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Abstract. A form of the Euler equation using an impulse formulation is presented. This form
is based on a representation of the divergence-free projection operator in terms of a continuous
distribution of vortex dipoles which have a finite self-induced velocity. A generalization of the
Euler equation is presented as a kinetic equation similar to the Vlasov–Poisson equation. An
interesting feature of this generalization of the Euler equation is that it has nontrivial solutions
in one space dimension. The stability of the spatially homogeneous solution is also studied.
Distribution functions with a single maximum are found to be linearly stable, whereas those
with two maxima can be unstable and the initial value problem ill-posed. Weak solutions of
this kinetic equation are found using a water-bag model and a simple model of inviscid 1D
turbulence is developed.

AMS classification scheme numbers: 76C99, 76E99

1. Introduction

Recently, there has been interest in the Euler equation written in terms of a momentum
variable,p, which we shall call the impulse density. In this variable the Euler equation can
be written as

∂p

∂t
+ u · ∇p = −(∇u)T p (1)

where the liquid velocity,u, is the divergence-free projection of the impulse. The Euler
equation written in this form has been studied by a number of investigators. Sagdeevet al
[1] and Tur and Yanovsky [4] derive this equation based mainly on kinematic considerations.
They also use this equation to find new topological invariants for the Euler equation.
Oseledets[3] and Kuz’min [2] both show that this equation is a Hamiltonian system with
respect to a certain Lie–Poisson bracket.

The above equation was used, in two space dimensions, by Krasny [8] in a vortex-
dipole sheet model of a wake. He solved this equation using a Lagrangian numerical
scheme analogous to the vortex-blob method. Buttke [5] (see also Buttke and Chorin [6])
devised a similar Lagrangian numerical scheme. This scheme was implemented in three
space dimensions and is discretely Hamiltonian. Buttke also provides numerical evidence
that the method converges.

Maddocks and Pego [7] provide a new unconstrained Hamiltonian form of the Euler
equation. In this derivation they recover the aforementioned form of the impulse equation
as well as an alternative form which appears to have advantages in situations with a
free boundary. Chorin and Buttke [6] call equation (1) the Euler equation written in
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magnetization variables. Chorin [9] has used this ‘magnet’ representation of the Euler
equation to study turbulent states and their connection with phase transitions.

The outline of this paper is as follows. In section 2, a derivation of a more general
impulse equation which reflects a gauge freedom of (1) is presented. It is then demonstrated
that the divergence-free projection operator can be split into two parts: a local and a nonlocal
part. The nonlocal part is determined from a continuous distribution of vortex dipoles. The
local part is seen to be the self-induced velocity of a vortex dipole. It is crucial that the vortex
dipoles have a self-induced velocity if the velocity field produced is to be divergence-free.

Next, it is shown by an appropriate choice of gauge, that force density can be written
in terms of derivatives of the nonlocal field only. Based on this observation a kinetic
description of the Euler equation is proposed, where the impulse is replaced with a
distribution function. If the distribution function converges to a delta function, our kinetic
equation reduces to the Euler equation. Therefore we see that our kinetic equation is
a generalization of the Euler equation and contains the Euler equation as a solution for
special initial data. This kinetic equation may also contain some physical meaning for other
initial data; for example, it could be interpreted as a coarse-grained description of a highly
turbulent flow of an inviscid liquid. The distribution function then gives the statistics of the
impulse within the averaging volume.

An interesting feature of this kinetic equation is that it has nontrivial solutions in one
space dimension when the distribution function is not simply a Dirac mass. If our equation is
indeed a course-grained description of inviscid turbulence, some 1D turbulence models may
be studied. We observe that a spatially homogeneous distribution function is a solution of
our kinetic equation and examine its stability in section 4. It is found that if the distribution
function has a single maximum, the solution is linearly stable. On the other hand, if the
distribution function has two maxima, conditions necessary for the onset of instability are
found. It is also shown that if the problem is unstable, the initial value problem is ill-posed.
It is conjectured that this ill-posedness results in the formation of singularities which may be
connected to intermittency. In section 5 we construct solutions to the 1D Vlasov equation
using the water-bag model of DePackh [18] and develop a very simple model of 1D inviscid
turbulence. An interesting feature of this model is the formation of finite time singularities.
It is important to note that these singularities are unrelated to finite time singularities of the
Euler equation.

2. Impulse formulation

We begin by writing the Euler equation as
∂ω

∂t
− ∇ × (u × ω) = 0 (2)

whereu is the velocity of the liquid andω = ∇ × u is the vorticity. Next, we introduce a
vector field,p, which satisfies

∇ × p = ω. (3)

If we substitute (3) into (2) we find that the time evolution ofp is given by
∂p

∂t
− u × (∇ × p) = ∇ψ (4)

for some function,ψ, which can be thought of as a gauge. We shall callp the impulse. If
we pick ψ = −u · p + λ, we can write (4) as

∂p

∂t
+ u · ∇p = −(∇u)T p + ∇λ (5)
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which in component form is

∂pα

∂t
+ uβ

∂pα

∂xβ

= −pβ

∂uβ

∂xα

+ ∂λ

∂xα

whereα andβ denote the Cartesian components with summation convention over repeated
Greek subscripts. Equation (5), withλ = 0, is the impulse form of the Euler equation
given in the introduction. In a later section we will derive another version of the impulse
equation.

2.1. Relation between velocity and impulse

Since∇ × p = ∇ × u, it follows that

p = u + ∇φ (6)

whereφ satisfies the relation

1φ = ∇ · p (7)

and1 denotes the Laplacian. Equation (7) follows from (6) and also because the velocity
field of the liquid is divergence-free (∇ · u = 0). We solve (6) and (7) foru in terms ofp
to obtain

u = Bp (8)

whereB is the projection operator

B = I − ∇1−1∇. (9)

Bp is the projection ofp onto divergence-free vector fields.

2.2. Physical meaning of impulse

Consider a fluid of infinite extent with a vorticity distribution supported on�. It is known
that the total momentum of the liquid is not well defined since the velocity field decays like
r−3. This gives rise to a conditionally convergent integral whose value depends on how it
is evaluated. The physically important quantity is instead the impulse. It is the impulse that
has the property of acting like the momentum of the fluid (see [10], p 518). This is defined
in three space dimensions as

I = 1
2

∫
�

x × ω dx

Sinceω = ∇ × p it then follows, after integration by parts, that

I =
∫

�

p dx.

Therefore,p is the impulse density. We have chosenp to have the same support asω
(which can always be done).
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2.3. Divergence-free projection

We first make the following definitions:

κ = d − 1

d
(10)

B(r) = − 1

cd |r|d
(

I − d
rrT

|r|2
)

(11)

whered = 2 or 3 is the space dimension,c2 = 2π , and c3 = 4π . We also define the
principal value integral to be

−
∫

= lim
ε→0

∫
|x−y|>ε

.

Theorem. The divergence-free projection operator,B, in Rd , d = 2 or 3 can be written
as

Bp(x, t) = κp(x, t) + w(x, t) (12)

where

w(x, t) = −
∫

B(x − y)p(y, t) dy. (13)

This shows that the divergence-free projection can be split into a local part,κp, and a
nonlocal part,w. This theorem will be proved below.

The divergence-free projection written in the form given by (12) has an interesting
interpretation. To see this we first consider

u = B(r)p. (14)

This is the velocity field given by a source–sink doublet located at the pointr = 0 for an
inviscid irrotational fluid with a dipole moment ofp (see [10], p 89). Letuv be the fluid
velocity produced by a vortex ring of radiusa located atr = 0. We let the impulse of the
vortex ring bep (p will be perpendicular to the face of the ring). One then finds (see [10],
p 518 or [12])

uv(r) → B(r)p as
|r|
a

→ ∞.

Therefore (14) is the velocity field produced by an infinitesimally small vortex ring with
impulsep, called a vortex dipole by Chefranov [13]. We shall henceforth adopt this name. It
is now evident that a divergence-free velocity field can be written as a continuous distribution
of vortex dipoles which have a self-induced velocity ofκp.

Proof of theorem. We begin the proof of the theorem by writing the solution of (7) as

φ(x) =
∫

Gd(x − y)
∂pβ

∂yβ

dy (15)

whereGd is the Green’s function for the Laplacian inRd , d = 2 or 3. These are

G2(r) = 1

2π
log |r| (16)

and

G3(r) = − 1

4π |r| . (17)
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Since∂αGd has an integrable singularity we can integrate by parts and write

φ(x) = −
∫

pβ(y)
∂

∂yβ

Gd(x − y) dy.

Hence
∂φ

∂xα

= − ∂

∂xα

∫
pβ(y)

∂

∂yβ

Gd(x − y) dy. (18)

It is necessary to bring the∂α inside the integral. This cannot be done for (18) in the form
given as∂2

αβGd has a non-integrable singularity. To remedy this we first make the following
definition:

ba(r) =
{

1 r < a

0 r > a
(19)

and note that∫
ba(|x − y|) ∂

∂yβ

Gd(x − y) dy = 0. (20)

Equations (18) and (20) are combined to give

∂φ

∂xα

= − ∂

∂xα

∫
[pβ(y) − ba(|x − y|)pβ(x)]

∂

∂yβ

Gd(x − y) dy.

We can now bring the∂α inside the integral and write the above equation as

∂αφ(x) = T (1)
α + T (2)

α (21)

where

T (1)
α =

∫
[pβ(y) − ba(|x − y|)pβ(x)]

∂2

∂yα∂yβ

Gd(x − y) dy

and

T (2)
α = −

∫
∂

∂xα

[pβ(y) − ba(|x − y|)pβ(x)]
∂

∂yβ

Gd(x − y) dy

= ∂pβ(x)

∂xα

∫
ba(|x − y|) ∂

∂yβ

Gd(x − y) dy

+pβ(x)

∫
∂

∂xα

ba(|x − y|) ∂

∂yβ

Gd(x − y) dy.

The first term inT (2)
α is zero by (20). For the second term we considerd = 3, letr = y−x,

and use (17) to obtain

T (2)
α = −pβ(x)

4π

∫
rαrβ

r4

d

dr
ba(r) dr (22)

wherer = |r|. It follows from the definition ofba that

d

dr
ba(r) = −δ(r − a)

whereδ is the Dirac delta function; therefore (22) becomes

T (2)
α = pβ(x)

4π

∫
|r|=a

rαrβ

r4
dS = 1

3
pα(x).

A similar calculation shows

T (2)
α = 1

2pα(x)
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for d = 2. Thus, for both cases we can write

T (2)
α = 1

d
pα(x). (23)

Let us now turn our attention toT (1)
α , which can be written as

T (1)
α =

∫
|x−y|6a

[pβ(y) − pβ(x)]
∂2

∂yα∂yβ

Gd(x − y) dy (24)

+
∫

|x−y|>a

pβ(y)
∂2

∂yα∂yβ

Gd(x − y) dy. (25)

Since ∫
ε<|x−y|<a

∂2

∂yα∂yβ

Gd(x − y) dy = 0

it follows that

T (1)
α = Q +

∫
|x−y|>ε

pβ(y)
∂2

∂yα∂yβ

Gd(x − y) dy

where

Q =
∫

|x−y|6ε

[pβ(y) − pβ(x)]
∂2

∂yα∂yβ

Gd(x − y) dy.

We expandpβ(y) in a Taylor series to obtain

Q =
∫

|r|<ε

[
∂pβ(x)

∂xµ

rµ + 1

2

∂2pβ(x)

∂xµ∂xν

rµrν + O(|r|3)
]

∂2

∂yα∂yβ

G(r) dr.

The linear terms of the Taylor expansion vanish upon integration and we find

Q = c1ε
2 + O(ε3) (26)

wherec1 depends on the second derivatives ofp at x. Next, we letε → 0 to obtain

∂φ(x)

∂xα

= 1

d
pα(x) + −

∫
pβ(y)

∂2

∂yα∂yβ

Gd(x − y) dy. (27)

Substitution of (27) into (6) gives (12).

Remark. Oseledets [3] and Kuz’min [2] have also introduced representations of the
velocity field in terms of a continuous distribution of vortex dipoles. They both have
expressions similar to (12), namely

Bp = µp +
∫

B(x − y)p(y) dy (28)

where Oseledets takesµ = 0 and Kuz’min takesµ = 1. The difficulty with both of these
expressions is thatB(r) has a non-integrable singularity atr = 0, which means (28) is not
well defined. This difficulty is alleviated by (12) because the integral is taken as a principal
value. Furthermore, Oseledets derives the Lagrangian form of the impulse equation by
implicitly taking the principal value integral while keepingµ = 0 to obtain Chefranov’s
[13] interacting vortex dipoles (which have no self-induced velocity). This work shows that
Chefranov’s work cannot be considered a Lagrangian description of the impulse equation.
Even with the self-induced velocity included it is unlikely that Chefranov’s equations will
converge to the impulse equation [14]. Buttke’s approach does not suffer from this difficulty
because he regularizesB.



A Vlasov description of the Euler equation 1367

2.4. Alternative impulse equation

In view of (12) we can write

u(x, t) = κp(x, t) + w(x, t). (29)

If we substitute (29) into (5) and take† λ = (κ/2)|p|2, we obtain
∂p

∂t
+ u · ∇p = −(∇w)T p. (30)

We notice that (30) can be written asṗ = F where the˙ denotes the material derivative and
F = −(∇w)T p. In this form the force acting on a vortex dipole is−(∇w)T p. Therefore
the force on the dipole is determined by its impulse and the gradient of the nonlocal part
of the velocity field. This indicates that there is no self-force on the vortex dipole in this
gauge.

3. Kinetic theory

An interesting feature of the Euler equation given by (30) is the form ofw(x); the velocity
induced atx by the vortex dipoles not located atx. Equation (30) implies that the force on
a dipole arises only from the nonlocal field; this indicates that in the gauge we have chosen
there is no self-force on the dipoles. The velocity field created by the vortex dipoles decays
like r−3 which is a long range interaction. Therefore we see that the motion of the vortex
dipoles is analogous to the motion of electrons which is modelled by the Vlasov–Poisson
equation. With this in mind we will derive a Vlasov-type equation for (30); first, however,
we will write down the Vlasov–Poisson equation to make the analogy more transparent.

Let f (x, v, t) be the probability density of the electron having positionx and velocity
v. The time evolution off (x, v, t) is given by

∂f

∂t
+ v · ∂f

∂x
+ F · ∂f

∂v
= 0. (31)

F = F (x, t) is the force field given by

F = −q∇φ (32)

whereq is the charge of an electron andφ is the electric potential. The electric potential is

φ(x) =
∫

G3(x − y)ρ(y, t) dy (33)

whereρ(x, t) is the expected excess charge density

ρ(x, t) = q

( ∫
f (x, v, t) dv − 1

)
. (34)

For our Vlasov form of the Euler equation we letf (x, p, t) be the probability density
of a fluid particle having positionx and impulsep. The distribution function,f , is then
evolved according to the following equation:

∂f

∂t
+ ∂

∂x
· (uf ) + ∂

∂p
· (F f ) = 0 (35)

where u and F are the velocity and force field, respectively. In this situation, (33) is
analogous to (13) which is now written as

w(x, t) = −
∫

B(x − y)j(y, t) dy (36)

† This choice of gauge was suggested by R E Caflisch.
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where

j(x, t) =
∫

pf (x, p) dp. (37)

Equation (37) is comparable to (34). We can think ofw as a vector potential. In view of
(12) we can write

w = Bj − κj. (38)

With w now defined the velocity and the force fields are given, respectively, by

u = κp + w (39)

and

F = −(∇w)T p (40)

(refer to (29) and (30)). Since

∂

∂x
· u + ∂

∂p
· F = 0

(35) simplifies to

∂f

∂t
+ u · ∂f

∂x
+ F · ∂f

∂p
= 0. (41)

Therefore our Vlasov description for the vortex dipoles consists of (41) along with (37)–(40).
Next, the connection of (41) with (30) will be examined. The ensemble average of the

liquid velocity, u, is defined using

n(x, t)u(x, t) =
∫

uf (x, p, t) dp

where

n(x, t) =
∫

f (x, p, t) dp.

We shall show thatu is divergence-free provided the initial data for the distribution function
satisfies ∫

f (x, p, 0) dp = 1. (42)

To prove this statement we take the zeroth moment of (41), and find

∂n

∂t
+ ∇ · (nu) = 0 (43)

whereu is found to be

nu = B(np). (44)

It follows from (44) and (43) that∂n/∂t = 0. We recall from (42) thatn(x, 0) = 1;
therefore,∇ · u = 0 andn(x, t) = 1. This means we have

j = p (45)

u = Bp. (46)

Hence, the average velocity,u, is divergence-free.
In view of the above we can consider (41) a kinetic description of the Euler equation

provided the initial conditions for the distribution function satisfy (42). Another way to
view (41) is as a generalization of the Euler equation, where the impulse,p(x, t), has been
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replaced by a probability distribution,f (x, p, t). If f (x, p, t) converges toδ(p−p(x, t)),
the impulse atx will be equal top with probability one. In this casep(x, t) should satisfy
the Euler equation. We shall now verify this and look for a weak solution of the form

f (x, p, t) = δ(p − p(x, t)). (47)

It is clear that the initial condition of (47) satisfies (42). Substituting (47) into (41), we find

∇δ(p − p) ·
[
∂p

∂t
+ (κp + w) · ∂p

∂x
+ (∇w)T p

]
= 0.

In order for the above equation to be satisfiedp must satisfy (30). Therefore we see that
a special solution of (41) is the incompressible Euler equation. It is conceivable that with
initial data other than Dirac masses, solutions of (41) will have physical meaning. One
possibility is that (41) may represent a homogenized or coarse-grained description for a
turbulent flow, withf (x, p, t) acting as a probability distribution function. More precisely,
let p(x, t) be the solution of (30) and consider the averaged or smoothed quantity,

〈p(x, t)〉 =
∫

K(x − y)p(y, t) dy (48)

whereK is a positive function with compact support and unit mass. The support ofK

can be considered the coarsening volume. On the other hand, one can define the averaged
quantity,

p(x, t) =
∫

f (x, p, t)p dp (49)

in terms of the distribution function. Iff (x, p, t) represents the distribution of the impulse
density,p, within the coarsening volume centred atx, it then follows that

p(x, t) = 〈p(x, t)〉. (50)

It is our hope that (41) is a qualitative description off (x, p, t). To see this possibility,
let us return to (30) and letp = 〈p〉 + p′ and writew as

w = −
∫

B(x − y)[〈p(y, t)〉 + p′(y, t)] dy.

Since
∫

K(x−y)p′(y, t) dy = 0, it is conceivable for a rapidly fluctuating impulse density
that

w ≈ −
∫

B(x − y)〈p(y, t)〉 dy. (51)

If we let f be the distribution of the impulse density within the averaging volume we have
that 〈p〉 is given by (49); therefore, we findw to be approximately given by (36). Given
this approximation, we can write (30) as

ṗ = −(∇w)T p wherew = −
∫ ∫

B(x − y)pf (y, p, t) dp dy.

The time evolution off (x, p, t) can be found by using a self-consistent field approach (e.g.
Liboff [15], p 157). This gives (41).

Other important averaged quantities, defined in terms of the distribution function, are
the average fluid velocity,

u(x, t) =
∫

uf (x, p, t) dp

and the turbulent kinetic energy,

θ(x, t) = 1
2

∫
|u − u|2f (x, p, t) dp. (52)
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Remark. Brenier [11] has also introduced a kinetic description of the Euler equation,
which is as follows:

∂f

∂t
+ v · ∂f

∂x
+ E · ∂f

∂v
= 0 (53)

whereE = −∇P andP is chosen to satisfy the incompressibility condition∫
f dv = 1.

To determineP , we relax the above condition and let

ρ(x, t) =
∫

f dv.

The zeroth moment of (53) gives, in component form,

∂tρ + ∂α

∫
f vα dv = 0.

We multiply (53) byv and integrate over velocity space to obtain

∂t

∫
f vα dv + ∂β

∫
f vαvβ dv − Eαρ = 0.

From these two relations we find

∂2
t t ρ = ∂α∂β

∫
f vαvβ − ∂α(Eαρ).

We see thatρ = 1 if P satisfies the following:

−∂α∂αP = ∂α∂β

∫
f vαvβ dv. (54)

We can see that (53) is also a generalization of the Euler equation. If we look for a solution
of the formf (x, v, t) = δ(v − v(x, t)), we see thatv will satisfy the usual Euler equation
written in terms of the velocity and pressure. Equation (54) will reduce to the usual pressure
equation.

3.1. One-dimensional solutions

An interesting class of solutions occurs when we consider initial conditions that depend
only on one space variable with the average impulse also in this direction, sayx; therefore,

f (x, p, 0) = f (x, p, 0) and j = (jx, 0, 0)

where the subscriptx denotes thex-component. We find that (41) has a solution of the
form f = f (x, p, t) andj = (jx(x, t), 0, 0), wheref satisfies

∂f

∂t
+ κ(px − jx)

∂f

∂x
− ∂wx

∂x
px

∂f

∂px

= 0.

In this case (38) simplifies tow = −κj. It is convenient to define the averaged quantity

f (x, px, t) =
∫

f (x, px, py, pz, t) dpy dpz

which is found to satisfy the kinetic equation

∂f

∂t
+ u

∂f

∂x
+ F

∂f

∂p
= 0 (55)
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with

u = κ(p − j) and F = κp
∂j

∂x

where

j =
∫

pf dp.

For the sake of convenience we have dropped the bar and thex subscript. The constraint
on the initial conditions becomes∫

f (x, p, 0) dp = 1. (56)

Equation (56) must be satisfied in order to have the incompressibility condition fulfilled. It
is clear from (55) thatf (x, p, t) = f0(p) is a spatially homogeneous solution. It should
also be noted that for these one-dimensional solutionsu = 0.

The incompressibility condition (56) permits an interesting class of solutions. Letf0(p)

satisfy (56), we can then verify that the following is a solution of (55):

f (x, p, t) = f0(p + θ(x, t)) (57)

provided

∂θ

∂t
+ κ(θ − j0)

∂θ

∂x
= 0

wherej0 = ∫
f0(p)p dp andθ(x, 0) is a bounded differentiable function. It is crucial that

f0 satisfy (56) in order for (57) to be a solution of (55). Clearly, the solutions given by
(57) may exist only for finite time since the equation forθ(x, t) is Burgers’ equation in a
frame moving with speed−κj0. This means that∂xθ can become infinite in finite time after
which (57) is no longer a classical solution of (55). It may be possible to construct weak
solutions of (55) after the classical solution breaks down. We shall see below that these
solutions play a role in the linear stability analysis of the spatially uniform solution.

4. Linear analysis

In this section we study the linear stability of a spatially homogeneous solution in
the spatially periodic case for (55). We observe that any time-independent, spatially
homogeneous density function,f0(p), is a solution of (55). We shall considerf0(p) that
vanish as|p| → ∞ and decay fast enough so that∫

p2f0(p) dp < ∞.

The linearized equation forg = f − f0 is

∂g

∂t
+ κ

[
(p − j0)

∂g

∂x
+ p

∂j

∂x

∂f0

∂p

]
= 0 (58)

where

j (x, t) =
∫

g(x, p, t)p dp and j0 =
∫

f0(p)p dp.

In view of (42), we have∫
f0(p) dp = 1 and

∫
g(x, p, 0) dp = 0. (59)
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One can verify that (58) preserves the mass; therefore,∫
g(x, p, t) dp = 0 for t > 0.

It is easily demonstrated that (58) has solutions similar to (57), namely

g(x, p, t) = φ(x, t)
∂f0

∂p
where

∂φ

∂t
− κj0

∂φ

∂x
= 0 (60)

for any φ(x, 0). We recognizeg(x, p, t) as the linearization of (57). It is convenient for
us to use the following independent variables:

t∗ = κt and x∗ = x − j0t.

If we substitute these variables into (58) and drop the asterisks, we have

∂g

∂t
+ p

∂g

∂x
+ p

∂j

∂x

∂f0

∂p
= 0. (61)

We write

g(x, p, t) =
∞∑

k=−∞
gk(p, t)eikx

becauseg(x, p, t) is periodic in space. The time evolution of the Fourier coefficients is
then

∂gk

∂t
+ ikp

(
gk + jk

∂f0

∂p

)
= 0 (62)

where

jk(t) =
∫

gk(p, t)p dp.

Equation (62) has a steady solution of the form

gk(p) = ck

∂f0

∂p

for arbitrary ck. This solution corresponds to (60) and is now steady because we are in a
frame moving with speed−κj0.

We shall study the stability of the spatially homogeneous solution by examining the
initial value problem for (62). In our analysis we shall considerf0(p) andgk(p, 0) to be
functions that are analytic in a strip of widthδ of the real line.

Our approach to the initial value problem will closely follow Landau’s treatment for the
Vlasov–Poisson equation (see, for example, [16] or [17]). We start by taking the Laplace
transform of (62) to obtain

Gk(s) = 1

ik

gk(p, 0)

p − µ
− pJk(s)

p − µ

∂f0(p)

∂p
(63)

whereµ = is/k and

Gk(p, s) =
∫ ∞

0
e−stgk(p, t) dt and Jk(s) =

∫
Gkp dp.

We multiply by p, integrate both sides of the above equation, and solve forJk to obtain

Jk =
1

ik

∫ +∞

−∞

gk(p, 0)p dp

p − µ

1 +
∫ +∞

−∞

p2

p − µ

∂f0

∂p
dp

= T (µ)

ikD(µ)
. (64)
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Thus, we can write

Gk(s) = 1

ik(p − µ)

[
gk(p, 0) − pT (µ)

D(µ)

∂f0

∂p

]
.

It then follows thatgk(t) is determined by taking the inverse Laplace transform; hence,

gk(t) = 1

2π i

∫ γ+i∞

γ−i∞
Gk(s)e

st ds (65)

whereγ is chosen to be to the right of all the poles ofGk(s) in the complexs-plane.
In the following we shall takek > 0; the casek < 0 is treated similarly and yields

the same stability criteria. FormallyGk(s) is defined only for Re(s) > γ . It is useful to
analytically continueGk(s) to the left of Re(s) = γ . Both T (µ) and D(µ) are analytic
functions ofµ, provided that Im(µ) 6= 0 (Re(s) 6= 0). ThereforeGk(s) is meromorphic
for Re(s) > 0. We must now analytically continueGk(s) into the left-half of the complex
s-plane which is the same as analytically continuing into the lower-half of the complex
µ-plane. This will be done using the method developed by Landau in whichT (µ) and
D(µ) are treated separately. When Im(µ) > 0, the integrals that appear inT (µ) andD(µ)

are performed along the real axis. When−δ < Im(µ) 6 0, we deform the contour as shown
in figure 1. Thus, we redefineD andT as

D(µ) = 1 +
∫

CL

p2

p − µ

∂f0

∂p
(p) dp (66)

and

T (µ) =
∫

CL

pgk(p, 0)

p − µ
dp (67)

whereCL denotes the Landau contour. As a result of this procedureD(µ) and T (µ) are
now analytic functions for Im(µ) > −δ. This means we have analytically continuedGk(s)

for Re(s) > −δk. In the region Im(µ) > −δ (Re(s) > −δk) the only singularities forGk(s)

are poles which occur ats = −ikp and at the roots ofD(µ) = 0.

Im(p)

Re(p)

µ

Figure 1. The Landau contour for Im(µ) < 0.
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Next, we deform the contour given in (65) into the left-half plane forγ = −kδ and
pick up contributions from the poles ofGk. We now have

gk(t) =
N∑

m=0

am + 1

2π i

∫ −kδ+i∞

−kδ−i∞
Gk(s)e

st ds

wheream are the residues of the poles ats = sm of Gk. We will show below thatT (µ)

has a simple zero atµ = 0 andD(µ) has a double zero atµ = 0. ThusGk will have a
simple pole ats = 0. Furthermore, we shall also considerf0 so that the other zeros ofD
are simple. Letµm, m = 1 to M denote the roots ofD(µ) = 0 such that Im(µ) > −kδ.
The relevant poles ofGk are then located in the complexs-plane at

s = −ikp s = 0 and s = −ikµm m = 1 to M. (68)

By computing the residues of the poles, we find

gk(t) = A0 + A1e−ikpt +
M∑

j=1

Bj e−ikµj t + C

where

A0 = 2T ′(0)

D′′(0)

∂f0

∂p
(69)

A1 = gk(p, 0) − pT (p)

D(p)

∂f0

∂p
(70)

Bj = p

p − µj

T (µj )

D′(µj )

∂f0

∂p
(71)

C = 1

2π i

∫ −kδ+i∞

−kδ−i∞
Gk(s)e

st ds. (72)

A0 is time independent and corresponds to steady solutions found previously.A1e−ikpt

represents travelling wave solutions which propagate with speedp. The next term,Bj e−ikµj t ,
represents solutions that can grow or decay. This mode will decay if Im(µj ) < 0 and grow
if Im(µj ) > 0. It is evident thatC will decay as least as fast as e−kδt . Therefore, it follows
that if all the zeros ofD(µ) are in the lower-half plane, the spatially homogeneous solution,
f0(p), is linearly stable. On the other hand, if there is at least one zero in the upper-half
plane,f0(p) is linearly unstable. Furthermore, since the modes grow like e−ikµt , the initial
value problem for (61) is ill-posed. The situation whenf0 is linearly unstable indicates that
the spatially uniform solution is unstable and a small perturbation can grow into a solution
which is not spatially uniform. It is not difficult to see that in the unstable case the turbulent
kinetic energy will also grow. The turbulent kinetic energy is independent of the gauge and
observable. This means that the instability is physical (within the confines of the model)
and not just a result of our choice of gauge.

4.1. Stability results

Here we will examine the stability of the spatially homogeneous solution,f0(p). We shall
prove that if it has only a single maximum it will then be linearly stable. We also find that
if f0(p) has more than one maximum, the initial value problem can be ill-posed and we
present a simple criterion to determine stability.

Our results are obtained by recognizingD(µ) to be an upper-analytic function (D is
analytic for Imµ > 0). We then search for zeros in the upper-half plane ofD(µ) using
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the argument principle. If we find a zero ofD(µ) with Imµ > 0, f0(p) is not stable and
the initial value problem is ill-posed. IfD(µ) has no zero with Imµ > 0 f0(p) is linearly
stable.

We begin by considering a closed curve, denotedC, in the upper-half of the complex
µ-plane. SinceD is upper-analytic, the argument principle states

1

2π i

∫
C

1

D
∂D
∂µ

dµ = M (73)

whereM is the number of zeros enclosed byC. M is also the winding number, with respect
to the origin, of the closed curveCD which is the image ofC underD. Since it is true that

D(µ) = 1 as|µ| → ∞
it follows that the total number of zeros ofD(µ) in the upper-half plane is given by the
number of times the image of the real axis wraps around the origin. LetC henceforth denote
the real axis of the complexµ-plane; the winding number of the image ofC underD is
then

M = 1

2π i

∫ ∞

−∞

D′(µR)

D(µR)
dµR.

The image of the real axis underD is given by

CD = D(C) = {DR(µR) + iDI (µR)| − ∞ < µR < ∞}.
In other words,CD is a closed curve in the complexD-plane. By examining the qualitative
behaviour ofCD we shall compute its winding number.

We start by evaluatingD(µ) on the real axis of the complexµ-plane. We find

lim
µI →0+

D(µ) = 1 + −
∫ ∞

−∞

p2

p − µR

∂f0

∂p
dp + iπµ2

R

∂f0

∂p
(µR)

= DR(µR) + iDI (µR) (74)

where−∫ denotes the principal value integral (see, for example, [17]).
Let us now examine the behaviour ofD nearµ = 0. It is clear thatDI (0) = 0 and

D′
I (0) = 0, while

DR(0) = 1 +
∫ ∞

−∞
p

∂f0

∂p
dp

and is found to be zero using integration by parts and (59). It also follows thatD′
R(0) = 0.

ThereforeD(0) = D′(0) = 0, implying thatµ = 0 is a zero ofD of at least multiplicity
two. It also follows that

D′′(0) = 2 −
∫ ∞

−∞

1

p

∂f0

∂p
dp + 2iπ

∂f0

∂p
(0). (75)

If ∂pf0(0) 6= 0 then Im[D′′(0)] 6= 0 indicating that the multiplicity ofµ = 0 is exactly
two. On the other hand, if∂pf0(0) = 0 then Im[D′′(0)] = 0 and Re[D′′(0)] may or may
not be zero. We now computeD′′(0) when Im[D′′(0)] = 0 since it will be of use later;
equation (75) can then be written as

D′′(0) = 2
∫ ∞

−∞

1

p

∂

∂p
[f0(p) − f0(0)] dp.

If we integrate by parts we find that

D′′(0) = −2
∫ ∞

−∞

1

p2
[f0(0) − f0(p)] dp. (76)
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The two aforementioned integrals are defined without using the principal value since
∂pf0(0) = 0. A similar approach shows thatT (0) = 0.

SinceD has a double zero forµ = 0, it follows thatCD has a cusp at(DR, DI ) = (0, 0).
The angle the cusp makes with the lineDI = 0, DR > 0 is denotedθc and is given by

tanθc = D′′
I (0)/D′′

R(0). (77)

We next examine the behaviour ofD(µR) as |µR| → ∞. Our first observation is that

DR(µR) = 1 + 2j0

µR

+ 3m2

µ2
R

+ O(µ−3
R ) as |µR| → ∞ (78)

wherem2 = ∫
p2f0(p) dp > 0. Equation (78) follows from arguments similar to those

found in Nicholson [17]. It is clear from (74) that lim|µR |→∞ DI (µR) = 0; furthermore, as
µR → +∞, DI (µR) < 0 and asµR → −∞, DI (µR) > 0. ThusCD must cross the line
DI = 0 at DR = 1. We shall next consider two special cases.

Case 1. f0(p) has a single maximum atp0. Here we show that this solution is linearly
stable. Whenf0(p) has a single maximum,D′′(0) 6= 0 andD(0) = 0 with multiplicity two.
This follows from (75), for ifp0 6= 0 then Im(D′′(0)) 6= 0. If p0 = 0 it follows from (76)
thatD′′(0) < 0. We have shown above (see (78)) that the curveCD crosses the lineDI = 0
at DR = 1. Since∂pf0(p) only vanishes for finitep at p = p0 (Im[D(p0)] = 0), CD can
only cross the lineDI = 0 once more at the following point:

DR(p0) = 1 +
∫ ∞

−∞

p2

p − p0

∂f0

∂p
dp

= p2
0

∫ ∞

−∞

1

p − p0

∂f0

∂p
dp

= −p2
0

∫ ∞

−∞

[f0(p0) − f0(p)]

(p − p0)2
dp 6 0 (79)

where the equality occurs whenp0 = 0. It follows then thatCD crosses the lineDI = 0
in two places,DR = DR(p0) and 1. This indicates that forp0 6= 0 the curveCD wraps
around the origin once and thusM = 1. If p0 = 0 one can then showθc = π , indicating
that againM = 1. Hence,D(µ) has one zero with Im(µ) > 0. This zero, however, is
the double zero atµ = 0. The winding number for this zero is 1 instead of 2 becauseCD
passes through the origin. ThereforeD(µ) has no zeros with Im(µ) > 0 whenf0(p) has a
single maximum, indicating the spatially homogeneous solution is linearly stable.

Case 2. f0(p) has two maxima atp1 andp2 with f0(p1) > f0(p2) and a single minimum
at p0. Here we show the condition for instability is∫ ∞

−∞

[f0(p0) − f0(p)]

(p − p0)2
dp < 0 (80)

and ∫ ∞

−∞

[f0(p2) − f0(p)]

(p − p2)2
dp > 0. (81)

If these conditions are not satisfied thenf0 is linearly stable. We begin by noting that∂pf0

will vanish at p0, p1, andp2; therefore,CD will cross the lineDI = 0 at DR = DR(p0),
DR(p1), DR(p2), and 1. From (79) we find

DR(pi) = −p2
i

∫ ∞

−∞

[f0(pi) − f0(p)]

(p − pi)2
dp for i = 0, 1 and 2. (82)
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We first takep1 6= 0, p1 < p2 with DR(p2) 6= 0 andDR(p0) 6= 0. Let us considerCD
asµR is increased from−∞. CD starts on the real axis atDR = 1 and will then cross the
axis atDR(p1). Sincef0(p1) is the maximum off0 and p1 6= 0, we haveDR(p1) < 0.
As µR is increased it will cross the real axis atDR(p0). If DR(p0) > 0 thenCD will have
wrapped around the origin once. AsµR increasesCD will cross the lineDI = 0 (the real
axis) atDR(p2) and then finish at(DR, DI ) = (1, 0) asµR → ∞. Therefore, if

DR(p2) < 0 and DR(p0) > 0 (83)

CD will wrap around the origin twice and the winding number,M, is 2. If, on the other hand,
(83) is not satisfied, thenCD can only wrap around the origin once and the winding number
is 1. As the winding number changes from 1 to 2, a zero ofD moves from the lower-half
plane to the upper-half plane indicating a zero ofD(µ) with Im(µ) > 0. Therefore, when
(83) is satisfied, the spatially homogeneous solution is unstable. A similar argument follows
whenp1 > p2; (83) is seen to be a condition for instability wheneverp1 6= 0, DR(p2) 6= 0,
andDR(p0) 6= 0.

Next, we takep1 6= 0, p1 < p2, DR(p0) = 0 (p0 = 0), andDR(p2) 6= 0. As before,
CD starts on the real axis atDR = 1 and crosses the axis atDR(p1) < 0. It next crosses the
line DI = 0 at the origin, sinceDR(p0) = 0, and then again atDR(p2) 6= 0. It follows from
(74) thatD′′

I (p0) = 0; this means thatθc = 0 if D′′(p0) > 0 andθc = π if D′′(p0) < 0.
Thus, we see that if

DR(p2) < 0 and D′′(p0) > 0 (84)

CD wraps around the origin twice andM = 2. If (84) is not satisfied thenM = 1, and
therefore (84) is the condition for instability. A similar argument holds forp1 > p2; hence,
the condition for instability is given by (84) wheneverp1 6= 0, p0 = 0 andDR(p2) 6= 0.
An argument comparable to the one above shows the condition for instability is given by

DR(p0) > 0 and D′′(p2) < 0 (85)

wheneverp1 6= 0, p2 = 0 andDR(p0) 6= 0.
If we compare the expressions forDR(pi) and D′′

R(0) ((82) and (76)), we find the
condition for instability in the case of (83), (84), and (85) is given by (80) and (81).
Finally, we mention that it can be shown, using similar methods to those above, that (80)
and (81) is also the condition for instability whenp1 = 0. Figure 2 shows an example of
a f0(p) which has two peaks. The correspondingCD is displayed in figure 3 and clearly
shows thatCD wraps around the origin twice indicating thatf0(p) is unstable. The physical
meaning of the instability will be explained in section 6.

5. Water bags

We can gain some appreciation of the nonlinear dynamics of the kinetic equation by applying
the water-bag model of DePackh [18]. We let the distribution function be piecewise constant
in some domain in phase space and find governing equations for the boundaries.

We look for a weak solution of (55) of the form

f (x, p, t) =
M∑

k=1

ak[H(p − p−
k (x, t)) − H(p − p+

k (x, t))] (86)

whereH(p) is the Heaviside function, namely

H(p) =
{

1 p > 0

0 p 6 0
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Figure 2. A distribution function with two maxima that is unstable.

Figure 3. The curveCD for the distribution function shown on figure 2. It wraps around the
origin twice which indicates an instability.

and ak > 0. We considerp±
k (x, t) to be single-valued functions ofx and without loss of

generality we takep+
k > p−

k . In this case, we have

n(x, t) =
M∑

k=1

ak[p+
k (x, t) − p−

k (x, t)]. (87)
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The choice of theak and thep±
k is constrained sincen(x, 0) = 1. We also have

j (x, t) = 1
2

M∑
k=1

ak[(p+
k )2(x, t) − (p−

k )2(x, t)]. (88)

If we substitute (86) into (55), we find

M∑
k=1

akδ(p − p+
k )

[
∂p+

k

∂t
+ κ(p − j)

∂p+
k

∂x
− κp

∂j

∂x

]
−akδ(p − p−

k )

[
∂p−

k

∂t
+ κ(p − j)

∂p−
k

∂x
− κp

∂j

∂x

]
= 0.

As pointed out by DePackh, this equation must vanish term-by-term; thus we find the system
of 2M equations in conservation law form:

∂p±
k

∂t
+ κ

∂

∂x
[ 1

2(p±
k )2 − p±

k j ] = 0. (89)

It follows from (89) that ifn(x, 0) = 1 thenn(x, t) = 1 for t > 0. It is also convenient to
compute the turbulent kinetic energy; in the present situation, (52) simplifies to

θ(x, t) = κ2

2

∫
(p − p)2f dp. (90)

The simplest case isM = 1. It follows, in view of the constraintn(x, t) = 1, that

p+
1 (x, t) − p−

1 (x, t) = 1 (91)

where1 is a constant independent ofx and t . Therefore, we have

j (x, t) = 1
2(p+

1 (x, t) + p−
1 (x, t))

and
∂j

∂t
− κj

∂j

∂x
= 0 (92)

which we recognize as Burgers’ equation. This indicates thatp±
1 can form shocks in finite

time.
The next case we consider isM = 2. We letP = (p−

1 , p+
1 , p−

2 , p+
2 )T and then write

(89) as

∂P

∂t
+ κA∂P

∂x
= 0 (93)

where

A =


p−

1 − j − a1(p
−
1 )2 −a1p

−
1 p+

1 a2p
−
1 p−

2 −a2p
−
1 p+

2
a1p

−
1 p+

1 p+
1 − j − a1(p

+
1 )2 a2p

+
1 p−

2 −a2p
+
1 p+

2
a1p

−
1 p−

2 −a1p
+
1 p−

2 p−
2 − j + a2(p

−
2 )2 −a2p

−
2 p+

2
a1p

−
1 p+

2 −a1p
+
1 p+

2 a2p
−
2 p+

2 p+
2 − j − a2(p

+
2 )2

 .

The hyperbolicity of this system is determined by the eigenvalues ofA. If the eigenvalues
are real, the system is hyperbolic; if the eigenvalues are complex the system is elliptic and
the initial value problem is ill-posed. In the water-bag model, for a fixedx, the distribution
function is supported over the intervalsI1 = [p−

1 , p+
1 ] and I2 = [p−

2 , p+
2 ]. Below we

shall prove that if the intervals overlap, the eigenvalues ofA are real, and that if there
is a sufficiently large distance between the centers ofI1 and I2, the eigenvalues ofA are
complex.
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To prove this claim it is useful to use the following variables:

p−
2 = p−

1 + c − e p+
2 = p+

1 + c + e and a1 = (1 − y)/1 (94)

where 06 y 6 1 and1 = p+
1 − p−

1 . The value ofa2 is found from (87). The distance
between the centres ofI1 and I2 is |c|. The intervals will overlap when|c| < |e+ 1|. A
calculation shows that (93) is hyperbolic when

c2 < C2
cr (95)

where

C2
cr = (1 + 2e)2 − 4ey(1 + e)

4y(1 − y)
.

Therefore we see that if|c| is sufficiently large (93) is elliptic. On the other hand, it is
possible to show that

|e+ 1| < Ccr

implying that if the intervals overlap (93) is hyperbolic. When the intervals overlap the
distribution function has a ‘single maximum’. Furthermore, the distribution function must
have ‘two maxima’ in the ill-posed case. These results are consistent with the results of
section 5.

Consider (93), with periodic boundary conditions on the interval [−π, π ], and the
following initial data:

p±
1 (x, 0) = ±0.2

p−
2 (x, 0) = 0.9 + ε sin(x)

p+
2 (x, 0) = 1.0 + ε sin(x)

(96)

where we takea1 = 2 and a2 = 2. We see that for this choice of initial data, with
ε = 0, f (x, p, 0) is a spatially uniform distribution solution of (93) with ‘two maxima’.
Furthermore, (95) reveals this solution to be unstable. The time evolution of a small
perturbation of this solution is studied by numerically solving (93), the initial data is given
by (96) with ε = 0.05.

Equation (93), with initial data given by (96), is ill-posed and cannot be solved
numerically without some care. We chose to solve (89) by centre differencing in space.
To advance in time, a fourth order Runge–Kutta–Merson scheme was used. We filter after
each time step using the filter developed by Krasny [19].

The initial conditions are plotted in figure 4. Figure 5 shows the distribution function
at t = 4.25 which is close to the last time we can solve (93). It appears a singularity is
forming.

To analyse the singularity, we examine the Fourier coefficients ofp±
i (x, t). It is well

known that if

f (x, t)) ≈ [x − (x0 + iρ(t))]α(t)−1

the Fourier coefficients decay as

f̂ (k) ≈ ck−α(t)e−ρ(t)k. (97)
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Figure 4. The initial values used for the water-bag problem.f0(x, p, 0) is given by (96) with
a1 = 2 anda2 = 2. The lines are, from bottom to top, respectively,p−

1 , p+
1 , p−

2 , andp+
2 . If

a portion of the phase space(x, p) is not between the linesp−
1 (x, 0) andp+

1 (x, 0), or between
the linesp−

2 (x, 0) andp+
2 (x, 0), thenf (x, p, 0) is zero.

Figure 5. The water-bag problem att = 4.25 for the initial conditions shown in figure 4.

There are several methods to estimateα andρ in the literature; see, for example, [19–21].
Here we use a variant of these methods which is explained below. From (97) it follows
that

f̂ (k)

f̂ (`)
=

(
k

`

)−α

e−ρ(k−`)
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which can be written as

yk = −α − ρzk

where

yk = log(f̂ (k)/f̂ (`))

log(k/`)
and zk = k − `

log(k/`)
.

To estimateα and ρ, we plot yk againstzk for a fixed `. The slope givesρ and they

intercept providesα. We pick` = 3 and measure the slope for variousk. We find that our
estimates ofα and ρ depend slightly onk; for 5 6 k 6 15, α and ρ vary approximately
5%. The average values ofα andρ for k ∈ [5, 15] will be used as our estimate.

It is found, for the above computation, thatα andρ are approximately the same (within
5%) for each component ofP . ρ vanishes att = tc ≈ 4.27 and over the time interval
[3.5, tc] ρ decreases linearly. On the other hand,α is approximately constant having the
value

α = 3
2 ± 0.04.

A plot of log10 |p̂+
2 (k)| verses log10 k is shown in figure 7 along with the line whose slope

is −1.5. This supports the estimate thatα = 1.5. This value ofα indicates a square root
singularity. At t = tc, the profiles ofp±

i have the following form:

p±
1 ∼ sgn(x)

√
|x| and p±

2 ∼
√

|x|.
Figure 6 shows the turbulent kinetic energy intensifying at the point the solution becomes
singular.

θ

x

Figure 6. The turbulent kinetic energy,θ , as a function ofx for various times using the water-
bag model. The times shown aret = 0.85, 1.70, 2.55, 3.40, and 4.25. Time increases upward
and subsequent snapshots are shifted upwards by 0.003 for clarity.
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Figure 7. Log–log plot of the Fourier coefficients ofp+
2 at t = 4.25 for different values ofN ,

the number of points used in the discretization. The curves from left to right haveN = 256,
512, and 1024. The slope of the straight line is−1.5.

Next, we consider the following initial data:

p±
1 (x, 0) = ±0.2

p±
2 (x, 0) = ±0.1 + ε sin(x)

(98)

with a1 = 2, a2 = 1, andε = 0.05. Equation (93) is well-posed with this initial data;
generically we expect this solution to form shocks in finite time in a similar fashion to
Burgers’ equation. We present numerical solutions for (93) with the initial data given by
(98) in figures 8 and 9. Figure 8 shows the initial condition and figure 9 shows the solution
at t = 37, just before it forms a shock.

Remark. There has been recent work on weak solutions of the Vlasov–Poisson equation
which have some similarities to this work. Majda [22] has numerically studied weak
solutions of the Vlasov–Poisson equation of the form

f (z(α, t)) =
∣∣∣∣dz

dt

∣∣∣∣−1

δz(α,t) wherez(α, t) = (x(α, t), v(α, t)).

This is called an electron sheet solution. There is an analytical solution of this form due to
Dziurzynski [23] which has a finite time singularity. After the singular time, the numerical
work of Majda shows that the analytical solution is no longer valid; the electron sheet
ceases to be the graph of the single-valued function and the electric field loses smoothness
past the singular time. This work has been extended and generalized by Majdaet al [24].
They present explicit examples with charge concentration and non-unique weak solutions.
They also show that the various regularizations of the Vlasov–Poisson give different weak
solutions. Zheng and Majda [25] have provided a natural definition for a weak solution
of the Vlasov–Poisson equation. They have proved that the Vlasov–Poisson equation has
globally weak solutions with measures as initial data.
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Figure 8. The initial value conditions for the water-bag problem given by equation (98) with
a1 = 2 anda2 = 1. Starting at the bottom the lines arep−

1 , p−
2 , p+

2 , andp+
1 .

Figure 9. Same as figure 8 exceptt = 37.

The water-bag solutions are also weak solutions of a kinetic equation. The numerical
evidence shows that they also form singularities in finite time. It may be possible for one
to use the ideas developed in [22, 24, 25] to construct weak solutions past the singular time.
It would also be interesting to examine what effect the type of regularization has on the
nature of weak solutions to our kinetic equation.
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6. Discussion

We have developed a kinetic equation which, we have argued, describes the probability
distribution, f , of the impulse density in a turbulent fluid. It was established that any
spatially homogeneous distribution function (f = f (p)) is a solution of the kinetic equation.
We interpret this solution to represent a fluid in a state of homogeneous turbulence.

Batchelor [26] (see p 185) points out that experimental observations suggest that the
high wave-number components of turbulence are unevenly distributed in space. This would
indicate that the spatially uniform turbulent state in some sense is unstable. We have found
several situations where the spatially uniform solution evolves into a spatially nonuniform
solution.

In one case it was found that when the distribution function had two maxima and
one minimum it was possible for the spatially uniform solution to be linearly unstable.
Numerical solutions of the water-bag model indicate that cusp-like singularities will form
in finite time. On the other hand, even when the spatially homogeneous solution is linearly
stable we observe shock-like singularity. Therefore, under rather a wide variety of initial
conditions, the spatially homogeneous solution will evolve so that the turbulence is no
longer spatially uniform.

For example, consider an initially quiescent fluid with a fine grid placed into it. We
shall take the grid to be parallel to theyz-plane and moving in the positivex-direction,
which we will denote as the stream-wise direction. On the far-right-hand side of the grid,
the fluid is at rest; as the grid moves through the liquid it will disturb the liquid behind it.
We expect the region of fluid immediately behind the grid to be somewhat homogeneously
turbulent [26].

It will require a force in thex-direction to move the grid; therefore, we expect the grid
to cause the appearance of a high impulse region in the stream-wise direction. It is possible
that the distribution of impulse in the coarsening volume will be similar to that shown in
figure 2 which was seen to be unstable. Consequently, the apparent spottiness of the spatial
distribution of the turbulent energy could be the result of this instability.

To understand the small scales of physical turbulence one must include viscosity.
Therefore, it would be interesting to include viscosity in the kinetic formulation. As of
yet it is not clear exactly how one would go about this.

7. Summary

In this paper we have shown that the impulse equation has a gauge freedom which allows
it to be generalized. We have demonstrated that the divergence-free projection operator
can be written in terms of a continuous distribution of vortex dipoles which have a finite
self-induced velocity. This splits the projection operator into a local part and a nonlocal part.

It is then shown that for a particular choice of gauge, the force density can be written
in terms of the nonlocal part of the divergence-free projection. Based on this observation,
a Vlasov description of the impulse form of the Euler equation is proposed. This kinetic
equation is seen to have the Euler equation as a solution for special initial data. It is proposed
that for other initial data, the Vlasov equation provides a coarse-grained description of an
inviscid turbulent flow.

It is also shown that the Vlasov equation has nontrivial solutions in one space dimension.
Furthermore, we demonstrate that spatially homogeneous distribution functions with single
maxima are linearly stable, and that those with two maxima can be unstable. The time
evolution of the unstable solutions are studied and we observe that singularities form. In
our case these singularities are associated with localization of the turbulent kinetic energy.
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