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Abstract
Group theoretic means are employed to analyse the Hopf bifurcation on pattern
forming systems with the periodicity of the face-centred (FCC) and body-
centred (BCC) cubic lattices. We find all C-axial subgroups of the normal
form symmetry group by first extending the symmetry to a larger group. There
are 15 such solutions for the FCC lattice, of which at least 12 can be stable
for appropriate parameter values. In addition, a number of subaxial solutions
can bifurcate directly from the trivial solution, and quasiperiodic solutions can
also exist. We find 33 C-axial solutions for the BCC lattice and their stability
criteria. We discuss applications of the method of symmetry enlargement to
other systems. A model-independent approach is taken throughout, and the
results are applicable to a wide variety of pattern forming systems. This work
is an extension of that done in Callahan T K (2000 Hopf bifurcations on the
FCC lattice Proc. Int. Conf. on Differential Equations (Berlin, 1999) vol 1,
ed Fiedler et al (Singapore: World Scientific) pp 154–6; 2003 Hopf bifurcations
on cubic lattices Bifurcations, Symmetry and Patterns (Trends in Mathematics)
ed J Buescu et al (Basel: Birkhauser) pp 123–7).

Mathematics Subject Classification: 37G40, 35K57

1. Introduction

In recent years pattern formation has been the subject of intense study, and great progress has
been made with the use of group theoretic techniques [1]. Equivariant bifurcation theory has
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been applied to the analysis of systems periodic in two directions, resulting in a relatively
complete description of bifurcations on the hexagonal and square lattices [1–3]. These results
are model-independent, and apply equally well to Bénard convection, two-dimensional Turing
instabilities, the Faraday instability, and many other systems.

Very little corresponding work has been done for the case of patterns periodic in three
dimensions, in part because most of the systems (e.g. Bénard convection) have only two-
dimensional symmetry. This is not true, however, for the Turing instability [4], where
chemicals catalyse each other’s formation and destruction. If they diffuse at different rates
the homogeneous state can lose stability to states with a characteristic length scale: a pattern.
This length scale is intrinsic in that it depends only upon the chemical reaction rates and
the diffusivities, and not upon the dimensions of the experimental apparatus. Thus the
Turing instability can be studied in some fiducial volume far away from the influence of
any boundaries, and truly three-dimensional patterns can appear. Indeed, several such patterns
have been observed in numerical simulations of the Brusselator model [5, 6]. As in the two-
dimensional case, the simplest solutions that can appear are those that retain the periodicity
of some lattice. For the steady-state bifurcation, solutions with the periodicity of the simple
(SC), face-centred (FCC) and body-centred (BCC) cubic lattices have been found, and their
stabilities analysed [7–10].

It is well-known that in a two-species chemical reaction–diffusion system the static
homogeneous state can undergo a Hopf bifurcation only to an oscillating state with zero
wavenumber, so that the resulting pattern is still spatially homogeneous. With more than two
chemicals (as in the Oregonator model) oscillatory patterns with spatiotemporal symmetries
can occur, and it is thus necessary to study the corresponding time-periodic pattern formation
problems, as was done for the hexagonal lattice in [11]. In three dimensions the Hopf
bifurcation on the SC lattice was analysed in [12]. The forms of the C-axial solutions
for the FCC and BCC lattices were found in [13, 14] by extending their symmetry groups,
and the branching equations for the FCC lattice were determined. In this paper we complete
the analysis of these two lattices with detailed descriptions and stability calculations for the
various solutions. We also discuss the behaviour of some of the subaxial branches for the FCC
latttice. Finally, we explain how the particular group extensions were determined, and how
this method can be used to find the C-axial solutions of other systems with high degrees of
symmetry.

We start with a chemical reaction–diffusion system that has a spatially homogeneous
static state that is stable in some region in parameter space. We assume that as a distinguished
parameter is varied modes with the critical wavenumber kc are the first to lose stability, and
that they do so via a Hopf bifurcation. As the other modes are still stable, we would like
to perform a centre manifold reduction, slaving the stable modes to the critical ones. Then
the dynamics in the centre manifold could be described in terms of the critical modes alone.
Unfortunately, the spectrum of allowed wavenumbers is continuous, so the stable eigenvalues
are not bounded away from the imaginary axis and the centre manifold theorem cannot be
applied. Furthermore, there is a continuous sphere of wavevectors with wavenumber kc.
The customary solution is to assume an ansatz of periodicity: we restrict our attention to
solutions that have the periodicity of some lattice. This imposition of periodic boundary
conditions is justified after the fact by the observation that experiments often produce the
solutions that result from this ansatz. Furthermore, the influence of nearby wavevectors can
be reintroduced by a study of long wavelength instabilities (eckhaus, zig-zag, skew-varicose),
as in [15–17]. The price paid for the ansatz is that we can only determine the stability of a
solution on a lattice with respect to perturbations on the same lattice. We cannot, for instance,
determine the relative stability of hexagons and squares. Thus, strictly speaking, any stability
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results we find can only guarantee instability; a rigorous proof of stability is still beyond our
grasp.

The ansatz permits a centre manifold reduction, and the system can then be described in
terms of a finite number of amplitude equations for the critical modes. These equations inherit
much of the symmetry of the original partial differential equations, which greatly restricts their
form, so the normal form equations can be written in terms of a small number of coefficients.
The values of these coefficients are in general complicated expressions that depend upon the
original chemical system and are found through the centre manifold reduction, but we make
no assumptions in this paper about the specifics of the reaction–diffusion model. By assuming
that any centre manifold reduction has already been performed and examining only the normal
form, we thus study the Hopf bifurcation in a model-independent way. Our results are equally
applicable to any generic Hopf pattern formation problem in three dimensions.

We assume henceforth that the system has the periodicity of a cubic lattice with
wavevectors proportional to (l, m, n) for integer l, m and n. The symmetry of the system
of amplitude equations is then determined by the choice of which wavevectors have the critical
wavenumber kc, and hence correspond to critical modes. The different choices give infinitely
many different representations of the relevant symmetry group. In this paper we restrict
attention to two of the simplest representations, corresponding to the FCC and BCC lattices.

In section 2 we review the basic tools of equivariant theory as they relate to the Hopf
bifurcation problem on the FCC lattice. We also find the most general possible normal form
for the amplitude equations (up to cubic order in the amplitudes) that is consistent with the
required symmetry. In section 3 we find the C-axial solutions, along with their branching
equations and stabilities. We solve this problem by first finding the solutions to a bifurcation
problem with a larger symmetry group, then using them to determine the solutions on the FCC
lattice. We find there are 15 C-axial solutions, which are generically guaranteed to have
primary bifurcation branches, at least 12 of which can be stable for appropriate choices of
the parameters. There are also certain subaxial isotropy subgroups on whose fixed point
subspaces the system reduces to the problem studied in [18]. Thus for some parameter values
there are primary branches of subaxial solutions, invariant tori corresponding to quasiperiodic
solutions and indications of the possibility of chaos and bursting phenomena. In section 4
we study the Hopf bifurcation on the BCC lattice. The same technique allows us to find the
33 C-axial solution branches and their stability criteria. In section 5 we discuss how appropriate
group extensions are chosen and the applicability of this method to other highly symmetric
systems.

2. Equivariance on the FCC lattice

We first examine the Hopf bifurcation on the FCC lattice. We have eight critical wavevectors
±kj pointing to the vertices of a cube, with

k1 = kc√
3
(1, 1, 1), k2 = kc√

3
(1, −1, −1),

k3 = kc√
3
(−1, 1, −1), k4 = kc√

3
(−1, −1, 1).

A typical scalar fieldψ(x, y, z, t) (e.g. a concentration of one of the chemicals) can be described
as a superposition of travelling waves in each of the eight directions:

ψ(x, y, z, t) =
∑

j

[zj (t)e
ikj ·x + wj(t)e

−ikj ·x]e−iωt + c.c. + h.o.t., (1)
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where ‘c.c.’ represents the complex conjugate and ‘h.o.t.’ represents higher order terms, spatial
harmonics, which according to the centre manifold theorem [19] are quadratically small in the
critical amplitudes zj . The result of the centre manifold reduction is a set of evolution equations
for the zj of the form ż = F(z), where we write the amplitudes as a vector

z = (z1, w1; z2, w2; z3, w3; z4, w4).

The function F(z) depends upon various model parameters, and we will distinguish one among
them as the bifurcation parameter λ, writing F(z, λ) when necessary. We assume that as
λ increases through 0 the system undergoes a Hopf bifurcation. The amplitude equations
inherit some symmetry from the original partial differential equations. Specifically, they must
respect the symmetry group G = T 3

� O ⊕ Z2, where T 3 is the three-torus of translations,
O is the octahedral group of orientation-preserving symmetries of the cube and Z2 represents
inversion through the origin. In the representation �1 of G appropriate to the FCC lattice,
O contains all 24 permutations of the four (zj , wj ) pairs. For a translation by a vector α the
group element τ̂α ∈ T 3 acts on each (zj , wj ) pair by

τ̂α: (zj , wj ) �→ (zj eikj ·α, wj e−ikj ·α), (2)

while ĉ ∈ Z2 acts by

ĉ : (zj , wj ) �→ (wj , zj ). (3)

τ̂α and ĉ resemble the phase shift and flip, respectively, of the usual action of O(2) on
each (zj , wj ) pair, but they act upon all four pairs simultaneously, so that the product of
the phases

∏4
j=1 eikj ·α is 1 and either all the pairs are flipped or none.

The centre manifold reduction can be done in such a way that the normal form has an
additional S1 symmetry [1], corresponding to translation in time, that acts by

φ̂ · z = eiφz.

Thus the symmetry of the reduced equations is �̃1 = �1 × S1.
If z(t) is a solution then so is γ · z for any γ ∈ �̃1. The normal form must therefore be

�̃1-equivariant, i.e.

γ · F(z) = F(γ · z), ∀γ ∈ �̃1.

As we will see, this limits which terms can appear in the normal form.

2.1. Normal forms

We wish to do a model-independent analysis, and hence make no further assumptions about
the system F. In order to examine the dynamics of the system we use the most general possible
�̃1-equivariant Taylor expansion. To find it we employ a counting argument. The Poincaré
series for the equivariants is defined by

P(t) ≡ 1

Vol(�̃1)

∫
γ∈�̃1

Tr(γ )

det[1 − tγ ]
,

where the integral sign represents the sum over the discrete parts of the group and the integral
over the continuous parts. As explained in [10, 20–22], the coefficient of tn in the
Taylor expansion of P(t) is the number of linearly independent equivariant terms that are
homogeneous of order n in z. Thus P(t) is a generating function for the number of equivariants
at each order. For the representation of the group (T 3

� O ⊕ Z2) × S1appropriate to the FCC
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lattice, a straightforward calculation reveals that

P(t) = [t + 2t3 + 11t5 + 34t7 + 76t9 + 145t11 + 230t13 + 280t15 + 289t17 + 244t19 + 158t21

+ 77t23 + 31t25 + 6t27][(1 − t2)
4
(1 − t4)

4
(1 − t6)

4
]−1

= t + 6t3 + 33t5 + 146t7 + O(t9).

We thus have exactly one linear, six cubic and 33 quintic equivariant terms. By rescaling λ,
the third-order general system can thus be written

ż1 = (λ + iω)z1 + a|z1|2z1 + b(|z2|2 + |z3|2 + |z4|2)z1 + c|w1|2z1

+d(|w2|2 + |w3|2 + |w4|2)z1 + e(z2w2 + z3w3 + z4w4)w̄1

+f (z̄2w3w4 + z̄3w2w4 + z̄4w2w3) (4)

for arbitrary real coefficients λ, ω and arbitrary complex coefficients a, b, c, d, e and f .
The equations for ẇ1, ż2, etc, are obtained from this through equivariance. This is a vast
improvement over the 7752 independent complex coefficients that the general nonequivariant
system possesses through third order. The coefficients in (4) are in general complicated
functions of the parameters for any given model. However, the fact that we can reduce any
appropriate system of PDEs to the above system with only eight coefficients allows us to make
model-independent predictions.

2.2. Isotropy subgroups

The symmetry of the problem not only restricts the form of the amplitude equations but also
guarantees the existence of certain solutions. The trivial solution z = 0 is the only solution
with the full symmetry �̃1; we characterize other solutions by the symmetry they have. We
will need the following definitions from [1].

Definition. Given z ∈ C
n, the isotropy subgroup of z is

�(z) ≡ {σ ∈ �̃1 : σ · z = z}.

Definition. Given an isotropy subgroup � ⊆ �̃1, its fixed point subspace is

Fix(�) ≡ { z ∈ C
n : σ · z = z, ∀σ ∈ �}.

An immediate consequence of these two definitions is the fact that if �1 ⊆ �2 are both isotropy
subgroups, then Fix(�2) ⊆ Fix(�1). Furthermore, any fixed point subspace is an invariant
subspace under the flow F(z). Thus the dynamics in a fixed point subspace V can be analysed
by examining the restriction F|V .

Let γ ∈ �̃1 and let z be an equilibrium solution with isotropy subgroup �. By the physical
symmetry of the problem, γ · z is also an equilibrium solution with isotropy subgroup γ�γ −1

conjugate to �. We consider these solutions to be equivalent, and likewise consider two
isotropy subgroups to be equivalent if they are conjugate to one another.

We will need two more definitions from [1].

Definition. A representation �1 is absolutely irreducible if the only matrices that commute
with all elements of �1 are scalar multiples of the identity.

Definition. The space R
2n = C

n is �1-simple if either

(i) �1 acts irreducibly but not absolutely irreducibly on R
2n, or

(ii) �1 acts on R
n ⊕ R

n, where the action on R
n is absolutely irreducible.
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The usefulness of these definitions stems from the fact that the generic �1-equivariant Hopf
bifurcation problem is �1-simple [1], and from the following theorem.

Equivariant Hopf theorem (EHT) [1]. Let C
n be �1-simple, let �̃1 = �1 × S1 and let the

system F(z, λ): C
n × R �→ C

n be a �̃1-equivariant system of ODEs with

(dF)0,0 =
(

0 −1
1 0

)
ω.

Assume that as λ increases through 0 the eigenvalues pass through the imaginary axis with
nonzero speed. Let � ⊂ �̃1 be an isotropy subgroup of spatiotemporal symmetries satisfying
dim(Fix(�)) = 2. Then there exists a unique smooth branch of small-amplitude periodic
solutions to ż = F(z) with period near 2π/ω, having � as their isotropy subgroup.

Isotropy subgroups with two-dimensional fixed point subspace are termed C-axial, and they
are guaranteed by the EHT to have primary solution branches.

2.3. Stability

The stabilities of the resulting solutions are determined by the linearization matrix dF,
evaluated on the solution branch. The presence of any positive eigenvalues guarantees that
the solution is unstable. We cannot require, however, that all the eigenvalues be negative,
as equivariance guarantees a certain number of zero eigenvalues. Consider a solution of the
form z = (A, A; 0, 0; 0, 0; 0, 0) with A real, which corresponds to lamellae that oscillate in
magnitude, i.e.

ψ(x, t) = (Aeik1·x + Ae−ik1·x)e−iωt + c.c. + h.o.t. ≈ 4A cos(k1 · x) cos(ωt).

An infinitesimal change in z in the direction of (i, −i; 0, 0; 0, 0; 0, 0) corresponds to a small
translation of the pattern in the direction of k1. By the translational symmetry of the problem
this is still a solution. In fact, there is a whole one-dimensional orbit of solutions, related by
translations, and thus the stability eigenvalue in that direction must vanish. This is true for any
nontrivial translation of the pattern. In general we expect dim(�̃1) − dim(�) = 4 − dim(�)

zero eigenvalues. In the null eigenspace the dynamics are trivial, so these zero eigenvalues do
not spoil the stability. If all the other eigenvalues of dF are negative then, following [1], we
call the solution linearly orbitally stable.

3. Solutions on the FCC lattice

We now turn to the main focus of this paper: finding the solutions to a bifurcation problem
with large symmetry group and high dimensionality. We will accomplish this by extending
the symmetry group to a still larger one. For the FCC lattice we consider not only the C-axial
solutions, but also some of the subaxial solutions (those whose isotropy subgroups have fixed
point subspaces of dimensionality >2), some of which can have primary bifurcations.

3.1. C-axial solutions

The determination of the C-axial isotropy subgroups of a given group �̃1 is often a very involved
process. In analysing the Hopf bifurcation on planar lattices [3] first finds all the subgroups of
the holohedry (in our case this would be O⊕Z2). From these all the shifted subgroups K ⊂ �1

(subgroups containing no nontrivial translation) are found. For each of these is then found
all subgroups H such that K ⊂ H ⊂ N�1(K) and H/K is a Lie subgroup of S1 and H/K

is a maximal Abelian subgroup of N�1(K)/K . (Here N�1(K) is the normalizer of K in �1.)
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From each such pair (H, K) a twisted subgroup is then formed and analysed to determine
whether it is C-axial. For a symmetry group representation as complicated as that for the FCC
lattice (or the still more complicated representation for the BCC lattice, which we will study in
section 4), the task of guaranteeing that we have found all the C-axial subgroups is a daunting
one. Fortunately, there is a simpler process [13, 14].

Consider two groups G1 ⊂ G2 acting on the same vector space V by representations
�̃1 ⊂ �̃2, respectively. Suppose we wish to find the C-axial subgroups of �̃1, but that it
is easy to find the C-axial subgroups of �̃2. Let �1 ⊂ �̃1 be an isotropy subgroup and let
V1 = Fix(�1) be its fixed point subspace. We extend �1 to

�2 = { σ ∈ �̃2 : σ · z = z, ∀z ∈ V1}
and then let V2 = Fix(�2). By construction �1 ⊆ �2, so V2 ⊆ V1. Also by construction V1

is fixed under �2, so V1 ⊆ V2, and therefore V1 = V2. We thus have the following fact.

Fact. The fixed point subspace of any isotropy subgroup of �̃1 is the fixed point subspace of
some isotropy subgroup of �̃2.

Thus to find the isotropy subgroups of �̃1 it is sufficient to find and analyse the isotropy
subgroups of �̃2. In fact, we can say more: every C-axial solution under �̃1 is a C-axial solution
under �̃2. In order to find all the C-axial solutions under �̃1 we expand to a larger but (we
hope) easier group �̃2. We then find the C-axial solutions under �̃2 and use them to produce
the C-axial solutions under �̃1.

The converse to our fact is not true. A �̃2-solution z corresponds to no �̃1-solution if F(z)
contains a �̃1-equivariant (and �̃2-nonequivariant) term under which Fix(�2) is not an invariant
subspace. More generally, we get no �̃1-solution if there is a group element σ ∈ �2\�̃1 which
is necessary in order to pin down Fix(�2) completely. A �̃2-solution can also correspond to
more than one �̃1-solution. Given two different (i.e. nonconjugate) isotropy subgroups of �̃1,
their extensions can be conjugate to one another by some element γ ∈ �̃2\�̃1.

For the FCC lattice we have �̃1 = (T 3
� O ⊕ Z2) × S1. We enlarge this to �̃2 by adding

the generators θ̂ and r̂ , which act by

θ̂ : zj �→ eiθ zj , θ̂ : wj �→ e−iθwj ,

r̂ : (z1, w1; z2, w2; z3, w3; z4, w4) �→ (w1, z1; z2, w2; z3, w3; z4, w4).

These, together with the permutations from O, allow us full liberty to phase shift and/or
flip each (zj , wj ) pair independently. That is, we have an O(2) action of translations and
reflections on each pair (zj , wj ), and we retain our full permutation group S4 among the pairs.
We now have four independent translations and reflections, so we have in effect bent the four
wavevectors until they are mutually orthogonal. We thus have the symmetry group of the Hopf
bifurcation on the simple hypercubic lattice in four spatial dimensions.

Our enlarged group �̃2 can also be written in terms of the wreath product as �̃2 =
[O(2) � S4] × S1. The wreath product is defined in [12, 23, 24] and is used to describe a
system of identical subsystems. Suppose each subsystem has the local symmetry group L and
the whole system is symmetric under the global group G of permutations of the subsystems.
If each L acting on each subsystem is allowed to act independently then the whole group of
symmetries is the wreath product L � G.

In [12] a method is presented to find all the C-axial isotropy subgroups of (L � G) × S1,
given the C-axial isotropy subgroups of L × S1. For our case L = O(2) and we need
the isotropy subgroups of the action of O(2) × S1 on each (zj , wj ) pair. This is the Hopf
bifurcation problem with O(2) symmetry and the solutions are well-known. Representative
C-axial solutions are of the form (x, x) and (x, 0), for x ∈ C.
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The ease with which the C-axial solutions of (L�G)×S1 can be constructed by this method
is best illustrated with the equivalent steady-state problem of [24]. To find the axial isotropy
subgroups of L � G we first define a block to be a set of subsystems on which some subgroup
H ⊆ G acts transitively. Given a block and an axial solution of L, we repeat that solution in
each subsystem of the block, and set the amplitudes in the other subsystems to 0. For all the
examples studied in this paper the global group is G = Sn for some n, so we need merely copy
the axial solution of L into 1, 2, 3, etc, subsystems. For the Hopf bifurcation problem of [12]
the blocks are further subdivided into subblocks, and certain phases multiply the repetitions
of the axial solutions of L, but the method is not significantly more difficult to employ.

Following this method, we do a calculation similar to that done in [23] for the simple cubic
lattice. The result is the 12 C-axial solutions on the simple hypercubic lattice. Typical elements
of the fixed point subspaces of the C-axial isotropy subgroups of �̃2 are listed in table 1.

To find the C-axial solutions of the original group �̃1 we take each C-axial solution z,
construct γ · z for an arbitrary γ ∈ �̃2\�̃1 and let �1(γ · z) be its isotropy subgroup in �̃1.
We then solve dim(Fix(�1(γ · z))) = 2 for γ . In practice the possibilities are most effectively
winnowed by first exploiting the normal form. Fortunately, we have used only two generators to
enlarge the group, so this is a relatively easy calculation. Consider, for instance, the standing
tesseracts. The flip operator r̂ does nothing to this solution, so we need only consider the
phase operator θ̂ . Any solution based on the standing tesseracts can be translated to one
with no phase in the first three subsystems, so we need only consider solutions of the form
(x, x; x, x; x, x; xν, x/ν), for some complex ν of unit modulus. Substituting this into the
normal form (4), we can easily verify that this subspace is only invariant for ν = ±1. Thus the
only possibilities are the standing fcc (SFCC) (ν = 1) and standing double diamond (SDD)
(ν = −1) solutions. Of course, invariance under the cubic truncation does not guarantee that a
solution is C-axial, so each of these solutions must then be checked. To do this we need merely
confirm that, e.g., the SFCC solution has enough symmetries to restrict any solution to be of the
form SFCC.

Table 1. Elements of the fixed point subspaces of the C-axial subgroups of �̃2 = [O(2) � S4] × S1

and of �̃1, which is the FCC representation of T 3
�O⊕Z2. Here x ∈ C, ξ = eiπ/3 and χ = eiπ/4.

The full names of the �̃1-solutions are given in table 2.

�̃2 name �̃2-solution z �̃1-solution z �̃1 name

Standing lamellae (SL) x(1, 1; 0, 0; 0, 0; 0, 0) x(1, 1; 0, 0; 0, 0; 0, 0) SL
Standing squares (SS) x(1, 1; 1, 1; 0, 0; 0, 0) x(1, 1; 1, 1; 0, 0; 0, 0) SR
Alternating lamellae (AL) x(1, 1; i, i; 0, 0; 0, 0) x(1, 1; i, i; 0, 0; 0, 0) AL
Standing cubes (SC) x(1, 1; 1, 1; 1, 1; 0, 0)

Cycling squares (CS) x(1, 1; ξ, ξ ; ξ2, ξ2; 0, 0) x(1, 1; ξ, ξ ; ξ2, ξ2; 0, 0) CR
Standing tesseracts (ST) x(1, 1; 1, 1; 1, 1; 1, 1) x(1, 1; 1, 1; 1, 1; 1, 1) SFCC

x(1, 1; 1, 1; 1, 1; −1, −1) SDD
Alternating squares (AS) x(1, 1; 1, 1; i, i; i, i) x(1, 1; 1, 1; i, i; i, i) AR1

x(1, 1; 1, 1; i, i; −i, −i) AR2
Cycling (distorted) cubes (CC) x(1, 1; χ, χ; χ2, χ2; χ3, χ3)

Travelling lamellae (TL) x(1, 0; 0, 0; 0, 0; 0, 0) x(1, 0; 0, 0; 0, 0; 0, 0) TL
Travelling squares (TS) x(1, 0; 1, 0; 0, 0; 0, 0) x(1, 0; 1, 0; 0, 0; 0, 0) TR1

x(1, 0; 0, 1; 0, 0; 0, 0) TR2
Travelling cubes (TC) x(1, 0; 1, 0; 1, 0; 0, 0) x(1, 0; 1, 0; 1, 0; 0, 0) TP
Travelling tesseracts (TT) x(1, 0; 1, 0; 1, 0; 1, 0) x(1, 0; 1, 0; 1, 0; 1, 0) AFD

x(1, 0; 1, 0; 0, 1; 0, 1) TFCC
x(1, 0; 1, 0; 0, 1; 0, −1) TDD
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The resulting 15 solutions are shown in table 1. The standing tesseract solution corresponds
to these two solutions on the FCC lattice: the SFCC and SDD solutions. They are the standing
wave equivalents of the steady-state fcc and double diamond (dd) solutions found in [9]. The
dd solution has maxima located at the vertices of a diamond lattice and minima at the vertices of
another, interlocking diamond lattice. As we have just seen, these two solutions are conjugate
in the extended symmetry group by an overall phase shift that is unavailable in the smaller
symmetry group.

Similarly, the standing lamellae (SL) and standing rhombic prism (SR) solutions are
oscillatory versions of their steady-state equivalents. The alternating lamellae (AL) solution
oscillates between lamellae aligned with k1 and lamellae aligned with k2.

The cycling rhomb (CR) solution cycles through rhombic prism patterns with three
different orientations. At time t = π/6 it resembles rhombic prisms with wavevectors k1

and k3. A time π/3 later it resembles rhombs with wavevectors k2 and k3, while another π/3
later the wavevectors are k1 and k2.

The alternating squares on the hypercubic lattice give us two different solutions of
alternating rhombs. At time t = 0 both AR1 and AR2 resemble rhombic prisms with
wavevectors k1 and k2. At time t = π/2 they both resemble rhombic prisms with wavevectors
k3 and k4. The difference lies in the relative spatial displacement between the two sets of
rhombs. At time t = 0 the scalar field ψ takes the approximate form

ψ(x, 0) ∝ cos(k1 · x) + cos(k2 · x),

which has maxima along the lines given by x = mπ , y + z = nπ for m and n any two integers
of the same parity. At time t = π/2 the scalar field ψ takes the approximate form

ψ
(
x,

π

2

)
∝ cos(k3 · x) ± cos(k4 · x)

with + for AR1 and − for AR2. For AR1 the maxima are along the lines given by x = mπ

and y − z = nπ , while for AR2 the maxima are along the lines given by x = (m + 1
2 )π and

y −z = (n+ 1
2 )π . (In both cases m and n must again be of the same parity.) Thus, for instance,

the locus of maxima at t = 0 intersects the locus of maxima at t = π/2 for AR1, but not
for AR2.

Most of the solutions resulting from travelling patterns on the hypercubic lattice are
themselves travelling patterns. The travelling lamellae (TL) are the same on the FCC lattice,
while the travelling cubes (TC) are distorted into travelling parallelopipeds (TP). The travelling
squares (TS) produce two inequivalent sets of travelling rhombs: TR1 with wavevectors k1 and
k2 and TR2 with wavevectors k1 and −k2. These have the same spatial structure, but travel in
different directions. The travelling tesseracts correspond to three solutions: the travelling fcc
(TFCC) and travelling dd (TDD) solutions and a solution that alternates between the fcc and
dd structures (AFD).

Lastly, note that the standing and cycling cube solutions correspond to no C-axial solutions
at all on the FCC lattice. For both of these it is the term with coefficient f in the normal form
that breaks the invariance of these subspaces.

These solutions are all guaranteed by the EHT to bifurcate directly from the trivial solution
at λ = 0. We can easily find the branching equations for each of these isotropy subgroups by
restricting the system (4) to the relevant fixed point subspace. These equations are listed in
table 2, together with the number of group-theoretically guaranteed zero eigenvalues.

We have also calculated the stabilities of these solutions in terms of the normal form
coefficients a, . . . , f . No solution has more null eigenvalues than are required by equivariance,
so the linear orbital stabilities are generically determined at cubic order. Stability criteria for
each solution are listed in table 3. The solutions TR1 and TP can never be stable, and we do
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Table 2. Solution branches for the C-axial solutions in terms of the coefficients of the normal
form (4). The subscript r denotes the real part. The column labelled # is the number of group-
theoretically guaranteed zero eigenvalues, and is equal to 4 − dim(�).

Name # Branching equation

SL (standing lamellae) 2 λ = −(ar + cr)|x|2
SR (standing rhombs) 3 λ = −(ar + br + cr + dr + er)|x|2
AL (alternating lamellae) 3 λ = −(ar + br + cr + dr − er)|x|2
CR (cycling rhombs) 4 λ = −(ar + 2br + cr + 2dr − er)|x|2
SFCC (standing fcc) 4 λ = −(ar + 3br + cr + 3dr + 3er + 3fr)|x|2
SDD (standing double diamond) 4 λ = −(ar + 3br + cr + 3dr + 3er − 3fr)|x|2
AR1 (alternating rhombs 1) 4 λ = −(ar + 3br + cr + 3dr − er + fr)|x|2
AR2 (alternating rhombs 2) 4 λ = −(ar + 3br + cr + 3dr − er − fr)|x|2
TL (travelling lamellae) 1 λ = −ar |x|2
TR1 (travelling rhombs 1) 2 λ = −(ar + br)|x|2
TR2 (travelling rhombs 2) 2 λ = −(ar + dr)|x|2
TP (travelling parallelopipeds) 3 λ = −(ar + 2br)|x|2
AFD (alternating fcc/dd) 4 λ = −(ar + 3br)|x|2
TFCC (travelling fcc) 3 λ = −(ar + br + 2dr + fr)|x|2
TDD (travelling dd) 3 λ = −(ar + br + 2dr − fr)|x|2

not know whether the CR solution can be stable. However, each of the 12 other solutions can
be orbitally asymptotically stable for appropriate values of the coefficients.

3.2. Subaxial isotropy: Swiftian solutions

In addition to the C-axial solutions guaranteed by the EHT, certain submaximal solutions are
also guaranteed to have primary bifurcations in open regions of parameter space. We can use
the method of [23] to find solutions with four-dimensional fixed point subspace in �̃2 and then
see what solutions they give us in �̃1. For example, some of the four-dimensional fixed point
subspaces are listed in table 4.

Consider the second fixed point subspace, V , with typical element

z = (x, x; y, y; 0, 0; 0, 0).

As V is an invariant subspace under the flow of F, the dynamics in V are determined by F|V ,
which, to cubic order, is given by

ẋ = (λ + iω)x + (a + c)|x|2x + (b + d)|y|2x + ex̄y2,

ẏ = (λ + iω)y + (a + c)|y|2y + (b + d)|x|2y + ex2ȳ.
(5)

This system inherits some of the symmetry �̃1. Specifically, if N(�) is the normalizer
of � in �̃1 then the restricted system is equivariant under the group N(�)/�. For this
particular example it is easy to see that the restricted system is equivariant under the symmetry
group D4 × S1. Here D4 is the symmetry of the square, generated by (x, y) �→ (−x, y) and
(x, y) �→ (y, x). The former corresponds to a translation by an amount (2π, π, π)/4kc, while
the latter is one of the permutation symmetries of O.

On each of the invariant subspaces in table 4 the restricted system is a Hopf bifurcation
with D4 symmetry. The general such system, to third order, can be written

ẋ = [λ + iω + A(|x|2 + |y|2) + B|x|2]x + Cx̄y2,

ẏ = [λ + iω + A(|x|2 + |y|2) + B|y|2]y + Cx2ȳ
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Table 3. Stability criteria for the C-axial solutions on the FCC lattice. The subscript r (i) denotes
the real (imaginary) part. The solution is orbitally asymptotically stable if each of the terms shown
is negative.

Name Stability criteria

SL ar − cr, ar + cr , −ar + br − cr + dr

|e|2 − |a − b + c − d|2
SR ar − br + cr − dr − 3er ar + br − cr − dr − er

ar − br − cr + dr − er ar + br + cr + dr + er

−ar + br − cr + dr − er − 2fr −ar + br − cr + dr − er + 2fr

Re[(a − b + c − d)ē] − |e|2 |2e + f |2 − |a − b + c − d + e − 2f |2
|2e − f |2 − |a − b + c − d + e + 2f |2

AL ar + br + cr + dr − er ar + br − cr − dr + er

ar − br − cr + dr + er −ar + br − cr + dr + er

ar − br + cr − dr + 3er Re[(−a + b − c + d)ē] − |e|2
|f |2 − |a − b + c − d − e|2,

CR ar + 2br − cr − 2dr + er ar + 2br + cr + 2dr − er

ar − br − 3cr + 3dr + 3er + Re[
√

(3ar − iai − 3br + ibi − c + d + e)2 + 24fr f̄ ]

ar − br − 3cr + 3dr + 3er − Re[
√

(3ar − iai − 3br + ibi − c + d + e)2 + 24fr f̄ ]
Real part of solutions in t to

t3 + (−ā + b̄ − c̄ + d̄ − 5ē)t2 − [2(a − b + c − d − e)(ar − br + cr − dr − er) + 6frf ]t
+6[(a − b + c − d − e)2ē + 2f Re[(a − b + c − d)f̄ ] + f (2ēf − ef̄ )] = 0

SFCC ar + 3br − cr − 3dr − 3er − 9fr ar − br + cr − dr − 5er − 5fr

ar − br − cr + dr − 3er − fr ar + 3br + cr + 3dr + 3er + 3fr

Re[(a − b + c − d)(2ē + f̄ ) − 7ef̄ ] − 2|e|2 − 3|f |2
Re[(a + 3b − c − 3d − 3e − 3f )f̄ ]

SDD Same as for SFCC, only with f → −f .

AR1 ar − br + cr − dr − er − 3fr ar + 3br − cr − 3dr + er − 3fr

ar − br − cr + dr + er − 3fr ar + 3br + cr + 3dr − er + fr

ar − br − cr + dr + er + fr ar − br + cr − dr + 7er + fr

Re[(a − b + c − d − e − f )f̄ ] Re[(a + 3b − c − 3d + e − f )f̄ ]
Re[(−a + b − c + d − e)(2ē + f̄ )] − 4|e|2 + |f |2

AR2 Same as for AR1, only with f → −f .

TL ar −ar + br −ar + cr −ar + dr

TR1 ar − br −ar + br ar + br −ar − br + 2dr

−ar − br + cr + dr − er −ar − br + cr + dr + er

|f |2 − |a + b − 2d|2
TR2 ar − dr −ar + br − fr ar + dr −ar + br + fr

−ar + br + cr − dr − er −ar + br + cr − dr + er

TP ar − br −ar + br ar + 2br

−ar − 2br + cr + 2dr − er

−2ar − 4br + cr + 5dr + 2er + Re[
√

(2iai + 4ibi − c − 5idi + dr − 2e)2 + 12|f |2]

−2ar − 4br + cr + 5dr + 2er − Re[
√

(2iai + 4ibi − c − 5idi + dr − 2e)2 + 12|f |2]

AFD ar − br ar + 3br −ar − 3br + cr + 3dr + 3er

−ar − 3br + cr + 3dr − er 9|f |2 − |a + 3b − c − 3d − 3e|2
|f |2 − |a + 3b − c − 3d + e|2

TFCC ar + br − 2dr − 3fr −ar + br + cr − dr − er − 3fr

ar − br − fr −ar + br + cr − dr − er − fr

ar + br + 2dr + fr −ar + br + cr − dr + 3er + fr

Re[(a + b − 2d)f̄ ] − |f |2
TDD Same as for TFCC, only with f → −f .
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Table 4. Elements of some four-dimensional fixed point subspaces of �̃1 for the FCC lattice. Here
again ξ = eiπ/3 and x, y ∈ C.

Name z ∈ Fix(�) B C

1 (x, y; x, y; x, y; x, y) a + 3b − c − 3d − 3e 3f

2 (x, x; y, y; ix, ix; iy, iy) a − b + c − d − e f

3 (x, x; y, y; 0, 0; 0, 0) a − b + c − d e

4 (x, x; x, x; y, y; y, y) a − b + c − d + e − 2f 2e + f

5 (x, 0; x, 0; 0, y; 0, y) a + b − 2d f

6 (x, 0; y, 0; 0, 0; 0, 0) a − b 0
7 (x, 0; 0, y; 0, 0; 0, 0) a − d 0
8 (x, 0; x, 0; y, 0; y, 0) a − b 0
9 (x, 0; 0, x; y, 0; 0, y) a − b − d 0

10 (x, y; 0, 0; 0, 0; 0, 0) a − c 0
11 (x, y; x, y; 0, 0; 0, 0) a + b − c − d − e 0
12 (x, y; y, x; 0, 0; 0, 0) a − b − c + d − e 0
13 (x, y; ix, iy; 0, 0; 0, 0) a + b − c − d + e 0
14 (x, y; iy, ix; 0, 0; 0, 0) a − b − c + d + e 0
15 (x, y; ξx, ξy; ξ2x, ξ2y; 0, 0) a + 2b − c − 2d + e 0

with A, B and C arbitrary complex coefficients. This system was analysed by Swift [18], who
found a primary branch of periodic subaxial solutions (0 = x = y = 0) that exists precisely
when

|B|2 > |C|2 > |Re(BC̄)|.
For each of the subspaces in table 4 we have listed the parameters B and C of the restricted
system; clearly the primary subaxial branches are possible for solutions 1–5 and are impossible
for solutions 6–15. These solutions cannot be stable even in the invariant subspace, let alone
in the whole space C

8.
Swift found invariant tori corresponding to quasiperiodic solutions when |B|2 < |C|2

and Re[B] > 3|Re[C]|. We thus expect such solutions for the Hopf bifurcation on the FCC
lattice as well. For the right parameter values they can even be asymptotically stable within the
invariant subspace. Swift also found evidence for chaotic dynamics, and we therefore expect
it, too, on the FCC lattice.

Such subaxial solutions have been previously found for the Hopf bifurcations on the
square [25] and simple cubic [12] lattices. They are likewise discovered through a consideration
of a four-dimensional invariant subspace, on which the reduced system is equivariant under D4.
For the FCC lattice, however, we have the possibility of yet richer dynamics. The reflection
symmetry (x, y) �→ (−x, y) of equation (5) is inherited directly from a spatial translation in
�1 = T 3

� O ⊕ Z2, and is an exact symmetry for solution 2. Consider instead subspace 1
from table 4, with typical element

z = (x, y; x, y; x, y; x, y).

This subspace too has the reflection (x, y) �→ (−x, y), but it corresponds to translating in the
−k1 direction through 3

4 of a wavelength, followed by waiting in time for 1
4 of a period. More

exactly, it is composed of the translation τ̂ ∈ T 3 given by

τ̂ : (z1, w1; z2, w2; z3, w3; z4, w4) �→ (iz1, −iw1; iz2, −iw2; iz3, −iw3; iz4, −iw4), (6)

followed by the time translation z �→ iz. The S1 is only a normal form symmetry, and in
order to capture the dynamics of the full system we need to consider terms that break this
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symmetry weakly. Similarly, as we had to use an element of S1 in order to get the reflection
symmetry (x, y) �→ (−x, y) of the restricted system, this too is only a normal form symmetry.
Thus the restricted system does not have a true D4 symmetry, and we must consider breaking
it weakly. The invariant subspaces in table 4 with true D4 symmetry are 2–9.

We can reduce the case of subspace 1 to a previously studied system. Note first that the
symmetries

(x, y) �→ (y, x) and (x, y) �→ (−x, −y)

are true symmetries, with the latter corresponding to two applications of the translation (6).
Defining

u = x + y and v = x − y,

the (u, v) system has D4 ×S1 symmetry, but now the normal form symmetries that are weakly
broken are the S1 and the interchange (u, v) �→ (v, u). The problem of the D4-symmetric
Hopf bifurcation with weakly broken interchange symmetry has been studied in [26], where
they find an incredibly rich variety of dynamics, including bursting phenomena (as a result of
a heteroclinic connection to states with infinite amplitude), even when the time symmetry is
not broken. With the time symmetry broken as well we expect even richer dynamics [27].

In [26] the bursting is seen as a consequence of a forced breaking of the interchange
symmetry, e.g. as a result of distant boundaries breaking a translation symmetry, or of
boundaries which are not quite square. In contrast, on the FCC lattice the system still has the
exact spatial symmetry of the cubic lattice, and the breaking is a result of the finite ratio λ/ω

of timescales, as is explained (for the S1 symmetry breaking) in [18].

4. The Hopf bifurcation on the BCC lattice

We turn now to the Hopf bifurcation on the BCC lattice. We have 12 critical wavevectors ±kj

pointing to the midpoints of the edges of a cube, with

k1 = kc√
2
(1, 1, 0), k2 = kc√

2
(0, 1, 1), k3 = kc√

2
(1, 0, 1),

k4 = kc√
2
(1, −1, 0), k5 = kc√

2
(0, 1, −1), k6 = kc√

2
(−1, 0, 1).

A typical scalar takes the form of equation (1). The normal form is, to cubic order,

ż1 = (λ + iω)z1 + a|z1|2z1 + b|w1|2z1 + c(|w4|2 + |z4|2)z1 + dw̄1w4z4

+e(|w6|2 + |z2|2 + |z3|2 + |z5|2)z1 + f (|w2|2 + |w3|2 + |w5|2 + |z6|2)z1

+g(w2z2 + w3z3 + w5z5 + w6z6)w̄1 + h(w6z3z̄4 + w̄4z2z5)

+j (w̄3w4w6 + w̄5z2z4 + w̄2z4z5 + w4z3z̄6) (7)

for λ and ω arbitrary real and a, . . . , j arbitrary complex coefficients.
We next find the C-axial subgroups. Although the spatial symmetry group

G = T 3
� O ⊕ Z2 is the same as for the FCC lattice, the representation �1 is now

12-dimensional and acts upon the amplitudes z = (z1, w1; . . . ; z6, w6). While T 3 and Z2

still act via equations (2) and (3), the octahedral group acts as the permutations of the edges
of a cube.

The normal form has the symmetry �̃1 = �1 × S1. In order to find the C-axial subgroups
we enlarge �̃1 to a larger group �̃2. We do this by first rearranging the amplitudes. Henceforth
we will write the vector of amplitudes as

z = (z1, w1; z4, w4|z2, w2; z5, w5|z3, w3; z6, w6). (8)
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We consider these to be three subsystems, each with two orthogonal sets of wavevectors
kj , kj+3, j = 1, 2, 3. Due to the relative orientation of the wavevectors the group O permutes
the subsystems without splitting them up. That is, for instance, any permutation that carries
z1 to the second subsystem also carries w1, z4 and w4 to the second subsystem. Looking
only at the elements of �1 that leave, say, the subsystem (z1, w1; z4, w4) invariant, we find
that the action on that subsystem resembles T 2

� D4, the symmetry group of translations and
reflections on the square lattice. Note, however, that any γ ∈ �̃1 that acts nontrivially on one
subsystem necessarily acts nontrivially on another.

We choose to enlarge �̃1 to �̃2 by adding generators that correspond to translations and
reflections of individual subsystems, so that each subsystem has an independent T 2

� D4

action. The spatial symmetry is now the wreath product group (T 2
� D4) � S3, where S3 is

the global group of permutations of the three subsystems, and the total symmetry group is
�̃2 = [(T 2

� D4) � S3] × S1. In order to use the method of [12, 23] we must first solve the
Hopf problem with the symmetry of the local group, i.e. we must find the C-axial subgroups
of (T 2

� D4) × S1. These are known [25] and are shown in table 5. These solutions, together
with an understanding of the subgroups of the global group S3 (which is fortunately extremely
easy), let us use the method of [12,23] to find all the C-axial solutions of �̃2. There are 21 such
solutions, and we list them in table 6. As with the FCC lattice we can then determine the
C-axial solutions for �̃1 that correspond to each solution for �̃2. There are 33 of these, also
shown in table 6.

The spatiotemporal structures of many of these solutions are easily described in terms of the
axial solutions for the steady-state bifurcation problem on the BCC lattice found and described
in [10]. Many are simply travelling or standing wave versions of steady-state structures.
The standing wave versions of the lamellae, rhombic prism, square prism, hexagonal prism,
triangular prism, bcc, bcci, 123, A and B states are solutions 7, 8, 12, 9b, 9c, 14a, 14b, 9a, 13b
and 13a, respectively. Solutions 1, 3a, 4 and 5c are travelling versions of the lamellae, 123,
square prism and A states, respectively. The travelling rhombic prisms 2a and 2b have exactly
the same spatial structure, but travel in different directions. The same is true for the travelling
B states 5a and 5b.

Several solutions oscillate between different steady-state patterns. Solution 3b oscillates
between hexagonal and triangular prisms, 19a oscillates between the 123 state and hexagonal
prisms, and 19b oscillates between the 123 state and triangular prisms. Solution 5d oscillates
between the A and B states. Each of solutions 10 and 17 alternates between lamellae with
different orientations; in the former the different lamellae are 60◦ apart and in the latter 90◦. The
two alternating rhombic prism solutions 18a and 18b differ in the same way that the alternating
rhombic prisms on the FCC lattice do: they have different relative spatial displacements
between their two sets of rhombic prisms. The same is true for the two alternating square
prism solutions 15a and 15b. There are in addition solutions that cycle among three states.
The cycling rhombs (solution 11) are completely analogous to the cycling rhombs on the

Table 5. The C-axial solutions to the Hopf bifurcation problem on the square lattice with symmetry
(T 2

� D4) × S1. Here x ∈ C.

Name (z1, w1; z4, w4)

Travelling rolls x(1, 0; 0, 0)

Travelling squares x(1, 0; 1, 0)

Standing rolls x(1, 1; 0, 0)

Standing squares x(1, 1; 1, 1)

Alternating rolls x(1, 1; i, i)



Hopf bifurcations on cubic lattices 2113

Table 6. The C-axial solutions for the extended group �̃2 and the original group �̃1 for the BCC
lattice. Here ξ = eiπ/3, χ = eiπ/4, ρ = eiπ/6 and x ∈ C. The solutions are written as in formula (8).
The full names of the �̃1-solutions are given in table 7.

�̃2-solution z �̃1-solution z

1 x(1, 0; 0, 0|0, 0; 0, 0|0, 0; 0, 0) x(1, 0; 0, 0|0, 0; 0, 0|0, 0; 0, 0) 1 TL
2 x(1, 0; 0, 0|1, 0; 0, 0|0, 0; 0, 0) x(1, 0; 0, 0|1, 0; 0, 0|0, 0; 0, 0) 2a TR1

x(1, 0; 0, 0|0, 1; 0, 0|0, 0; 0, 0) 2b TR2
3 x(1, 0; 0, 0|1, 0; 0, 0|1, 0; 0, 0) x(1, 0; 0, 0|1, 0; 0, 0|1, 0; 0, 0) 3a T123

x(0, 0; 1, 0|0, 0; 1, 0|0, 0; 1, 0) 3b Hex/Tri
4 x(1, 0; 1, 0|0, 0; 0, 0|0, 0; 0, 0) x(1, 0; 1, 0|0, 0; 0, 0|0, 0; 0, 0) 4 TS
5 x(1, 0; 1, 0|1, 0; 1, 0|0, 0; 0, 0) x(1, 0; 1, 0|1, 0; 0, 1|0, 0; 0, 0) 5a TB1

x(1, 0; 1, 0|0, 0; 0, 0|1, 0; 0, 1) 5b TB2
x(1, 0; −1, 0|0, 0; 0, 0|1, 0; 0, 1) 5c TA
x(1, 0; 1, 0|0, 0; 0, 0|0, 1; 1, 0) 5d A/B

6 x(1, 0; 1, 0|1, 0; 1, 0|1, 0; 1, 0)

7 x(1, 1; 0, 0|0, 0; 0, 0|0, 0; 0, 0) x(1, 1; 0, 0|0, 0; 0, 0|0, 0; 0, 0) 7 SL
8 x(1, 1; 0, 0|1, 1; 0, 0|0, 0; 0, 0) x(1, 1; 0, 0|1, 1; 0, 0|0, 0; 0, 0) 8 SR
9 x(1, 1; 0, 0|1, 1; 0, 0|1, 1; 0, 0) x(1, 1; 0, 0|1, 1; 0, 0|1, 1; 0, 0) 9a S123

x(0, 0; 1, 1|0, 0; 1, 1|0, 0; 1, 1) 9b SHex
x(0, 0; 1, −1|0, 0; 1, −1|0, 0; 1, −1) 9c STri

10 x(1, 1; 0, 0|i, i; 0, 0|0, 0; 0, 0) x(1, 1; 0, 0|i, i; 0, 0|0, 0; 0, 0) 10 AL1
11 x(1, 1; 0, 0|ξ, ξ ; 0, 0|ξ 2, ξ2; 0, 0) x(1, 1; 0, 0|ξ, ξ ; 0, 0|ξ2, ξ2; 0, 0) 11 CR
12 x(1, 1; 1, 1|0, 0; 0, 0|0, 0; 0, 0) (1, 1; 1, 1|0, 0; 0, 0|0, 0; 0, 0) 12 SS
13 x(1, 1; 1, 1|1, 1; 1, 1|0, 0; 0, 0) x(1, 1; 1, 1|1, 1; 1, 1|0, 0; 0, 0) 13a SB

x(1, 1; 1, 1|1, 1; −1, −1|0, 0; 0, 0) 13b SA
14 x(1, 1; 1, 1|1, 1; 1, 1|1, 1; 1, 1) x(1, 1; 1, 1|1, 1; 1, 1|1, 1; 1, 1) 14a SBCC

x(1, −1; 1, −1|1, −1; 1, −1|1, −1; 1, −1) 14b SBCCI
15 x(1, 1; 1, 1|i, i; i, i|0, 0; 0, 0) x(1, 1; 1, 1|i, i; i, i|0, 0; 0, 0) 15a AS1

x(1, 1; 1, 1|i, i; −i, −i|0, 0; 0, 0) 15b AS2
16 x(1, 1; 1, 1|ξ, ξ ; ξ, ξ |ξ 2, ξ2; ξ2, ξ2) x(1, 1; 1, 1|ξ, ξ ; ξ, ξ |ξ2, ξ2; ξ2, ξ2) 16a CB

x(1, 1; i, −i|ξ, ξ ; iξ, −iξ |ξ2, ξ2; iξ2, −iξ2) 16b CA
17 x(1, 1; i, i|0, 0; 0, 0|0, 0; 0, 0) x(1, 1; i, i|0, 0; 0, 0|0, 0; 0, 0) 17 AL2
18 x(1, 1; i, i|1, 1; i, i|0, 0; 0, 0) x(1, 1; i, i|1, 1; i, i|0, 0; 0, 0) 18a AR1

x(1, 1; i, i|1, 1; −i, −i|0, 0; 0, 0) 18b AR2
19 x(1, 1; i, i|1, 1; i, i|1, 1; i, i) x(1, 1; i, i|1, 1; i, i|1, 1; i, i) 19a 123/Hex

x(1, 1; −1, 1|1, 1; −1, 1|1, 1; −1, 1) 19b 123/Tri
20 x(1, 1; i, i|χ, χ; χ3, χ3|0, 0; 0, 0)

21 x(1, 1; i, i|ρ, ρ; iρ, iρ|ρ2, ρ2, iρ2, iρ2) x(1, 1; i, i|ρ, ρ; −iρ, −iρ|ρ2, ρ2; iρ2, iρ2) 21a
x(1, 1; 1, −1|ρ, ρ; −ρ, ρ|ρ2, ρ2; ρ2, −ρ2) 21b

FCC lattice, while solution 16a (16b) cycles among B states (A states) with three different
orientations. The remaining solutions 21a and 21b are more complicated, and we do not give
them names here.

Notice that there is no travelling bcc or bcci solution, nor is there one that alternates
between the two, although we might have expected them by analogy with the FCC lattice.
However, on the FCC lattice a travelling solution composed of waves travelling in the k1, k2,
−k3 and −k4 directions is possible because there exists a single vector (parallel to the x-axis)
which has the same scalar product with each, and thus points in the direction of travel. This is
not the case for the BCC lattice.

The corresponding 33 solution branches are given in table 7, along with the number of
zero eigenvalues guaranteed by equivariance. The stability criteria are determined by the
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Table 7. Solution branches for the C-axial solutions on the BCC lattice in terms of the coefficients
of the normal form (7). The subscript r denotes the real part. The column labelled # is the number
of group-theoretically guaranteed zero eigenvalues, and is equal to 4 − dim(�).

Branch Name # Branching equation

1 Travelling lamellae 1 λ = −ar |x|2
2a Travelling rhombs 1 2 λ = −(ar + er)|x|2
2b Travelling rhombs 2 2 λ = −(ar + fr)|x|2
3a Travelling 123 3 λ = −(ar + 2er)|x|2
3b Hex/tri 3 λ = −(ar + 2fr)|x|2
4 Travelling squares 2 λ = −(ar + cr)|x|2
5a Travelling B 1 3 λ = −(ar + cr + er + fr + jr)|x|2
5b Travelling B 2 3 λ = −(ar + cr + 2er + hr)|x|2
5c Travelling A 3 λ = −(ar + cr + 2er − hr)|x|2
5d A/B 4 λ = −(ar + cr + 2fr)|x|2
7 Standing lamellae 2 λ = −(ar + br)|x|2
8 Standing rhombs 3 λ = −(ar + br + er + fr + gr)|x|2
9a Standing 123 4 λ = −(ar + br + 2er + 2fr + 2gr)|x|2
9b Standing hex 3 λ = −(ar + br + 2er + 2fr + 2gr)|x|2
9c Standing tri 3 λ = −(ar + br + 2er + 2fr + 2gr)|x|2
10 Alternating lamellae 1 3 λ = −(ar + br + er + fr − gr)|x|2
11 Cycling rhombs 4 λ = −(ar + br + 2er + 2fr − gr)|x|2
12 Standing squares 3 λ = −(ar + br + 2cr + dr)|x|2
13a Standing B 4 λ = −(ar + br + 2cr + dr + 2er + 2fr + 2gr + hr + 2jr)|x|2
13b Standing A 4 λ = −(ar + br + 2cr + dr + 2er + 2fr + 2gr − hr − 2jr)|x|2
14a Standing bcc 4 λ = −(ar + br + 2cr + dr + 4er + 4fr + 4gr + 2hr + 4jr)|x|2
14b Standing bccI 4 λ = −(ar + br + 2cr + dr + 4er + 4fr + 4gr − 2hr − 4jr)|x|2
15a Alternating squares 1 4 λ = −(ar + br + 2cr + dr + 2er + 2fr − 2gr − hr + 2jr)|x|2
15b Alternating squares 2 4 λ = −(ar + br + 2cr + dr + 2er + 2fr − 2gr + hr − 2jr)|x|2
16a Cycling B 4 λ = −(ar + br + 2cr + dr + 4er + 4fr − 2gr − hr + 4jr)|x|2
16b Cycling A 4 λ = −(ar + br + 2cr + dr + 4er + 4fr − 2gr + hr − 4jr)|x|2
17 Alternating lamellae 2 3 λ = −(ar + br + 2cr − dr)|x|2
18a Alternating rhombs 1 4 λ = −(ar + br + 2cr − dr + 2er + 2fr + hr)|x|2
18b Alternating rhombs 2 4 λ = −(ar + br + 2cr − dr + 2er + 2fr − hr)|x|2
19a 123/hex 4 λ = −(ar + br + 2cr − dr + 4er + 4fr + 2hr)|x|2
19b 123/tri 4 λ = −(ar + br + 2cr − dr + 4er + 4fr − 2hr)|x|2
21a 4 λ = −(ar + br + 2cr − dr + 4er + 4fr − hr)|x|2
21b 4 λ = −(ar + br + 2cr − dr + 4er + 4fr + hr)|x|2

eigenvalues of dF for each solution, and are given in table 8. (Solutions 21a and 21b proved
particularly vexing, and we were unable to determine their stability properties.) Each solution
has only as many zero eigenvalues as equivariance requires, except for the standing hexagonal
and triangular prisms, which have four each. Presumably one eigenvalue for each depends
only upon higher order terms in the normal form, so that their stabilities are not determined
by the cubic order truncation we study in this paper.

5. Discussion

We have used extension of the symmetry group to find the C-axial solutions to the
equivariant Hopf bifurcation problem posed on the FCC and BCC lattices. We have also
determined the stability properties of these solutions, and found a number of primary
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Table 8. Stability criteria for the C-axial solutions on the BCC lattice. The subscript r (i) denotes
the real (imaginary) part. The solution is orbitally asymptotically stable if each of the terms
shown is negative. (Note: 9b and 9c have eigenvalues that are not determined at cubic order in the
normal form.)

Name Stability criteria

1 ar −ar + br

−ar + cr −ar + er

−ar + fr

2a ar − er −ar + er

ar + er −ar + fr

−ar − er + 2fr −ar + br − er + fr − gr

−ar + br − er + fr + gr −ar + cr − hr

−ar + cr + hr −ar + cr − er + fr − jr

−ar + cr − er + fr + jr

2b −ar + cr −ar + er

ar − fr −ar + cr + er − fr

−ar + 2er − fr −ar + fr

ar + fr −ar + br + er − fr − gr

−ar + br + er − fr + gr |j |2 − |a − c − e + f |2
3a ar − er ar + 2er

−ar + br − 2er + 2fr − gr −ar + br − 2er + 2fr + 2gr

−ar + cr − er + fr − hr − jr −ar + cr − er + fr + hr + jr

−ar + cr − er + fr + Re[
√

h2 − hj + j2] −ar + cr − er + fr − Re[
√

h2 − hj + j2]

3b ar − fr −ar + cr + er − fr

ar + 2fr −ar + br + 2er − 2fr − gr

−ar + br + 2er − 2fr + 2gr |j |2 − |a − c − e + f |2
4 ar − cr ar + cr

−ar + br − dr −ar + br + dr

−ar − cr + 2er −ar − cr + 2fr

−ar − cr + er + fr − jr −ar − cr + er + fr + jr

|h|2 − |a + c − 2e|2
5a −ar + br + dr − 2gr − hr −ar + br + dr + 2gr + hr

ar − cr − er + fr − 3jr −ar + br − dr − hr − 2jr

−ar + br − dr + hr − 2jr ar + cr − er − fr − jr

ar − cr + er − fr − jr −ar − cr + er + fr − jr

−ar − cr − er + 3fr − jr ar + cr + er + fr + jr

Re[(a − c − e + f )j̄ ] − |j |2
−ar − cr + 2er − jr + Re[

√
2|h|2 − (ai + ci − 2ei − ier + ifr + ji)2]

−ar − cr + 2er − jr − Re[
√

2|h|2 − (ai + ci − 2ei − ier + ifr + ji)2]

5b ar + cr − 2er − 3hr ar − cr − hr

−ar − cr + 2fr − hr −ar + br − dr − 2er + 2fr − hr

ar + cr + 2er + hr −ar − cr + 2fr − hr − 2jr

−ar + br + dr − 2er + 2fr − 2gr − hr − 2jr −ar − cr + 2fr − hr + 2jr

−ar + br + dr − 2er + 2fr + 2gr − hr + 2jr

Re[(a + c − 2e)h̄] − |h|2
5c Same as for 5b, only with h → −h and j → −j .
5d ar − cr −ar − cr + 2er

ar + cr − 2fr −ar + br − dr + 2er − 2fr

ar + cr + 2fr −ar + br + dr + 2er − 2fr − 2gr

−ar + br + dr + 2er − 2fr + 2gr −ar − cr + 2er − 2jr

−ar − cr + 2er + 2jr |h|2 − |a − b + d − 2e + 2f |2
|h + 2j |2 − |a − b − d − 2e + 2f − 2g|2 |h − 2j |2 − |a − b − d − 2e + 2f + 2g|2
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Table 8. (Continued)

Name Stability criteria

7 ar − br ar + br

−ar − br + 2cr −ar − br + er + fr

|d|2 − |a + b − 2c|2 |g|2 − |a + b − e − f |2
8 ar + br − er − fr − 3gr ar − br + er − fr − gr

ar − br − er + fr − gr −ar − br + er + fr − gr

ar + br + er + fr + gr −ar − br + 2cr − gr − hr − jr

−ar − br + 2cr − gr + hr + jr Re[(a + b − e − f )ḡ] − |g|2
|d + g + j |2 − |a + b − 2c + g − h − j |2 |d + g − j |2 − |a + b − 2c + g + h + j |2
4|g|2 − |a + b − e − f + g|2

9a ar + br − er − fr − 4gr ar − br + 2er − 2fr − 2gr

ar − br − er + fr − 2gr ar + br + 2er + 2fr + 2gr

−ar − br + 2cr − 2gr − 2hr − 2jr −ar − br + 2cr − 2gr − hr − jr

−ar − br + 2cr − 2gr + hr + jr −ar − br + 2cr − 2gr + 2hr + 2jr

|d + 2g − j |2 − |a + b − 2c + 2g + h + j |2
|d + 2g + j |2 − |a + b − 2c + 2g − h − j |2
|d + 2g + 2j |2 − |a + b − 2c + 2g − 2h − 2j |2
|d + 2g − 2j |2 − |a + b − 2c + 2g + 2h + 2j |2
Re[(a + b − e − f )ḡ] − |g|2

9b ar + br − er − fr − 4gr ar − br + er − fr − 2gr

ar − br − 2er + 2fr − 2gr ar + br + 2er + 2fr + 2gr

−ar − br + 2cr − 2gr − hr − jr −ar − br + 2cr − 2gr + 2hr + 2jr

|d + 2g + 2j |2 − |a + b − 2c + 2g − 2h − 2j |2
|d + 2g − j |2 − |a + b − 2c + 2g + h + j |2
Re[(a + b − e − f )ḡ] − |g|2

9c Same as for 9b, only with h → −h and j → −j .

10 ar + br + er + fr − gr ar − br + er − fr + gr

ar − br − er + fr + gr −ar − br + er + fr + gr

ar + br − er − fr + 3gr −ar − br + 2cr + gr + hr − jr

−ar − br + 2cr + gr − hr + jr Re[(−a − b + e + f )ḡ] − |g|2
|d − g + j |2 − |a + b − 2c − g + h − j |2
|d − g − j |2 − |a + b − 2c − g − h + j |2

11 ar + br + 2er + 2fr − gr ar − br + 2er − 2fr + gr

ar − br − er + fr + gr ar + br − 2cr − gr + hr − 2jr

ar + br − 2cr − gr − hr + 2jr

|d − g + 2j |2 − |a + b − 2c − g + h − 2j |2
|d − g − 2j |2 − |a + b − 2c − g − h + 2j |2
ar + br − er − fr + 2gr + Re[

√
(ar + br − er − fr − 3igi + 2gr)2 − 6(a + b − e − f − g)ḡ]

ar + br − er − fr + 2gr − Re[
√

(ar + br − er − fr − 3igi + 2gr)2 − 6(a + b − e − f − g)ḡ]
−2ar − 2br + 4cr + 2gr + hr − 2jr

+Re[
√

4|d − g − j |2 − (2ai + 2bi − 4ci − 2gi − hi + 3ihr + 2ji)2]
−2ar − 2br + 4cr + 2gr + hr − 2jr

−Re[
√

4|d − g − j |2 − (2ai + 2bi − 4ci − 2gi − hi + 3ihr + 2ji)2]
−2ar − 2br + 4cr + 2gr − hr + 2jr

+Re[
√

4|d − g + j |2 − (2ai + 2bi − 4ci − 2gi + hi + 3ihr − 2ji)2]
−2ar − 2br + 4cr + 2gr − hr + 2jr

−Re[
√

4|d − g + j |2 − (2ai + 2bi − 4ci − 2gi + hi + 3ihr − 2ji)2]

12 ar + br − 2cr − 3dr ar − br − dr

−ar − br − 2cr − dr + 2er + 2fr − 2jr ar + br + 2cr + dr

−ar − br − 2cr − dr + 2er + 2fr + 2jr Re[(a + b − 2c)d̄] − |d|2
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Table 8. (Continued)

Name Stability criteria

|2g − h|2 − |a + b + 2c + d − 2e − 2f + 2j |2
|2g + h|2 − |a + b + 2c + d − 2e − 2f − 2j |2

13a ar − br − dr − 2gr − hr

−ar + br + dr + 2er − 2fr + 2gr + 3hr + 6jr

−ar − br + 2cr + 3dr + 2gr + hr + 4jr

−ar − br − 2cr − dr + 2er + 2fr + 6gr + 3hr + 2jr

ar − br − dr + 2er − 2fr − 2gr + hr − 2jr

ar + br + 2cr + dr − 2er − 2fr + 2gr + hr − 2jr

−ar − br − 2cr − dr + 2er + 2fr − 2gr − hr − 2jr

ar + br + 2cr + dr + 2er + 2fr + 2gr + hr + 2jr

ar + br + 2cr + dr − 2er − 2fr + 2gr + hr + 6jr

Re[(a − b − d − 2e + 2f − 2g)(h̄ + 2j̄ )] − |h + 2j |2
4|2g + h|2 − |a + b + 2c + d − 2e − 2f + 2g + h − 2j |2
4|2g − h|2 − |a + b + 2c + d − 2e − 2f + 2g + h + 6j |2
16|g|2 − |a + b + 2c + d − 2e − 2f + 2g + h + 2j |2
Re[(a + b − 2c − d − h − 2j)(d̄ + ḡ + j̄ )]
Re[(a + b + 2c + d − 2e − 2f − 2g − h − 2j)(2ḡ + h̄)]

13b Same as for 13a, only with h → −h and j → −j .

14a ar + br − 2cr − 3dr − 4gr − 2hr − 8jr

ar − br − dr + 2er − 2fr − 4gr − 2jr

ar − br − dr − 2er + 2fr − 4gr − 4hr − 6jr

ar + br + 2cr + dr − 2er − 2fr − 8gr − 4hr − 2jr

ar + br + 2cr + dr + 4er + 4fr + 4gr + 2hr + 4jr

Re[(a + b + 2c + d − 2e − 2f − 2j)(2ḡ + h̄)] − |2g + h|2
Re[(a + b − 2c − 2h)(d̄ + 2ḡ + 2j̄ )] − 2Re[(d + 4j)ḡ] − |d + 3j |2 + |j |2
Re[(a − b − d − 2e + 2f − 4g)(h̄ + 2j̄ )] − |h + 3j |2 − |h|2 + 5|j |2

14b Same as for 14a, only with h → −h and j → −j .
15a ar − br − dr + 2gr + hr

−ar − br − 2cr − dr + 2er + 2fr + 2gr + hr − 6jr

ar − br − dr − 2er + 2fr + 2gr + 3hr − 6jr

ar + br − 2cr − 3dr + 2gr + hr − 4jr

ar − br − dr + 2er − 2fr + 2gr − hr − 2jr

ar + br + 2cr + dr − 2er − 2fr + 6gr + 3hr − 2jr

−ar − br − 2cr − dr + 2er + 2fr + 2gr + hr − 2jr

ar + br + 2cr + dr + 2er + 2fr − 2gr − hr + 2jr

−ar − br − 2cr − dr + 2er + 2fr + 2gr + hr + 2jr

4|h|2 − |a + b + 2c + d − 2e − 2f − 2g − h + 2j |2
|a + b − 2c + d − 2g + h|2 − |a + b − 2c − 3d + 2g + h − 4j |2
Re[(−a + b + d + 2e − 2f − 2g)(h̄ − 2j̄ )] − |h − 2j |2
Re[(−a − b − 2c − d + 2e + 2f + 2j)(2ḡ + h̄)] − |2g + h|2

15b Same as for 15a, only with h → −h and j → −j .

16a ar + br − 2cr − 3dr + 2gr + hr − 8jr

ar + br + 2cr + dr + 4er + 4fr − 2gr − hr + 4jr

ar + br + 2cr + dr − 2er − 2fr + 4gr + 2hr − 2jr

+Re

[√
(ar + br + 2cr + dr − 2er − 2fr + 4gr + 6igi + 2hr + 3ihi − 2jr)

2

−6(2g + h)(ā + b̄ + 2c̄ + d̄ − 2ē − 2f̄ − 2ḡ − h̄ − 2j̄ )

]

ar + br + 2cr + dr − 2er − 2fr + 4gr + 2hr − 2jr

−Re

[√
(ar + br + 2cr + dr − 2er − 2fr + 4gr + 6igi + 2hr + 3ihi − 2jr)

2

−6(2g + h)(ā + b̄ + 2c̄ + d̄ − 2ē − 2f̄ − 2ḡ − h̄ − 2j̄ )

]
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Table 8. (Continued)

Name Stability criteria

Re[(a + b − 2c − d + h − 4j)(d̄ − ḡ + 2j̄ )]
Real part of solutions in t to t3 + P t2 + Qt + R = 0, where

P = −4(ar − br − dr + 2gr + hr − 4jr)

Q = 4(ar − br − dr + 2gr + hr − 4jr)
2 − 16(er − fr − jr)

2 + 8(h2
i − h2

r − 16j2
i − 8j2

r )

+4Re[(a − b − d + 2ē − 2f̄ + 2g − h − 8j + 2j̄ )(h̄ − 4j̄ )]
R = Re[−4(a − b − d + 2e − 2f + 2g − 3h)[(a − b − d − 2e + 2f + 2g + h)h̄ + c.c.]

+8(2a − 2b − 2d + 4e − 4f + 4g + h)(ā − b̄ − d̄ − 2ē + 2f̄ + 2ḡ)j

+8(4a − 4b − 4d + 4e − 4f + 8g − h)h̄j − 16(2ā − 2b̄ − 2d̄ − 4ē + 4f̄ + 4ḡ + 3h̄)j2

+8[(a − b − d)(2a − 2b − 2d + 8g + 3h − 12j) − 2(2e − 2f − h + j)2

+8g2 − 2eh + 2f h + 6gh − h2 − 24gj − 10hj + 18j2]j̄ ]

16b Same as for 16a, only with h → −h and j → −j .

17 ar + br + 2cr − dr ar − br + dr

−ar − br − 2cr + dr + 2er + 2fr ar + br − 2cr + 3dr

|h|2 − |a + b + 2c − d − 2e − 2f |2 −Re[(a + b − 2c)d̄] − |d|2
18a ar + br + 2cr − dr − 2er − 2fr − 3hr ar − br + dr − 2er + 2fr − 3hr

−ar − br − 2cr + dr + 2er + 2fr − hr ar − br + dr + 2er − 2fr + hr

ar + br + 2cr − dr + 2er + 2fr + hr ar − br + dr − hr − 2jr

ar + br − 2cr + 3dr − 4gr − hr − 2jr ar − br + dr − hr + 2jr

ar + br − 2cr + 3dr + 4gr − hr + 2jr

4|h|2 − |a + b + 2c − d − 2e − 2f + h|2
Re[(a − b + d − 2e + 2f )h̄] − |h|2 Re[(a + b + 2c − d − 2e − 2f )h̄] − |h|2
Re[(a + b − 2c − h)(−d̄ + ḡ + j̄ ) + 3dḡ + dj̄ − 2gj̄ ] − |d|2 − 2|g|2
Re[(−a − b + 2c + h)(d̄ + ḡ + j̄ ) − 3dḡ − dj̄ − 2gj̄ ] − |d|2 − 2|g|2

18b Same as for 18a, only with h → −h and j → −j .

19a ar + br + 2cr − dr + 4er + 4fr + 2hr −ar − br − 2cr + dr + 2er + 2fr + 4hr

−ar − br + 2cr − 3dr − 8gr + 2hr − 4jr ar − br + dr + 2er − 2fr + 2jr

−ar − br + 2cr − 3dr + 4gr + 2hr + 2jr −ar + br − dr + 2er − 2fr + 4hr + 2jr

Re[(−a − b + 2c − d + 2g + 2h)(d̄ − ḡ − j̄ )]
Re[(a + b + 2c − d − 2e − 2f − h)h̄]
Re[(−a − b + 2c − d − 4g + 2h)(d̄ + 2ḡ + 2j̄ )]
Re[(a − b + d − 2e + 2f − 2h − 2j)h̄]
Real part of solutions in t to t3 + P t2 + Qt + R = 0, where

P = −4(ar − br + dr − 2hr)

Q = 4(ar − br + dr − 2hr)
2 − 4(2er − 2fr − jr)

2

−8Re[(a − b + d + 2ē − 2f̄ − 2ihi − j̄ )h̄ ] − 12j2
r

R = 8Re[[(a − b + d − 2e + 2f − 4h + j)(ā − b̄ + d̄ + 2ē − 2f̄ − 4h − j̄ )(a − b + d)2

−4(e − f + 2h)2 + 4(e − f + 2h)j − 4j2 − 3|j |2]h̄]
+32(ar − br + dr + 2er − 2fr − jr)|h|2.

19b Same as for 19a, only with h → −h and j → −j .

21a ?

21b ?

subaxial solutions, with indications of the possibility of quasiperiodic, chaotic and bursting
behaviour.

Extension of the symmetry group has been used before to analyse systems, in two contexts.
In the first the physical system has an approximate symmetry that is weakly broken. For
instance, in [2] Bénard convection is studied as a steady-state bifurcation on the hexagonal
lattice. The presence of quadratic terms guarantees that no solutions can be stable at onset [28],
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but can only acquire stability through secondary bifurcations. By assuming a Boussinesq fluid
and identical top and bottom boundary conditions an additional Z2 symmetry is obtained,
corresponding to reflection through the horizontal midplane. After the solutions are found the
Z2 symmetry can be broken weakly, and the resulting unfolding about the Boussinesq case
reveals the nonBoussinesq solutions.

The second context where symmetry extension has been commonly used is the case of
hidden symmetries [29]. For example, a reaction–diffusion experiment taking place in a
rectangular box with Neumann boundary conditions can exhibit behaviour not predicted on
the basis of the spatial symmetry of the box alone. The domain can be extended by reflection to
a larger box with periodic boundary conditions, and the symmetry group of the system thereby
extended to one with continuous translations. The solutions to this problem are then found,
and the ones consistent with the original domain kept. Hidden symmetries are also employed
when an invariant subspace has a larger symmetry than the whole system, as in [30, 31].

In both of these contexts the group extension is motivated by some physical property of
the system. In the former the convection system almost has an additional symmetry, which
is weakly broken to produce secondary bifurcations. In the latter the boundary conditions or
invariant subspaces motivate the extension, which restricts the normal form. In our case we
use group extension to find the C-axial solutions. The symmetries we add are not motivated by
any physical consideration whatsoever, but are chosen merely for mathematical convenience.
Because our added symmetries are arbitrary and need have nothing to do with the physical
system, we are not constrained to use weak symmetry breaking to find the solutions to the
original problem.

What we have yet to explain is how the appropriate group extensions were determined
in the first place. It may seem serendipitous that the Hopf bifurcations on the FCC and BCC
lattices admit of easy extensions, but as we shall see we expect many equivariant problems to
be solvable in this way.

We wish to extend a given representation �1 of a spatial symmetry group to a
representation �2 of a larger group. If �1 is an N -dimensional orthogonal representation
then it is always possible to extend to �2 = O(N) ⊃ �1. However, �̃2 = �2 × S1 then has
only one C-axial isotropy subgroup, which must correspond to all of the solutions in �̃1, so
the reduction from �̃2-solutions to �̃1-solutions is excessively complicated. If possible, we
would like our extension to be minimal in some sense. We would also prefer that �2 = L � G
be the wreath product of the representation L of some local group and the representation G of
some global permutation group, simply because we have a method for determining the C-axial
solutions in this case.

We impose a partial ordering on wreath products by defining (L �G) � (L′ �G′) if L ⊆ L′

and G ⊆ G′. For this partial ordering we have several minimal extensions. In fact, we have
one for each consistent partition of the system into subsystems. By a ‘consistent partition’ we
mean that if zi and zj are both in subsystem m, then any g ∈ G that takes zi to an amplitude
in subsystem n must also take zj to an amplitude in subsystem n. That is, the permutations do
not break up the subsystems.

Consider the Hopf bifurcation on the BCC lattice. To determine the consistent partitions
we examine the subsystem that contains z1. Suppose it also contains z4. There is a symmetry
that leaves z1 fixed, yet sends z4 → w4, so z1 and w4 are in the same subsystem. Then there is
a symmetry that leaves w4 fixed but sends z1 → w1. By this technique we find that there are
only four consistent partitions, which we list in table 9. The fourth partition is not an extension
at all and the first has 12 continuous symmetries, which renders the reduction from solutions
on �̃2 to those on �̃1 needlessly complicated. The second and third each have six continuous
symmetries, but the third has the less complicated global group. The Hopf bifurcation on the
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local group T 2
� D4 has already been solved, and the method of [23] requires knowing all

about the nature of the subgroups of the global group, so we chose to use the third option with
G = S3.

For the FCC lattice the consistent partitions are listed in table 10. As before, the first and
last partitions are not useful. The second partition adds only one extra continuous symmetry
and is the one we used here. The third one adds three but is still tractable, and must produce
the same solutions.

This method can be applied to other complex systems, and can be used to find
solutions much more easily than has been done before. Consider, for example, the Hopf
bifurcation problem with the higher-dimensional representation of the square lattice symmetry
�1 = T 2

� D4 studied in [3, 30]. The eight critical wavevectors are ±kj , with

k1 = (m, n), k2 = (n, m), k3 = (−n, m), k4 = (−m, n)

for integers m > n > 0 with gcd(m, n) = 1. There are 10 consistent partitions, which we
list in table 11. The ninth partition (z1, w1, z3, w3|z2, w2, z4, w4) has the very simple global

Table 9. Consistent partitions for the BCC lattice, together with the corresponding extended groups
�2 and the number of continuous symmetries of �2. The first partition uses the 12-dimensional
representation of O on vectors, while the second uses the six-dimensional representation on
directors.

Partition �2 N

(z1|z2|z3|z4|z5|z6|w1|w2|w3|w4|w5|w6) SO(2) � (O ⊕ Z2) 12
(z1, w1|z2, w2|z3, w3|z4, w4|z5, w5|z6, w6) O(2) � O 6
(z1, w1; z4, w4|z2, w2; z5, w5|z3, w3; z6, w6) (T 2

� D4) � S3 = [O(2) � S2] � S3 6
(z1, w1; z2, w2; z3, w3; z4, w4; z5, w5; z6, w6) (T 3

� O ⊕ Z2) � 1 3

Table 10. Consistent partitions for the FCC lattice, together with the corresponding extended
groups �2 and the number of continuous symmetries of �2.

Partition �2 N

(z1|z2|z3|z4|w1|w2|w3|w4) SO(2) � (O ⊕ Z2) 8
(z1, w1|z2, w2|z3, w3|z4, w4) O(2) � S4 4
(z1, z2, z3, z4|w1, w2, w3, w4) (T 3

� T) � Z2 6
(z1, w1, z2, w2, z3, w3, z4, w4) (T 3

� O ⊕ Z2) � 1 3

Table 11. Consistent partitions for the eight-dimensional representation of the square lattice,
together with the corresponding extended groups �2 and the number of continuous symmetries
of �2. The first and last partitions use the eight-dimensional representation of D4, while the others
use the four-dimensional representation.

Partition �2 N

(z1|w1|z2|w2|z3|w3|z4|w4) SO(2) � D4 8
(z1, w1|z2, w2|z3, w3|z4, w4) O(2) � D4 4
(z1, z2|w1, w2|z3, z4|w3, w4) (T 2

� Z2) � D4 8
(z1, z4|w1, w4|z2, z3|w2, w3) (T 2

� Z2) � D4 8
(z1, w2|z2, w1|z3, w4|z4, w3) (T 2

� Z2) � D4 8
(z1, w4|z4, w1|z2, z3|w2, w3) (T 2

� Z2) � D4 8
(z1, w1; z2, w2|z3, w3; z4, w4) (T 2

� D2) � Z2 4
(z1, w1; z4, w4|z2, w2; z3, w3) (T 2

� D2) � Z2 4
(z1, w1; z3, w3|z2, w2; z4, w4) (T 2

� D4) � Z2 4
(z1, w1; z2, w2; z3, w3; z4, w4) (T 2

� D4) � 1 2
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Table 12. C-axial solutions z = (z1, w1; z3, w3|z2, w2; z4, w4) for the extended group
�̃2 = (T 2

� D4) � Z2 and the original group �̃1 for the eight-dimensional representation of the
square lattice.

�̃2-solution z �̃1-solution z

1 x(1, 0; 0, 0|0, 0; 0, 0) x(1, 0; 0, 0|0, 0; 0, 0) TR
2 x(1, 0; 1, 0|0, 0; 0, 0) x(1, 0; 1, 0|0, 0; 0, 0) TS
3 x(1, 1; 0, 0|0, 0; 0, 0) x(1, 1; 0, 0|0, 0; 0, 0) SR
4 x(1, 1; 1, 1|0, 0; 0, 0) x(1, 1; 1, 1|0, 0; 0, 0) SS
5 x(1, 1; i, i|0, 0; 0, 0) x(1, 1; i, i|0, 0; 0, 0) AR
6 x(1, 0; 0, 0|1, 0; 0, 0) x(1, 0; 0, 0|1, 0, 0, 0) TRh3

x(1, 0; 0, 0|0, 1, 0, 0) TRh4

x(1, 0; 0, 0|0, 0, 1, 0) TRh2

x(1, 0; 0, 0|0, 0, 0, 1) TRh1

7 x(1, 0; 1, 0|1, 0; 1, 0)

8 x(1, 1; 0, 0|1, 1; 0, 0) x(1, 1; 0, 0|1, 1; 0, 0) SRec2

x(1, 1; 0, 0|0, 0; 1, 1) SRec1

9 x(1, 1; 1, 1|1, 1; 1, 1) x(1, 1; 1, 1|1, 1; 1, 1) SSS
x(1, 1; 1, 1| − 1, −1; −1, −1) SAS

10 x(1, 1; i, i|1, 1; i, i) x(1, 1; i, i|i, i; 1, 1) ASS
11 x(1, 1; 0, 0|i, i; 0, 0) x(1, 1; 0, 0|i, i; 0, 0) ARec2

x(1, 1; 0, 0|0, 0; i, i) ARec1

12 x(1, 1; 1, 1|i, i; i, i)
13 x(1, 1; i, i|i, i; −1, −1) x(1, 1; i, i| − i, −i; −1, −1) AAS

group Z2, while its local group (T 2
�D4) is the symmetry of the square lattice, whose C-axial

solutions are in table 5 [25]. Choosing this partition to define our group extension, we find the
13 C-axial solutions listed in table 12. Upon reduction to the smaller subgroup these reveal
the 17 C-axial solutions already found and named in [3, 30].

We expect that this method will find use for other highly symmetric systems, particularly
those with high-dimensional representations.
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