic flow

CIp- )

ot oz

an assumption well supported by observations, (k.L) reduces to

o ~ w2 (k.5)
- oz

In the z-system the hydrostatic relation has the form

~

)

which, substituted into (k4.5), gives
W ~ -gow
or, for the perturbation,

wp -8, Wi (4.6)

where p represents the basic state density.
z

Applying the perfect gas law to the perturbation we have
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which, combined with (4.6), gives

“g % & Vg Ty
on an isobaric surface.
It follows from (L.3) that C(AE,KE) GCfS w, Ty d8 on an isobaric surface.
Thus, a positive correlation between Vo and TE’ i.e., warm air rising and cold
air sinking, causes energy conversion from AE to KE.
As with C(A_,A_) we normalize C(Aj,K ) with respect to the maximum of | &)
over all ¢ and p and then calculate the other perturbation parameters in terms

of the normalized & so that we may compare both sign and magnitude of normalized

C(AE,KE), denoted C__ (A KE), between the adiabatic and Newtonian heating models

NO'E’

and their respective ,seasonal cases. Graphs of CNO(AE,KE) VS. pressure are
presented in Figures 30-37, illustrating the dependence upon the model, either
adiabatic or Newtonian heating, the season, and the wave length of perturbation.
The expression in (4.3) is numerically integrated for a given isobaric surface

over the entire range of latitude and, as was done with C (AZ,AE), then com-

NO

puted for ten layers in the vertical, each of 100 mb thickness. Taking t = 0
in all calculations gives us instantaneous conversions as in the former case.
Figures 30 and 31 depict the January-adiabatic and Newtonian models for
n=1, 2, and 3. It is immediately apparent that there is a strong shape simi-
larity in the curves between the two models. In each CNO(AE,KE) < 0 for p, <

.56 while conversion is from AE to KE for p, > .56. The comparable variation

in each model of CNO(AE,KE) for n =1, 2, and 3 follows as it did for CNO(AZ,A

)5

E

from the inverse dependence of 0 on wave number as seen in (2.22). In this case,
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however, only o is a function of & in (L.3), giving CNO(AE,KE)CC 1/n. This
holds strictly for adiabatic flow, where b is independent of n, but the depen-
dence of & on n in the Newtonian model implies a more complicated rélationship
between the energy conversions and n. The amplitude thus decreases as wave

length decreases for CNO(AE,KE) as wag evident with C (AZ,AE). In contrasting

NO
the two models it is apparent that the effect of including Newtonian heating

is to reduce the amplitude of the AE-KE conversion by approximately an order of
magnitude at each layer and summed over the entire atmosphere. The net trans-
fer for both is from KE to AE, but is small compared with the amplitude of
CNO(AE’KE) at an arbitrary level. This indicates a type of balance between the

removal of KE in the upper atmosphere and production of it below.

Figures 32 and 33 illustrate the variation of CN (A KE) for the July-

0V E’

adiabatic and Newtonian models. It is immediately clear that there is not
nearly as much similarity between them as during January, the shapes resembling

(AZ,AE) in the same models. While there is virtually

1 th f
closely the curves for CNO

no energy transfer above 350 mb under adiabatic conditions, the Newtonian model
does exhibit non-negligible conversion in the upper atmosphere compared with

the lower troposphere, especially for n = 1. Like CN (AZ,AE) there is an

0
asympototic approach toward a limiting value at each n in the adiabatic model
as the lower surface is approached, while amplitudes under Newtonian heating

become increasingly greater. At all levels conversion is from KE to AE, with
adiabatic amplitudes between one and two orders of magnitude larger than cor-

responding ones for Newtonian heating.

Figures 34 and 35 represent the annual-adiabatic and Newtonian curves and
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appear very similar to their January counterparts in Figures 30 and 31. In
each CNO(AE,KE) <0 for p, < .56 while the reverse is the case below. Again
the adiabatic amplitude considerably exceeds the Newtonian, by approximately a
factor of 25. Despite the likeness with the January curves there is a very
important disparity, in that the conversions for the annual average are of
opposite sign summed over the entire atmosphere. In both the annual-adiabatic
and Newtonian cases, there is an instantaneous net transfer from A_ to KE’
agreeing with the time-averaged behavior of the atmosphere. Summarizing our

results for the annual-adiabatic and Newtonian models over the whole atmosphere,

we have as instantaneous energy diagrams the following;

Annual-Adiabatic Annusl-Newtonian
Cho(Az5AR) < O . Y Cyo(A,,AR) >0
L Ag -
Cro(AgsKg) > O Cyo (Ag,Kg) > O
-2 . -2
Annual-Adiabatic (x 10 ) Annual-Newtonian (x 10 ~)
A_,K dA_/dt
. CNO(AZ’AE) CNO(AE’KE) dAE/dt n CNO(AZ’AE) CNO( E’ E) E/
1 -15 0.5 -15.5 1 1.25 0.01 1.2k
2 -7 0.% - 7.3 2 0.6% 0.00k 0.626
3 -5 0.2 - 5.2 3 0.4% 0.0025 0.4275

vhere dAg/dt = Cyo(A,,Ap) - Cno(Ap,Kg). The dominance in the magnitude of
CNO(AZ’AE) over CNO(AE,KE) agrees with Murakami's (1962) results from scale
analysis that only the interaction between zonal and eddy available potential
energy is predominant for ultra-long waves, exceeding all other energy conver-
sions by two orders of magnitude.

We thus conclude that for each wave number there is an instantaneous loss of

AE in the annual-adiabatic model which exceeds by approximately an order of
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magnitude the instantaneous gain of AE in the annual-Newtonian model. Com-
paring the two diagrams we immediately arrive at the conclusion that the
instantaneous energetics of the Newtonian model conforms much closer to the
time-averaged state of the atmosphere depicted in Section 4.1 than its adia-
batic counterpart. This is strong support for the inclusion of Newtonian
heating in an-ultra-long wave model. It should be noted, however, that the
energetics of the adiabatic model cannot be considered incongistent with the
time-averaged state of the atmosphere, for it refers to a certain instant of
time and there is no requirement for a steady-state condition.

Finally, Figures %6 and 37 combine for n = 1 the curves appearing in
Figures 30-35 for the adiabatic and Newtonian models, respectively. These
(A

illustrate more clearly the agreement and disparity between CN KE) for

0V E’

January, July, and the annual average in each model. While we have already
alluded to the greater similarity of the annual to the January rather than the
July curves, it is evident comparing Figures %6 and 37 how very much closer
this agreement is in the Newtonian model. 1In contrast the fact that there is
such a divergence between the annual- and January-Newtonian cases in CNO(AZ,AE)
for n = 1, as seen in Figure 29, only emphasizes that the two energy conver-
sion parameters, C(AZ,AE) and C(AE,KE), describe very different physical mech-
anisms. Similar curves for n = 2 and % are not constructed for the same reason
as given in presentation of C

A .
NO( z’AE)

L.h, COMPARISON OF ENERGY STRIP AND FULL ENERGY DIAGRAMS

For the purposes of this study we define a full energy diagram as one
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having the three energy quantities, AZ, AE, and KE’ and consider the instan-

taneous net (integrated over pressure) conversions CNO(AZ,AE) and CNO(AE,KE)
over the entire range of latitude as has been undertaken in Sections 4.2 and
4,3, Figures 22-37 pertain to these diagrams. While it is of interest to know
the integrated energetics over all latitudes predicted by our models, becduse
of the fact as mentioned earlier that our models become less valid in the

higher latitude regime, especially for wave number 3, it is desirable to cal-

culate the net C (AZ,A

- ) and C

(A_,K ) in thin latitudinal strips around the

E NO“E’E

latitude of maximum instability for the January, July, and annual average cases
and define these as energy strip diagrams. We recall that these latitudes are
25°, L0°, and 35°N, respectively, assuredly well within the region of the
models' applicability. We consider strips of width 5° on each side of these
latitudes. A further motivation in performing these calculations is to deter-
mine the instantaneous energetics in the region of maximum instability in each
case and to compare with the integrated energetics. The comparative diagrams

for both models follow for wave numbers 1, 2, or 3.

Strip Energy Diagram Full Energy Diagram
I. Adiabatic model

A. January

g
=
\ 4
>
=
AN
MN

.04
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Strip Energy Diagram Full Energy Diagram
B. July
A A
z zZ
\IO P, S
A
E > g By |—— %&
0

C. Annual average

A A
z Z
Y 13 N
AE ) KE AE S g KE
.45

II. Newtonian model

A. January

AE < KE AE | -2 KE
.015
B. July
A A
z b4
Ag > g Bg |—<—1 &
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Strip Energy Diagram Full Energy Diagram

C. Annual average

A

Z

Y I
K

N

Here, arrows indicate the direction of energy transfer, while the numbers on
the strip energy diagrams represent the magnitude of the particular strip
energy conversion relative to a unit value taken for the analogous full energy
conversion quantity. The number, O, represents a negligible magnitude. With

(A_,K ) <O in the January-Newtonian model, this

the sole exception of C 25

NO
supports the conclusion that the instantaneous energetics in both models in
the region of maximum instability is in agreement with the time-averaged ener-
getics as observed in the atmosphere and predicted by Lorenz (1955).

In resolving the apparent discrepancies between the strip and full energy
diagrams it is helpful to discuss the energetics of an arbitrary unstable wave
perturbation. From the nature of instability the total energy, AE + KE’ of
the wave must increase, or, equivalently, C(AZ,AE) > 0. While this is true
for all strip calculations, it is false for all the adiabatic as well as the
July-Newtonian full energy diagrams. The fact that these diagrams include the
entire latitude range and that, at certain low latitudes, there is no insta-

bility, i.e., C(AZ,A ) < 0, invites the conclusion that the negative contribu-

E
tions of C(AZ,AE) from the stable regions exceed the positive contributions

from the unstable regions, even though the latter includes most of the latitude

range.
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Interestingly, vertical distribution of each strip energy conversion is

independent of the model or case considered. It is found that CNO(AZ,AE) is

positive at every level and increases monotonically with increasing pressure

as shown in the sketch,

- 0 +
Cro(A554g)

On the other hand the shape of CNO(AE,KE) in the strip calculations closely
resembles its full' energy counterparts in the adiabatic and Newtonian January

or annual average cases, being negative for p, < .55 and positive below as

seen in the diagram,

- Cyo(AgsKe) *



CHAPTER V

CONCLUSION

5.1. SUMMARY OF RESULTS

We have examined the internal dynamics with regards to stability, struc-
ture, and energetics of ultra-long, transient, baroclinic wave perturbations
superimposed on a meridionally-varying zonal current, assumed linear in pres-
sure, in adiabatic, frictionless, geostrophic flow and how the addition of
Newtonian heating modifies the results. Three separate cases are investigated
based upon input data of the zonal wind between 20°N and 85°N during January,
July, and the annual average, 1963. It should be emphasized that these data
represent atmospheric behavior during a single year, 1965, and do not neces-
sarily depict climatology. We cannot, thus, assume that the detailed results
of this study apply for the normal January, July, or annual atmosphere.
Applying the perturbation theory a single second-order ordinary differential
equation for adiabatic flow is derived and numerically solved by the "shooting
method" in a LO-layer model for the normally complex perturbation phase velo-
city, c. From this the corresponding quantity for Newtonian heating is
easily determined. Knowledge of the eigenvalue, phase velocity, suffices for
complete analysis of the structure and energetics of the disturbance in the
two models. A discussion of the uniqueness of the unstable eigenvalues is
included.

Investigation of instability as measured by the imaginary component of

118
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phase velocity, Ci’ reveals no dependence upon wave number, n, for adiabatic
flow, while instability increases as wave number increases for Newtonian
heating, which itself exerts a stabilizing effect. This effect is maximum at
maximum instability. For the same input zonal wind distribution adiabatic flow
is always more unstable than its Newtonian counterpart. Another measure of
instability, e-folding time, is inversely proportional to wave number for
either model.

At all wave lengths in adiabatic and Newtonian flow greater instability
is found over most latitudes in January than in July or for the annual average,
having a maximum at 25°N in January, at 40°N in July, and at 35°N for the
annual average. In the adiabatic model this corresponds to e-folding times
for the third harmonic of 4, 7 1/2, and 6 days, respectively. This is not
surprising in vie; of the fact that the zonal wind in January exceeds that in
July and for the annual average at all latitudes except 45° < ¢ < 60° and that
vertical wind shear tends to make waves unstable. The absence of instability
in adiabatic flow occurs only at low latitudes, in particular 20°N in January,
30°N in July, and 20°and 25°N for the annual average. Slight instability is
associated with zonal easterlies which occur only in July at 20°N, 25°N, and
85°N. The possibility of negative values for Ci’ which indicates damping,
arises only in Newtonian heating where it is maximum at low latitudes for
n =1

The phase speed, defined as the real part of the phase velocity of the

perturbation wave, is equivalent for both adiabatic and Newtonian flow and is
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independent of wave number. Its variation with latitude closely resembles the
input distribution of zonal wind with latitude. Maximum values of phase speed
are 13.9 m/sec in January at 35°N, 6.7 m/sec in July at 45°N, and 8.2 m/sec
for the annual average at LO°N, while the most unstable waves travel at 8.6
m/sec in January (25°N), 5.2 m/sec in July (LO°N), and 6.3 m/sec for the annual
average (35°N). While most of the waves move eastward relative to the earth,
some do not, i.e., the waves in January at 20°N, in July at 20°, 25°, 30°, and
85°N, and for the annual average at 25°N. The maximum speed to the west is
5 m/sec.

The vertical wave structure of only the most unstable waves is investigated
and is found strikingly similar for the adiabatic and Newtonian models at n = 1,
2, and 3 for all seasonal cases. Wave number and seasonal dependence is negli-
gible in every case as well as amplitude variation between the models. Only
phase angle, 8, which tilts westward with decreasing pressure for every para-
meter, reveals any distinction, those for Newtonian heating being approximately
5° west of those for adiabatic flow at each level. The most striking feature
in the vertical phase angle variation of perturbation geopotential is the maxi-
mum east-west tilt between 300 and 500 mb. The range of ® over the entire at-
mosphere is approximately 220°. Examination of the normalized amplitude of
geopotential reveals a maximum at the top of the atmosphere and a secondary
maximum at the ground, both where the tilt is least, and minimum around 40O mb,
where the tilt is greatest. Phase angle variation of the vertical pressure

velocity shows, like the geopotential, maximum tilt between 300 and 500 mb
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but with a much reduced range of & —approximately 40°—indicating a slight
east-west slope of vertical pressure velocity compared with geopotential.
Variation in normalized amplitude of vertical pressure velocity is very near-
ly opposite to that of geopotential. Minima appear at the bottom and top of
the atmosphere to satisfy the boundary conditions, while the maximum occurs at
LOO mb. Phase angle of perturbation temperature, which has a range of 85-90°,
displays maximum tilt below that of the other parameters—in the interval,
500-700 mb. Normalized amplitude of temperature, owing to the proportion-
ality between temperature and pressure from the ideal gas law, has a maximum
at the bottom boundary and minimum at the top of the atmosphere. A secondary
maximum appears around 400 mb.

Instantaneous .energetics of the adiabatic and Newtonian models is stud ied
from two standpoints—(1) by calculation of vertical variation and total over
the entire range of pressure and latitude of the normalized conversion from
zonal to eddy available potential energy, C._ (A ,AE), and normalized conversion

NO' z

from eddy available potential energy to eddy kinetic energy, CNO(AE’ KE), and
(2) by calculation of vertical variation and total over all pressures in a
latitudinal strip 10° wide centered on the latitude of maximum instability of
the same energy conversions. The AZ - AE -KE diagrams integrated over pres:ure
pertaining to the former we refer to as full energy diagrams while that of tﬂe
latter we call strip energy diagrams. A comparison between these diagrams for
the adiabatic and Newtonian heating models at each wave number may be found in

Section 4. 4. With the sole exception of C (AE,KE)< 0 in the January-Newtonian

NO

model, the strip diagrams support the conclusion that the instantaneous energetics
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in both models in the region of maximum instability is in agreement with the
time-averaged energetics as observed in the atmosphere and predicted by Lorenz
(1955).

In resolving the apparent discrepancies between the strip and full energy

diagrams—where C(AZ,A ) > 0 for an unstable wave in order for its total ener-

E
gy, AE + KE, to increase—we conclude that the negative contributions of C(AZ,

AE) from the stable regions in the full energy diagrams exceed, for all the
adiabatic cases as well as the July-Newtonian case, the positive contributions
from the unstable regions, even though the latter includes most of the latitude
range.

Comparing the full energy diagrams of the annual adiabatic and Newtonian
models, it is clear that the addition of Newtonian heating causes the instanta-
neous energetics to conform more closely to the time-averaged observed energetics
over the entire atmosphere. Though this distinction does not appear in the
strip energy diagrams it, nonetheless, does provide some support for the inclu-
sion of Newtonian heating in ultra-long wave models.

While there is definite dependence over all latitudes of the vertical
distribution of each energy conversion quantity with the model and case con-
sidered, the strip energy calculations reveal virtual independence around the
latitude of maximum instability. It is found for these strip conversions that
C (AZ,AE) is positive at every level and increases monotonically with increas-

NO

ing pressure, while C_ (A_,K ) is negative for p, < .55 and positive below for
) *

NO"E’E

each wave number in the January, July, and annual average adiabatic and
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Newtonian heating models.

Variation of the energy conversions with wave number—C (AZ,AE) < 1/n

NO

and CNO(AE,KE) @ 1/n is shown analytically, holding explicitly for adiabatic

flow and approximately for Newtonian.

5.2. CONCLUDING REMARKS AND SUGGESTIONS FOR FUTURE WORK

This study pertains solely to the transient baroclinic mode of the ultra-
long waves. The existence, in addition, of a stationary mode and a transient
barotropic mode suggests that an empirical investigation be conducted in the
ultra-long wave regime to determine the division between the three modes

The discussion of the uniqueness of the unstable eigenvalues is not a
rigorous mathematical proof, for the size of one of the neighborhoods in which
uniqueness is valid 'is indeterminable from the information available, while
the size of the other neighborhood is estimated from results of the numerical
searches. Thus, while Markushevich's (1965) implicit function theorem appears
suitable as a vehicle for proving the desired uniqueness, the problem of
rigorously determining the size of the neighborhoods in which uniqueness is
valid was not solved. Accomplishing this would be most desirable and would
plant the results of this study on a more solid footing.

From the conclusions in this study one is encouraged to include a heating
term in a model for ultra-long waves. Certainly a more realistic heating
mechanism than Newtonian heating should improve our study in this regime. In-
clusion of large-scale external heat sources and sinks as pioneered by

Smagorinsky (1953) would be a long step in this direction.
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Charney and Eliassen (1949), Smagorinsky (1953), and Derome (1968), in
their studies of the effects of large-scale external forces on the existence
of stationary long waves, showed the importance of friction. In the simplest
inclusion of friction one would start with a two-, three-, or four-level model.
This could be extended to a continuous friction model where both surface and
internal friction are included, at the expense of a more difficult lower bound-
ary condition. A possible technique of handling this would be to shrink the
friction layer such that we assume its top is at b, = 1 and begin iterating
upwards from this point rather than starting at p, = O and iterating downwards
as was done in this study. In this way we would hope to use the "shooting
method" in eigenvalue searches. A more efficient search procedure than the
"shooting method" such as Newton's method or an interpolation scheme could be
investigated. TFurther, large-scale topographical effects, though they might
require empirical expressions, would contribute to a more realistic model.

Other generalizations would be inclusion of a meridional scale for the
perturbations and a perturbation expansion of the zonal velocity in powers
of the Rossby number which would enable us to make corrections to the zeroth-

order approximations.



APPENDIX

A.1l. THE BAROTROPIC LIMITING CASE, A = AO (Q),UZ = UO = CONSTANT
Assuming a barotropic basic state and constant static stability reduces

Eq. (2.24) to the standard form

2N 2 A

dw+k ® = O
Bpf
where
o] ;?
K = og (A1)

2
20a sin @(fz—c)

which has the general solution

A
w = Acosk p, T B sin k P,

for arbitrary constants A and B.
Satisfaction of the upper boundary condition, &(p* = 0) = 0, requires A = 0,

while the lower boundary condition, &(p* = 1) = 0, specifies the solution to be

A
w= B sink b,

where

k = mt, m=+1, +2,... (A.2)

125
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Combining (A.1) and (A.2),

5 2
c(rad sec—l) = A - oo
o 222 . 2
2am 7 sin ©
Multiplying by a cos ¢, we obtain
Iof p2
-1 0" 0 cos O
c(m sec ) = U, - 5 2 —5 - UO -
20am 7 sin ¢

which indicates that the waves are always stable and move at a slower eastward
(or faster westward) speed than the basic current at any latitude. The dif-
ference, cys depends upon the latitude and the mode number, m, as shown in

the following table.

TABLE Al

DIFFERENCE BETWEEN BASIC CURRENT AND WAVE SPEED FOR BAROTROPIC
LIMITING CASE, OZ==GO= CONSTANT

¢ (deg) O 15 30 45 60 6 90

15.72 3,77 1.5k 0.73 0.31 0
3.93 0.94 0.38 0.18 0.08 0
1.75 0.k2 0.17 0.08 0.03 0

Q Q0 Q
B e
A Y
TR
WO
8 8 8

It is clear from this table that the tendency toward westward motion
increases with decreasing latitude and decreasing mode number. In high
latitudes there is little difference from the basic current regardless of

mode number.
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A.2. THE BAROTROPIC LIMITING CASE, A = Ao(cp), o =p
Assuming a barotropic basic state and static stability inversely dependent

upon pressure reduces eq. (2.24) to the form

2N 2
S2LE 4L (8.3)
s P '

2
where Eq. (A.1) specifies k .

Equation (A.3) has the same form as the canonical equation

which has the solution, from Kamke ( (1961) , Pe. 4&0,

-, (5

where B is an arbitrary constant and Jl/eq_ is the Bessel function of first

A 2
kind and order l/2t1.Letting y=0, x=p,C*= -k, and q = 1/2 we obtain

the solution to (A.3).

& = BNp, J (-2kND).
1 *
Jl being antisymmetric about the origin the solution becomes
A —
o = -BJp, 7 (264D,)
In order-Xo satisfy the lower boundary condition, &(p* =1) =0,

we must require

Jl(Ek) = 0
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The zeros of Jl, from Jahnke and Emde (1909), are ao =0, al =+ 5.85, a2 =+

T%,%=il&ﬂ,“.@ﬁ@k=%¥%m=mﬁemmw=O,L2,%.”

Thus (A.1) may be expressed

2
20 p
- 00 cosQ
c(msec ) = U - = U -c.
o 2 L2 0 2
Qaqm sin @

As in A.1, where static stability was constant, this indicates that the waves
are always stable and move at a slower eastward speed (or faster westward
speed) than the basic current at any latitude. This discrepancy, 02, depends

upon the latitude and mode number as shown in the following table.

TABLE A2

DIFFERENCE BETWEEN BASIC CURRENT AND WAVE SPEED FOR BAROTROPIC
LIMITING CASE, o, = oo/p*

¢ (deg) O 15 30 45 60 6 90

cy, m=l o Lo.5 10.2 L.16 1.97 0.82 0
12.6 3,03 1.2k 0.58 0.24
cy, m=3 00 6.02 1.45  0.59 0.28 0.12 0

[e]
]
1l
o
8
o

It is clear from this table that, as in A.1, the tendency toward west-
ward motion increases with decreasing latitude and decreasing mode number.
Similarly in high latitudes there is little discrepancy from the basic current
regardless of mode number. Comparing Tables Al and A2 we conclude for these
barotropic cases that inclusion of inverse pressure dependence of static sta-

bility increases the tendency toward westward motion by a factor of about 3.
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A.3. COMPARISON OF THE QUASI-GEOSTROPHIC AND GEOSTROPHIC MODELS FOR A
BASIC STATE OF NO MOTION AND CONSTANT STATIC STABILITY

We assume in Egs. (2.11) that U(p,p) = O and o =0 = constant.

I. Quasi-Geostrophic Model.
Expressing the first two perturbation equations of motion in Cartesian
geometry, the geostrophic equations, (2.1) and (2.2), generalized to include

local accelerations become

du' 9%’ ,
- 3 +fv (A k4)
ov! _ 9o ,
at - T ay -fu . (A-5)

where f = 20sing, while the corresponding perturbation forms of the conti-

nuity eq., (2.4), and energy equation, (2.5), are

u A,

™ +ay +ap = 0 (A.6)
o 99 Do

3% Op t oo 0 (A7)

Introducing perturbations of the form, analogous to (2.21),

ik(x - ct)

)

) e

where ( " ) is assumed to be a function of y and p and k = on/(wave length),
(A.4) - (A.7) become

kel = -ix® + £ (A.8)
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A
-ikey = - §§ -4 - (A9)
v . W
1kﬁ+a—;+§5 = 0 (A.10)
-ike %% o & = o (A.11)

Solving (A.8) and (A.9) for % and ¥ we obtain

A 1,.2 3%
u o= -7 (k o+ r By)
Ao ik 3
v o= A (f%‘*'cay)
2 2 2
where A = f -k ¢

which, substituted into (A.10) gives

- %h (kec% + %%) +1ik %; (i@Li;%_§§[§X) = 0

g|85

A
Solving for ® in (A.11) and substituting yields the single equation

9 (1 é@ o f keé] _
¢ %5 (% %%) Ty G ay) +[8y (3)- TGB =0 (A.12)
0]

subject to the boundary conditions

A
w = O0forp = 0, P,

or, equivalently, from (A.11),

§§ = Oforp = O, D (A.13)
dp ©



131

Equation (A.12) is in general very difficult to solve because of the variation
of A and f with y. One may, however, employ a beta-plane approximation which,

according to the usual practice, is
f = fo + By (A.1h)

where £ 1s the value of the Coriolis parameter at a central latitude,wo, on
o)

-4 -1
the spherical earth and is usually taken as 10 sec = and P is the Rossby
. s . -12 -1 -1
parameter, 20 cos @O/a, and is commonly given the value 16 x 10 " m ~ sec .

It is ignored in (A.12) unless it appears with constant factors. Performing

the differentiations with respect to y in (A.12) after inserting (A.1k4) one

gets
- 2 22
A.a_(l_.&).}_ﬁ_gﬁ_f_a@_gz[_ﬁ_ﬁ f+_kc)+k2(;|% = 0
dp ‘o Ip 2 A Oy ¢ A

dy

Ignoring P because it appears with nonconstant factors eliminates the term

)
containing 3 while restricting our considerations to wave motions for which
N

22 2
¢ << f, i.e., to waves whose speed is much smaller than the speed of

k

inertia waves, reduces the equation to

23

o Jp

(_1__§§ % 8. e

)+ 22 B+ = 0
o dp ayZ

2
where A 1s approximated by fo.
This equation may be solved by separation of variables, i.e.,
$(y,p) = Gy F (p) (A.15)

which transforms the equation to
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2
d
2R B
dp¥p dp/ dy -0
2
F f G

(@)

The first term being solely a function of p and the second of y implies that

each is equal to a separation constant, l/gh, where h will be defined shortly

and the form of the constant clarified.

Setting
i(.iéﬁ
dap\% dp/ _ 1
F gh
and
2 -
d
__g__<_6_+k2>G
dy ¢
f2 G
o)
we find

(A.16a)
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and
2
2 f
’ 2
46 By 9 6 - o (A.16D)
2 c gh
dy

Non-dimensionalizing pressure we obtain from (A.16a)

which has the solution

F = Acosap +BsinQp, (A.17)
where
o p2
2 0 0
a = A.18
= (.18)

and (A.15) into (A.13) gives the boundary conditions

dF
i, = Oforp = 0,1
Differentiating (A.17) with respect to p,, we obtain

dF

= (B - A sin @
I, (B cos p, sin @ p,)

which, combined with the upper boundary condition, gives B = O. Repeating

for the lower boundary condition we have

which, substituted into (A.18) requires that
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h = (A.19)

This relation explains why the separation constant was expressed as l/gh, for

h has the dimensions of a length or a depth. It is normally called the equiva-

lent depth.
5 B 5 fimgn2
Letting r = - (Z +k o+ ———E——)’ (A. 20)
N Y
0 0

after applying (A.19) the solution of (A.16b) becomes
G = Dcosry+Esinry (A.21)

subject to the boundary conditions

A
v = Ofory = O, 4,

equivalent to vertical walls around the Equator and latitude

circle specified by y = d. These may be reexpressed, using (A.8) and

(A.9) as
- 1%
c
and
- I
) oy
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or, equivalently, after inserting (A.15),

Substituting (A.21) requires

f f
<:%§ D+r %) cosry t <}§ E-r %> sinry = Ofory = 0, d

from which the condition at y = O gives us
f
=+ rE = OorD = - < r E
c f
e
and that at y =d yieldsrd = nt, n=+1, +2, ..,

Inserting this condition into (A.20) and solving for phase speed gives us at

last
c = P
2
k + f2m2ﬁ2 + l? n2n2
0 d
5 2
opo
Taking
2% 2n x lO_6 3
k = I T 1 where 1 is in 107 km.,
g = 2
o
= 100
po
m = 1 = n
d = 1c7

in MIS units, we find
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16
.128& +5.0%%5
1

which gives
TABLE A3

WAVE SPEED IN QUAST-GEOSTROPHIC MODEL FOR BASIC STATE
OF NO MOTION AND CONSTANT STATIC STABILITY

l(lO5 km) c(m sec_l) 1(103 km) c(m sec-l)
2 -1.07 16 -3.08
L -2.13 18 - =3.10
6 -2.61 20 -3,12
8 -2.83 22 -3.13
10 -2.95 2k -3.14
12 -3,01 26 -3.,1k
1k -3,06 28 -3.15

IT. Geostrophic Model.
Neglecting the local accelerations in (A.L4) and (A.5) we obtain the pertur-

bation geostrophic relations in Cartesian geometry,

_a-qzv
ox
B_CD'

fu' = -
u ay

which transform to

=>

1
)
(Y2 (oY
t<1|-e«>

=

3

f

after assuming perturbations wavelike in x and t.
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Substituting into the continuity eq., (A.10), we obtain

LEE k(0 = 0

% ik 38 3 %
dp £ dy dy 'f

A
which, after solving for @ in (A.1l) and applying (A.1l4) yields the single

equation

2
3 1 b 13, 3y -8

e (=5 - = 0
g o 2
p 5 P y ¢
This reduces to
S
o) cf
o}
where £ ~ f
-0
or, equivalently,
8% 2%
___+,}, = 0
3 2
D, )
2 Bcopo
where y = - 2’ (A.22)
c f
o)

subject to the boundary conditions, from (A.13)

This problem is identical to the F portion of the ageostrophic model in I
from which we extract the result, y = mt, m = +1, +2,... Solving for

¢ in (A.22) we have
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2
_ BUop'o_
¢ T T Tooo
fmx
For
-12
B = 16 x 10
o] = 2
(0]
= 100
P, 1
-l
f = 10
(0]
m = 1

in MIS units, we obtainc ~ - 3.2 m sec

Comparing this value with those in Table A3, and recalling that the

length of the latitude circle at 45°N is about 28 x lO3

km, we conclude that
for a basic state of no motion at h5°, the percentage errors in assuming geo-

strophy for wave numbers 1 (1 = 28), 2 (1 = 14), and 3 (1 = 9.3) are 1..6%,

4.6% and 10% respectively.

A.k. DISCUSSION OF THE UNIQUENESS OF THE UNSTABLE EIGENVAIUE SOLUTIONS
We desire to display the uniqueness of the unstable eigenvalue, Cys
obtained using the "shooting method" in the solution of Eq. (2.29) and its

associated boundary conditions for given ¢ and Uo(m'), ¢'< . It is shown in

Section 2.1.3 that, with the introduction of a new independent variable,

g-f[cp, v (cp'ﬂ & = o (2.31)
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where
<o <
@L S0 <9
and 5
I P € cos O @
r o= =2 — [0 U sing' a9 (A. 23)
20A a°sin“® U sin” ¢ 'L
o o)
s A 1
under the boundary conditions ®w = O at § = O, T-sa
*

Eq. (2.31) is a special case of Gauss' differential equation, known also as

the hypergeometric eguation, which has the canonical form

5%$ 0 A
e (e1) 2o+ [arprn)evy] STral = 0 (2.32)
3t :

Equating (2.31) and (2.3%2), we arrive at

vy =0
a+p+1 = -1
o = -f

from which we easily obtain

o = -1+r (2.36a)

B = -1 -r (2.%6b)

7y = 0 (2.36c)
where

r = NTTE | (A 24)

From Kemke (1961), pg. 467, the solution to (2.32) subject to the limiting
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conditions specified by (2.3%6) is, for |&| < 1,

A A A
= +

w Cl ®, CQ @, (2.38)
where

A

o, = &F (r, -r; 2; €) (2.39a)

A 2 . . . .

@, = (1-r) glnngl (r,-r; 2; &) + power series in & starting with
nyw (2.39}))

Here, Gauss' function is defined as

n ‘n x

F (a,b; d; x) = 1+ :
oy (a,b; d; x) 1 nél (d)n o (2.40)
where (a)n = a(a+1l) (a+2)...(a +n-1) and a, b, d, and x can be real

or complex, but d cannot be zero or a negative integer. Slater (1966) shows

on pg. 4 the Gauss function to éonverge for |x| < 1 and diverge for |x| > 1L
For x = 1, convergence occurs if Re (d-a=b) > O and divergence for Re

(d-a-b) < 0. When |x| = 1 but x % 1, the series is absolutely convergent when
Re (d-a-b) > 0, convergent but not absolutely so when -1 < Re(d-a-b) < 0,

and divergent when Re(d-a-b) < -1. For Re(d-a-b) = -1 convergence occurs

if Re(a + b) > Re(ab) and divergence if Re(a + b) < Re(ab). Copson (1962)
shows on pp. 251 and 252 that there exists an analytical continuation of

2Fl (a,b;d;x) into | 1 - x| < 1 and that this function has a branch point

at x = 1.

Eqs. (2.39) ‘at the upper boundary, &€ = O, give c’ﬁl = 0 and &2 = 1L
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Since & = 0 here, 02 must be 0. To satisfy the lower boundary condition we
seek £ = go such that
2Fl (r,-r;2; go) = 0 (2.41)

Based upon the numerical unstable solutions of (2.29) and its associated

boundary conditions, together with (A.23), (A.24), and the identity,

we display in Table Ak for the January, July, and annual average cases, the
parameters r and go which must necessarily satisfy (2.41).

It is clear that these unstable numerical solutions lie outside the go
unit circle of convgrgence of 2Fl (r,-r; 23 go). Thus, in seeking to show
their uniqueness we require an analytic continuation of F_(r,-r; 2; go) be-

21

yond Igol < 1. One possible approach is to express F_(r,-r; 2; §o) as a

21

combination of two linearly independent solutions of (2.52), valid in a region
having some part in common with the §O unit circle, but extending beyond it,
i.e., Re (go) > 1/2. The presence, however, of the parameter, d = 2, in

the Gauss function precludes usage of more than one of Kummer's standard 24
solutions, all of which have the rather simple form of the product of functions
of go and/or (1-@0) and a Gauss function. The second solution takes a con-
siderably more complex and unwieldly form, causing the calculation of the two

constants of proportionality to be no mean task.

A second, much less burdensome approach is to express the Gauss function
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as a Barnes-type integral. From Slater (1966), pg. 25,

r(2) §° [(p+g) I(-r+s) T(-s),
onil(r)I(-r) fie r(2 + s) ‘3o

oy (r,-r; 2; éo)

(A.25)

where Iarg (-EO)]< . The convergence of the integral implies the analyti-
city of QFl(r,—r; 2; §o), when represented by (A.25), in the entire §o-plane
cut along the real axis from O to ». Thus, when selecting a §O -domain of

analyticity, the only restriction is to confine it above or below the real

axis. From Rainville (1960) I' (z) is analytic except at z = O and all
negative integers, where it has a simple pole, and z = o, where an essential
singularity occurs. For positive integer x, I' (x + 1) = x!, giving I (2)

= 1, while Whittaker and Watson (1961) prove

7
zsinnz

r(z) T (-z) = -

We thus conclude from (A.25) that, in the r-plane, 2Fl(r,-r; 23 go) is ana-
lytic for all r whose real components differ from O or a positive or negative
integer. Selection of an r-domain of analyticity must accord with this con-
dition.

In proving uniqueness of the unstable numerical solutions we apply
Markushevich's (1965) implicit function theorem, pg. 109, reexpressed in our
notation: Let F(r,go) be a function of two complex variables which is ana-
lytic in a neighborhood [r-rO] <, lgo - gool <p of the point (

)

r
o’ éoo

and suppose that



1l

Flr ,¢ ) = 0 oF £ 0,
0" 00 o (1" ,g )
0" 00

Then there are neighborhoods N(ro) and N(goo) such that the equation

F(r,go)=C)has a unique root go = go (r) in N(goo) for any given r € N(ro).
Moreover, the function §o = Eo (r) is single-valued and analytic on N(ro),
and satisfies the condition go (ro) = goo'” Clearly, we identify F(r,go)

with the Gauss function,'gFl(r,—r; 2; go). The point, (ro, goo), may be
selected, arbitrarily, from Table AL, from which it follows that F(ro,goo)

= 0. The condition %%~ # O necessarily follows for non-trivial
o/ (r ,& )
o’ “o0

solutions of the second-order equation, (2.32), where F(ro,goo) = 0 is

specified. If we select from Table Al(c) the solution at ¢ = 35° as r,

= 1.50, goo = (1.308,.246) and set y = .50, p = .246 to define the
domain of analyticity about (ro,goo), this domain will include all the
numerical solutions in Tables Al(a) and Al(c) and all but those at ¢ = 20°,
25°, and 85° in Table AL(b), i. e., where the basic state zonal wind is

easterly. The first two of these special cases cannot be treated by Mar-

kushevich, for Re(r) = 0, where F(r, go) is not analytic. The case at
o = 85° can, however, be taken separately by specifying ro = .35,
éoo = (L.612,-.091), ¢y = .35, and p = .091. Although the domain of

analyticity contains no numerical solutions other than (ro,goo), Markushe-
vich can still be applied. In determining the neighborhoods N(ro) and N(goo)
we refer to Markushevich's proof of Weierstrass' preparation theorem, pp. 105-
109, where they are constructed as interiors of circles,l r-r | <y < Vv and

| go - gool <p' < p, subject to the conditions:
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!

(1) p': F(ro,go) has no zeros within Igo -t | = p' except at the

00
point &  itself.
00

(2) ¥': Let p > 0 be the minimum of ]F(ro, go)l on the circle, 'go-goo[

=p', Choose ¥' such that
- F <
[F(r,e ) - F(r, )| <

for all r within |r-r0| =¥’ and £ on |§O - gool = o

We specify p’' = p - .00l with the justification that, in computing, given
ro, goo (or its equivalent) numerically, the search procedure encompassed the
go-domain of analyticity, but yielded only the zero at §O = goo. Unfortu-
nately, given the information available, p cannot be computed, making ¥' in-
determinable. The size of N(ro) must therefore remain unknown and Markushevich
applied with that reservation and the hope that |r-ro| < {' does indeed encom-
pass the other numerical solutions. The fact that, during the entire period
of computation, in which the searches were often begun from different starting
points, only one goo was obtained for each ro lends credence to the above ex-
pectation.
A.5. REIATIONSHIP BETWEEN WESTWARD WAVE TILT AND NORTHWARD SENSIBLE HEAT
TRANSPORT

We desire to show that, for geostrophic, hydrostatic flow there exists a

necessary and sufficient relationship between westward wave tilt and northward

sensible heat transport. For simplicity we consider a perturbation having

wave number 1. On an arbitrary isobaric surface, p = pl, we select the
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origin of a Cartesian coordinate system to coincide with the ridge of geo-

potential, giving us

(=]
1}

%l cos k x (A.263a)

=]
n

"bl cos (kx + Q) (A.26b)
where %l’%l are constant, > O.

k = 2n/L
L = wave length = 1length of latitude circle at latitude o.

G = phase angle of temperature

Graphically, we have, assuming O < & < /2,

For H = northward sensible heat transport averaged over the latitude circle

at p = pl’



W7

i (Tlvl zZ

where'vl = S-N wind component at pl
(), = TI0C ) ax
The geostrophic approximation on p = pl requires that
L o1
1 f Ox
a@l

1
iving H o = (T, —
giving %« ( 1 ox >z

Applying (A.25) we obtain

1
He -3 [?l(cos O cos kx - sin @ sin kx) kglsin k%]

which is equivalent to

L& 4 o
Hx o7 k %l 1 sin O

It follows that, on an isobaric surface, if geopotential leads temperature by

no more than n/E (more generally, n) as we have assumed and as is usually the

case in the real atmosphere, there will result a northward sensible heat trans-

port. Conversely, if geopotential lags temperature by no more than ﬂ/? (more

generally, n), a southward sensible heat transport will ensue.

Assuming hydrostatic equilibrium on p = pl

, Eq. (2.3) becomes
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Jd

dp/ 1 P,

For isobaric surface p = p2 slightly above p = pl, i.e., p2<‘pl, we

toke the forward finite difference to obtain

0, = ¢l+@ET
Py
where
y = - >0
1Y Pl P2
Assuming @2 = %2 cos (kx + B) and replacing ®l and Tl from (A.26), the

equation becomes
% cos (kx +B) = D cos kx + RAP 4 cos (kx + @).
2 1 p. 1
1
Expanding the cosines and equating coefficients of cos kx and sin kx, we now
have
% cos B = o+ BAB,@_ cos O
2 1 pl 1

and

RA
% sin B = 2R % sin &
2 P, 1

Dividing, it follows that
gég % sin O
1 1

%1 + BAR ﬁl cos &
P

tan B =



19

Thus, for

0<a<n/2, tanp = +/+,

implying 0 < B < =« / 2 which indicates a westward tilt of geopotential. For
-nf2 <A <0, tan B = - / +, implying -n/2 < B < O which gives an eastward
tilt of geopotential.

We have thus shown that northward (southward) sensible heat transport
and westward (eastward) wave tilt are, under geostrophic, hydrostatic flow,

inextricably linked.
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