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Abstract. A form of the Euler equation using an impulse formulation is presented. This form

is based on a representation of the divergence-free projection operator in terms of a continuous
distribution of vortex dipoles which have a finite self-induced velocity. A generalization of the
Euler equation is presented as a kinetic equation similar to the Vlasov—Poisson equation. An
interesting feature of this generalization of the Euler equation is that it has nontrivial solutions
in one space dimension. The stability of the spatially homogeneous solution is also studied.
Distribution functions with a single maximum are found to be linearly stable, whereas those
with two maxima can be unstable and the initial value problem ill-posed. Weak solutions of
this kinetic equation are found using a water-bag model and a simple model of inviscid 1D
turbulence is developed.

AMS classification scheme numbers: 76C99, 76E99

1. Introduction

Recently, there has been interest in the Euler equation written in terms of a momentum
variable,p, which we shall call the impulse density. In this variable the Euler equation can
be written as

?71: +u-Vp=—Vu)lp Q)
where the liquid velocityu, is the divergence-free projection of the impulse. The Euler
equation written in this form has been studied by a number of investigators. Sagfdalev
[1] and Tur and Yanovsky [4] derive this equation based mainly on kinematic considerations.
They also use this equation to find new topological invariants for the Euler equation.
Oseledets[3] and Kuz'min [2] both show that this equation is a Hamiltonian system with
respect to a certain Lie—Poisson bracket.

The above equation was used, in two space dimensions, by Krasny [8] in a vortex-
dipole sheet model of a wake. He solved this equation using a Lagrangian numerical
scheme analogous to the vortex-blob method. Buttke [5] (see also Buttke and Chorin [6])
devised a similar Lagrangian numerical scheme. This scheme was implemented in three
space dimensions and is discretely Hamiltonian. Buttke also provides numerical evidence
that the method converges.

Maddocks and Pego [7] provide a new unconstrained Hamiltonian form of the Euler
equation. In this derivation they recover the aforementioned form of the impulse equation
as well as an alternative form which appears to have advantages in situations with a
free boundary. Chorin and Buttke [6] call equation (1) the Euler equation written in
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magnetization variables. Chorin [9] has used this ‘magnet’ representation of the Euler
equation to study turbulent states and their connection with phase transitions.

The outline of this paper is as follows. In section 2, a derivation of a more general
impulse equation which reflects a gauge freedom of (1) is presented. It is then demonstrated
that the divergence-free projection operator can be split into two parts: a local and a nonlocal
part. The nonlocal part is determined from a continuous distribution of vortex dipoles. The
local part is seen to be the self-induced velocity of a vortex dipole. Itis crucial that the vortex
dipoles have a self-induced velocity if the velocity field produced is to be divergence-free.

Next, it is shown by an appropriate choice of gauge, that force density can be written
in terms of derivatives of the nonlocal field only. Based on this observation a kinetic
description of the Euler equation is proposed, where the impulse is replaced with a
distribution function. If the distribution function converges to a delta function, our kinetic
equation reduces to the Euler equation. Therefore we see that our kinetic equation is
a generalization of the Euler equation and contains the Euler equation as a solution for
special initial data. This kinetic equation may also contain some physical meaning for other
initial data; for example, it could be interpreted as a coarse-grained description of a highly
turbulent flow of an inviscid liquid. The distribution function then gives the statistics of the
impulse within the averaging volume.

An interesting feature of this kinetic equation is that it has nontrivial solutions in one
space dimension when the distribution function is not simply a Dirac mass. If our equation is
indeed a course-grained description of inviscid turbulence, some 1D turbulence models may
be studied. We observe that a spatially homogeneous distribution function is a solution of
our kinetic equation and examine its stability in section 4. It is found that if the distribution
function has a single maximum, the solution is linearly stable. On the other hand, if the
distribution function has two maxima, conditions necessary for the onset of instability are
found. It is also shown that if the problem is unstable, the initial value problem is ill-posed.
It is conjectured that this ill-posedness results in the formation of singularities which may be
connected to intermittency. In section 5 we construct solutions to the 1D Vlasov equation
using the water-bag model of DePackh [18] and develop a very simple model of 1D inviscid
turbulence. An interesting feature of this model is the formation of finite time singularities.
It is important to note that these singularities are unrelated to finite time singularities of the
Euler equation.

2. Impulse formulation

We begin by writing the Euler equation as

ad

a—f—Vx(uxw)zo (2)
wherew is the velocity of the liquid andy = V x u is the vorticity. Next, we introduce a

vector field,p, which satisfies

VXp=w. ()
If we substitute (3) into (2) we find that the time evolutionmwis given by

ad

5 —ux(Vxp) =V @)

for some functiony, which can be thought of as a gauge. We shall pate impulse. If
we pick ) = —u - p + A, we can write (4) as
ap

5 +u-Vp=—(Vu)p+Var (5)
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which in component form is

o 0pa dug n oA

or  Paxg . Pax, T o,

wherea and g denote the Cartesian components with summation convention over repeated
Greek subscripts. Equation (5), with = 0, is the impulse form of the Euler equation
given in the introduction. In a later section we will derive another version of the impulse
equation.

2.1. Relation between velocity and impulse
SinceV x p =V x u, it follows that

p=u+Ve (6)
where¢ satisfies the relation

Ap=V-p )

and A denotes the Laplacian. Equation (7) follows from (6) and also because the velocity
field of the liquid is divergence-freev(- u = 0). We solve (6) and (7) fot. in terms ofp
to obtain

u = Bp (8)
where is the projection operator
B=1-VA~lv. 9)

Bp is the projection ofp onto divergence-free vector fields.

2.2. Physical meaning of impulse

Consider a fluid of infinite extent with a vorticity distribution supported<anlt is known

that the total momentum of the liquid is not well defined since the velocity field decays like
r~3. This gives rise to a conditionally convergent integral whose value depends on how it
is evaluated. The physically important quantity is instead the impulse. It is the impulse that
has the property of acting like the momentum of the fluid (see [10], p 518). This is defined
in three space dimensions as

I:%/mxwdm
Q

Sincew = V x p it then follows, after integration by parts, that

I:/pdm.
Q

Therefore,p is the impulse density. We have chosprto have the same support as
(which can always be done).
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2.3. Divergence-free projection

We first make the following definitions:

d—1
_ 10
o= (10)
T

1 rr
B == i (’ _d|r|2> an

whered = 2 or 3 is the space dimension; = 27, andcz = 47. We also define the
principal value integral to be

][z Iim/ .
e—0 lz—y|>e

Theorem. The divergence-free projection operats:,in R, d = 2 or 3 can be written
as

Bp(x,t) = kp(x, 1) + w(x, t) (12)

where
w(x, 1) = ][ B(x —yp(y. 1) dy. (13)

This shows that the divergence-free projection can be split into a local gartand a
nonlocal partaw. This theorem will be proved below.

The divergence-free projection written in the form given by (12) has an interesting
interpretation. To see this we first consider

u=B(r)p. (14)

This is the velocity field given by a source—sink doublet located at the poiatO for an
inviscid irrotational fluid with a dipole moment @ (see [10], p 89). Letu, be the fluid
velocity produced by a vortex ring of radiuslocated atr = 0. We let the impulse of the
vortex ring bep (p will be perpendicular to the face of the ring). One then finds (see [10],
p 518 or [12])

|7

uy(r) - B(r)p as— — oo.
a

Therefore (14) is the velocity field produced by an infinitesimally small vortex ring with
impulsep, called a vortex dipole by Chefranov [13]. We shall henceforth adopt this name. It
is now evident that a divergence-free velocity field can be written as a continuous distribution
of vortex dipoles which have a self-induced velocity«as.

Proof of theorem. We begin the proof of the theorem by writing the solution of (7) as

d
b () = f Gate — )" dy (15)
Y
whereG, is the Green'’s function for the Laplacian Rf, d = 2 or 3. These are
1
Ga(r) = o log|r| (16)
T
and
1
Ga(r) = — (17)

A |r|
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Sinced, G, has an integrable singularity we can integrate by parts and write

d
¢(x) = —/p,s(y)a—Gd(w—y) dy.
Y8

Hence

¢ d d

— = —Gy(x —y) dy. 18

ox. ox. Ps(¥) o5 (@ —y)dy (18)
It is necessary to bring the, inside the integral. This cannot be done for (18) in the form
given asagﬂGd has a non-integrable singularity. To remedy this we first make the following
definition:

bo(r) = 1 r<a (19)
o= 0 r>a
and note that
d
[ butte = Gotw - oy =0, (20)
Y8

Equations (18) and (20) are combined to give

a¢ 9 9

= —by(Jx — —Gy(x —y) dy.

ox. ox / [Ps(y) — bu(l — yl) pp(2)] os a(x —y)dy
We can now bring thé, inside the integral and write the above equation as

dup (@) = TV + T2 (21)
where

2
10 = [ 1w - butle — whpa@)] -5 Gate — ) dy
aya ayﬁ
and
@ d d

1, =— T[Pﬂ(y) —by(lx —yDps@)] . Galx — y) dy

Xo ayﬂ

dps(x)
0Xy

0
/baam ~uhg Guw — 9y

0 0
+ps(@) / oy, el = U Gt~ )y

The first term inT, is zero by (20). For the second term we consides 3, letr = y—=,
and use (17) to obtain

. Ps (SC) roal'g E
el I NOL (22)

wherer = |r|. It follows from the definition ofb, that

@ _
1,7 =

d
—ba(r) = =307 —a)

dr
wheres is the Dirac delta function; therefore (22) becomes
1
T2 = ps(@) T o ().
o dr Sy 3P (x)

A similar calculation shows
2 1
T2 = 3 po(a)

o
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for d = 2. Thus, for both cases we can write
1
T2 = " pa(@). (23)

Let us now turn our attention tg», which can be written as
2

T = / [Ps(y) = pp@)] 5 Gy(x —y)dy (24)
lz—yl<a Ya0yg
32
+ / ps(y) g Gu(x —y) dy. (25)
lz—y|>a Yo ayﬁ
Since
82
/ Gi(x—ydy=0
e<|lz—yl<a ayaayﬂ
it follows that
2
TO = 0+ / s Gl —y) dy
|z—y|>¢ aya ayﬂ
where
2
0= [Ps(y) — ps(x)] Ga(z — y) dy.
oyi<e P ayadys

We expandpg(y) in a Taylor series to obtain
0= opp(@)  10%py(@) §
rl<e L 0Xu k2 0x,,0x, 0ya0yp
The linear terms of the Taylor expansion vanish upon integration and we find

Fuly =+ O(ITIB)] G(r)dr.

0 = c16? + O(%) (26)
wherec; depends on the second derivativespadit . Next, we lete — 0 to obtain
dp(x) 1 2
=Zp, Gq(x —y) dy. 27
0 = @+ of ) oy, G4 = V) (27)

Substitution of (27) into (6) gives (12).

Remark. Oseledets [3] and Kuz'min [2] have also introduced representations of the
velocity field in terms of a continuous distribution of vortex dipoles. They both have
expressions similar to (12), namely

Bp = up + / B(x — y)p(y) dy (28)

where Oseledets takgs= 0 and Kuz'min takeg: = 1. The difficulty with both of these
expressions is tha@ (r) has a non-integrable singularity at= 0, which means (28) is not

well defined. This difficulty is alleviated by (12) because the integral is taken as a principal
value. Furthermore, Oseledets derives the Lagrangian form of the impulse equation by
implicitly taking the principal value integral while keeping = 0 to obtain Chefranov’s

[13] interacting vortex dipoles (which have no self-induced velocity). This work shows that
Chefranov’s work cannot be considered a Lagrangian description of the impulse equation.
Even with the self-induced velocity included it is unlikely that Chefranov’s equations will
converge to the impulse equation [14]. Buttke’s approach does not suffer from this difficulty
because he regulariz&
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2.4. Alternative impulse equation

In view of (12) we can write

u(x, 1) = kp(x, 1) + wx,1). (29)
If we substitute (29) into (5) and take. = («/2)|p|?, we obtain
E;lt) +u-Vp= —(Vw)Tp. (30)

We notice that (30) can be written ps= F' where the denotes the material derivative and

F = —(Vw)Tp. In this form the force acting on a vortex dipole4gVw)” p. Therefore

the force on the dipole is determined by its impulse and the gradient of the nonlocal part
of the velocity field. This indicates that there is no self-force on the vortex dipole in this
gauge.

3. Kinetic theory

An interesting feature of the Euler equation given by (30) is the formw @f); the velocity

induced atr by the vortex dipoles not located @t Equation (30) implies that the force on

a dipole arises only from the nonlocal field; this indicates that in the gauge we have chosen

there is no self-force on the dipoles. The velocity field created by the vortex dipoles decays

like »—2 which is a long range interaction. Therefore we see that the motion of the vortex

dipoles is analogous to the motion of electrons which is modelled by the Vlasov—Poisson

equation. With this in mind we will derive a Vlasov-type equation for (30); first, however,

we will write down the Vlasov—Poisson equation to make the analogy more transparent.
Let f(x, v, t) be the probability density of the electron having positioand velocity

v. The time evolution off (x, v, r) is given by

af af af

- RERCARTN A o ) 31
ot T e T e (1)
F = F(x, 1) is the force field given by
F=-qV¢ (32)
wheregq is the charge of an electron agdis the electric potential. The electric potential is
6@ = [ Gate - ypw.0dy (33)
wherep(x, t) is the expected excess charge density
,o(w,t):q(/f(:c,v,t)dv—l). (34)

For our Vlasov form of the Euler equation we Igtx, p, ) be the probability density
of a fluid particle having positiom and impulsep. The distribution functionf, is then
evolved according to the following equation:

af

3 3
5Jr@-(uf)Jra—p-(M):o (35)

whereu and F' are the velocity and force field, respectively. In this situation, (33) is
analogous to (13) which is now written as

QM%0=fB@—wﬂy0® (36)

1 This choice of gauge was suggestadm E Caflisch.
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where

Jjx, 1) = / pf(z, p)dp. (37)
Equation (37) is comparable to (34). We can thinkwefas a vector potential. In view of
(12) we can write

w=DBj—«j. (38)
With w now defined the velocity and the force fields are given, respectively, by

u=kp—+w (39)
and

F=—Vw'p (40)
(refer to (29) and (30)). Since

i U + i . F = 0
ax ap
(35) simplifies to
ﬂjtu-% F-%zo. (41)
at Jax ap

Therefore our Vlasov description for the vortex dipoles consists of (41) along with (37)—(40).
Next, the connection of (41) with (30) will be examined. The ensemble average of the
liquid velocity, u, is defined using

n(x, Hu(x,t) = f uf(x,p,t)dp
where
I’l(df, t) = / f(vas t) dp

We shall show thatz is divergence-free provided the initial data for the distribution function
satisfies

[ r@pow=1 (42)
To prove this statement we take the zeroth moment of (41), and find

E;—':Jrv.(na):o (43)
wherew is found to be

nu = B(np). (44)

It follows from (44) and (43) thabrn/or = 0. We recall from (42) thak(x,0) = 1;
therefore,V - w = 0 andn(x, r) = 1. This means we have

j=p (45)
u = Bp. (46)
Hence, the average velocity, is divergence-free.
In view of the above we can consider (41) a kinetic description of the Euler equation

provided the initial conditions for the distribution function satisfy (42). Another way to
view (41) is as a generalization of the Euler equation, where the impudses), has been
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replaced by a probability distributiory,(x, p, t). If f(x, p,t) converges té(p — p(x, 1)),

the impulse ate will be equal top with probability one. In this casg(x, t) should satisfy

the Euler equation. We shall now verify this and look for a weak solution of the form
f(x,p, 1) =38(p—px,1). (47)

It is clear that the initial condition of (47) satisfies (42). Substituting (47) into (41), we find

p 9
V(p—p) - [a? + (kp + w) - ai; + (Vw)Tpi| —o.

In order for the above equation to be satisfednust satisfy (30). Therefore we see that

a special solution of (41) is the incompressible Euler equation. It is conceivable that with

initial data other than Dirac masses, solutions of (41) will have physical meaning. One

possibility is that (41) may represent a homogenized or coarse-grained description for a
turbulent flow, with f (x, p, t) acting as a probability distribution function. More precisely,

let p(x, t) be the solution of (30) and consider the averaged or smoothed quantity,

(p(xz, 1) = /K(w —y)p(y, 1) dy (48)

where K is a positive function with compact support and unit mass. The suppokt of
can be considered the coarsening volume. On the other hand, one can define the averaged
guantity,

p(.1) = / F@.p. Hpdp (49)

in terms of the distribution function. If (x, p, t) represents the distribution of the impulse
density,p, within the coarsening volume centredatit then follows that

p(z, 1) = (p(z, 1)). (50)
It is our hope that (41) is a qualitative description fofx, p, t). To see this possibility,
let us return to (30) and lgb = (p) + p’ and writew as

w = ][ B(z — y)[(p(y. ) + p'(y. ] dy.

Since [ K (x —y)p'(y, 1) dy = 0, it is conceivable for a rapidly fluctuating impulse density
that

w A~ ][ B(z — y)(p(y. 1)) dy. (51)

If we let f be the distribution of the impulse density within the averaging volume we have
that (p) is given by (49); therefore, we find) to be approximately given by (36). Given
this approximation, we can write (30) as

p=—Vw)'p wherew = ][ / B(x —y)pf(y,p, 1) dpdy.

The time evolution off (x, p, ) can be found by using a self-consistent field approach (e.g.
Liboff [15], p 157). This gives (41).

Other important averaged quantities, defined in terms of the distribution function, are
the average fluid velocity,

u(x, 1) = /uf(sc,p, t)dp

and the turbulent kinetic energy,

6(z.1) = L / a - wPf (@, p. 1) dp. (52)
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Remark. Brenier [11] has also introduced a kinetic description of the Euler equation,

which is as follows:
af af af

Yy L E
ot TV 02 T ae

where E = —V P and P is chosen to satisfy the incompressibility condition

/fdv:l.

To determineP, we relax the above condition and let

o(x, 1) = / f dv.

The zeroth moment of (53) gives, in component form,

0 (53)

8,p+8a/fvadv=0.

We multiply (53) bywv and integrate over velocity space to obtain

3,/fva dv + Bﬁ/fvavﬁ dv— Eyp =0.
From these two relations we find
atztp = aotaﬂ [ fvavﬁ — 0o (Ewp).

We see thap = 1 if P satisfies the following:

— 0o P = 00 f fvqvp du. (54)

We can see that (53) is also a generalization of the Euler equation. If we look for a solution
of the form f(x, v, 1) = §(v —v(x, 1)), we see thab will satisfy the usual Euler equation
written in terms of the velocity and pressure. Equation (54) will reduce to the usual pressure
equation.

3.1. One-dimensional solutions

An interesting class of solutions occurs when we consider initial conditions that depend
only on one space variable with the average impulse also in this direction, shgrefore,
f(mvpao)zf(-xvpao) and JZ(JX7030)
where the subscript denotes thec-component. We find that (41) has a solution of the
form f = f(x,p,t) andj = (j,(x, 1), 0, 0), where f satisfies
af \Of  dwy  Of
a. x — Jx) 5. T X =0
or TP Ty = P
In this case (38) simplifies taw = —«j. It is convenient to define the averaged quantity

7()(9 DPxi 1) = / f(x, px, Py, Pzs 1) dpy dp;
which is found to satisfy the kinetic equation

o Tug HFS =0 (55)
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with

u=«x(p—yj) and F=xp—
where

j= / pfdp.

For the sake of convenience we have dropped the bar and slbscript. The constraint
on the initial conditions becomes

/f(x, p.0)dp=1. (56)

Equation (56) must be satisfied in order to have the incompressibility condition fulfilled. It
is clear from (55) thatf (x, p,1) = fo(p) is a spatially homogeneous solution. It should
also be noted that for these one-dimensional solutioaso.

The incompressibility condition (56) permits an interesting class of solutionsfd(g)
satisfy (56), we can then verify that the following is a solution of (55):

FGx,pt) = fo(p+06(x,1)) (57)
provided
20 L

where jo = [ fo(p)p dp andé(x, 0) is a bounded differentiable function. It is crucial that

fo satisfy (56) in order for (57) to be a solution of (55). Clearly, the solutions given by
(57) may exist only for finite time since the equation &k, r) is Burgers’ equation in a
frame moving with speeéd-«jo. This means thai, 6 can become infinite in finite time after
which (57) is no longer a classical solution of (55). It may be possible to construct weak
solutions of (55) after the classical solution breaks down. We shall see below that these
solutions play a role in the linear stability analysis of the spatially uniform solution.

4. Linear analysis

In this section we study the linear stability of a spatially homogeneous solution in
the spatially periodic case for (55). We observe that any time-independent, spatially
homogeneous density functioffe(p), is a solution of (55). We shall considegg(p) that
vanish agp| — oo and decay fast enough so that

/pzfo(p) dp < oo.
The linearized equation fof = f — fy is

o 0] g

— 58
at dx ap (°8)

NS
+x [(p—Jo)8 +p
X
where
jx, 1) = /g(x, p,H)pdp and jo=/fo(P)P dp.
In view of (42), we have

f fopydp=1  and f ¢(x. p.0)dp = 0. (59)



1372 P Smereka
One can verify that (58) preserves the mass; therefore,

/g(x,p,t)dpzo fort > 0.

It is easily demonstrated that (58) has solutions similar to (57), namely

s =00 where®® ;2% o (60)
ap ot ax

for any ¢ (x, 0). We recognizeg(x, p, t) as the linearization of (57). It is convenient for
us to use the following independent variables:

" =kt and x*=x — jot.
If we substitute these variables into (58) and drop the asterisks, we have

ad d dj o
% 08 03 _,

o 61
ot " Pox TPoxap (61)

We write

o0
gl p, )= Y alp,né"
k=—00

becauseg(x, p, r) is periodic in space. The time evolution of the Fourier coefficients is
then

ad . a

%8k Likp gk+jk£ =0 (62)

ot ap
where

Jk@) = / gx(p,t)pdp.

Equation (62) has a steady solution of the form

afo
g(p) = Chg
P

for arbitrary ¢,. This solution corresponds to (60) and is now steady because we are in a
frame moving with speeé-« jo.

We shall study the stability of the spatially homogeneous solution by examining the
initial value problem for (62). In our analysis we shall consigigfp) and g, (p, 0) to be
functions that are analytic in a strip of widthof the real line.

Our approach to the initial value problem will closely follow Landau’s treatment for the
Vlasov—Poisson equation (see, for example, [16] or [17]). We start by taking the Laplace
transform of (62) to obtain

1a(p.0)  pJi(s) dfo(p)
ik p—pn p—p Op

Gi(s) = (63)

whereu =is/k and

Gi(p,s) = / e gk(p, 1)t and Ji(s) = / Grp dp.
0
We multiply by p, integrate both sides of the above equation, and solvd,fdéo obtain

l/*"" g(p,0)pdp

ik J oo pP— M T(w)

Jo = D —_ . (64)
v [F Sy, KPW

o P —Hadp
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Thus, we can write

1 pTWWﬁ]
G(S)=.[ (p.0) — - -
Tk —w 57T D ap
It then follows thatg, (¢) is determined by taking the inverse Laplace transform; hence,
1 y+ico
a) = — / G (s)€" ds (65)
2ri y—ioo

wherey is chosen to be to the right of all the poles@f(s) in the complexs-plane.

In the following we shall take&k > 0O; the casek < O is treated similarly and yields
the same stability criteria. Formallg,(s) is defined only for R&) > y. It is useful to
analytically continueGy(s) to the left of Rés) = y. Both 7(x) and D(w) are analytic
functions of u, provided that Inu) # 0 (Re(s) # 0). ThereforeG,(s) is meromorphic
for Re(s) > 0. We must now analytically continu@, (s) into the left-half of the complex
s-plane which is the same as analytically continuing into the lower-half of the complex
w-plane. This will be done using the method developed by Landau in whigh) and
D(u) are treated separately. When(im > 0, the integrals that appear () andD(u)
are performed along the real axis. Whe# < Im(u) < 0, we deform the contour as shown
in figure 1. Thus, we redefin® and7 as

2 9
D) =1+ / P~y dp (66)
¢, P— M1 ap
and
,0
T = / Pac(p.0) 4 (67)
¢ P—HM

where(C; denotes the Landau contour. As a result of this proce@uye) and 7 (u) are
now analytic functions for Irfu) > —§. This means we have analytically continu@g(s)
for Re(s) > —é&k. In the region Inju) > —§ (Re(s) > —3k) the only singularities fot5 (s)
are poles which occur at= —ikp and at the roots oD(u) = 0.

Im(p)

Re(p)

Figure 1. The Landau contour for Iix) < O.
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Next, we deform the contour given in (65) into the left-half plane foe= —ké and
pick up contributions from the poles @f,. We now have

N 1 —kd+ioco
() =) an+ 7/ Gi(s)€" ds

,,;) 271 J gs—ico
wherea,, are the residues of the polessat s,, of G,. We will show below that7 (1)
has a simple zero at = 0 andD(u) has a double zero at = 0. ThusG; will have a
simple pole atr = 0. Furthermore, we shall also considgr so that the other zeros @
are simple. Letu,,, m = 1 to M denote the roots oD(x) = 0 such that Inju) > —kS§.
The relevant poles of;; are then located in the complexplane at

s = —ikp s=0 and s = —ikpiy, m=1toM. (68)

By computing the residues of the poles, we find

M
ge(t) = Ao+ Are" + Z Bje kit 4
j=1
where
27'(0) dfo
B ap 69
0 D//(O) ap ( )
pT(p) dfo
= - ap 70
1= g(p,0) D) p o)
p T(u)a
' = : ] ﬁ (71)
p — i D'(wj) ap
1 —k8+ioco
=5 e’ ds. 29
¢ 2ri /_ka—ioo Gr(neds (72)

Ao is time independent and corresponds to steady solutions found previously !
represents travelling wave solutions which propagate with speddhe next termp; e~*17,
represents solutions that can grow or decay. This mode will decay(jf,im< 0 and grow
if Im(u;) > 0. Itis evident thatC will decay as least as fast as‘&. Therefore, it follows
that if all the zeros ofD(w) are in the lower-half plane, the spatially homogeneous solution,
fo(p), is linearly stable. On the other hand, if there is at least one zero in the upper-half
plane, fo(p) is linearly unstable. Furthermore, since the modes grow lik&“e the initial
value problem for (61) is ill-posed. The situation whgnis linearly unstable indicates that
the spatially uniform solution is unstable and a small perturbation can grow into a solution
which is not spatially uniform. It is not difficult to see that in the unstable case the turbulent
kinetic energy will also grow. The turbulent kinetic energy is independent of the gauge and
observable. This means that the instability is physical (within the confines of the model)
and not just a result of our choice of gauge.

4.1. Stability results

Here we will examine the stability of the spatially homogeneous solugtetn). We shall
prove that if it has only a single maximum it will then be linearly stable. We also find that
if fo(p) has more than one maximum, the initial value problem can be ill-posed and we
present a simple criterion to determine stability.

Our results are obtained by recognizifyu) to be an upper-analytic functiorD(is
analytic for Inu > 0). We then search for zeros in the upper-half planégf) using
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the argument principle. If we find a zero ©f(x) with Imu > 0, fo(p) is not stable and
the initial value problem is ill-posed. P(u) has no zero with Inp > 0 fo(p) is linearly
stable.

We begin by considering a closed curve, dendafedn the upper-half of the complex
u-plane. SinceD is upper-analytic, the argument principle states

1 10D

whereM is the number of zeros enclosed By M is also the winding number, with respect
to the origin, of the closed cur&, which is the image of underD. Since it is true that

D(uw) =1 asfu| — oo

it follows that the total number of zeros @ () in the upper-half plane is given by the
number of times the image of the real axis wraps around the originC behceforth denote
the real axis of the complep-plane; the winding number of the image ©funderD is
then

_ 1 [*Dup)

B 27 —00 D(MR)
The image of the real axis und@ris given by

Cp =D(C) = {Dr(ug) +iD;(ug)| — 00 < ug < 00}.
In other words(p is a closed curve in the compléX-plane. By examining the qualitative
behaviour ofCp» we shall compute its winding number.
We start by evaluatin@(u) on the real axis of the complex-plane. We find

] 00 2 9 ) 9
lim D(u) = 1+][ P 0 g i
0% —o0 P — MR P ap

= Dr(ur) +iDr(ur) (74)

where{ denotes the principal value integral (see, for example, [17]).
Let us now examine the behaviour f nearu = 0. It is clear thatD;(0) = 0 and
D, (0) =0, while

d/LR.

© 9
DR<0>=1+/ pap

oo Op
and is found to be zero using integration by parts and (59). It also followsthed) = 0.
ThereforeD(0) = D'(0) = 0, implying thatu = 0 is a zero ofD of at least multiplicity
two. It also follows that

D"(0) = 2][ 19/ dp + 2in8—f°(0). (75)
—o0 P Op ap
If 9, f0(0) # 0 then Im[D”(0)] # O indicating that the multiplicity ofu = 0 is exactly
two. On the other hand, i, fo(0) = 0 then Im[P”(0)] = 0 and ReP”(0)] may or may
not be zero. We now comput®”(0) when Im[D”(0)] = 0 since it will be of use later;

equation (75) can then be written as

*® 19
D'(0) =2 / L9 fotp) = fo0)]dp.
—oo P OD

]

If we integrate by parts we find that

© 1
D'(0) = —2 / L0 = fpldp. (76)
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The two aforementioned integrals are defined without using the principal value since
9, fo(0) = 0. A similar approach shows th&t(0) = 0.

SinceD has a double zero fqr = 0, it follows thatCp has a cusp atDg, D;) = (0, 0).
The angle the cusp makes with the lifle = 0, D¢ > 0 is denoted). and is given by

tand, = D} (0)/Dy(0). (77)
We next examine the behaviour Bf(wg) as|ug| — oo. Our first observation is that

2j 3m _
Dr(ue) =1+ L+ T2 4 0u®)  aslul > o0 (78)
UR Mr
wherem, = [ p?fo(p)dp > 0. Equation (78) follows from arguments similar to those
found in Nicholson [17]. It is clear from (74) that lim),— o D;(tr) = 0; furthermore, as
ur — +00, D;(ug) < 0 and asup — —oo, D;(ur) > 0. ThusCp must cross the line

D; =0 atDr = 1. We shall next consider two special cases.

Case 1 fo(p) has a single maximum agiy. Here we show that this solution is linearly
stable. Whenf,(p) has a single maximuni)”(0) # 0 andD(0) = 0 with multiplicity two.
This follows from (75), for if pg # 0 then Im(D”(0)) # 0. If pg = 0 it follows from (76)
thatD”(0) < 0. We have shown above (see (78)) that the cd@kyerosses the lin®; =0

at Dg = 1. Sinced, fo(p) only vanishes for finitep at p = po (IM[D(po)] = 0), Cp can
only cross the lineD; = 0 once more at the following point:

00 2
9
DR(po>=1+f LA Ly
—o0 P — Do Op

> [ 1 8fo
po/_oop—po o
3 2/°° [folpo) = fo(p)]
0 —00 (P - pO)2

where the equality occurs whemy, = 0. It follows then thatCp crosses the lin; = 0
in two places,Dg = Dr(po) and 1. This indicates that fgpg # O the curveCp wraps
around the origin once and thug = 1. If po = 0 one can then show. = 7, indicating
that againM = 1. Hence,D(u) has one zero with litn) > 0. This zero, however, is
the double zero at = 0. The winding number for this zero is 1 instead of 2 becdljse
passes through the origin. TherefdP&ur) has no zeros with Iifu) > 0 when fo(p) has a
single maximum, indicating the spatially homogeneous solution is linearly stable.

p <0 (79)

Case 2 fo(p) has two maxima ap; and p, with fo(p1) > fo(p2) and a single minimum
at po. Here we show the condition for instability is
/ [fo(po) — foz(l?)] dp <0 (80)
—00 (p - PO)
and
/ [fo(p2) — foz(P)] dp > 0, (81)
—00 (p - Pz)

If these conditions are not satisfied thg@nis linearly stable. We begin by noting thaf fo
will vanish at po, p1, and p; therefore,Cp will cross the lineD; = 0 at Dz = Dg(po),
Dr(p1), Dr(p2), and 1. From (79) we find

Dg(pi) = —p?/oo M dp fori =0,1 and 2 (82)
—00 (p - pi)
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We first takep, # 0, p1 < p» with Dr(p2) # 0 andDr(po) # 0. Let us conside€p
asuy is increased from-oo. Cp starts on the real axis &, = 1 and will then cross the
axis atDg(p1). Since fo(p1) is the maximum offy and p; # 0, we haveDg(p1) < O.
As ug is increased it will cross the real axis Bk (po). If Dr(po) > 0 thenCp will have
wrapped around the origin once. As increase<p will cross the lineD; = 0 (the real
axis) atDg(p2) and then finish atDg, D;) = (1, 0) asugr — oo. Therefore, if

Dr(p2) <0 and Dr(po) >0 (83)

Cp will wrap around the origin twice and the winding numbgf, is 2. If, on the other hand,
(83) is not satisfied, thelp can only wrap around the origin once and the winding number
is 1. As the winding number changes from 1 to 2, a zer@ahoves from the lower-half
plane to the upper-half plane indicating a zerolxfx) with Im(u) > 0. Therefore, when
(83) is satisfied, the spatially homogeneous solution is unstable. A similar argument follows
when p; > p,; (83) is seen to be a condition for instability wheneyer£ 0, D (p2) # 0,
and Dr(po) # 0.

Next, we takep; # 0, p1 < p2, Dr(po) = 0 (po = 0), andDg(p2) # 0. As before,
Cp starts on the real axis @z = 1 and crosses the axis Biz(p1) < 0. It next crosses the
line D; = 0 at the origin, sinc®x(po) = 0, and then again 8Pz (p,) # 0. It follows from
(74) thatD}(po) = 0; this means tha. = 0 if D"(pg) > 0 and6. = = if D"(pg) < 0.
Thus, we see that if

Dr(p2) <0 and D"(po) > 0 (84)

Cp wraps around the origin twice and = 2. If (84) is not satisfied thed = 1, and
therefore (84) is the condition for instability. A similar argument holdsfor> p,; hence,
the condition for instability is given by (84) whenevgi # 0, po = 0 andDr(p2) # O.
An argument comparable to the one above shows the condition for instability is given by

Dr(po) >0 and D"(p2) <0 (85)

wheneverp; # 0, p, = 0 andDg(po) # 0.

If we compare the expressions f@rz(p;) and Dy (0) ((82) and (76)), we find the
condition for instability in the case of (83), (84), and (85) is given by (80) and (81).
Finally, we mention that it can be shown, using similar methods to those above, that (80)
and (81) is also the condition for instability when = 0. Figure 2 shows an example of
a fo(p) which has two peaks. The correspondityg is displayed in figure 3 and clearly
shows that’p wraps around the origin twice indicating that(p) is unstable. The physical
meaning of the instability will be explained in section 6.

5. Water bags

We can gain some appreciation of the nonlinear dynamics of the kinetic equation by applying
the water-bag model of DePackh [18]. We let the distribution function be piecewise constant
in some domain in phase space and find governing equations for the boundaries.

We look for a weak solution of (55) of the form

M
f&p0) =) alH(p - p(x,0) = H(p = p{(x,0)] (86)
k=1

where H (p) is the Heaviside function, namely
1 p>0

H(p) = 0 2 <0
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Figure 3. The curveCp for the distribution function shown on figure 2. It wraps around the
origin twice which indicates an instability.

anda, > 0. We considerp,f(x, t) to be single-valued functions af and without loss of
generality we take; > p, . In this case, we have

M
n(x,0) =Y alpl (e, 1) = p (. D] (87)

k=1
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The choice of ther, and thep,f is constrained since(x, 0) = 1. We also have

M
JOen =3 al(pH?xn — (P, 1. (88)

k=1
If we substitute (86) into (55), we find

M + + .

ap . Op aj
E axd(p — py) |:8tk +K(P—])7ak kP
— X X

| 9Pk N2 aj
—ard(p — py) I:S: +K(p— ])87)? - Kpaxi| =0.

As pointed out by DePackh, this equation must vanish term-by-term; thus we find the system
of 2M equations in conservation law form:

apE a .
a—tk+/<a[%(p,f)2—p,f]]=o. (89)

It follows from (89) that ifn(x, 0) = 1 thenn(x,t) =1 for ¢t > 0. It is also convenient to
compute the turbulent kinetic energy; in the present situation, (52) simplifies to

K2
o ="5 [0 =p7rdp. (90)
The simplest case i& = 1. It follows, in view of the constraint(x, r) = 1, that
pix.t) = pr(x,n)=A (91)

where A is a constant independent ofandz. Therefore, we have

Jje 1) = 3(py (e, 1) + py (x, 1))
and
dj 9]
kil =0 92
at * ax (92)
which we recognize as Burgers’ equation. This indicates ﬁjfaCan form shocks in finite
time.
The next case we consider 8 = 2. We letP = (p;, p1, p,, p5)" and then write
(89) as

aP aP
5 TRAS =0 (93)
where
- _ —\2 -+ - = -+
py —J—ai(py) —aipy Py azpy Py —azpy Py
A a1py py pi—Jj—ap))?  apip, —azpy py
aipy p, —a1py p; Py — Jj +azxp;)? —azp; py
aipy py —a1py p; azpy p3 ps —j —ax(p3)?

The hyperbolicity of this system is determined by the eigenvalued.df the eigenvalues

are real, the system is hyperbolic; if the eigenvalues are complex the system is elliptic and
the initial value problem is ill-posed. In the water-bag model, for a fixethe distribution
function is supported over the intervals = [p;, pf] and I, = [p,, p;]. Below we

shall prove that if the intervals overlap, the eigenvalues4oére real, and that if there

is a sufficiently large distance between the centerg;adnd I, the eigenvalues ofl are
complex.
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To prove this claim it is useful to use the following variables:
P, =p; tc—e ps =pi +c+e and ar=(1-y)/A (94)

where 0< y < 1 andA = pf — p7. The value ofa; is found from (87). The distance
between the centres df and I, is |c|. The intervals will overlap whefc| < e+ A|. A
calculation shows that (93) is hyperbolic when

> <C2 (95)

where

,  (A+2e)?—4dey(A+e)
o 4y(1—y) '

Therefore we see that it| is sufficiently large (93) is elliptic. On the other hand, it is
possible to show that

le+ Al < Cer

implying that if the intervals overlap (93) is hyperbolic. When the intervals overlap the
distribution function has a ‘single maximum’. Furthermore, the distribution function must
have ‘two maxima’ in the ill-posed case. These results are consistent with the results of
section 5.

Consider (93), with periodic boundary conditions on the intervak [7], and the
following initial data:

pE(x,0) = +0.2
pz_(x, 0) =0.9 +e& Sin(x) (96)
pF(x,0) = 1.0+ ¢5sin(x)

where we takenr; = 2 anda, = 2. We see that for this choice of initial data, with

e =0, f(x, p,0) is a spatially uniform distribution solution of (93) with ‘two maxima’'.
Furthermore, (95) reveals this solution to be unstable. The time evolution of a small
perturbation of this solution is studied by numerically solving (93), the initial data is given
by (96) withe = 0.05.

Equation (93), with initial data given by (96), is ill-posed and cannot be solved
numerically without some care. We chose to solve (89) by centre differencing in space.
To advance in time, a fourth order Runge—Kutta—Merson scheme was used. We filter after
each time step using the filter developed by Krasny [19].

The initial conditions are plotted in figure 4. Figure 5 shows the distribution function
at+ = 4.25 which is close to the last time we can solve (93). It appears a singularity is
forming.

To analyse the singularity, we examine the Fourier Coefficientp?’t{ﬁc, t). Itis well
known that if

fO D)~ [x = (xo+ip@)]* 7t
the Fourier coefficients decay as

flhk) ~ ek Ve r®k, (97)
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=31 -1.6 2.0 1.6 3.1

Figure 4. The initial values used for the water-bag problefia(x, p, 0) is given by (96) with
a; = 2 andaz = 2. The lines are, from bottom to top, respectivehy,, pf, p, ., and p;. If
a portion of the phase space, p) is not between the lineg; (x, 0) and pl+(x, 0), or between
the linesp; (x, 0) and p;(x, 0), then f(x, p, 0) is zero.

1.5 T T T [ T T T T [ T T T T [ T T T T

"=3.1 -1.6 2.0 1.6 3.1

Figure 5. The water-bag problem at= 4.25 for the initial conditions shown in figure 4.

There are several methods to estimatand p in the literature; see, for example, [19-21].
Here we use a variant of these methods which is explained below. From (97) it follows
that

A

f ¢
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which can be written as

Yk = —& — Pk
where
_log(fy/fen L k-t
= log(k/t) T logk/0)

To estimatex and p, we plot y, againstz, for a fixed ¢. The slope gives and they
intercept providesr. We pick¢ = 3 and measure the slope for varidusWe find that our
estimates ofx and p depend slightly ork; for 5 < k < 15, « and p vary approximately
5%. The average values afand p for k € [5, 15] will be used as our estimate.

It is found, for the above computation, thatand p are approximately the same (within
5%) for each component aP. p vanishes at = ¢, ~ 4.27 and over the time interval
[3.5,1.] p decreases linearly. On the other handis approximately constant having the
value

a=34+004

A plot of log,, | p5 (k)| verses logyk is shown in figure 7 along with the line whose slope
is —1.5. This supports the estimate that= 1.5. This value ofx indicates a square root
singularity. Att = ¢., the profiles ofpijE have the following form:

p¥ ~sgrx)y/Ixl - and  py ~ lxl.

Figure 6 shows the turbulent kinetic energy intensifying at the point the solution becomes
singular.

2.090 T T T [ T T T T [ T T T T [ T T T T

2.075

?.060

2.045

Figure 6. The turbulent kinetic energy), as a function ofc for various times using the water-
bag model. The times shown are= 0.85, 1.70, 2.55, 3.40, and 4.25. Time increases upward
and subsequent snapshots are shifted upwards by 0.003 for clarity.
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logy 3 (k)| i

-7.9

-10.5

-14.9 t

logyo k

Figure 7. Log-log plot of the Fourier coefficients Qf; at+ = 4.25 for different values oV,
the number of points used in the discretization. The curves from left to right Nawve256,
512, and 1024. The slope of the straight line-i%.5.

Next, we consider the following initial data:
pi(x,0) = £0.2
py(x,0) = £0.1+ ¢ sin(x)
with a; = 2, a, = 1, ande = 0.05. Equation (93) is well-posed with this initial data;
generically we expect this solution to form shocks in finite time in a similar fashion to
Burgers’ equation. We present numerical solutions for (93) with the initial data given by

(98) in figures 8 and 9. Figure 8 shows the initial condition and figure 9 shows the solution
att = 37, just before it forms a shock.

(98)

Remark. There has been recent work on weak solutions of the Vlasov—Poisson equation
which have some similarities to this work. Majda [22] has numerically studied weak
solutions of the Vlasov-Poisson equation of the form

-1

dz
82 () wherez(a, 1) = (x(a, 1), v(a, 1)).

f(a, 1) = ar

This is called an electron sheet solution. There is an analytical solution of this form due to
Dziurzynski [23] which has a finite time singularity. After the singular time, the numerical
work of Majda shows that the analytical solution is no longer valid; the electron sheet
ceases to be the graph of the single-valued function and the electric field loses smoothness
past the singular time. This work has been extended and generalized by dMatg4].

They present explicit examples with charge concentration and non-unique weak solutions.
They also show that the various regularizations of the Vlasov—Poisson give different weak
solutions. Zheng and Majda [25] have provided a natural definition for a weak solution
of the Vlasov—Poisson equation. They have proved that the Vlasov—Poisson equation has
globally weak solutions with measures as initial data.
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Figure 8. The initial value conditions for the water-bag problem given by equation (98) with
a1 = 2 andap = 1. Starting at the bottom the lines apg, p,, p5, andp; .

?.30 T T T 1 T T T T [ T T T T [ T T T T

-0.15
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Figure 9. Same as figure 8 except= 37.

The water-bag solutions are also weak solutions of a kinetic equation. The numerical
evidence shows that they also form singularities in finite time. It may be possible for one
to use the ideas developed in [22, 24, 25] to construct weak solutions past the singular time.
It would also be interesting to examine what effect the type of regularization has on the
nature of weak solutions to our kinetic equation.
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6. Discussion

We have developed a kinetic equation which, we have argued, describes the probability
distribution, f, of the impulse density in a turbulent fluid. It was established that any
spatially homogeneous distribution functiof &€ f(p)) is a solution of the kinetic equation.

We interpret this solution to represent a fluid in a state of homogeneous turbulence.

Batchelor [26] (see p 185) points out that experimental observations suggest that the
high wave-number components of turbulence are unevenly distributed in space. This would
indicate that the spatially uniform turbulent state in some sense is unstable. We have found
several situations where the spatially uniform solution evolves into a spatially nonuniform
solution.

In one case it was found that when the distribution function had two maxima and
one minimum it was possible for the spatially uniform solution to be linearly unstable.
Numerical solutions of the water-bag model indicate that cusp-like singularities will form
in finite time. On the other hand, even when the spatially homogeneous solution is linearly
stable we observe shock-like singularity. Therefore, under rather a wide variety of initial
conditions, the spatially homogeneous solution will evolve so that the turbulence is no
longer spatially uniform.

For example, consider an initially quiescent fluid with a fine grid placed into it. We
shall take the grid to be parallel to the-plane and moving in the positive-direction,
which we will denote as the stream-wise direction. On the far-right-hand side of the grid,
the fluid is at rest; as the grid moves through the liquid it will disturb the liquid behind it.
We expect the region of fluid immediately behind the grid to be somewhat homogeneously
turbulent [26].

It will require a force in thex-direction to move the grid; therefore, we expect the grid
to cause the appearance of a high impulse region in the stream-wise direction. It is possible
that the distribution of impulse in the coarsening volume will be similar to that shown in
figure 2 which was seen to be unstable. Consequently, the apparent spottiness of the spatial
distribution of the turbulent energy could be the result of this instability.

To understand the small scales of physical turbulence one must include viscosity.
Therefore, it would be interesting to include viscosity in the kinetic formulation. As of
yet it is not clear exactly how one would go about this.

7. Summary

In this paper we have shown that the impulse equation has a gauge freedom which allows
it to be generalized. We have demonstrated that the divergence-free projection operator
can be written in terms of a continuous distribution of vortex dipoles which have a finite
self-induced velocity. This splits the projection operator into a local part and a nonlocal part.

It is then shown that for a particular choice of gauge, the force density can be written
in terms of the nonlocal part of the divergence-free projection. Based on this observation,
a Vlasov description of the impulse form of the Euler equation is proposed. This kinetic
equation is seen to have the Euler equation as a solution for special initial data. It is proposed
that for other initial data, the Vlasov equation provides a coarse-grained description of an
inviscid turbulent flow.

It is also shown that the Vlasov equation has nontrivial solutions in one space dimension.
Furthermore, we demonstrate that spatially homogeneous distribution functions with single
maxima are linearly stable, and that those with two maxima can be unstable. The time
evolution of the unstable solutions are studied and we observe that singularities form. In
our case these singularities are associated with localization of the turbulent kinetic energy.
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