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Abstract
We study critical invariant circles of several noble rotation numbers at the edge
of break-up for an area-preserving map of the cylinder, which violates the twist
condition.

These circles admit essentially unique parametrizations by rotational
coordinates. We present a high accuracy computation of about 107 Fourier
coefficients. This allows us to compute the regularity of the conjugating maps
and to show that, to the extent of numerical precision, it only depends on the
tail of the continued fraction expansion.

PACS numbers: 05.10.Cc, 02.30.Nw, 02.30.-f, 47.53.+n

1. Introduction

Area-preserving maps of a cylinder have been studied for several decades, both as low-
dimensional models of physical systems and as interesting mathematical problems. Until
recently, most of these studies have dealt with twist maps, which are the maps that satisfy a
certain non-degeneracy condition. Lately, maps that violate this condition locally in phase
space have been of great interest. These nontwist maps occur in various physical systems such
as, e.g., in the study of magnetic field lines in toroidal plasma devices with reversed shear
profile, channel flows, and other physical applications (see, e.g. [1–8]).
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Nontwist maps present new phenomena that are not observed in twist maps. Some of
these phenomena (reconnection, bifurcation, meandering tori, etc) are discussed in [8–14].
It should also be remarked that nontwist maps appear naturally in iterations of twist maps.
This is because of the fact that, even though the twist property has dynamical consequences,
it is not preserved by composition or by a change of variables.

These maps are also of mathematical interest because many important results about
maps, e.g., KAM and Aubry–Mather theory, depend on the twist condition. Even though
Aubry–Mather variational theory for twist maps does not generalize for nontwist maps, there
is an analogue of KAM theory. In [15, 16] it was suggested that one can continue shearless
circles with a Diophantine rotation number provided that one adjusts a second parameter; this
was proved rigorously in [17]. Furthermore, in [15,16] it was observed numerically that if the
curve is continued, one reaches a critical value where the circles cannot be continued anymore.
The circle that cannot be continued—henceforth referred to as the critical circle (or circle at
break-up)—enjoys remarkable self-similar properties, which are universal (i.e. they do not
seem to depend on the map). The calculations of critical shearless invariant tori in [16] were
extended and refined in [18–21].

As we will show later, a natural way of representing the circle is by giving some
parametrization in which the motion becomes a rotation. This parametrization is essentially
unique. The study of the Fourier spectrum reveals several properties of the function. One such
property is the regularity of the parametrization. The study of the regularity of functions—
which is crucial in KAM theory—has been studied extensively in the mathematical literature.
Efficient algorithms for problems very similar to those considered here were developed in [22].

In this paper, we analyse further the properties of the critical invariant tori with noble
winding numbers computed in [18, 19, 21] by using techniques developed in [23]. Since the
new calculations in [18, 19, 21] allow us to compute accurately orbits of length of several
millions, we have a very accurate computation of the critical invariant circle.

Remark 1. The standard nontwist maps present several symmetries that makes the calculation
simpler. On the other hand, it is expected from the renormalization group picture that the
regularities of the shearless circles of other nontwist maps without these symmetries should
also be the same as found here.

Remark 2. The regularities for shearless circles with non-noble winding numbers are not
considered here. Indeed, the breakdown of shearless circles with non-noble numbers has not
been considered in the literature and it is an open question whether there is a renormalization
group description for them.

We have found that the functions corresponding to the critical shearless circle saturate
several bounds in harmonic analysis, so that the regularity is easy to ascertain. In the cases we
have examined, the regularity of the critical circles is the same for different rotation numbers
with the same tail of the continued fraction expansions. This is consistent with the predictions
of universality that follow from the renormalization group picture [24].

This paper is organized as follows. Section 2 introduces the basic terminology for nontwist
maps. In section 3, we describe the convenient parametrization used to study these regularities
and its symmetry properties. The numerical techniques are briefly explained in section 4.
We discuss the results in section 5.

2. Preliminaries

The standard nontwist map F : T1 × R → T1 × R is given by

y ′ = y − b sin(2πx), x ′ = x + a(1 − y ′2) mod 1, (1)
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where (x, y) ∈ T1 × R and a, b are parameters. This map violates the twist condition
∂x ′

∂y
�= 0, (2)

along the curve y = b sin(2πx) in phase space. An orbit of the map is the set of points
{(xi, yi)}∞i=−∞ such that (xi+1, yi+1) = F(xi, yi). An orbit is periodic of least period n if
xi+n = xi , yi+n = yi , and n is the smallest such integer. We also consider the lift of the
standard nontwist map F̃ : R × R → R × R given by (1) by removing the mod 1. We denote
by {(x̃i , ỹi)} an orbit of the lift map corresponding to the orbit {(xi, yi)} of the map. The
winding (or rotation) number ω of an orbit is defined as

ω = lim
i→∞

x̃i

i
(3)

if the limit exists. This number is independent of the lift taken. The winding number of a
periodic orbit is rational; an orbit for which the winding number does not exist is chaotic. A set
homeomorphic to a circle that is mapped to itself by F is called an invariant circle. It was
already proved by Poincaré that all the points in a circle have the same winding number. The
winding number of orbits belonging to these circles is generically irrational.

Invariant circles that are homotopically nontrivial form barriers to transport, i.e. points on
one side cannot cross to the other side. (We will abbreviate homotopically nontrivial invariant
circles to just invariant circles.) When the perturbation increases, some of the circles cease
to exist. The break-up of these circles (in both twist and nontwist maps) has been studied
extensively.

In contrast to twist maps, the orbits of the standard nontwist map are generally found in
pairs—two or none—for any winding number for any symmetry line. Also, for the standard
nontwist map, the rotation numbers are bounded from above. The orbit with the extremal
winding number occurs in the region in phase space where the twist condition fails. The
curve in parameter space along which there is only one orbit of winding number ω is called
the ω-bifurcation curve and the orbit itself is called shearless. The rotation number of the
shearless orbit is an extremum of all the rotation numbers of orbits in the map.

Remark 3. For the integrable map b = 0, the circle with rotation number a is shearless. Thus,
the parameter values (a, 0) belong to the a-bifurcation curve (i.e. to the ω-bifurcation curve
for ω = a). It was shown in [17] that if a is Diophantine, then there is an analytic a-bifurcation
curve for small perturbations.

Shearless invariant circles are present in the phase space region where the twist condition
fails. The break-up of shearless circles with noble winding numbers (with a continued fraction
expansion ending in 1) has been studied extensively in [15,18,19,21]. The break-up of shearless
invariant circles for nontwist time periodic Hamiltonian flows has been analysed in [20, 25].

The critical circles for the three winding numbers

ω(1) = [0, 1, 1, 1, . . .] = 1

γ
,

ω(2) = [0, 2, 1, 1, 1, . . .] = 1

γ 2
, (4)

ω(3) = [0, 2, 2, 1, 1, 1, . . .] = γ 2

1 + 2γ 2
,

where γ is the golden mean, were studied in [15,18,19,21]. Here ω = [a0, a1, a2, . . .] denotes
the continued fraction expansion [26] which is defined by

ω = [a0, a1, a2, . . .] := a0 +
1

a1 + (1/(a2 + · · ·)) . (5)
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Figure 1. Critical circles with winding numbers ω(1), ω(2) and ω(3) of (4).

The parameter values for which there is a critical circle were found in [15, 18, 19, 21] using
Greene’s residue criterion [27]. This method uses the observation that the invariant circle can
be approximated by periodic orbits of winding numbers equal to the convergents obtained by
truncating the continued fraction expansion. The residue criterion relates the stability of these
periodic orbits to the break-up (loss of stability) of the invariant circle. A rigorous partial
justification of this procedure for nontwist maps is presented in [17].

In the case of the standard nontwist map, the ω-bifurcation curve for irrational ω is
approximated by the numerically obtained limit of bifurcation curves of the periodic orbits.
This limit shows a scaling behaviour, which further increases the accuracy of these calculations,
for details of which we refer to [21]. The parameter values for which the above circles are
critical are as follows:

(ac, bc)
(1) = (0.686 049 108, 0.742 493 549 155 18),

(ac, bc)
(2) = (0.425 160 543, 0.924 463 647 035 53), (6)

(ac, bc)
(3) = (0.452 977 419 55, 0.845 829 139 994 45).

These critical circles, which are shown in figure 1, are not smooth, and they show a self-
similar structure [15,18,19,21]. Our aim here is to study numerically the smoothness of these
critical circles and details of their fine scale structure using Fourier analysis. We will first
describe the method used to parametrize invariant circles of nontwist maps.

3. The parametrization function

In contrast to the situation for twist maps, homotopically non-trivial invariant circles for
nontwist maps can fail to be graphs. Indeed, our computations show that the critical shearless
invariant circles are not graphs in any smooth coordinate system. A convenient way to describe
circles that are not graphs is to find a parametric representation. In our case, it is convenient to
choose this parametrization in a way that, moreover, turns the dynamics into a rotation. Such
parametrization functions are often called ‘hull functions’, and they have been used extensively
for the computation of periodic orbits and invariant circles. For example, they have been used
as the basis for KAM theory in [28].

Therefore, the main object of this study will be a continuous map K : T1 → T1 × R

whose range is the invariant circle we are seeking to describe and such that

F ◦ K(θ) = K(θ + ω). (7)

We will denote the components of K by Kx : T1 → T1 and Ky : T1 → R.
If we set K(0) to be a point on the circle, applying (7) we obtain

Fn(K(0)) = K(nω). (8)

Hence, it is very easy to compute numerically the function K at points in the set {θ = nω}∞n=0.
Since we are assuming that ω /∈ Q, this is a dense set on the circle and, therefore, the continuous
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Figure 2. The functions K̃x(θ)−θ (left) and K̃y(θ) (right) for the three winding numbers from (4).
The symmetry properties (lemma 1) can be seen very clearly. The graphs of K̃x(θ) − θ have been
shifted by a constant for clarity.

function K is determined. For numerical applications, it is quite fortunate that {nω}Nn=0 is very
uniformly distributed in the torus.

The argument above shows that the continuous solutions of (7) are unique once we fix
a point. More precisely, if K and K̂ solve (7), then there is a σ such that

K̂(θ) = K(θ + σ). (9)

Indeed, since K̂(0) is in the circle, it can be written as K(σ). Then, applying (7), we obtain
K̂(nω) = K(nω + σ). Hence, (9) holds for a dense set.

We will also find it convenient to study lifts F̃ of the map F and lifts K̃ of the function K .
In general, a map K̃ : R → R × R is a lift of a map K : T1 → T1 × R when the map K̃

becomes the map K upon identifying the angle variables (the independent variable and the
first coordinate of the range) that differ by an integer.

Of course, a lift corresponds to only one map K , but a map K has infinitely many lifts.
If K̃ is a lift of K , all the other lifts are given by K̃(θ + �) + (n, 0) where �, n ∈ Z.

The lifts of a map K in the annulus satisfy

K̃(θ + 1) = K̃(θ) + (n, 0). (10)

The number n measures how many turns are experienced by the angle variable in the range
of K̃ when the angle variable in the domain of K̃ experiences one turn. We will call n the
index of the map K or the index of the circle. In our case, we will consider only circles of
index 1. It is easy to see that circles of index larger than 1 have self-intersections, and circles
of index 0 are homotopically trivial. The lift F̃ of our map F of the annulus also satisfies

F̃ (x + 1, y) = F̃ (x, y) + (1, 0).

Note that a consequence of (10) is that K̃x(θ)−θ and K̃y(θ) are periodic functions. These
are the functions we will be studying numerically. This is equivalent to studying K because
if K satisfies (7), then

F̃ ◦ K̃(θ̃) = K̃(θ̃ + ω). (11)

The functions K̃x(θ) − θ and K̃y(θ) for the shearless circles with winding numbers ω(1), ω(2),
and ω(3) are shown in figure 2.

3.1. Symmetry properties

The standard nontwist map (1) is symmetric under S:

F ◦ S = S ◦ F, (12)
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where S is the map of the annulus defined by

S(x, y) =
(
x + 1

2 , −y
)
.

Note that S is an involution:

S2 = Id. (13)

This symmetry implies the following properties for the functions K solving (7).

Lemma 1. If the map F satisfies (12) and the shearless circle is of index 1, then K satisfies

S ◦ K(θ) = K
(
θ + 1

2

)
,

and any lift K̃ satisfies

K̃x

(
θ + 1

2

)
= K̃x(θ) + 1

2 , K̃y

(
θ + 1

2

)
= −K̃y(θ). (14)

In particular K̃x(θ) − θ is of period 1
2 .

Proof. We have

F ◦ S ◦ K(θ) = S ◦ F ◦ K(θ)

= S ◦ K(θ + ω),

so that S◦K is also a solution of (7) and parametrizes the same circle. Hence, by the uniqueness
result in 9, there exists a number σ for which

S ◦ K(θ) = K(θ + σ).

Noting that S2 = Id, we conclude that

K(θ + 2σ) = K(θ). (15)

If σ were an irrational number, then (15) would imply that K(θ) is constant, which is
impossible. Hence, σ is rational.

If σ = n/m with m odd, then

SK(θ) = SmK(θ) = K(θ + n) = K(θ).

This implies that −Ky(θ) = Ky(θ), so that the circle is the x-axis, and that Kx(θ)+ 1
2 = Kx(θ),

both of which are absurd.
Hence, the only possibility is σ = n/2k with n, k ∈ N, gcd(n, k) = 1 and, in particular

n is odd. Then, we can find L, p ∈ N such that nL − pk = 1. Hence, iterating (15) L times,
we obtain

K(θ) = S2LK(θ) = K

(
θ +

nL

k

)
= K

(
θ +

1

k

)
.

Going to the lift we have that K̃(θ + 1/k) = K̃(θ)+ (i, 0), where i ∈ Z. Applying this k times,
we obtain K̃(θ + 1) = K̃(θ) + (ki, 0). Since the index is 1, i · k = 1 and therefore, i = 1,
k = 1 and the result is proved. �

3.2. Reversibility

The map (1) is reversible, which implies antisymmetry properties of the parametrization
function. We follow the notation of [15].



Study of critical invariant circles 1179

Reversibility means that

I0 ◦ F = F−1 ◦ I0, I 2
0 = Id, (16)

where I0 is a map of the annulus. Then it is easy to see that I1 = F ◦ I0 also satisfies

I1 ◦ F = F−1 ◦ I1, I 2
1 = Id. (17)

The map F is just a composition of these two involutions:

F = I1 ◦ I0. (18)

For the map (1), we can take

I0(x, y) = (−x, y − b sin(2πx)), I1(x, y) = (−x + a(1 − y2), y).

Now, we investigate the implications of reversibility for the function K . If K satisfies (7),
we also have F−1 ◦ K(θ) = K(θ − ω) or, denoting L(θ) = K(−θ) we have

F−1 ◦ L(θ) = L(θ + ω). (19)

Also, composing (7) with I0 and using (16), we get

I0 ◦ K(θ + ω) = F−1 ◦ I0 ◦ K(θ).

Thus, I0 ◦ K and L satisfy the same equation, and the argument leading to (9) implies that

I0 ◦ K(θ) = L(θ + σ) = K(−θ − σ)

for some σ . Clearly, σ depends on I0 and on the origin of coordinates we have chosen for θ .
If we change the origin of coordinates in θ by σ/2, we obtain that

I0 ◦ K(θ) = K(−θ). (20)

Such K will be said to be antisymmetric with respect to I0. Note that if (20) holds, then
I0 ◦ K(0) = K(0), so that the antisymmetry is evident if we choose K(0) on the symmetry
line (fixed point set) of I0.

Composing (20) with I1, we obtain

K(θ + ω) = F ◦ K(θ) = I1 ◦ I0 ◦ K(θ)

= I1 ◦ K(−θ).
(21)

So, we see that if K is antisymmetric with respect to I0, a translation in θ by ω/2 will make it
antisymmetric with respect to I1. In this case, K(0) belongs to the symmetry line for I1.

For the case of the standard nontwist map, we obtain, using (21) for the x component and
(20) for the y component, that

Kx(−θ) = −Kx(θ),

Ky(−θ) = Ky(θ + ω).
(22)

Of course, the other two identities that we obtain from (20) and (21) are equivalent to
(22) and (7). One consequence of (22) is that the Fourier series of Kx(θ) − θ is simply a
sine series or equivalently, the phases of the complex Fourier transform (which is what we
implemented numerically) are either π/2 or 3π/2.

Equations (22) refer to parametrizations with K(0) on a symmetry line. In our calculations,
we have chosen to take K(0) to be an indicator point [29], which is known for sure to belong to
the shearless curve. In these coordinates, we can see that the phases of the Fourier coefficients
should be |k|σ + rk where rk is either π/2 or 3π/2. This provides an independent check of the
calculations of the Fourier coefficients and we discuss it in detail in section 5.1.

We could use (14) to compute only the even (respectively odd) Fourier coefficients of
Kx(θ) − θ (respectively Ky(θ)) and carry out the analysis only for them. We have chosen
not to hardwire this symmetry into the calculations of Fourier spectra. In this way, the size
of the odd (respectively even) coefficients gives us an estimate of the numerical error in our
computations.
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4. Computing the regularity of the parametrization functions

In this section, we will briefly describe the methods we used to compute the regularity of the
parametrization functions. A much more extensive discussion can be found in [22], to which
we refer for further details and for references to the mathematical literature.

In this paper, we will only use the two methods that were found to be the most accurate
in [22], namely the so-called ‘continuous Littlewood–Paley’ and the ‘difference’ methods.
Notably, we do not consider the methods based on wavelets that were implemented in [22].
We refer to [22] for a comparison of various numerical methods.

4.1. Some mathematical results

Following the standard mathematical notation, we will express the regularity of the functions
considered by saying that the function belongs to certain spaces in a family indexed by a
number. We will use the following definition.

Definition 1. For α = n + β with n ∈ Z, β ∈ (0, 1), we say that the function K is in 
α(T)

when K is n times differentiable and

|DnK(θ) − DnK(θ̃)| � C|θ − θ̃ |β (23)

for some constant C.

What we mean by the regularity of a function is the largest value of α so that the function
belongs to 
α .

The integer part of α is the number of derivatives and the fractional part of α is the Holder
exponent of the highest derivative.

The above definition does not cover the case when α is an integer. It is a fact of life that
many of the characterizations we will use become delicate when α is an integer. Fortunately,
for the applications here, we do not need to consider the case when α is an integer.

The following results can be found in [30, chapter 5, lemma 5] and [31], respectively.

Theorem 1 (CLP). The function K is in 
α(T) if and only if for some η � 0 there exists a
C > 0, such that for any t > 0∣∣∣∣

∣∣∣∣
(

∂

∂t

)η

e−t
√−� K

∣∣∣∣
∣∣∣∣
L∞(T)

� Ctα−η. (24)

Remark 4. If the inequality (24) holds for some η � 0, then it holds for all η � 0.

Remark 5. The operator e−t
√−� is the Poisson kernel in the circle, which appears very often

in the study of boundary value problems.

Theorem 2 (FD). Let Dn
h be the finite difference operator,

(Dn
hK)(θ) :=

n∑
j=0

(−1)j
(

n

j

)
K(θ + (n − 2j)h).

Then K ∈ 
α(T) if and only if ∃C > 0 such that ∀h ∈ T

‖Dn
θ K‖L∞(T) � C|h|α. (25)

Remark 6. The mathematical theory only requires (24) and (25) to be upper bounds.
Nevertheless, we note that in our case, the bounds become identities for a significant range of
parameters. The fact that the upper bounds are saturated is very possibly a consequence of
the fact that, because of the renormalization picture, the functions we are considering are very
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self-similar. The same effect was also observed for the functions considered in [22] (see also
the discussion in section 3.2).

4.2. Some remarks on the numerical implementation

Both numerical methods considered here are made easier if the function K is specified at
equally spaced points. The computation described in section 3, however, gives the function
values for {θ = nω}Mn=0. Hence, the first step is to compute the function on an evenly spaced
grid of size 2−N . This is done using a cubic spline interpolation. Here, N is chosen such that
2N ≈ M .

To use theorem 2 numerically, we note that substituting h = 2−j and n = 1 in
equation (25) gives

log2 ‖D1
2−j K‖L∞(T) � const − αj. (26)

Thus, the finite difference method simply evaluates the difference operators for various j , and
we fit a straight line to a logarithmic plot of ‖D1

2−j K‖L∞(T) versus j .
For the CLP method (theorem 1), the most effective way to compute the Poisson kernel

is to observe that it is diagonal in Fourier series. Specifically, if

K(θ) =
∑
n∈Z

K̂n e−2πinθ , (27)

then (
∂

∂t

)η

e−t
√−�K(θ) =

∑
n∈Z

(−2π |n|)ηK̂n e−2πt |n| e−2πinθ . (28)

Using the fast Fourier transform—which becomes possible once we have the function
interpolated in an equally spaced grid—it is very efficient to compute the Fourier coefficients,
multiply them by the appropriate coefficients, compute the inverse Fourier transform and then
take the supremum over θ . By repeating the computation for several values of t and then fitting
a straight line in a double logarithmic plot of ‖(∂/∂t)η e−t

√−� K‖L∞(T) versus t , we obtain a
good estimation of the regularity.

In the application of the CLP method, it is convenient to choose η in such a way that
the power in t that results in the decay is as close to zero as possible. The reason is that
the coefficients that are very close to zero are strongly affected by round-off error in the
calculations.

Remark 7. In [22] it was argued that the CLP method was numerically more stable while
the difference method was more susceptible to numerical error. Hence, in this paper, we will
obtain the regularities from the CLP method and use the FD method as a confirmation.

5. Results and discussion

5.1. Visual observations of the Fourier spectrum

As mentioned earlier, the critical circles have a self-similar structure which is manifest in
the self-similarity of the parametrization functions. We can see this by looking at their
Fourier spectra (the modulus of the Fourier coefficients). Figure 3 shows the spectra of
Kx(θ) − θ for the three frequencies studied. We see that the Fourier spectra are periodic
with a period 6 log10 γ . A similar structure is also observed for the spectra of Ky(θ). We note
that the peaks in the spectra are observed at values that are the denominators of the truncations
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Figure 3. Plot of log10(n|K̂n|) versus log10 n where K̂n are the Fourier coefficients of Kx(θ) − θ

for ω(1) (left), ω(2) (centre) and ω(3) (right). The abscissas marked here are the denominators of
continued fraction convergents for that specific frequency.

Figure 4. The phases of the Fourier transform of Kx(θ) − θ with Kx(0) chosen to be on the
symmetry line of I0. Left panel shows all the phases while the right panel shows phases for n for
which log10 K̂n > −9.5.

of the continued fraction expansion of the corresponding winding number, with every sixth
denominator showing a major peak while those in between show minor peaks. Specifically,
the peaks occur at Fibonacci numbers only for the first two winding numbers.

Remark 8. In the case of twist maps, the period of such a plot is log10 γ . The factor of 6 for
the nontwist maps is related to the fact that the critical nontwist map belongs to a period-12
cycle of the renormalization group operator whereas the critical twist map is a fixed point of
that operator.

As we noted in section 3.2, the functions Kx(θ)−θ and Ky(θ) can be made antisymmetric
with an appropriate choice of initial conditions, i.e. values of these functions at θ = 0. These
initial conditions (the points of intersection of the critical shearless circle with the symmetry
lines) are known with a limited accuracy whereas the indicator points that we used as initial
conditions are guaranteed to lie on the shearless circle. Indeed, in our calculations, the odd
(respectively even) Fourier coefficients of Kx(θ) − θ (respectively Ky(θ)) are smaller when
using the indicator points (10−11 to 10−10) than when using the symmetry lines (10−10 to 10−9).

Since we chose the indicator point as initial conditions, the phases of Fourier spectra lie
on straight lines. The slope of these lines is 2πy0 where y0 is the point of intersection of the
shearless circle with the symmetry line of I0 while the intercept is π/2 or 3π/2.

To check the numerical accuracy of the Fourier coefficients, we also calculated the spectra
after choosing the initial conditions to make the function Kx(θ)−θ antisymmetric, i.e. choosing
Kx(0) to be a fixed point of I0. Figure 4 shows the phases for all n < 2 × 106 (left panel) and
also for n for which log10 |K̂n| > −9.5 (right panel). We see that the phases are indeed π/2
or 3π/2 for all n < 1.6 × 106 with log10 |K̂n| > −9.5.
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Figure 5. Comparing the CLP method for different grid sizes 2−N for N = 24 (�) and N = 22 (�);
we also show the results from the runs with Fourier coefficients of magnitude less than 10−9(+) or
10−7 (×) set to zero.
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Figure 6. The plots of log10 ‖(∂/∂t)η e−t
√−�(K̃(θ)−θ)‖L∞(T) versus log10 t for Kx(θ)−θ (left)

and Ky(θ) (right) used to calculate the regularity using the CLP method.

5.2. Regularity using the CLP method

We compared results from different grid sizes to check for robustness of the methods used here.
Figure 5 shows the plots of log10 ‖(∂/∂t)2 e−t

√−�(K̃(θ) − θ)‖L∞(T) versus log10 t computed
with 2−N number of points for N = 24 (�) and N = 22 (�). In order to assess the accuracy, we
also calculated the above norms for N = 24 by setting all the Fourier coefficients K̂n with
magnitude less than 10−7 or 10−9 to zero, shown in figure 5 with × and +, respectively.
We see that the plot for N = 22 compares very well with that for N = 24 with all |K̂n| < 10−9

set to zero. We also see that for log10 t > −5, all the calculations give essentially the same
results.

The observations in figure 5 make it apparent that there is a substantial range of values of
log10 t for which (24) is close to an equality (see also figure 6.) This range is limited on one
side (of small log10 t) by the numerical error (round-off and truncation of Fourier series) and
on the other side (of larger log10 t) by the universal self-similar structure, which is only true
asymptotically.

Once we have identified the range where (24) is an equality, a good measure of the
regularity is obtained by the slope of the linear fit within that range. We will see in section 5.3
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Table 1. Regularities of the parametrization functions for three frequencies using the CLP method
with different η. The error shown is the standard error from the linear regression. The ranges of
log10 t were chosen so that corrections to the linear behaviour are periodic, as explained in detail
in section 5.3.

η ω(1) ω(2) ω(3)

Kx(θ) − θ 1 0.700 ± 0.005 0.718 ± 0.004 0.698 ± 0.005
2 0.679 ± 0.006 0.656 ± 0.005 0.671 ± 0.005
3 0.647 ± 0.018 0.647 ± 0.018 0.636 ± 0.015
4 0.687 ± 0.007 0.669 ± 0.007 0.676 ± 0.007
5 0.683 ± 0.008 0.667 ± 0.009 0.672 ± 0.009

Ky(θ) 1 0.724 ± 0.007 0.728 ± 0.003 0.730 ± 0.006
2 0.700 ± 0.006 0.692 ± 0.006 0.692 ± 0.006
3 0.645 ± 0.015 0.622 ± 0.015 0.629 ± 0.015
4 0.690 ± 0.008 0.675 ± 0.008 0.680 ± 0.008
5 0.690 ± 0.005 0.702 ± 0.006 0.698 ± 0.005

Table 2. Regularities of Kx(θ) − θ and Ky(θ) for the three frequencies.

ω(1) ω(2) ω(3)

Kx(θ) − θ 0.68 ± 0.02 0.67 ± 0.02 0.67 ± 0.01

Ky(θ) 0.69 ± 0.02 0.68 ± 0.03 0.69 ± 0.03
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Figure 7. The finite differences in the plots of log10 ‖(∂/∂t)2 e−t
√−� K‖L∞(T) versus log10 t for

η = 2, 4 for Kx(θ) − θ (left) and for η = 1, 3 for Ky(θ) (right). The ranges selected for getting
regularities are shown by arrows. Plots for all three frequencies are shown but those for ω(2) (- - - -)
and ω(3) (- - - -) have been shifted horizontally to match that of ω(1) (· · ·).

that the deviations from the linear fit show a universal behaviour. Thus, a systematic way of
choosing the range of fit is where the universality applies. Table 1 shows the regularities found
using such ranges. The errors shown are the standard deviations of the linear regression.

Increasing the number of values of t at which the norm is calculated obviously decreases
the standard deviation of the linear fit. Thus, the errors shown in table 2 can be made smaller
or larger. Of course, choosing different ranges of log10 t for the linear fit give slightly different
regularities, depending on whether the jumps in the deviation from the linear behaviour (as seen
in, e.g., figure 7) are included or not. Thus, the errors shown in table 2 include these systematic
errors from all five values of η used here.

Remark 9. The three frequencies considered here are all noble numbers. As a consequence,
the invariant circles with rotation numbers ω(2) and ω(3) for the standard nontwist map are
equivalent to circles with rotation number ω(1) for maps which are obtained from the standard
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nontwist map by renormalization. The fact that the regularities we find here are the same for
all the circles is equivalent to saying that they are the same for circles of rotation number ω(1)

for different maps. Hence, the fact that the regularities for different frequencies are seen to be
the same is an evidence of universality of critical noble invariant circles.

5.3. Universal corrections to the CLP bound

If the inequalities (24) were identically saturated, we would have that R(log10 t) ≡
log10 ‖(∂/∂t)2 e−t

√−� K‖L∞(T) would be an affine function of log10 t and the plot of R(l)

versus l would be a straight line.
Nevertheless, it is a prediction of renormalization group theory that there are systematic

deviations from the linear behaviour of R. In particular, there should be a periodic oscillation.
As was argued in [22], the deviation of R(l) from an affine behaviour is related to the fact

that the scaling predicted by the renormalization group is not a continuous scaling but just a
discrete one. The renormalization group predicts that, for sufficiently small t > 0 (i.e. large
negative log10 t), there are numbers a, b such that R(l + a) ≈ R(l) + b. This leaves open
the possibility that, superimposed on the linear behaviour of R(l) versus l, there is a periodic
behaviour. That is, R(l) ≈ (b/a)l + P(l) where P(l) is a function of period a. According to
the renormalization group picture, the function P should be universal. Of course, for different
functions in the same universality class, the asymptotic behaviour may manifest itself only for
very large negative values of l.

The periodic correction to R(l) is closely related to the approximate periodicity found for
the Fourier coefficients |K̂n| as a function of log10 |n|, which we already observed in figure 3.
The universality of the periodic function P(l) is related to the fact that there is an asymptotic
shape for the period of the scaled Fourier coefficients.

We have verified the existence of a universal periodic function P(l) by computing the
finite differences in the plot of R(l) versus l. The results for η = 2, 4 for Kx(θ) − θ and for
η = 1, 3 for Ky(θ) are depicted in figure 7. We also see that, as mentioned earlier, the smaller
values of η are more accurate, i.e. the periodicity of these corrections is more clearly seen for
smaller η.

We note that the period of the oscillations in these plots is six times larger than the period
observed in the problems in [22]. This is due to the fact that the renormalization operator in
our case has period 6 rather than period 1 as in the cases considered in [22]. This effect is
clearly visible in the period of the Fourier coefficients, as seen already in section 5.1.

We also note that for different ω we obtain a different phase in the periodic correction.
This is due to the fact that our ω have a different entry in the first place of the continued fraction
expansion, so that they need one more application of the renormalization to start exhibiting
the periodic behaviour. Hence, in the figure, we have shifted the finite differences to exhibit
that, for our examples, they agree as predicted by universality.

The existence of a periodic correction to the linear dependence of R, as well as its
agreement in the examples studied, gives us good confidence that we are observing real effects.
From a more practical point of view, it gives us the following criterion: we fit a straight line to
the plot of R(l) versus l only in the region where the periodicity of the correction is manifest.
These regions are shown in figure 7. All these tasks were greatly facilitated by the remarkable
public domain program xmgrace.

5.4. Regularity using the finite difference method

As with the CLP method, we first compare results for different grid sizes. The plot of
log2 ‖D1

2−j K‖L∞(T) versus j is shown in figure 8 for K̃x(θ) − θ for the frequency ω(1) = 1/γ



1186 A Apte et al

-18

-16

-14

-12

-10

-8

-6

-4

-2

5 10 15 20

N = 224

N = 222

N = 220

Figure 8. Comparing the plots of log2 ‖D1
2−j K‖L∞(T) versus j with 2N points for N = 20, 22, 24

for K̃x(θ) − θ for the frequency ω(1).
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Figure 9. The plots of log2 ‖D1
2−j K‖L∞(T) versus j for Kx(θ) − θ (left) and Ky(θ) (right) used

to calculate the regularity using the finite difference method.

for N = 20, 22 and 24. We note that there is a break at j = 10. The regularity obtained from
the plot with j > 10 agrees very well with the CLP method while that obtained from all the
points with j > 5 is lower. Since this method is affected more by round-off errors, we have
used it only as a quick confirmation of results from the CLP method. The agreement between
the two methods is much better for Ky(θ) probably because the round-off errors in iterating
the map F propagate faster along the angle coordinate (x) (and hence in Kx(θ)) than in the
action coordinate (y) (and hence in Ky(θ)) [27, appendix C].

Figure 9 compares the plots of log2 ‖D1
2−j K‖L∞(T) versus j for N = 24 for all the three

frequencies for Kx(θ)− θ and Ky(θ) with the line whose slope is the regularity obtained from
the CLP method. We see that the bound in (25) is not saturated for j < 10 for Kx(θ) − θ .

From the regularities of the parametrization functions Kx(θ) − θ and Ky(θ) for the three
frequencies ω(1), ω(2) and ω(3) shown in table 2, we conclude that the universal regularity of
K(θ) for critical shearless noble circles is 0.69 ± 0.03.
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