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Abstract
In this paper we study measure preserving flows associated with nonholonomic
systems with internal degrees of freedom. Our approach reveals geometric
reasons for the existence of measures in the form of an integral invariant with
smooth density that depends on the internal configuration of the system.
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1. Introduction

In this paper we study conditions for existence of an invariant measure for nonholonomic
systems with symmetry. If present, the invariant measure results in the absence of
asymptotically stable equilibria and periodic solutions of the system under consideration and
thus leads to a more Hamiltonian-like behaviour of the trajectories (see Kozlov (1985) and
Arnold (1988) for further details).

Kozlov (1988) and Jovanović (1998) study nonholonomic systems without shape variables
and obtain a criterion for existence of an invariant measure in terms of the structure constants
of a Lie group, which is the configuration space of the mechanical system in this case, and the
components of the inertia tensor of the system. The dynamics of these systems reduces to a
subspace of the Lie algebra of the configuration group and the measure is in fact the standard
volume on this subspace. In earlier work Blackall (1941) obtained conditions for existence of
integral invariants of analytic nonholonomic systems without symmetry.

In this paper we consider smooth (but not necessarily analytic) systems with internal
degrees of freedom, i.e. we assume that both the shape space and the symmetry group are
nontrivial. We derive conditions for existence of an invariant measure in the form of an
integral invariant whose density depends on the shape configuration of the system only. This
means that this density is a function of the shape variables in a local trivialization of the reduced
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phase space of the system. Of course, the density of the integral invariant depends on the phase
coordinates used. In particular, it depends on the choice of the basis in the Lie algebra of the
symmetry group of the system.

Our approach shows that there are geometric reasons for a nonholonomic system to possess
an invariant measure of this kind. The method we develop here gives an explicit formula for
the density of the integral invariant.

This study is motivated by many interesting examples of nonholonomic systems including
the Chaplygin sphere (Kozlov 1988, Chaplygin 1903) and the Routh problem (see Routh (1860)
and Zenkov (1995)), as well as the so-called LR systems (see Veselov and Veselova (1988)).
In particular, our approach links the existence of the invariant measure of the Chaplygin sphere
with the conservation of the vertical component of the angular momentum observed in this
system.

The exposition is organized as follows: in section 2 we review the theory of nonholonomic
systems and discuss the role of symmetries. We also derive the reduced equations in an
arbitrary (as opposed to an orthogonal) body frame and give a criterion for the nonholonomic
and mechanical connections to coincide. In section 3 we briefly discuss some of the theory
of measure preserving nonholonomic systems without internal degrees of freedom. Our main
results are presented in section 4. To illustrate our theory, we treat a system consisting of the
three-dimensional Chaplygin sleigh coupled with an oscillator, and in addition we discuss the
falling disc, the Chaplygin sphere and the Routh problem.

2. Equations of motion of nonholonomic systems with symmetries

In this section we briefly discuss the dynamics of nonholonomic systems with symmetries. We
refer the reader to Bloch et al (1996) and Zenkov et al (1998) for a more complete exposition.

2.1. The Lagrange–d’Alembert principle

We now describe the equations of motion for a nonholonomic system. We confine our attention
to nonholonomic constraints that are linear and homogeneous in the velocity. Accordingly,
we consider a configuration space Q and a distribution D that describes these constraints.
Recall that a distribution D is a collection of linear subspaces of the tangent spaces of Q; we
denote these spaces by Dq ⊂ TqQ, one for each q ∈ Q. A curve q(t) ∈ Q will be said to satisfy
the constraints if q̇(t) ∈ Dq(t) for all t . This distribution will, in general, be nonintegrable; i.e.
the constraints are, in general, nonholonomic.

Consider a Lagrangian L : T Q → R. In coordinates qi, i = 1, . . . , n, on Q with induced
coordinates (qi, q̇i) for the tangent bundle, we write L(qi, q̇i). The equations of motion are
given by the following Lagrange–d’Alembert principle.

Definition 2.1. The Lagrange–d’Alembert equations of motion for the system are those
determined by

δ

∫ b

a

L(qi, q̇i) dt = 0,

where we choose variations δq(t) of the curve q(t) that satisfy δq(a) = δq(b) = 0 and
δq(t) ∈ Dq(t) for each t where a � t � b.

This principle is supplemented by the condition that the curve itself satisfies the constraints.
Note that we take the variation before imposing the constraints; that is, we do not impose the
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constraints on the family of curves defining the variation. This is well known to be important to
obtain the correct mechanical equations (see Bloch et al (1996) for a discussion and references).

The usual arguments in the calculus of variations show that the Lagrange–d’Alembert
principle is equivalent to the equations

−δL =
(

d

dt

∂L

∂q̇i
− ∂L

∂qi

)
δqi = 0 (2.1)

for all variations δq such that δq ∈ Dq at each point of the underlying curve q(t). One can of
course equivalently write these equations in terms of Lagrange multipliers.

Let {ωa, a = 1, . . . , p} be a set of p independent one forms whose vanishing describes
the constraints. Choose a local coordinate chart q = (r, s) ∈ R

n−p × R
p, which we write as

qi = (rα, sa), where 1 � α � n − p and 1 � a � p such that

ωa(q) = dsa + Aa
α(r, s) drα

for all a = 1, . . . , p. In these coordinates, the constraints are described by vectors vi = (vα, va)

satisfying va + Aa
αvα = 0 (a sum on repeated indices over their range is understood).

The equations of motion for the system are given by (2.1) where we choose variations
δq(t) that satisfy the constraints, i.e. ωa(q)δq = 0, or equivalently, δsa + Aa

αδrα = 0, where
δqi = (δrα, δsa). Substituting variations of this type, with δrα arbitrary, into (2.1) gives(

d

dt

∂L

∂ṙα
− ∂L

∂rα

)
= Aa

α

(
d

dt

∂L

∂ṡa
− ∂L

∂sa

)
(2.2)

for all α = 1, . . . , n − p. Equations (2.2), combined with the constraint equations

ṡa = −Aa
αṙα (2.3)

for all a = 1, . . . , p, give the complete equations of motion of the system.
A useful way of reformulating equations (2.2) is to define a constrained Lagrangian by

substituting the constraints (2.3) into the Lagrangian:

Lc(r
α, sa, ṙα) := L(rα, sa, ṙα, −Aa

α(r, s)ṙα).

The equations of motion can be written in terms of the constrained Lagrangian in the following
way, as a direct coordinate calculation shows:

d

dt

∂Lc

∂ṙα
− ∂Lc

∂rα
+ Aa

α

∂Lc

∂sa
= − ∂L

∂ṡb
Bb

αβ ṙβ, (2.4)

where Bb
αβ is defined by

Bb
αβ =

(
∂Ab

α

∂rβ
− ∂Ab

β

∂rα
+ Aa

α

∂Ab
β

∂sa
− Aa

β

∂Ab
α

∂sa

)
.

Geometrically, the Aa
α are the coordinate expressions for the Ehresmann connection on the

tangent bundle defined by the constraints, while the Bb
αβ are the corresponding curvature terms

(see Bloch et al (1996)).

2.2. Symmetries

As we shall see shortly, symmetries play an important role in our analysis. We begin here with
just a few preliminary notions. Suppose we are given a nonholonomic system with Lagrangian
L : T Q → R, and a (nonintegrable) constraint distribution D. We can then look for a group G

that acts freely and properly on the configuration space Q. It induces an action on the tangent
space T Q and so it makes sense to ask that the Lagrangian L be invariant. Also, one can ask
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that the distribution be invariant in the sense that the action by a group element g ∈ G maps the
distribution Dq at the point q ∈ Q to the distribution Dgq at the point gq. If these properties
hold, we say that G is a symmetry group. The manifold Q/G is called the shape space of the
system and the configuration space has the structure of a principal fibre bundle π : Q → Q/G.

2.3. The geometry of nonholonomic systems with symmetry

Consider a nonholonomic system with the Lagrangian L : T Q → R, the (nonintegrable)
constraint distribution D, and the symmetry group G in the sense explained previously.

Orbits and shape space. The group orbit through a point q, an (immersed) submanifold, is
denoted

Orb(q) := {gq | g ∈ G}.
Let g denote the Lie algebra of the Lie group G. For an element ξ ∈ g, we denote by ξQ the
vector field on Q arising from the corresponding infinitesimal generator of the group action,
so these are also the tangent spaces to the group orbits. Define, for each q ∈ Q, the vector
subspace gq to be the set of Lie algebra elements in g whose infinitesimal generators evaluated
at q lie in both Dq and Tq(Orb(q)):

g
q := {ξ ∈ g | ξQ(q) ∈ Dq ∩ Tq(Orb(q))}.

The corresponding bundle over Q whose fibre at the point q is given by gq , is denoted by gD.

Reduced dynamics. Assuming that the Lagrangian and the constraint distribution are
G-invariant, we can form the reduced velocity phase space T Q/G and the reduced constraint
space D/G. The Lagrangian L induces well defined functions, the reduced Lagrangian

l : T Q/G → R

and the constrained reduced Lagrangian

lc : D/G → R,

satisfying L = l◦πT Q and L|D = lc◦πD where πT Q : T Q → T Q/G and πD : D → D/G are
the projections. By general considerations, the Lagrange–d’Alembert equations induce well
defined reduced equations on D/G. That is, the vector field on the manifold D determined by
the Lagrange–d’Alembert equations (including the constraints) is G-invariant, and so defines
a reduced vector field on the quotient manifold D/G. Following Cendra et al (2001), we call
these equations the Lagrange–d’Alembert–Poincaré equations.

Let a local trivialization be chosen on the principle bundle π : Q → Q/G, with a
local representation having components denoted (r, g). Let r , an element of the shape space
Q/G, have coordinates denoted rα , and let g be group variables for the fibre, G. In such a
representation, the action of G is the left action of G on the second factor. The coordinates
(r, g) induce the coordinates (r, ṙ, ξ) on T Q/G, where ξ = g−1ġ. The Lagrangian L is
invariant under the left action of G and so it depends on g and ġ only through the combination
ξ = g−1ġ. Thus the reduced Lagrangian l is given by

l(r, ṙ, ξ) = L(r, g, ṙ, ġ).

Therefore the full system of equations of motion consists of the following two groups:

(i) The Lagrange–d’Alembert–Poincaré equation on D/G (see theorem 2.3).
(ii) The reconstruction equation

ġ = gξ.
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The nonholonomic momentum in the body representation. Choose a q-dependent basis eA(q)

for the Lie algebra such that the first m elements span the subspace gq in the following way.
First, one chooses, for each r , such a basis at the identity element g = Id, say

e1(r), e2(r), . . . , em(r), em+1(r), . . . , ek(r).

Now define the body fixed basis by

eA(r, g) = Adg eA(r).

Then the first m elements will indeed span the subspace gq since the distribution is invariant.
We denote the structure constants of the Lie algebra relative to this basis by CC

AB .
To avoid confusion, we make the following index conventions:

(i) The first batch of indices range from 1 to m corresponding to the symmetry directions
along the constraint space. These indices will be denoted a, b, c, . . ..

(ii) The second batch of indices range from m+1 to k corresponding to the symmetry directions
not aligned with the constraints. Indices for this range will be denoted by a′, b′, c′, . . ..

(iii) The indices A, B, C, . . . on the Lie algebra g range from 1 to k.
(iv) The indices α, β, . . . on the shape variables r range from 1 to σ . Thus, σ is the dimension

of the shape space Q/G and so σ = n − k.

The summation convention for all of these indices will be understood.
Assume that the Lagrangian has the form of kinetic minus potential energy, and that the

constraints and the orbit directions span the entire tangent space to the configuration space:

Dq + Tq(Orb(q)) = TqQ.

Then it is possible to introduce a new Lie algebra variable 	 called the body angular velocity
such that:

(i) 	 = Aṙ + ξ , where the Lie algebra valued form A = AA
α eA(r) drα is called the

nonholonomic connection (see Bloch et al (1996) for details).
(ii) The constraints are given by 	 ∈ span{e1(r), . . . , em(r)} or 	m+1 = · · · = 	k = 0.

(iii) The reduced Lagrangian in the variables (r, ṙ, 	) becomes

l(rα, ṙα, 	A) = 1
2gαβ ṙαṙβ + 1

2 IAB	A	B + λa′αṙα	a′ − U(r). (2.5)

Here gαβ are coefficients of the kinetic energy metric induced on the manifold Q/G and IAB

are components of the locked inertia tensor defined by

〈I(r)ξ, η〉 = 〈〈ξQ, ηQ〉〉, ξ, η ∈ g,

where 〈〈·, ·〉〉 is the kinetic energy metric. The coefficients λa′α are defined by

λa′α = ∂2l

∂ξa′
∂rα

− ∂2l

∂ξa′
∂ξB

AB
α .

The constrained reduced Lagrangian becomes especially simple in the variables (r, ṙ, 	):

lc = 1
2gαβ ṙαṙβ + 1

2 Iab	
a	b − U. (2.6)

We remark that this choice of 	 block-diagonalizes the kinetic energy metric, i.e. eliminates
the terms proportional to 	aṙα in (2.6).

As the following proposition shows, the coefficients λa′α in (2.5) measure the ‘difference’
between the nonholonomic connection and the mechanical connection for the unconstrained
Lagrangian.
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Proposition 2.2. The mechanical and nonholonomic connections are identical if and only if
λa′α = 0.

Proof. We know that the unconstrained reduced Lagrangian is represented by (2.5) in the body
angular velocity variables, which are given by

	 = Aṙ + ξ,

where A is the nonholonomic connection. Observe that the velocity shift associated with
the nonholonomic connection eliminates the terms ṙα	a from the reduced Lagrangian (2.5)
written in the coordinates (r, ṙ, 	) on the reduced phase space. On the other hand, if the body
angular velocity for the unconstrained system is introduced by

	 = Amech ṙ + ξ,

where Amech is the mechanical connection, all of the terms ṙα	A vanish (see Marsden (1992)
for details). Therefore the two connections become identical if the terms ṙα	a′

vanish after
the velocity shift due to the nonholonomic connection. �

The nonholonomic momentum in the body representation is defined by

pa = ∂l

∂	a
= ∂lc

∂	a
, a = 1, . . . , m.

Notice that the nonholonomic momentum may be viewed as a collection of components of the
ordinary momentum map along the constraint directions.

The Lagrange–d’Alembert–Poincaré equations. As in Bloch et al (1996), the reduced
equations of motion are given by the next theorem.

Theorem 2.3. The following reduced nonholonomic Lagrange–d’Alembert–Poincaré
equations hold for each 1 � α � σ and 1 � a � m:

d

dt

∂lc

∂ṙα
− ∂lc

∂rα
= −Dc

bαI bdpcpd − Kαβγ ṙβ ṙγ − (Bc
αβ − Ic′a′Ia′cBc′

αβ + DbβαI bc)pcṙ
β, (2.7)

ṗa = (Cc
ba − Cc′

baIc′a′Ia′c)I bdpcpd + Dc
aαpcṙ

α + Daαβ ṙαṙβ . (2.8)

Here and below, lc(rα, ṙα, 	a) is the constrained Lagrangian, and I bd and Ia′c′ are the inverse of
the tensors I|gq and I

−1|(gq )∗ , respectively. We stress that in general I bd 
= I
bd and Ia′c′ 
= Ia′c′ .

The coefficients BC
αβ , Dc

bα , Dbαβ , Kαβγ are given by the formulae

Dc
bα = −(Cc

Ab − Cc′
AbIc′a′Ia′c)AA

α + Cc′
abλc′αI ac + γ c

bα − γ c′
bαIc′a′Ia′c, (2.9)

BC
αβ = ∂AC

α

∂rβ
− ∂AC

β

∂rα
− CC

BAAA
α AB

β + γ C
AβAA

α − γ C
AαAA

β ,

Dbαβ = λc′β(γ c′
bα − Cc′

AbAA
α ),

Kαβγ = λc′γ Bc′
αβ

and the coefficients γ C
Bα are defined by

∂eB

∂rα
= γ C

BαeC.

Equations (2.7) and (2.8) generalize the equations of motion in the orthogonal body frame
(see Bloch et al (1996)). Here we no longer assume that the body frame is orthogonal. The
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derivation of these equations follows the procedure of obtaining equations (2.4) outlined earlier
in this section.

3. Invariant measures of the Euler–Poincaré–Suslov equations

An important special case of the reduced nonholonomic equations is the case when there is no
shape space at all. In this case the system is characterized by the Lagrangian L = 1

2 IAB	A	B

and the left-invariant constraint

〈a, 	〉 = aA	A = 0. (3.1)

Here a = aAeA ∈ g∗ and 	 = 	AeA, where eA, A = 1, . . . , k, is a basis for g and eA is its
dual basis. Multiple constraints may be imposed as well. The two classical examples of such
systems are the Chaplygin sleigh and the Suslov problem. These problems were introduced
by Chaplygin in 1895 and Suslov in 1902, respectively.

We can consider the problem of when such systems exhibit asymptotic behaviour.
Following Kozlov (1988) it is convenient to consider the unconstrained case first. In the
absence of constraints the dynamics is governed by the basic Euler–Poincaré equations

ṗB = CC
ABI

ADpCpD = CC
ABpC	A, (3.2)

where pB = IAB	B are the components of the momentum p ∈ g∗. One considers the question
of whether the (unconstrained) equations (3.2) have an absolutely continuous integral invariant
f dk	 with summable density M. If M is a positive function of class C1 one calls the integral
invariant an invariant measure. Kozlov (1988) shows the following theorem.

Theorem 3.1. The Euler–Poincaré equations have an invariant measure if and only if the
group G is unimodular.

Neither direction is hard to prove but we content ourselves with proving sufficiency here.
A group is said to be unimodular if it has a bilaterally invariant measure. A criterion

for unimodularity is CC
AC = 0 (using the Einstein summation convention). Now we know

(Liouville’s theorem) that the flow of a vector differential equation ẋ = f (x) is phase volume
preserving if and only if div f = 0. In this case the divergence of the right-hand side of
equation (3.2) is CC

ACI
ADpD = 0. The statement of the theorem now follows from the

following theorem of Kozlov (1998): A flow due to a homogeneous vector field in R
n is

measure-preserving if and only if this flow preserves the standard volume in R
n.

Now, turning to the case where we have the constraint (3.1) we obtain the Euler–Poincaré–
Suslov equations

ṗB = CC
ABI

ADpCpD + λaB = CC
ABpC	A + λaB (3.3)

together with the constraint (3.1). Here λ is the Lagrange multiplier. This defines a system on
the subspace of the dual Lie algebra defined by the constraint. Since the constraint is assumed
to be nonholonomic, this subspace is not a subalgebra. One can then formulate a condition for
the existence of an invariant measure of the Euler–Poincaré–Suslov equations.

Theorem 3.2. Equations (3.3) have an invariant measure if and only if

Kad∗
I−1aa + T = µa, µ ∈ R, (3.4)

where K = 1/〈a, I
−1a〉 and T ∈ g∗ is defined by 〈T , ξ〉 = Tr(adξ ).
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This theorem was proved by Kozlov (1988) for compact algebras and for arbitrary algebras by
Jovanović (1998). In coordinates, condition (3.4) becomes

KCC
ABI

ADaCaD + CC
BC = µaB.

For a compact algebra (3.4) becomes

[I−1a, a] = µa, µ ∈ R, (3.5)

where we identified g∗ with g.
The proof of theorem 3.2 reduces to the computation of the divergence of the vector

field in (3.3). To accomplish this calculation, one first chooses a basis of g such that
a1 = · · · = an−1 = 0 and an = 1. Then the first n − 1 equations of (3.3) are a closed
system of Euler–Poincaré equations on the hyperplane 	n = 0 which is invariant under the
flow. Computing the divergence of the corresponding vector field, one concludes that this
divergence vanishes if and only if the condition (3.4) is satisfied. The flow then preserves the
standard measure. The final equation plus the constraint determines the Lagrange multiplier λ.
One can introduce several constraints of this type (see Kozlov (1988)).

In the compact case only constraint vectors a which commute with I
−1a allow the measure

to be preserved. This means that a and I
−1a must lie in the same maximal commuting

subalgebra. In particular, if a is an eigenstate of the inertia tensor, the reduced phase volume
is preserved. When the maximal commuting subalgebra is one-dimensional this is a necessary
condition. This is the case for groups such as SO(3).

We thus have the following result which reflects a symmetry requirement on the constraints.

Theorem 3.3. A compact Euler–Poincaré–Suslov system is measure preserving (i.e. does not
exhibit asymptotic dynamics) if the constraint vectors a are eigenvectors of the inertia tensor,
or if the constrained system is Z2 symmetric about each of its principal axes. If the maximal
commuting subalgebra is one-dimensional this condition is necessary.

4. Invariant measures of systems with internal degrees of freedom

In this section we extend the result of Kozlov (1988) and Jovanović (1998) to nonholonomic
systems with nontrivial shape space. One can think of these systems as the Euler–Poincaré–
Suslov systems with internal degrees of freedom. Recall that the constraints are of the form
	m+1 = · · · = 	k = 0. To simplify the exposition, we consider below systems with a single
constraint. The results are valid for systems with multiple constraints as well.

Consider a nonholonomic system with reduced Lagrangian l(r, ṙ, 	) and a constraint
〈a(r), 	〉 = 0. The subspace of the Lie algebra defined by the constraint at the configuration q

is denoted here by gq . The orientation of this subspace in g depends on the shape configuration
of the system, r . The dimension of gq however stays the same. As discussed in section 2,
we choose a special moving frame in which gq is spanned by the vectors e1(r), . . . , ek−1(r).
The equation of the constraint in this basis becomes 	k = 0. Recall that the horizontal part of
the kinetic energy metric is gαβ(r).

Theorem 4.1. The system associated with the reduced Lagrangian l(r, ṙ, 	) and the constraint
〈a(r), 	〉 = 0 has an integral invariant with a C1 density M(r) if and only if

(i)

(
Ca

ba − Ck
ba

I
ka

Ikk

)
− gαδDbαδ = 0.

(ii) The form (Db
bβ − gαδλkδBk

αβ) drβ is exact.
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Proof. Recall that the reduced equations of motion are (2.7) and (2.8). We now rewrite the
shape equation exposing more details. The shape equations (2.7) become

gαβ r̈β + ġαβ ṙαṙβ − 1

2

∂gβγ

∂rα
ṙβ ṙγ = −1

2

∂I ab

∂rα
papb − ∂U

∂rα
− Dc

bαI bdpcpd

−
(

Bc
αβ − I

kc

Ikk
Bk

αβ + DbαβI bc

)
pcṙ

β − Kαβγ ṙβ ṙγ .

Solving these equations for r̈β we obtain

r̈ δ = gδα

(
1

2

∂gβγ

∂rα
− ∂gαβ

∂rα

)
ṙβ ṙγ − gαδ

(
1

2

∂I bc

∂rα
− gαδDc

bαI bd

)
pcpd

− gαδ ∂U

∂rα
− gαδ

(
Bc

αβ − I
kc

Ikk
Bk

αβ + DbαβI bc

)
pcṙ

β − gαδKαβγ ṙβ ṙγ .

These equations should be of course coupled with the momentum equation.
According to Liouville’s theorem, the equation for the density M(r) of the invariant

measure is div(MF) = 0 where F is the vector field determined by the equations of motion.
For an M that depends on the shape configuration variables only, this equation becomes

∂M
∂rβ

ṙβ + Mgαδ ∂

∂ṙδ

[ (
1

2

∂gβγ

∂rα
− ∂gαβ

∂rα

)
ṙβ ṙγ

−Kαβγ ṙβ ṙγ −
(

Bc
αβ − I

kc

Ikk
Bk

αβ + DbαβI bc

)
pcṙ

β

]

+M
∂

∂pa

[ (
Cc

ba − Ck
ba

I
kc

Ikk

)
I bdpcpd + Dc

bαpcṙ
α

]
= 0.

The terms linear in p in this equation vanish if and only if condition (i) of the theorem is
satisfied. The equation for the density M of the invariant measure therefore becomes

1

M
∂M
∂rβ

ṙβ =
(

gαδ ∂gαδ

∂rβ
+ Db

bβ − gαδKαδβ − gαδKαβδ

)
ṙβ .

Using the explicit representation for Kαβγ , and noticing that

gαδ ∂gαδ

∂rβ
dṙβ = d ln(det g),

we can rewrite this condition as

d ln(M) = d ln(det g) + (Db
bβ − gαδλkδBk

αβ)drβ. (4.1)

We remark that the form d ln(det g) is the Lagrangian representation of the phase volume
form for the geodesic flow on the shape space due to the shape metric. Since the first term
in the right-hand side of (4.1) is exact, the invariant measure with density depending on the
shape configuration only exists if and only if condition (ii) of the theorem is satisfied. If the
shape space is simply connected, this condition is equivalent to

d[(Db
bβ − gαδλkδBk

αβ)drβ] = 0. (4.2)

�

Corollary 4.2. The density M is defined uniquely up to a constant factor.

Corollary 4.3. A system that satisfies the conditions of the theorem retains the invariant
measure with the same density if an arbitrary symmetry preserving potential is added to the
Lagrangian.
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Proof. Conditions (i) and (ii) of theorem 4.1 do not impose restrictions on the potential.
Adding a symmetry preserving potential to the Lagrangian does not change the symmetry
group and the kinetic energy metric and therefore keeps (i) and (ii) satisfied. The density of
the invariant measure remains unchanged because equation (4.1) is not affected by the change
in the potential energy. �

We now discuss a few situations in which conditions (i) and (ii) of theorem 4.1 are satisfied.
We start from condition (i) of the theorem. Taking into account the formulae for Daαβ and λkβ

we conclude that (i) is a restriction on the ‘direction’ of the constraint subspace ‘relative’ to
the kinetic energy metric, as it is in the case of systems with trivial shape space. This condition
becomes especially simple if gαβDaαβ vanishes, which is equivalent to the skew symmetry of
Daαβ with respect to α and β. The latter is equivalent to the absence of the terms quadratic
in ṙ in the momentum equation. Recall that generically the relative equilibria demonstrate
asymptotic behaviour if these terms are present in the momentum equation (see Zenkov et al
(1998) for details). If Daαβ are skew, condition (i) can be rewritten, in invariant form, as

K(r)ad∗
I−1(r)a(r)a(r) + T (r) = µ(r)a(r), µ : Q/G → R, (4.3)

which is just a ‘shape-dependent’ variant of (3.4). In this equation, K(r) andT (r) are defined by

K(r) = 1

〈a(r), I−1(r)a(r)〉 , 〈T (r), ξ〉 = Tr(adξ ),

and we do not assume a special choice of the body frame. Recall that this special choice
results in the constraint being represented by 	k = 0 instead of the general constraint equation
〈a(r), 	〉 = 0.

Assume now that the nonholonomic connection equals the mechanical connection. By
proposition 2.2, λkβ = 0 and hence Daαβ vanish. Condition (i) of theorem (4.1) becomes

CA
bA + Ck

Ab

I
kA

Ikk
= 0, (4.4)

which is of course equivalent to (4.3).
Condition (ii) of the theorem now requires that the form[

−
(

Ca
Ba − Ck

Ba

I
ka

Ikk

)
AB

β + γ a
aβ − γ k

aβ

I
ka

Ikk

]
drβ

is exact. Using (4.4), we rewrite the form in condition (ii) as[
−

(
CA

kA − Ck
kA

I
kA

Ikk

)
Ak

β + γ A
Aβ − γ k

Aβ

I
kA

Ikk

]
drβ. (4.5)

Observe that the origins of the quantities CC
AB and γ A

Bβ are the same. They are the coefficients
of the expansion of the Jacobi–Lie bracket of the vector fields ∂α and eA(r, g). Recall that we
use these fields as the basis for expansion of q̇, the velocity of the system.

Assume now that the group G is unimodular (we keep the requirement λkβ = 0). Then,
since CA

BA = 0, (4.4) is equivalent to Ck
ABI

kA = 0. Using invariant notations, we can rewrite
this condition as ad∗

I−1aa = 0. Hence (4.5) becomes(
γ A

Aβ − γ k
Aβ

I
kA

Ikk

)
drβ. (4.6)

The basis eA(r) of the Lie algebra g (which we treat as a linear space for now) can be
viewed as a transformation of some fixed basis eA:

eA(r) = RB
A(r)eB.
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From the definition of γ B
Aα we obtain:

∂eA(r)

∂rα
= ∂RB

A

∂rα
eB = γ C

AαRB
CeB,

which implies

γ C
Aα = (R−1∂αR)CA.

If the matrix R(r) can be chosen to be orthogonal for each r , then R−1R is skew, and thus
γ A

Aα = 0. In this situation form (4.6) becomes

−γ k
Aβ

I
kA

Ikk
drβ. (4.7)

This differential form simplifies if, for example, the body frame eA(r) was chosen orthogonal
with respect to the kinetic energy metric. In this case (4.7) becomes −γ k

kβ drβ . The latter is
closed if the vector ek(r) is independent of all shape variables but one. One can of course
extend the list of simple cases of when condition (ii) of theorem 4.1 is satisfied. Below we
discuss and illustrate two important cases.

Systems with one-dimensional shape space. Assume that condition (i) of theorem 4.1 is
satisfied. In this case the equation for the density of the invariant measure becomes

d(ln M) = d(ln g) + Db
b dr. (4.8)

The solution of this equation is globally defined if the shape space is either noncompact (and
thus diffeomorphic to R), or compact and the average of the function Db

b equals zero.

Systems with conserved momentum. If the nonholonomic momentum is a constant of motion,
then condition (i) of theorem 4.1 is trivially satisfied. Moreover, condition (ii) now asks that
the form

gαδλkδBk
αβ drβ (4.9)

is exact. The system thus preserves the measure with the density

M = det g exp

(
−

∫
gαδλkδBk

αβ drβ

)
.

5. Examples

Here we consider examples of nonholonomic systems that have an invariant measure and show
how this measure can be found using our theory.

The Routh problem. This mechanical system consists of a uniform sphere rolling without
slipping on the inner surface of a vertically oriented surface of revolution. Apparently Routh
was the first to explore this problem. He described the family of stationary periodic motions
and obtained a necessary condition for stability of these motions. Routh noticed as well that
integration of the equations of motion may be reduced to integration of a system of two linear
differential equations with variable coefficients and considered a few cases when the equations
of motion can be solved by quadratures. Modern references that treat this system are Hermans
(1995) and Zenkov (1995).

This problem is SO(2)×SO(2)-invariant, where the first copy of SO(2) represents rotations
about the axis of the surface of revolution while the second copy of SO(2) represents rotations
of the sphere about its radius through the contact point of the surface and the sphere.
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Let r be the latitude of this contact point, a be the radius of the sphere, c(r) + a be the
reciprocal of the curvature of the meridian of the surface, and b(r) be the distance from the
axis of the surface to the sphere’s centre. The shape metric is c2(r)ṙ2/2 while the momentum
equations are

ṗ1 = c(r) sin r

b(r)
p1ṙ − 2

7
p2ṙ , ṗ2 =

(
1 − c(r) cos r

b(r)

)
p1ṙ .

See Zenkov (1995) for details and in particular for the choice of the Lie algebra basis and a
physical interpretation of the components of nonholonomic momentum.

The shape space is one-dimensional, the symmetry group SO(2)×SO(2) is commutative,
and there are no terms proportional to ṙ2 in the momentum equations. The trace term in (4.8)
equals c(r) sin r/b(r), and thus the density of the invariant measure for the Routh problem is

M = c2(r) exp

(∫
c(r) sin r

b(r)
dr

)
. (5.1)

The group action in this problem is singular: the intersection points of the surface of
revolution and its axis have nontrivial isotropy subgroups. The shape coordinate r equals
±π/2 at these points. As a result,

lim
r→−π/2

M(r) = lim
r→π/2

M(r) = ∞.

The falling disc. Consider a homogeneous disc rolling without sliding on a horizontal plane.
This mechanical system is SO(2)×SE(2)-invariant; the group SO(2) represents the symmetry
of the disc while the group SE(2) represents the Euclidean symmetry of the overall system.

Classical references for the rolling disc are Vierkandt (1892), Korteweg (1899), and Appel
(1900). In particular, Vierkandt showed that on the reduced space D/SE(2)—the constrained
velocity phase space modulo the action of the Euclidean group SE(2)—most orbits of the
system are periodic.

The shape of the system is specified by a single coordinate—the tilt of the disc denoted
here by r . The momentum equations are

ṗ1 = mR2

(
− sin r

A cos r
p1 +

(
cos r

mR2 + B
+

sin2 r

A cos r

)
p2

)
ṙ ,

ṗ2 = mR2

(
− 1

A cos r
p1 +

sin r

A cos r
p2

)
ṙ .

Hence, the trace terms Db
b in (4.8) vanish, and the density of the invariant measure equals the

component of the shape metric g(r). The latter equals the moment of inertia of the disc with
respect to the line through the rim of the disc and parallel to its diameter. Since the density
of the measure is determined up to a constant factor, we conclude that the dynamics preserves
the reduced phase space volume.

The three-dimensional Chaplygin sleigh with an oscillating mass. The three-dimensional
Chaplygin sleigh is a free rigid body subject to the nonholonomic constraint v3 = 0, where v3

is the third component of the (linear) velocity relative to the body frame. The Lagrangian of
this system is

1
2M((v1)2 + (v2)2 + (v3)2) + 1

2 (I1(	
1)2 + I2(	

2)2 + I3(	
3)2).

In this formula M is the mass of the body, Ij are the eigenvalues of its inertia tensor, and
(	1, 	2, 	3) and (v1, v2, v3) are the angular and linear velocities relative to the body frame.
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The dynamics of this system is discussed in Neimark and Fufaev (1972). Rand and Ramani
(2000) point out that a constraint like this has been used to model fins on an underwater missile.

We couple this system with an oscillator moving along the third coordinate axis of the
body frame. The mass of this oscillator is m and the displacement from the origin is r . To keep
the notation uniform with the general theory, we write the components of the linear velocity
relative to the body frame as (	4, 	5, 	6). The vector (	1, 	2, 	3, 	4, 	5, 	6) should be
viewed as an element of the Lie algebra se(3). The Lagrangian of this new system is

L = 1

2
(I1(	

1)2 + I2(	
2)2 + I3(	

3)2) +
M

2
((	4)2 + (	5)2 + (	6)2)

+
m

2
((	4 + 	2r)2 + (	5 − 	1r)2 + (	6 + ṙ)2) − U(r). (5.2)

The configuration space is R × SE(3), and the system is invariant under the left action of
SE(3) on the second factor. We have not specified the potential energy as its choice does not
affect the existence of the invariant measure (see corollary 4.3). The shape space is just the
first factor of R × SE(3) and is one-dimensional, and thus the above theory is applicable. To
show the existence of the invariant measure, we note the following:

(i) The constrained Lagrangian does not contain terms that simultaneously depend on ṙ and
pa . The constraint is 	6 = 0. Therefore, all the coefficients of the nonholonomic
connection as well as its curvature form vanish. This implies that the terms Daαβ and
Kαβγ vanish too. The differential form from condition (ii) of theorem 4.1 is therefore
trivial.

(ii) The moving frame is r-independent. Therefore all of the coefficients γ B
Aα are trivial.

Condition (i) of theorem 4.1 is satisfied since the group SE(3) is unimodular and e6 is the
eigenvector of the inertia tensor.

(iii) The shape metric is r-independent.

The discussion at the end of section 4 implies that the system’s dynamics preserves the volume
in the reduced phase space.

This can be verified by a straightforward computation of the divergence of the vector field
that defines the equations of motion:

r̈ = −∂Ua

∂r
,

ṗ1 = −	2p3 + 	3p2 − m	5ṙ ,

ṗ2 = −	3p1 + 	1p3 + m	4ṙ ,

ṗ3 = −	1p2 + 	2p1 − 	4p5 + 	5p4,

ṗ4 = 	3p5 − m	2ṙ ,

ṗ5 = −	3p4 + m	1ṙ .

Chaplygin sphere. This system consists of a sphere rolling without slipping on a horizontal
plane. The centre of mass of this sphere is at the geometric centre, but the principal moments of
inertia are distinct. Chaplygin (1903) proved integrability of this problem. Modern references
for the Chaplygin sphere include Kozlov (1985) and Schneider (2002).

One may view this system as a nonholonomic version of the Euler top. The configuration
space is diffeomorphic to SO(3)×R

2. We choose the Euler angles (θ, φ, ψ) and the Cartesian
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coordinates (x, y) as the configuration parameters of the Chaplygin sphere. The Lagrangian
and constraints written in these coordinates become

L = I1

2
(θ̇ cos ψ + φ̇ sin ψ sin θ)2 +

I2

2
(−θ̇ sin ψ + φ̇ cos ψ sin θ)2

+
I3

2
(ψ̇ + φ̇ cos θ)2 +

M

2
(ẋ2 + ẏ2)

and

ẋ − θ̇ sin φ + ψ̇ cos φ sin θ = 0, ẏ + θ̇ cos φ + ψ̇ sin φ sin θ = 0,

respectively.
This system is SE(2)-invariant. The action by the group element (α, a, b) on the

configuration space is given by

(θ, ψ, φ, x, y) �→ (θ, ψ, φ + α, x cos α − y sin α + a, x sin α + y cos α + b).

The shape space for the Chaplygin sphere is diffeomorphic to the two-dimensional sphere.
The nonholonomic momentum map has just one component and is moreover preserved.
Straightforward computations show that the form (4.9) is exact. The conditions for measure
existence are therefore satisfied. The density of the invariant measure is computed in
overdetermined coordinates in Chaplygin (1903) (see also Kozlov (1985)).

The invariant manifolds of the Chaplygin sphere are two-dimensional tori. The phase flow
on these tori is measure preserving and thus there are angle variables (x, y) on each torus in
which the flow equations become

ẋ = λ

M(x, y)
, ẏ = µ

M(x, y)
.

(see Kolmogorov (1953) and Kozlov (1985) for details). In general, these equations cannot be
rewritten as

ẋ = λ, ẏ = µ.

The flow however becomes quasi-periodic after a time substitution dt = M(x, y) dτ (see
Kozlov (1985) for details). This example thus shows that the flow on the nonholonomic
invariant tori can be more complicated than a Hamiltonian flow.

It follows from corollary 4.3 that adding a symmetry preserving potential to the Lagrangian
of the Chaplygin sphere leaves the new system measure preserving with the same measure
density. This was pointed out by Kozlov for a specific potential (see Kozlov (1985) for details).

6. Conclusions

We have given a method for analysing measure preservation in nonholonomic mechanics. We
have obtained a constructive approach for computing densities of such measures in the presence
of symmetry. As the examples demonstrate, the density of an invariant measure often equals
det g, where g is the shape kinetic energy metric. This happens because of the special choice
of the basis in the constrained subspace of the Lie algebra of the symmetry group. We intend
to study this property in a forthcoming publication.
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—— 1988 Invariant measures of the Euler–Poincaré equations on Lie algebras Funct. Anal. Appl. 22 69–70
Marsden J E 1992 Lectures on Mechanics (London: Cambridge University Press)
Neimark Ju I and Fufaev N A 1972 Dynamics of Nonholonomic Systems Translations of Mathematical Monographs

AMS 33
Rand R H and Ramani D V 2000 Relaxing nonholonomic constraints Proc. 1st Int. Symp. on Impact and Friction of

Solids, Structues, and Intelligent Machines ed A Guran (Singapore: World Scientific) 113–6
Routh E J 1860 Treatise on the Dynamics of a System of Rigid Bodies. (London: MacMillan)
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