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1. INTRODUCTION

The problem to be discussed is that of estimating the unknown
quantity h in the linear model
y = Xh+n, (1. 1)
where y represents an observed signal, X is a known linear transfor-
mation, and n is a noise or error signal. The unknown '‘vector
parameter' h is an element of a separable Hilbert space Wl; y is
an element of a separable Hilbert space % ; X is a bounded linear

2

transformation from "??/l into ‘}2‘/2, and n is either an Wz-valued

random variable or an unknown error term in %2. The spaces
X ] and WZ may be real or complex Hilbert spaces, and either or
both may be finite-dimensional, although clearly only a finite-dimen-
sional projection of h is estimatable when m/dz is finite-dimensional.
The following cases are considered: (i) h is an unknown, and n
is an unknown error; (ii) h is an unknown, and n is a random varia-
hle in %/2 with mean zero and a known covariance operator; (iii) h
is unknown but known to belong to a specified subset of fé}/l, and n
is again a random variable as in (ii). Case (i) is handled, as is con-
ventional when there is no statistical information, by finding a least-
squares estimator for h. This estimator is also put in recursive
form for a linear dynamical systems model. For case (ii) a linear
unbiased minimum-variance (LUMY) estimatof is obtained. For the

special case of finite-dimensional parameter and observation spaces

in a dynamical systems model, this estimator is also put in recursive



form. For case (iii) a modification of the LUMYV estimator is ob-
tained which is no longer unbiased but which yields smaller error
under the stated conditions than the LUMYV estimator.

The least-squares solution for case (i) is well-known (see, e.g.,
[B-1]). We are not aware that the recursive form has been given
for Hilbert-space-valued parameters, but it follows readily by stan-
dard methods. The LUMYV estimator for case (ii) is developed in
[B-1] and is stated in [R-2] without proof. The recursive form in
finite-dimensional spaces is well-known (see, e.g., [S-1]). The
modified LUMYV estimator for case (iii) is given in [R-2] and [R-3].
Thus, most of the material contained herein appears elsewhere, and
some is quite standard; however we know of no place where it has
been put together in a reasonably self-contained, unified treatment.
The proof of the Gauss-Markov theorem, thaf is, the theorem vyield-
ing an LUMYV estimator, is somewhat complicated in the Hilbert

. space context, and has been put in an Appendix. The proof given is
basically the same as that in [B-1], but it is superficially different
because we do not use the theory of pseudo-inverses explicitly. The
recursive solutions obtained for the least-squares and LUMYV esti-
mators are of the same form as the Kalman filtering equations, but
they are obtained as solutions to a different minimization problem.
Kalman filtering requires that h be a random variable, and then the‘

expected value of the squared error in the parameter estimate is

minimized.



There are, of course, a great many applications of the theory
of estimating parameters in a linear model. However, we have in
mind application to system identification, considered from a rather
general point of view according to which there .is no initial paramet-
rization. This application leads to the model (1. 1) and the estima-
tion problems based on (1. 1) as follows. If we momentarily neglect
statistical considerations, the systems to be considered can be char-
acterized by the equation y = H(x) where x (the input signal) is an
element of a specified set Z,Y (the resulting output signal) is an ele-
ment of a specified set Q(f, and H (the system transformation) is an
element of a specified class 71/ of functions from Z into ?/ .
Briefly, the basic identification problem is to find an H € 2}4 that
adequately represents an unknown system from the results of one or
a series of experiments involving the introduction of known input sig-
nals x and measurement of the corresponding output signals y.

One can regard each x € 2 as determining a function from A
into /% . To emphasize this point of view, we can write y = H(x) =
X(H), H € % , i.e. X is the mapping that assigns output y to system
H when x (~ X) is the input signal and y = H(x). Then, obviously, the
problem of identifying H when the input signal is x is essentially the
problem of inverting the mapping X. If the output space ? is a
linear space this can always be interpreted as a linear inversion
problem as follows. Define addition and scalar multiplication

in the way they are conventionally defined for spaces of functions,



i.e. for each H,H, H € %/ and all real numbers @ define H, + H,
and aH by

(H) + H,)(x) = H) (x) + H,(x), x € L

(@H)(x) = a[Hx)], x €£
Extend ,/"\" if necessary so that it is closed under linear combinations;
then A/ becomes a linear space. This extension is permissible be-
cause it only enlarges the basic class of systems being considered.
The notation ?’/ will be retained, but it is henceforth assumed that
% is a full linear space. Then X is a linear transformation on A,

because:

"

X(@H +fH,))=(aH +[H,)x)

@ H,(x) + B HZ(X)

a X(Hl) + B X(HZ)'

The first and third equalities follow from the definition of X, the sec-
ond from the definitions of addition and scalar multiplication in A
Hence, with the linear structure prescribed for A, the mapping X
from N into Q’/ defined by y = X(H) = H(x) is linear.

This simple observation is important because it says that the
input-output identification problem can always be studied by linear
analysis. When output observation noise is added, the problem can
be treated as a linear regression problem. The observation takes on
practical as well as theoretical importance if, when parameters are
introduced, as they must be to permit actual computation, they are

introduced in such fashion as to determine linearly the transformations



H. Then the actual computation algorithm will be linear, or, in the
usual terminology, the problem will be 'linear in the parameters. "
The only condition necessary for this linearity of X is that gl be a
linear space.

The problems applicable to this paper are those in which ﬂ%
and % are separable Hilbert spaces (denoted, respectively, by ’/Z)ZZ
and 73/1) and X is also a bounded transformation. The assumption

that X is bounded is chiefly for convenience, but it is realistic for

most applications.



2. NOTATIONS AND CERTAIN ELEMENTARY FACTS
ABOUT LINEAR OPERATORS IN HILBERT SPACE

2

To establish notations, let A ., and 7¢2 be separable; Hilbert

1

spaces, which may be the same space. If £ c #1’ we denote its

closure in ﬁl by g and its orthogonal complement in Wl by

& —-l— Let X be a linear mapping from (part of) 79‘1 into 7%‘2.
(X) = {h € ’/dlz Xh is defined} is the domain of X; 7/(X) =

{h € & (X):Xh = 0}is the null-space of X, and t,/’a(X) ={y € /HZ: Xh
= y for some h} is the range of X. All are linear sets. We call X
an operator from 27'1. to #_; the term bounded operator will

2

imply that not only is X bounded in the usual operator norm, but also
that A (X) = #

*
Let X be a bounded operator. Its adjoint, X , is the bounded

1 unless an exception is explicitly stated.

operator from A, to 7} defined by (Xh,z) = (b, X z) for allh € %,

2 1’

z € ﬁz. Note that (Xh, z) is an inner product in 7"2, whereas

sk

(h, Xq‘z) is an inner product in 7‘1’1. There is no real ambiguity in
using the same notation for inner products (or norms) in both spaces.
The following facts are standard, and for the most part can be
proven easily. (However, see [B-1], Appendix A). Assume X is a
bounded operator
1) -n(X) and ¥ (X*) are closed subspaces of 2}11 and %2’
respectively. |
2) ﬁ(X) is closed if it is ﬁnite—dimensionail, which is neces-
sarily true if 211 or 7—)""2 is finite-dimensional. In gen-

eral, a necessary and sufficient condition for @(X) to be



closed is that X restricted to ’)’(_,—L(X), which is a closed
subspace of /Nl’ be bounded from below. That is, there
must exist a constant ¢ > 0 such that HXhH >c HhH for

all h € /)’L—L(X). We denote the restriction of X to n—l-(X)

by X .

L]

3) RX) = -7L—L(x*), and A(X*) = 71-(X). 1If we denote direct
~sum by (¥ , then

o= @ 7w - ) ® Ax)

7 @ ol - ety ® FF.

2\
(\N]
1]

4) NEX) = LX), and 7&K = x>

5) AKX X) e AX)ecRK'X), and
Fxx e AX)c Axx.

6) If any one of the sets /A& (X), ﬂ(X*), /7 (X*X),
%,(XX*) is closed, so are all of the others, and then
AX) = @EX) = #(X), and
FAX) = BUXK) = RX ).

Consider A = X*X, which is a bounded self-adjoint, nonnegative

*
operator from ?/l into 7?»41. Since A = A, 7Z—L(A) = /7(A), and

we denote the restriction of A to #{,(A) by Ar' Since 7( (Ar) = {0},
Ar is 1:1 from m onto /T(A) = A (Ar) c -\/T(-A—) Consequently,
A;l exists as an operator (not in general bounded) from 75—(_—A)
to Z@), with D@AY) = 7).

It is thus possible to write (X*X)_ lg for all g € ﬁ,(X*X), where

*_ -1 -1
(X X) " means Ar (the subscript is dropped to simplify the notation).



If X has closed range, then it follows from (6) that Ar is 1:1

from ﬁ(Ar) onto J{ (X) = —“’:-5(_) = /4 (A), and A;l is then a
bounded operator on m—)-

These observations, not all of which are usually stated explicit-
ly in standard works on Hilbert space (see, e.g. [R-1]), coupled
with some basic results that are given in almost any reference,
should suffice for the material in the body of the report. If one
wishes to restrict consideration to finite-dimensional space only,
the formal calculations in what follows can be read as just matrix
calculations. In Appendix A it is necessary to deal with unbounded
closed operators, and considerations similar to those above but

somewhat more intricate are necessary.



'3. LEAST-SQUARES ESTIMATION

In the model (1. 1) we take n simply to be an unknown error; n
is not assumed to have any statistical properties. Itis desiredvto
find a best estimate K of h according to the.criterion that the corres-
pohding error n = y - XA be of minimum norm. This is the classical
criterion of least-squares estimation, and is usually stated: find R
such that

IIxB -yl < [IXh-y|| Vvhe #.

To see what B should be we first do a formal calculation that
consists essentially of completing a square. Precise statements and
proofs are given subsequently, but it may be noted that the following
calculation already yields a proof for the finite -dimensional case.

The expansion of HXh-yH ¢ is
|%h-y[|? = Xn-y, Xn-y)

= (X" Xh,h) - 220X y) + [|y]|2 (3.1)

£ 3
Let A =X X. Since A is a nonnegative self-adjoint operator, it has

1/2 1/2 -1

((R-1,p. 265). (A" 7)
/2

1
exists as a (perhaps unbounded) operator on Ig(A )  with domain

Al/z)-l -1/2_ (1)

a nonnegative self-adjoint square root, A

equal to ﬂ(Al/z); denote ( by A

- * - 3
A l/ZX y is defined, and put g = A l/'?'X>‘ y. Then

Suppose that

(1)We note that (Al/z)-l _ (A-l)l/z - -1/2

a nonnegative self-adjoint operator.

A , and that A~ 1/2 is also
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1820 g]1% = (a2 2n, a1 %0) -2 Roia 20, g) + 1] gl1°
- (Ah,h)-2 fan X y) + gl 3.2)
since (8%, g) = m, A %) = 0, a2A72x% ) - m,x"y). But

(3.1) can be rewritten

| Xh-y||2 = (b, b) - 2420, X y) + el 2+ dlyvll? - gl %)

1/2 2 2 2

= [1a™ " h-gl| =+ Iyl - llell™). (3.3)

1
Obviously (3.3) is minimized by h = fi such that A /Zﬁ = g if such i

exists. That is, the minimum is given formally by

A = A_1/.2g _ A_I/ZA_l/ZXAy
*® -1_ 3%

= (X X)X y. (3.4)

The expression on the right side of (3.4) is a classical formula for the
least-squares estimate in finite-dimensional spaces.
We now develop rigorously the rather simple basic facts about

least-squares estimates.

RN P

Proposition 3.1: Puty = Y, + Y, where v, € £(X), v, € 7OX ).

Then a necessary and sufficient condition for there to exist an h such
. .. . 7 &

that HXh—yH is a2 minimum is that v, € LX), If v, € /i (X) then

any h such that Xh = Yy provides a minimum.

Proof: Since (yl,yz) =0,

|xn-yl[? = || Xhey -y, 112

2 .
|| Xh-y || +||s»'2||2. (3.5)
If v, € /A(X), min HXh-—yHZ exists and is equal to HyZHZ. Clearly
any h such that Xh = vy provides a minimum. Conversely, if min

2
HXh-yH exists it must be equal to H y2| | 2, which implies that

y, € 2. |l
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If X has closed range, i.e. L’?(X) = J2(X), min HXh—yHZ
always exists. As mentioned in the previous Section, a necessary
and sufficient condition that X have closed range is that X restricted
to 7’:—L(X) be bounded from below. If the range of X is finite-
dimensional it is always closed and hence a minimum always exists.
Finally, it is worth noting that since the estimate is based on an ob-
servation in the output space, if X is not 1:1, the minimizing B is not
unique. In this case a further criterion must be introduced to fix B;
usually h is taken to be itself of minimum norm, which amounts to
requiring that h € 7] —L(X).

Proposition 3.2: If v, € /1.7 (X) then (X'PX)- 1X>P3r is defined and

provides a minimum.

Proof:

S -1 *
(X X) X vy

1

x %) %y +
& x) %y, +y)

(Xq:X)_ 1X>,:Y1

Since v, € /{’ (X), there exists h such that Xh = Y- Hence

*__ -1 % s 1 % ‘

X X) X y=(X X) X (Xh) = h
%* -1 3%
which implies that (X X) X vy is defined. From Proposition 3.1 and
the fact that
E N B
X[(xX'X) "Xyl =y,

£ - E

we have that (X X) lX y provides a minimum.

. -l * .
Proposition 3.3: If (X X) "X vy is defined then a minimum exists

3k - i<
i.e., y, € /7 (X)) and is provided by (X X) ‘X y.
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3 -1 %k .
Proof: Since (X X) X vy is defined we can write

1l

s o1 % S N
X X) Xy (X X) X (y; ty,)

S B
(X X) Xyl

sk Sk -1 Sk 3 ]
Hence X Y1 € ,O’[(X X) "] so in fact X Y1 € (X X). Thus
there exists h € 71/1 (in fact, we can choose h € 7{'—]— (XqNX)) such
that
Sk b
X Xh = X Y
Since Xh € 7! (X )it follows that Xh = '8 (i.e., Yy € Ji(X)).
Since v, € 77 (X), we know that a minimum exists from Proposition
% - *

1.1. Proposition 1.2 yields the fact that (X X) 1X y provides a
minimum. HI

It is perhaps worth noting that if v, € ,//(’(X) then the steps in
the heuristic derivation of the least-squares estimation formula are

* .
justified. Recall that this amounts to showing that (X X) 1/ZX

* - * _ -< * - ’
and (X X) 1/2 (X X) 17tZXay are defined, where (X X) 1/2 means

1
the inverse of the restriction of (X X) /2. From Proposition 3.2

¥ -1 % < %
we have that (X X) "X vy is defined, so Xh y € (X X)and we can

write

z = X'y = X*Xh h € -W—L(X*X)
Then h, € - L x*%)12] gince m—l-(x X) ¢ m-l—[(x x)}2,
But, (X730 %) = (%)) ) et x) 2,

1

x*x) 172,

* o -1/2 %
X X)Xy,

ES -1 ¥
so (X X) /ZX y is defined. Also
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8 1/2]-1 * 1/2 /

[(X X) )t en = xFx)!

3
1 /.2X y

e _1
“(x"X)

. ¢ -1 *
is defined. The last expression can be shown to be just (X X) X vy,
of course.

We comment briefly on the situation when no minimum exists
(i.e., Y, £ //{, (X)). First, one can always find elements }~1 that pro-
vide an approximation to a minimum. In fact, given € > 0, one can
~ ~ 2 ~ ~
find v, € 22 (X) such that Hyl-ylH < €. Write vy = Xh, then
~ 2 ~ 2
Hxh - y|[® = |[Xh -y, -,
1 2
2
< €+
< et lly,ll%
However, this fact is of limited usefulness because of the result of

the next Proposition.

Proposition 3.4: If v, ¢ /7(X), then any sequence {hn} such that

lim th =Y, is unbounded.
n— 0o

Proof: Suppose that there exists a constant C such that |] hnH <C
for all n. Since every bounded point set in a Hilbert space is weakly
compact [A-1, p. 46], there is a subsequence of {hn}, which we de-
note by {hn. }, such that (hn.’f) - (h, f) for all f € ,/3,"'1. Pick an arbi-
trary z € INZ (without losls of generality we can choose a z such that

||zH = 1) and consider

(Xb-y),2) = ((Xh-Xh ) + (b, -y)). 2

i
(X(h"hnl), Z) + (thl'yl
(h_hn_’ X z)+ (thi—yl, z)

> %)

Since HzH =1,

| Xh-y,2)l <lt-b X 2)| +||Xn_ -y, |l

i i
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Given any €> 0, there exists n_ such that for n, 2n,, Hth1 - YIH
< €/2 and !(h-hn‘,X*z)l < €/2. Hence |(Xh-y1,z)| < €, but €is
arbitrary, so (Xhl—yl, z) = 0. Since this relation holds for all
z € .’}JZ, we must have Xh =y ,. Buty, ¢ 7 (X), so a contradiction
results and thus {hn} must be unbounded. |||

2

In the finite-dimensional case where .'-\l and ”,ZL/'Z are Eu-

clidean spaces, ./ (X*X) = .~ (X*) = ,'?:;i(x*), X*X is a 1:1 map-
ping from :c/(,’(X*) onto /T (X*), and (X*X)_l is well defined as an
operator from o7 (X*) to ,’-%f'(X*). Also, of course, ,/E’(X*) =
7B The formula

f = xx) x*y (3.6)
which gives the least-squares estimate of h is always defined. In
what might be regarded as the conventional situation, at least from
the statistical point of view, 7/ (X) B, 0, and 7(X)= 7 x™)
is a proper subspace of }Zr'l, usually of much lower dimension. In
other words, there is redundancy in the observations, and the least-
squares formula uses this redundancy to minimize the errors. At
the other extreme, the dimension of ‘,?:r"z exceeds the dimension of
“r 1’ and T (X) = ”,'7\’»'31. There is then not only no redundancy in the
observations, but part of h cannot be estimated because 7/ (X) is
necessarily non-zero. In this case h minus the projection of h on 7?,—‘-(X)
is treated as .error and its norm is set to zero by the estimator
A. The formula for the least-squares estimator thus gives a pseudo- '

. 3 *
inverse. In general, neither 77 (X) nor '7?(X ) are zero, so part

of h cannot be estimated, while on the other hand, there is redundancy
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available for reducing the error in estimating the projection of h on
7).

In the infinite-dimensional case the situations regarding redun-
dancy in the observations and a non-estimatable part of h are essen-
tially the same. However, (X) need not be closed,
and in case it is not, least-squares estimation does not make
much sense practically because only for some observations (those
that project into the range of X) does the method apply. If ;L‘:?(X)
is not closed it is always possible to introduce a new Hilbert space
)/(’:"2 which contains the elements of /? (X) and in which '?/(X) is
closed. In many instances ;,2 will give a satisfactory model for
least-squares estimation, but we do not discuss this matter here
(see [B-1, Section 3.

For the remainder of this Section we consider the problem of
obtaining a recursive solution for the least-squares estimation prob-

&

lem in the case where '%l and Ji‘/z are Hilbert spaces. The pro-

cedure followed for converting the basic solution into a recursive one

is standard for the finite- dimensional problem, and as will be seen,
there is no difficulty in extending it to Hilbert spaces.

We consider the system

_ d
Y1 = PyRytnp S Bihitn
d
= B =
2 2%2,1P1 " m, = Byo, htn,
d

= B + =

o

= B
Yn n¢n,n—l¢n—l’ n-2 °°° ‘bz, lhl * n T Bnd)ﬁ, lh + B
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which equivalently can be written in the state variable form

b = 94l
y. = Bh, +n, i=1,...,n (3.7)
1 11 1
d
h; S h

We assume that Bi and ¢i+l iy i=1,...,n, are all bounded operators

with zero null-space and closed range, and in fact that the ¢i+1 ;

are 1:1 from 75/1 onto ’/“/l We can then define X1 g‘ Bl’ X2 ‘3
d
B2¢2’ UEERE Xn = Bnq)n, ] S° that
= +
y; = Xhtny
= + 3.
Y, th n2 (3. 8)
= +
Yn th nn

where the Xi are bounded operators from Wl to 7‘;/2 with ﬁ;(Xi)
=0 and Jf(Xi) closed in /ZJZ The ni are taken to be unknown
errors lying'in 7?4/2

The system of equations in (3. 8) can also be written in the form

1o = Xhn, 6.9)
where
7] R3Y 2]
Yn g ’ >~<n - ’ 2n T
A ) "

i.e., Yo and n  are elements of @2, the n-fold direct sum of copies

~ ~ ~

of "7»'2, and X is a bounded operator from 7 into %, The

'Yector-matrix' notation is self-evident.
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From Proposition 3.3 it follows that the least-squares

estimator of h is given by

% _1. %
A - x'x ) 'xTy (3.10)
~N ~ NN ~ N'aAl
* -1
if the expression on the right is defined. Put Pn = (X n}sn) and
k 5 b) A
b = X% y . Note that since Z(X.) is closed, so is JA(X.X.).
n ~ n~n 1 1 1
Thus
-k % * * .
AXX) = AX.X) = AKX, = AX,) = sy = A
i1 11 1 i i 1
P 5 % *__L L% _L _]_
= = ) = ‘G =
7L (X X.) = AL(X X)) ] (X . X,) T 0.
So XX, is a 1:1 ith X X) = AX X) = &
o X X isal:l mapwi A2 ( i .1) = (1 ( %) = 1
7@ 7 xt *
Consider A (P_") = /A (X X ). Suppose z 1 A% X ). Then
x ¥ x =0 f g
(X X))y, 2 = or everyy € A

But

PO

(& X))y 2)

((X*IXI)Y: z) +... + ((xixn)y, z)

+ +
(le,Xlz) (Xny,X__nz)

Since the above is true for all y € 2’ , it must be true for y = z.

1
Hence we have
Sk 2 | 2
= + + =
(X X )z2 = [1x2]|%+... +|[X 2] 0
This implies that we must have Xlz = ... = an = 0 which in turn
ik
implies that z = 0 since “ff(Xi) =0, i=1,...,n. Hence /(X an) =
/H’l' Since
e ke %
X X =X X +...+X X
~n~n 11 n n
. R L
is self-adjoint, /7()5 n}'"(n) = ’/:/1 = 0 by an argument similar to the

one presented above.
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: B -1
We have just established that B(Pn) - olx"x)y s A

~ n-~n 1

The operator Q(*nz{n)-l is self-adjoint, hence it is also closed.

However, a closed operator defined everywhere is bounded. So

sk _ -1
P = X X)) 1 is bounded and self-adjoint. Of course, P =
n ~ n~n n
)g*n)gn is also bounded and self-adjoint.
We can now write
-1 Sk K Sk
P =X X =X X . +...+X X
n ~n~n 171 n n
o s
= X X +X X
~n-1~n-1 n n
-1 *
= P +X X (3.11)
n-1 n n
Also,
b d ? X + X + +X*
n_ ®nln T "Y1 2Y2 "n
B +X*
=X n-17n-1 n'n
%* (3.12)
= +
bn-l Xnyn
From equation (3.11),
PP’ plp! +xx P
nn n-1 " n -1 n n n-1
Hence,
P - P +PX X P (3.13)
n-1 n n n n n-1
and
* * % %
P X = PX +PX XP X
n-1"n n n n n n n-1 n
* %
= PX [I+X P X ]
n n n n-1""n

% 1-1 . . ¥q-1
We now note that [I + X P xX* ] exists since [I+ X P X ]
n n-1"n n n-1 n
1 1 ¥ -
=[1+ (xnpn_/f)(xnpnf‘;‘) 17!, which is known to exist [R-1, p. 307].

Furthermore, the norm of this operator is bounded by one.

Therefore, we can now write
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X * -1 3
= X P
Pn_IX n[1+xnpn lx n] ann—l P X P

1 (3. 14)
Using equations (3.13) and (3. 14) we obtain

% ¥ .-1
Pn = pn_l -P__ X n[I+XnPn—1Xn j xnpn_1 (3.15)

Using equations (3. 12) and (3. 15) in the expression for ‘ﬁn yields

g

* .|
- +
{Pn_1 P X n[l X P X I'x P

+ sk
n-1"n n n—l}{bn-l Xnyn}
= - * +
Pn-lbn--l Pn—lX n[I XnPn

n

.|
_1Xn] an b

n-1"n-1
+ P X P X [1+xP X 1'xe x (3. 16)
n-1""n'n " n-1"n n n-1"n n n-1"n"n :
We now observe that if we have an operator A such that (I+A) ~ exists
and is bounded, then
- - -1
(1 - +A) tA] = @+A) M[1+A-A] = (1+A)
Thus we can now write
sk *q-1
= - + -
ﬁn ﬁn—l Pn- 1Xh[1 ann-—lxn] [Xnﬁn-l Yn]
or
= + -
ﬁn ﬁn—l K [Yn nﬁn-l] (3.17)
where
K =P X [1+x P .x' ]} 3,18
n n-1"n n n-1"n (3.18)
and
Pn = 1:)n-l - KanPn-l' (3.19)

Hence, to obtain the recursive least-squares estimator, we start
with

o>
]

x*x ‘lx*
2 (X X)) 171

o)
"

x*x )71
1 T XXy

and apply the recursive relations for n=2,3, ...



4, LUMV ESTIMATION

Consider again the linear model
y = Xh+n (4.1)
where as before h belongs to a separable Hilbert space }2/1 (which
may be finite-dimensional) and is the vector of parameters to be
estimated, X is a bounded linear transformation from ?‘/vl to a

separable Hilbert space Fb"'z, but where n is now a random variable

taking values in (AZ (which may also be finite-dimensional). Again

y is a vector of observations in '74'2, but now, for each h, itis a

random variable taking values in v’?fr‘z. We assume that n has mean

zZero, that its covariance operator R exists and is strictly posi-
tive definite and that Rl/2 is Hilbert-Schmidt. The covariance opera-
tor R is the unique bounded, self-adjoint operator, when it exists,
satisfying E(f,n)(n,g) = (Rf, g). If Rl'(2 is Hilbert-Schmidt, then R
has finite trace. If 51/2 is finite-dimensional all these conditions

are satisfied automatically of course except the one that R (which is
just the usual covariance matrix) be strictly positive definite. (1)
For further discussion of covariance operators for Hilbert-space-

valued random variables, see [B-l, Appendix B].

We use the notation

h = hl +h2, hl € n—L(X), hz € V(X)

(1)

We need this condition for our proof. In the finite-dimensional
case there are proofs that do not require it, see [A-2].

20
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so that
y = Xh1 + n.

The problerh is to find an unbiased linear estimator for hl that

3]

is of minimum '"variance, if such exists. That is, find (if possi-

ble) a bounded linear operator C from }2}/2 to 7Z*L(X), defined on

all of ’Nz, such that the estimate A d Cy has the properties

(1) ER = h,

2) E||fi - EA||® = E[|f-h,||° exists and is a minimum.
We ask only for an estimator C for h1 because clearly the observa-

tion y tells us nothing about hZ'

Before proceeding to this problem we discuss first the possi-
bility of unbiased finite-variance estimators. The unbiasedness con-
dition (1) can be rewritten

ER = E(CXh1+Cn) = CXh, = h; (4.2)

or, Cth1 = hl’ where Xr is the restriction of X to ‘7C-J—(X). Con-

-1
sequently, the restriction of C to % (X) must be Xr . Now we note

that
llcll =sup [lCyll 2sup  ||cy|| = sup =Yyl
yll=1 yll =1 Iyl =1 T
y € R(X) y € R(X)
-l
s [[x_ 7|

Thus C cannot be bounded unless X;l is bounded, or equivalently, X

has closed range. Hence we must have the condition that X has closed

range.

The mean-squared error, or 'variance, ''is given by
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EHﬁ—thZ=E||CXh1+Cn—th2=EHCr'1H2 (4.3)
from the unbiased condition. Let {¢i} be any c.o.n.s. for '741.
Then

ol = T icne)l® = T (€ o, nmC o)) (4. 4)
Formally we hav; 1

E|| cn|| ® =Z_) E(c*q)i,n)(n, c*¢i) = Z} (RC*d)i, c*cbi)
1 1

-2 (CRC ¢, 4,) = Trace (CRC') (4.5)
i

b
In fact, if C is such that Trace (CRC ) exists, the interchange of ex-

pectation and summation is justified (by the Beppo Levi theorem),

and equation (4.5) holds. Now if Rl/2 is Hilbert-Schmidt, then

1/2 1/2 * . . . .
CR and R C are Hilbert-Schmidt since C is bounded, and

sk 3
1/2. RI/ZC = CRCa has finite trace [G— 1] .

Thus if we assume that Rl/2 is Hilbert-Schmidt, C can be any

CR

bounded operator that satisfies the unbiasedness condition, and a
finite -variance estimator results.

In this Section we shall derive the LUMYV estimator only for the
classical case where ¢/1 and ",7/2 are finite-dimensional, with the
statement and proof for the Hilbert-space case relegated to the Appen-
dix because of some fussy details required. The structure of the
proof remains the same in the Hilbert space case. However, there
are two preparatory lemmas which we now state and prove, Whici’l,
because they will be used in the Appendix and because they are of

some interest in themselves, are given in Hilbert space form. In the

following two propositions A need be only a closed, densely defined
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linear operator, but if one does not need the results for so general

an operator, A can be taken as bounded and everywhere defined.

Proposition 4. 1: Let g and /5 be Hilbert spaces and let A be a
bounded (or merely closed and densely defined) linear operator
from /i: to ;. Ifze€e 4 andb € > then a necessary and suf-
ficient condit;on that a minimum exist for the problem

min || z||?
subject to Az =b
is that b € z/l“éﬁ(A). If a minimum exists it is unique and belongs to
A -l—(A). Also, if 2 € ‘7;7—-l-(A) and AZ = b then 2 is a minimum.
Proof: Clearly, b £ /2 (A) there exists no z € 5 satisfying
Az =b. Suppose b € ﬂ(A) and let z be any solution of Az = b. Put
= + - —-L !
z=z %z, z, '€ Y —(A), z, € JUA).
If z' is any other solution, put
LS BT 1 —,'__L ! y
z z) + 23, z) € L—(A), z) € 7L(A)
Then
Az - Az' = A(z-z') = 0
which implies that (z-z') € 7.(A). Since
- L - ' + - 1
zZ -z (z1 z l) (z2 z 2) € 72(A)
With zl,z'1 67/47,—‘_ (A), we must have z, = z'l. That is, z, is
uniquely determined. Since Az1 = b, and || z1||2 < HzHZ, z, gives
the desired minimum.

Now, suppose 2 € '7Z-J-(A) and AZ = b. Then 2 must be the

same as the z, just determined. |H
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Proposition 4.2: If A is as defined in Proposition 4.1, then a suf-

ficient condition that the problem

2
min || z]|
subject to Az = b
b
has a solution is that b € ﬁ’,(AA ). The minimum value is then given

by 8 =A (AA ) b,

e

Proof: Recall that by (AA*)—l we really mean (AA*);1 where
(AA* )r is the restriction of AA#< to K—J-(AA*). Since ,;{f(AA*) c
(./:C(A) the condition is sufficient by Proposition 4. 1. Since ,{?(AA*)
c K (A*) and j7 [(AA*)'I] = /@(AA*) n */&—L(AA*) the expres-
sion for £ is meaningful. Note that
AS = Ala"aA™) b - b

From Proposition 4.1, 2 provides a minimum if and only if
2 € 72-l—<A) - RA"). Buthe RA")yc 2A%), so s must
provide a minimum. Hl

For the remainder of this Section “¥. and f?*fz are to be

1

finite-dimensional Euclidean spaces. For now let Zg'l and "735/2 be

N and M-dimensional, respectively, so that y and n are random
M-vectors and h is an N-vector. Let {¢i}’ i=1l,...,N, be a c.o.n.s.
for ”]O’l with the special property that {¢l, cees q)p} spans 7Z—L(X),
where p (p <M,iN) is the rank of X. Then

N
2 4 *
Ellcall® = 2 ®cTe,CTp).

i=1

sk
Put ci =C ¢i, so that
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N N .
Ellcnl|? = 2 ®Re.c) = 2 [|RYZ%e|l4 4. 6)
i—l 1 1 =1 1

[N

Now the condition (4.2) that CXh = h, implies that CXh = CX(h,+h,)

= hl’ so CX is the orthogonal projection on 77 —L(X). But then

S ¥ %
CX = (CX) =X C so that

X'C qb - C)((p - (p, 1_1,...,p
i 1 1'
OI)

= 0, i=p+l,...,N. (4.7)
The problem of finding the LUMYV estimator C is thus equiva-

lent to finding Ci' i=l,..., N, to solve the problem:

N
minimize Z HRI/zciH‘2
i=1
sk
subject to X c, = ¢i, i=l,...,p

= 0, i=p+1,...,N.
1

We can individually minimize each term H R subject to

3k

X ¢, = <z>.1, i=1l,...,p, as we shall show immediately, and we can

1/2 Hz
¢

certainly minimize each term HR , i=ptl, ..., N, by setting

c, = 0. The < that yields these minima will then determine the esti-

mator C.

To minimize HRl/2 il ‘ 2

d 1 -1
= R /ch, so that ¢c. = R~ /Zzi (which is defined since R is stric-

sk
subject to X c, = ¢i we first put

zZ,
1

tly positive definite). Then the problem is to minimize H ziHZ sub-

-1 2
ject to X R / z, = cpi. In the finite-dimensional case which we are
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1

* _1/2 *_-1/2 * -
considering, #(X R 12y o px*r Y% - px*rIx)

* - : * -
= (/Q(X R 1X), so Proposition 4. 2 applies with A = X R l/Z,
and
- * . - -1
,z\i - R 1/2X(X R 1/.2R 1/2X) 5.
- R M2k x*rIx)! ¢, i=1,...,p. “4.8)

P P A\
Thus, the minimizing c, are

8, = M2

1

- R -
- R xR %) lqbi, i=l,...,p

"

0, i=p+l,...,N. 4.9)
Since éi = Cq‘(})i,

A - sk - -
& - rilxx*r ) p

%k

where P is the orthogonal projection on ) —L(X) = (X )
= 2 rRX). Then

sk - - <
Px R ') X R-!

xR Ix) xR 4. 10)

A
C

This develdpment is summarized in the following proposition.

Proposition 4. 3: If /"')‘/'1 and 2?492 are finite-dimensional and R is

strictly positive definite there always exists a unique LUMYV estimate

for h1 given by

f - x'r i) xRl (4.11)
The error variance is
2 ¥ 21 % -
Ellﬁ—hlll = Trace[(X R lx ) 1]. (4.12)

A
Proof: That h1 as given by (4. 12) is LUMYV has already been proved.
The minimizing element /z\i given by (4.9) is unique by Proposition

. A
4.1, and the uniqueness of é and hence h follows obviously. Finally,
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from (4.5)

E\\ﬁ-thz E||Cn||? = Trace(@rE™)

1

o -1 % - ¥ - -1
Trace[(X R™'x) xR Ixx r71x)7!]

Trace[(X R~ IX)' 1]
1

¥ - -
where by (X R X) ! we mean as always the inverse of the restric-

tion to A(X R X). |||

Corollary 1: The proposition still holds if only %'2 is finite-

dimensional.
Proof: In this case / —L(X) is necessarily finite dimensional, and
the proof is unchanged except that there are now an infinite number
of c; to be set equal to zero, corresponding to those ¢i that lie in
72.(X). |||

The case where only 7 is finite-dimensional is not so sim-

1
ple since R~ 1/2

becomes an unbounded operator. For this case it
is necessary to go to the more general theorem of the Appendix.

Corollary 2. Not only is

AN 3 S
Trace ((C R € ) < Trace (CRC ) (4.13)

where C is any unbiased estimator, but also,

A A% A

CRC < CRC : (4. 14)
in the usual ordering of nonnegative self-adjoint operators.

N
Proof: The inequality (4.13) is just one way of saying that C is of

. A A 3 3
minimum variance. The inequality (4. 14) says that (CRC f) <(CRC f,f{)

A X

, A
for any f € & But we actually proved that (Réi, éi) = (CRC ¢; ¢i)

1°
was a minimum for each ¢i amongst the class of unbiased estimators

C. Since {¢i} is a c.o.n.s. this establishes (4. 15). |||
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Corollary 2 says that we actually proved a little more than we set
out to show. It has the following useful implication.
Corollary 3: Let B be a linear transformation from 7‘{1 into 7 3

A N2
The unbiased linear estimate h of h, that minimizes E|] Bh, - Bh||

A
is given by h=h, the LUMV estimate. In particular, h minimizes
EHXh1 - Xh'|| . over the class of linear unbiased estimates.
Proof: Leth'be an unbiased linear estimate, h' = Cy. Then
CXh1 = h1 and
2 2
EHBhl - Bh'||® = E||Bh, - BCXh, - BCnl|

E|| BCnl|

X%
Trace(BCRC B ). 4.15)

st

Now, for any f € A by Corollary 2
sk * % sk
(BCRC B f,f) = (CRC B {,B f{)
A Ak A
> (ERE B £, B 1)
A AE K
= (BCRC B f{,f)
%k ok A 3k ¥k %
Hence BCRC B > BéRC B , which implies that Trace (BCRC B )
A AX X%
> Trace (BCRC B ). 11
N * -1,,-1 C s
Remark. The formula (4.11) for h involves (X R ) = which is
meaningful as the inverse of the restriction of a transformation.

However it cannot be directly interpreted as a matrix inverse unless

72 R 1x)

* 1 * - *
0. Since 71—L(x R 'X)= A(X R )= £x*R 1/2),
* -1 y -1/2 :
7UX R X)) = 7LR X) = 72(X). If 72(X) # 0, an orthogonal
transformation of coordinates in /3/1 can be used to put the matrix

. * -1 . .
representing X R X in diagonal form, from which a matrix repre-

sentation of (4.11) is obtained easily.
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Let us now consider the problem of obtaining a recursive solu-

tion for the LUMYV estimation problem in the finite-dimensional case.

We consider the system

B1h1+n gBh+n

<
—
T

1 1 1
d
= h + = h +
v, = Byo, By tm, = By, jhtn,
d
= + = +
y3 = B3dy 6, 4h) +n, By¢; b+,
=B ¢ o} o} h, +n d B ¢ h+n
Yn =~ Tn®n,n-1"n-1,n-2""""2,1°1 n n'n,l n

which equivalently can be written in the state variable form

hi+1 - d’i+1, ihi

"

B.h. + n, i=l,...,n
ii i

e

i
hl h

(Note that the subscripts no longer refer to projections.) We assume
that each‘ hi is an m-vector, each Bi is a kxm matrix, each ¢i+l, ;
is an mx m matrix, and each n, is a random k-vector. The noise

vectors n. are taken to be uncorrelated, to have mean zero, and to
i

have the same covariance operator (or matrix) R, where R is strictly

positive definite. We can define X1 ‘2 Bl’ X2 C=1 B2¢2’ P Xn
(=1 Bncbn, 1 S° that
yp =X ptn
yo = Xph tm,
4.16)
Yn = an, * “n
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The system of equations on (4. 16) can also be written in the

form
In = X" TR,
where(l)
V1] ~X1— ™) ]
In ‘2 : )'S'n c._l ’ ®n T
7n] [n "n

The LUMYV estimate for h is given by

A * -1 1. % -1
hn - ()'Sn&n )’Sne }‘Snf'{'n Yn #.17)
where
e —
O
R, = .
. -l -
. O
-1 ‘.
R, = .
O R-l_

(l)The "partitioned matrix'' notation is to be understood as a short-
hand notation for defining ¥, X » 1, as in Section 3. Thus X is a
linear transformation from m-dimensional space into kxn-dimen-
sional spaceI defined in an obvious way. With this interpretation,
(:g*R’l}g )™ " is meaningful, as before, as the inverse of the restric-
tion of annoperator.



Put P_ = ()gn};n }gn) and b = )Sn R ¥ Since
* -1 - Xk -1 ¥ -1 *_ -1
X, R, = X R X, R . X R ]
we have that
- - * -
P1=P1+XR1X (4. 18)
n n-1 n n
and
S |
b =b +X R 'y (4.19)
n n-1 n n
From equation 4. 18)
- - * -
p p lp =P[P1+XR1X]P
nn n-1 n n-1 n n n-1
Hence
L |
P =P +PX R X P (4. 20)
n-1 n n n n n-1
and

p x'rR V2. p x RV 2p4r Y25 p
n n n n

n-1""n

* _-1/2
IXnR I.

The inverse to the bracketed expression exists (see Section 3) and

* - - ¥ - - -
P XR1/2[1+R1/2XP XRl/Z]lRl/ZXP
n-1"n n n-1"n n n-1

¥k -
- px'R xp (4.21)
n n n n-1

Then from equations (4.20) and (4.21) one can obtain
- -

x*r" 1/ 2g"2x p

1" n n n

P =P -P
n

* - -1 -
<*r 1/2] 1R 1/2X P
n n-1 n n n

-1

-1
(4.22)

A
Using equations (4.19) and (4.22) in the expression for hn yields
AN
h = - % =1/2p -1
2 {Pn_l P 1X, R [1+R" /zxnpn

L rV25 p } )(b
n n-1 n-

* -
X'R 1/2]1
- n

+ X*R“1
1 n yn§
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¥ _-1/2 -1_-1/2
= - X P b
Pn—lbn-l Pn-anR . [ TR n n-1 n-1
+p xR} p x*rRYVY g V2x p x*r!
n-1"n y'n_ n-1""n n n-1n Yn
N sk - -1 - A
= h - P XRI/Z[]RI/ZXQ
“n-1 n-1"n n~n-1

X . - -
+ P XRI/Z{I-[ ]1R1/2XP
n-1""n n n

¥ _-1/2y_-1/2
X R }R y

n

-1
For operators A such that [1+A] exists we have

'}1 - [1+A]'1A} - [1+A]"} [1+A-A] = [1+a]™!

Therefore,

A * - -1_- n
b o=8% . -p x'RVZ g lgtl2g g
~n ~n-1 n-1"n n~n-1

3k - - ¥ o - -
+ P X:R /211 r l/zxnp x*r-1/21g-1/2,

n-1 n-1""n n
A * o - * - -
= h -P XR1/2[1+R1/2XP XRl/z]l
~“n-1 n-1""n n n-1""n
- A -
- [R l/th 1'R1/2Y]
- n
or
h @1 + K | /1\1 ] 4.23
“n = *n-1 Kn Yn - Xn"'n-l (4.23)
where
K =P X [R+xP x1}! 4,24
n n-1"n n n-1"n (4. )
and from (4.22)
Pn = Pn-l - Kn Xn Pn-l 4. 25)
Hence, to obtain the recursive LUMYV estimator we start with
A %ol -1 % -1
hl = (X R ) X R Y, (4.26)
and
* -1, -1
Pl = (X R X) 4.27)
and apply the recursive relation for n=2,3,... . The error variance

at the nth step is
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2 { x _1. -1
Ellh_-h/|® = Tr{X_ R X)) "}
- T {[X*R'lx xR L 4.28)
= 4T 1 1 2 2 .

* -1
+XR1X] }
n n



5. A MODIFIED LUMV ESTIMATOR

Each term in the model
y = Xh+n (5.1)

is to have the same interpretation as in Section 4. It is now supposed, how-
ever, that there is prior information that the unknown h belongs to a known
bounded subset of {@1. This information is used to modify the LUMV esti-

A A
mate h so as to reduce the mean-squared error. The new estimate, h, is
biased, so that its mean-squared error becomes a function of the true value

of h, but its mean-squared error will be seen to be not greater than that of

A
h, for any h.

It will be convenient to use the term rectangular parallelopiped (r. p- ),
defined as follows. In a separable Hilbert space N let {(,Ui} be a c.o.n.s.
Any subset ﬁ of A of the form

B = fhe #%: |(h,¢i)§bi, i=1,2,...} (5.2)
where {bi} is a bounded sequence of nonnegative numbers will be called an
r.p. with respect to the 4Ji.

Suppose now that ﬁ = Cy is an LUMYV estimate for hl; i.e., either the
conditions of Proposition A. 4 are satisfied so that C is the S given by that
proposition, or, in the finite-dimensional case, C is simply the é of equation
(4. 10). The operator CRC%’< is self-adjoint and compact (since C is bounded

1/2 . . .
and R / is Hilbert-Schmidt), so by the spectral theorem for such operators

one has

CRC g, = "2‘14’1' i=1,2,... (5. 3)

. . 2
where the eigenvectors from a c.o.n.s. and the eigenvalues o, are real and
1

35
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nonnegative (zero eigenvalues are allowed if necessary so that the set {4;_1}

s
can be complete). Furthermore, since CRC has finite trace,

3 X 2
Trace (CRC ) = i; o% < oo, (5. 4)
The LUMYV estimate can be written
A
h(y) = Cy = CXh+Cn = hl + Cn (5.5)

and also of course it can be expanded in the q;.l,

A N
hy) = 2 (h(y), 4,)0,- (5. 6)

i

Equation (5.5) can be interpreted as describing a trivial case of the linear
A

model for which the linear transformation is I, the ''observation''is h(y)

sV}

and the 'moise''is Cn. Note that '/:Vl and 7?‘2 have both been replaced by

7( (X). It can easily be shown that, even in the infinite-dimensional case,

the LUMYV estimate for h1 in the model (5.5) is just the observation. Thus
A

there is no ambiguity in writing h(y) for the observation. The covariancelI

e

of the new noise Cn is the operator CRC "; in fact,
(Ta,v) = E(u, Cn)(Cn,vVv)

E(C u,n)(n, C v)

il

ke 53 :
(RC 4,C v) = (CRC u,v). (5. 7)

It follows that

2

E(, Ca)(Cn, ) = (CRC 4y, ) = o5p (5. 8)

i) °
Now, starting from the model (5.5) we consider a completely arbitrary

~

linear estimate h(y) of h, and expand it in terms of the LJ,J.l.

1
Thus,

~ A
h(y) = 2 2, B, 4 (5. 9)

i,j
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where the a.. are real numbers. The formula (5.6) is of course a special
1)

case of (5.9). The error in }~1(y) is

ﬂ(y)-hl [(a Db )+ Z) L ¢)+Ea (Cn, q;)]qJ (5. 10)
J%l
From (5.8) and the fact Cn has mean zero it follows that the mean-squared

error is given by

Ellﬁ(y)_hlnz Z) (o - Dby, 8) +20 a, N W+ Za 2] a";t . (5.11)
1
J%l J

The equations (5.9), (5.10), (5.11) still apply to an arbitrary unknown h1

and to an arbitrary linear estimate. Now we impose the condition that h1
belong to a known bounded subset of 7’Z,—L(X). Then there is a set 6 which
is an r.p. with respect to the q;i such that h1 must belong to ﬁ (of course,
the '"fit'"may or may not be very good) and we have l (hl; q;i)l < bi’ i=1,2,..

From (5.11) it then follows that

E||h(y)-h, || < Z)[|a 1, +Z) |a,. Ib] +27 a o’ (5. 12)

i,j
J%l

for all hl € 5 . The upper bound given by (5. 12) is minimized by putting

3 = 0, i#j, and a, = bzi/(b?"i + 0'2.1). The linear estimate that results when

these values for a_j are used is,
1

2
A b
h(y) = 27 —J—-Z > (Cy, y.)., (5.13)
: : ) )
j bj+a'j

and from (5. 12),
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)2 .
EHHwh|\ E(l 16?2 + 2 ()0
+o i b.+o .
1 1
2 .2
o. b,
B S (5. 14)
i b, to,
1 1
From (5.14) we have that
E\\ﬁ(y)-hlllz - Tr(CRC") = U o%, (5. 15)

and comparison with (5. 1)) then gives

" A
£|[hy) - b |1% < Ellhy) - b ||

for all h1 € 6 .
A
It cannot be claimed from what has been done that h(y) is optimum in

any very meaningful sense, because the upper bound on mean-squared error

given by (5. 12) may not be tight, and because the elementary minimization
A
carried out was on an upper bound, not on the error itself. Still, h(y) would

A
appear to be a good estimate. Since h(y) is a linear estimate it necessarily

will yield values for some observations y that do not belong to é . It can

be improved, as can h(y), by being truncated to 6, but this of course makes
A

it nonlinear. A truncated estimate h, that has uniformly smaller error

b
A

variance than h is defined by:
A
h'b E (5.16)

where,
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b2

b, if ——2—1——2 (Cy,b.) > b,
j blre? j j

bZ
a = - b, it 515 (Cy,b) <- b,
) b.t+o. ) )
J J
b
—2-'1—2 otherwise.
b.to .
Jo)
A _
The estimate h is discussed in [R-2] and [R-3], where an application is made

to identification.



APPENDIX

In this Appendix we obtain a solution to an infinite-dimensional LUMYV
estimation problem in a Hilbert space setting. A proof that is fundamentally
the same but different in detail is given in [B-1], where the problem is at-
tached to a systematic study of pseudoinverses.

In what follows the operator A is required only to be closed and densely
defined, instead of closed and bounded as in most of what precedes. If A is
closed and densely defined then it is reédily verified that 7?(A) is a closed
linear subspace, and also that A is densely defined in 7Z-J—(A). We do not
give specific references, but the operator-theoretic background for all that
follows is in [R-1]. To begin with we again note that if A is only closed and
densely defined, the conclusions of Propositions 4.1 and 4.2 are still valid
since the respective proofs do not require that A be bounded, but merely
that 'n(A) be closed.

Before going further, we need a preparatory lemma:

Proposition A.1: If A is a closed, densely defined operator from %/1 to
¢ e
73/’2, then AA restricted to JC(AA ) is self-adjoint and 1:1, so its in-
verse exists and is self-adjoint.
¥ dok 3k
Proof: We have the fact that AA =A A is self-adjoint and hence closed

and densely defined in %/2, so we can write

%, = ABA") (D 74

E
Letf € /2(AA ) and write

S % . *
o, £ € C(AA"), £, € 7UAA)

% % %
Then f, € 5O(AA”" ) and g(:i-AA f, belongs to J(AA ) ¢ ﬂ(AA*). Hence

=f +
fflf

¥ . %
AA provides a 1:1 mapping from O (AAT ) n ﬁ(AA*) onto

40
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* “ ; %*
(Ran™) ¢ E@aA™). Thus (AA") ! is defined on - A(AA"), which is dense
* * ¢ * |
in RAA¥), ana ALAA™)Y = P@a™)n R@AA"). (AA) will al-
* *
ways mean the inverse of AA restricted to ﬁ(AA ) as indicated.
* * -1 * 1
Let T be the restriction of AA to A (AA ). ThenT = (AA")
as defined above. T is also closed and densely defined. Let fand g € 9’(T)
3 4
= 9(AA ) N ﬂ(AA ). T is symmetric since (Tf,g) = (f, Tg). Thus
A* sk
Tc T . We now want to show that T> T . We can start by observing that
sk
(Tf,g) = (£, T g)
sk
for allf € (T), ge fO(T ). Also, iffe % (T)
*

(Tf,g) = (AA {,g)

Let f' be an arbitrary element in 9(AA*) and write
&

o= f1 4 f ! 1

f fl f2’ f1€ AT), fze 7. (AA ).
Then

s 3
(AA f',g) = (AA f'l,g) = (Tf'l,g).
% * . * '

Suppose (Tf,g) = (f,g ) holds for some g¢ ©(T)andg € (L(AA ). Since

. . . * *:
we are working in the Hilbert space ﬁ(AA ), we must have g € ﬁ(AA )

. *
for every f € 4 (T). Then for every f' e S(AA )s

3 * *
(AA f',g) = (AA f'l,g) = (Tf'l,g) = (f'l,g )
S -t g
2’
* *
= (f'sg ) - (flz,g )-
* * * *
Since g < @(AA ) and A .(AA ) = 72,—1- (AA ), we must have
(t.,g7) = 0
2’8 ) =
Thus

S kS
(AA f',g) = (f'.g )
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where g ¢ P(T), butg e faa™) - 72,—L (AA™) for all f'. But since
R(T)= P (AA*) n (R,(AA*), we must have g ¢ Q(AA*) which is a contra-
diction since AA"< is self-adjoint. ‘H

The covariance operator R for the Hilbert-space-valued noise r in equa- |

tion (4. 1) is a bounded self-adjoint, nonnegative definite operator on ﬂz,

which, as mentioned before, is assumed in addition to be strictly positive

1
definite. For further discussion see [B-1, Appendix B]. We note that R /2

exists and is self-adjoint, and that (Rl/z)~l also exists and is self-adjoint

(hence closed and densely defined). (Rl/z)_1 may be unbounded. In fact we

1/2

éventually make one more requirement on R, that R be Hilbert-Schmidt

/2

-1
(so that R is trace class), which ensures that (R1 ) is unbounded. Since

R1/2-1 -1.1/2 -1/2= R1/2

-1
) = (R ") we can write R .

(

( )

In the material to follow we refer to three related minimization problems,
listed below as (A), (B) and (C). Solving problem (B) is the essential step in
getting the LUMYV estimator. The problems are:

minHZHZ

(A)
subject to Az = b
min (R§, §)

(B)
subject to D§ = b
min || ]| %

(C)

subject to DR~ 1/Zz =b

where R is a bounded, self-adjoint, strictly positive definite operator and D

is a bounded operator from ﬂ?’z to ,ﬁ;?’ll. Note that (B) is equivalent to the

problem
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L/2g )2

min || R

subject to D§ = b.

Proposition A. 2: Problems (B) and (C) are equivalent in that if either has
a solution, so does the other. If §o and z  are the respective solutions,

they are related by

. 1/2 _o-1/2
I R éo’ &O =R z -
Proof: Suppose (B) has a solution go. Put z = R1/2§0 Then
DR-1/2Z _ DR'I/ZRI/Zg - DE =b.
o o o
- -1/2 -1/2 D .
Suppose z also satisfies DR z =b. Put § =R z, which is certainly
defined if DR" 1/2z is, and note that D =b. Then
2 1./2 2 1/2 2 2
2 17 = HR7E 117 < HRPE(1T = [lal]”
So z = R1/2§O provides a solution for (C). Now, suppose (C) has a solution
z_. Since R-l/zzo is defined, we may put § = R-l/zzo. Then
D = pr™ 2, - b.
o o
Suppose § also satisfies D§ =b. Put z = R1/2§. Then
DR-l/Zz - DR-I/ZRI/Zg - b
1/2 2 2 2 1/2, 2
and IR 1T = M= 117 < l=l1® = IR "¢]]|
-1/2 . .
so §O = R z_ provides a solution for (B). ]

Let us now try to relate problem (C) to problém (A). From the facts

1/2 is densely defined and B(D) = %‘!2 we have that DR 1/2 is densely

- %
l/ZD

that R~

defined; however it need not be closed. On the other hand, R need

1/2

- *
not be densely defined, but it is closed since R is closed and D is

bounded. We shall have to introduce some additional hypotheses and we

- * _
choose to require that R I/ZD be densely defined (this is restrictive, but

- *
1/2D

not too much so, see [B-1, Section 2]). Then R is closed and densely
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-1/2_ % * . . .
D ) exists and is closed and densely defined, and

A is a closed linear extension of DR’ 1/2 (the condition has

1/2

defined, so A = (R

A -r1/2p*,

effectively guaranteed that DR~ has a closed extension).

Suppose now we consider problem (A) with the operator A as just de-
fined; this problem can be regarded-as a modification of (C). From Propo-
sition 4. 1 we know that (A) has a unique solution if be /(A). Call this solution
z_a weak solution for (C). Problem (C) may not actually have a solution be-

-1/2

cause DR z  may not be defined. If a weak solution z happens to be con-

tained in @/(DR_I/Z), then problems (C) and (B)' do have proper solutions

-1/2
z

with §O =R o

b3
From Proposition 4.2 we know that if b € /%(AA ), then a solution exists

to (A) with
£ * -]
z, = A (AA ) b,
Furthermore, if R-l/zz0 is defined, then (B) has a solution
- - % * -
£, = R 1/220 = R7V2a% an®) L.

In a sense this is the answer for problem (B) when the only condition imposed
. -1/2_* . . .

is that R D be densely defined. It is not satisfactory, however, because
a weak solution is not guaranteed to exist or to be a solution when it does

sk
exist, and even a weak solution may not be given by the formula if /C (AA )

is not closed.
Thus, in order to be sure of getting a solution for problem (B) that holds
for all b e ;‘/Zs/l we need to introduce further conditions that will make »ﬁ (A)
5 * . ~ -1/2
closed (and hence, 4 (AA ) closed) and will guarantee that z e (R ).

We have:
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Proposition A.3: Let Wl and {b/z be Hilbert spaces. Assume that:

(2) R is a bounded, self-adjoint, strictly positive definite operator on %/2.

(b) D is a bounded linear operator from WZ to %/1 with % (D) = ?/’2 and

(D) = [ D).

-1 %
(c) R 1D is densely defined on w .

1
- b
1/2D 1/2

* * - -
(d) With A = (R ) , the operator (AA ) lAR is bounded.

1 -1/2

% ;
Then (AA ) AR has a continuous extension S to all of # , and problem

2
% *
(B) is solved by éo =S b. This solution is unique. Furthermore, 72(S )

sk
= 70D ).
* -
Proof: We already have by Proposition A. 1 that (AA ) ! (interpreted as the
—

restriction to ﬂ(AA )) is self-adjoint. From (a) and (b) it follows that

* 1 %
(AA ) " is a bounded operator on the subspace ATV ). In fact, since D

* * %
has closed range, so also does D . Then D restricted to 72—1-(D ) is

-1/2 % Ln*
bounded from below, and R D is bounded from below on -77—~(D ).
- % _ % - * *
But 72 (R 1/ZD )= 72(D ) since R 1/ZD y = 0 implies D y = 0. Thus
* -1 * - *
A =R /ZD restricted to 7’;’,—'—(R 1/ZD ) is bounded from below and hence

s
has closed range. This implies that A and AA have closed range (in

P * — C . . * -1,
fact A (A)= JZ(AA ) = J (A) ) which in turn implies that (AA ) is

b3
bounded. Since it is closed and has domain dense in A4 (AA ), it is defined
%k
everywhere on /L(AA ).

Now,

(AA*)-IDR-I/ZR_I/Z = (AA*)'IDR

, and /Z‘Z(DR'l) c (D,R_l/z_)c (A), so

1/2 -1
e | .

* 1. -

(AA" )" "AR

But B (DR—I) is dense in A
1/2

2
* - -
(AA- ). 1AR is densely defined. By (d), it then has a continuous extension

S to all of #2'
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We show that SD*, which is a bounded operator on ﬁz, is in fact the
sk
orthogonal projection on A(AA ). We have that

- b ¥ o - - b
1/2D Ve 1DR 1/2R 1/2D

* * -1
SD o (AA ) AR
-1 %
and that the domain of the operator on the right is equal to @(R 1D ),

’ -1 % - s
which is dense in %‘1 by (c). Letg £ %(R Ip¥)a PR 1/25%) " then

s k - - LS
sp*g = (aa¥) tar /2p%g
* 1. %
= (AAT)AATg = g
o Lok o :
where g, is the projection of g on 72 (AA ) = JUAA ). Since SD

sk
agrees with the orthogonal projection in question on a dense subset, SD
% *
is equal to it. Then SD is self-adjoint, so DS 1is also the orthogonal pro-

s
jection on A (AA ).

&«
To show that §O =S b solves (B) we show that z = Rl/zgo solves (C),

and invoke Proposition A.2. Clearly,

-1/2Z - DR-1/2R1/.2g

5K
= DS b = b,
o o}

DR
so it remains to show that z provides a minimum. This will be established

if it can be shown that z € 7?—L (A). For then, by Proposition 4.1, z will

minimize H zH 2 subject to Az = b and a fortiori z, will minimize Hz” 2 sub-

- * * -
ject to DR 1/‘Zz =b. Soletye 7(A); then since (AA ) 1Ay = (AA ) l-
- 2
AR l/ZRI/”y' = SRI/Zy, it follows that SRl/zy = 0. Hence
1/2_%* 1/2
(2, y) = R,y = m,srZy) = 0

so that z € 7’2"L (A).
The uniqueness of z, follows also, a fortiori, from the uniqueness guar-

anteed by Proposition 4. 1.
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%X 3
Finally, we verify that 7(S )= (D ). The bounded, densely

* -1 -1
defined operator (AA ) "AR /2

flaa®) ]

X%
that A(AA")

3
is a mapping from 742 into . (AA ), since

* ¥ _
2 (AA )r c A(AA ). But we have seen earlier .

A ), and also that YL(A*)? W,(D*). Consequently,
ﬁ,(AA*) = R(A) = n—L(A*) = nJ—(D*). Since S is the continuous

* -
extension of (AA ) 1AR 1/2

—_— * 3
, it follows that ({(S) = /n—l—(s ) c ]’L—L(D )
s % - * %
or that YUS )o 7U(D ). On the other hand R(S)> R(AA ) = n—J-(D )
% * * A
since SD is the orthogonal projection on m(AA ). Thus, 77(S )c 7LD ),
which establishes the equality. Hl
From the solution to problem (B) as just provided, the LUMYV estimator
is readily obtained, almost exactly as in the finite-dimensional case discussed

in Section 4.

Proposition A.4: Let 7’/1 and WZ be separable Hilbert spaces, and let

y = Xh+n
where h € ’Hl, X is a bounded operator from 5‘7/1 into '/3"2, and n is an }2?‘2-

valued random variable with mean zero and covariance operator R. With

sk
the correspondences R ~ R, X ~ D , assume that the conditions (a), (b), (c),
/
(d) of Proposition A.3 are in force and also that R1 2 is Hilbert-Schmidt.

- Then a unique LUMYV estimate for hl exists and is given by

N

h(y) = Sy
where S is the operator defined in Proposition A.3. The variance of ﬁ(y), i.e.
E||h(y) - h‘lllz, is equal to Trace (SRS ).
Proof: Let {¢.1}, i=1,2,..., be a c.o.n.s. for “73/1 with the special property
that a subsequence of the ¢i spans 7’{,—1- (X) and the remaining ¢i, of course,

span 77 (X). Let C be an unbiased estimator (C must be a bounded linear
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operator as discussed in Section 4). Then, with }:(y) = Cy, we have as in
(4.5)

El|y)-h 1% = Ellcall® = 2 (CRCT4,0) <,
where C must satisfy CXh1 = hl for alll h1 € ‘n—L(X). We wish to find
C = é\ such that EH?CnHZ is 2 minimum. Again we put c, = C*¢.1 and deduce,
as in Section 4, that the problem of finding the LUMYV estimator is equivalent

to finding the ¢, = gi that solve the problem:

minimize E H lezcil | 2

1* _-L
subject to X ¢, = ¢i, ¢.1€ Yo (X)

0, ¢, € 7UX).

As in the finite-dimensional case, this problem can be solved by minimizing
individually each term H Rl/zciH2 subject to either X*ci = ¢i or to

X*ci = 0, respectively as 4>i € 7 —L(X) or ¢i € 71(X). In fact, for the latter

case we take c, = 0, and for the former we apply Proposition A.3. Thus,

the minimizing éi are

A ¥ .

¢, =8 e, b, € 7t

= 0, ¢. € 7(X).
b3
But from Proposition A.3 we know also that 7.(S ) = 72(X); hence we can
. p| % A ~ A

write simply c, = S ¢i for all i=1,2,... . Since c, = C ¢i, C =S as claimed,

and

Ellnty) - by |1® = 2 (5RS™4,.4.) = Trace(srs”). ||
1
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* oo
Remark: SRS = (AA% ) lP, where P is the orthogonal projection on
sk
O (AA" ). In fact,
* * - -1 * s *
srs® 5 (aA¥) AR 12Rs* - (an¥) lar!/Zs

* 1 A
1/2R /2S

*k o] K o] Gk 3
> (AA ) X R = (AA ) X S .

1

* _1 % % * ® o1 %k
But (AA ) "X S is everywhere defined, so SRS = (AA ) X S . Since

* Kk
X S =P, the assertion follows.
Remark: It should be noted that Corollaries 2 and 3 to Proposition 4. 3 still

hold in the infinite-dimensional case.
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