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Interatomic potentials for elastically isotropic crystals
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Abstract. We introduce a simple approach to fitting interatomic potentials to represent
elastically isotropic solids, in order to make direct comparisons with the predictions of isotropic
linear elasticity. The potentials are of the Finnis-Sinciair type and are parametrized to fit Au and
Ag. Under uniaxial loading, it was shown that the solids modelled employing the ‘efastically
isotropie’ potentials remain elastically isotropic for strains of 0.5% or less. The properties of
the (001), (011) and (111) surfaces were determined and compared with those of elastically
anisotropic Au and Ag, It was also found that the surface energy anisotropy is lower in solids
modelled employing ‘elastically isotropic’ potentials than in those represented by elastically
anisotropic potentials,

1. Introduction

Atomistic simulations provide an excellent complement to elastic theories in describing
the structure of defects in crystals. Isotropic linear elasticity has been very successful in
describing atomic displacements far from the defect but is inapplicable near the defect
where the small sirain assumption of linear elasticity is invalid. It is in describing the
structure of the core region that atomistic simulations of defects have proven invaluable.
In order to understand the detailed properties of defects using both atomistic and elasticity
approaches [1], it is imperative that the two approaches are consistent. For example, the
elastic constants used in the elastic calculations must be consistent with the interatomic
potentials used in the atomistic study. Making sure that the elastic and atomistic methods
are consistent with each other is often very difficult owing to the inherent complexity of
solving for the anisotropic elastic fields of defects, such as dislocations, grain boundaries,
steps on surfaces, and point defects. Because of these difficulties associated with obtaining
anisotropic solutions, it would greatly simplify these studies if isotropic, linear elasticity
could be used instead of anisotropic elasticity. In order to do this, however, we must ensure
that the interatomic potentials employed in the atomistic simulations yields isotropic linear
elastic results in the small strain limit, This paper addresses the development of interatomic
potentials which are consistent with isotropic linear elasticity.

The structures of the cores of defects in crystals are often difficult to analyse becaunse
there are often competing effects that synergistically determine the structure. Therefore,
one of the prime benefits of using elastically isotropic interatomic potentials is to allow one
to separate the effects of anisotropy from other effects, such as anharmonicity. Using these
interatomic potentials, we have been able to show unambiguously that the excess volume
{expansion) associated with twist grain boundaries is attributable largely to the anharmonicity
of the atomic interactions and only weakly to the elastic anisotropy [2]. Further, in cases
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where a detailed elastic model of the defect is not known, it is advantageous to investigate
several competing models. While this may, in principle, be done using anisotropic elasticity,
the simplifications inherent to isotropic elasticity greatly simplify the analysis and therefore
makes it easier to investigate many models. For example, isotropic elastic modeils of steps
or adatoms on surfaces are much simpler than the cormresponding anisotropic models.

We present a set of many-body interatomic potentials of the Firnis—Sinclair (FS) [3]
type which describe elastically isotropic, cubic crystals. In order to assess the effects of
modifying the original interatomic potentiais that describe anisotropic solids, we present
several comparisons of surface data obtained using the isotropic and anisotropic elastic
potentials.

2. Interatomic potentials

The basic interatomic potentials which we analyse and modify here are of the many-body
FS [3] type. In both the FS and the embedded atom method (EAM) [4] potentials, the
energy of an atom is described in terms of a central pair potential Vj; and an embedding
function f as

Uy=1Y Vy—~ flo) (1a)
i

where
EDN (18)
i

and both Vj; and ¢;; are functions of only the interatomic distance r;;. In the FS model the
embedding function is given simply as f(p) = /0.

To determine the functions Vi; and ¢;; for the FCC metals considered here, we follow
the procedure developed by Ackland et @/ [5] and express these functions as

[
Vi =Y an—r’H@E—r) (2a)
k=1
2
¢y =3 Au(Re — )’ H(R.—1) (2b)
k:]

where H is a Heaviside function (H{(x) =0 forx < QOand H{x) =1 forx > 1). As
in [5], the koot points ry, and Ry are first chosen and then the sublimation energy, lattice
constant, elastic constants, vacancy formation energy and stacking-fault energy of the metal
of interest are employed to determine the fitting parameters a; and A;. As was noted in
(5] for rg < ru, (ryn is the nearest-neighbour distance), the above equilibrium properties
do not depend upon ag and hence this parameter may be determined from the properties of
the metal at higher densities (Jattice constants smaller than the zero-pressure lattice constant
agp). We choose ag to yield the best fit between our calculated energies and those determined
using the universal binding energy relation [6) as a function of lattice constant,

Cubic crystals have three independent elastic constants, This number is reduced to two
in an isotropic elastic solid, through the following equation:

Cn—Chp=2Cy <))

where the above elastic constants are defined in the principal-axes coordinates.
In order to develop interatomic potentials to describe Ag and Au as isotropic elastic
solids, we employed the equilibrium properties of Ag and Au as given in table 1 to determine
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Table 1. Properties of Au and Ag used to fit the potentials. Eryp is the sublimation energy, ag
is the lattice parameter, E, is the vacancy formation energy, Egp is the stacking-fault energy,
and the C;;-values are elastic constants, The modified Cy; and Cy» used in the development of
‘elastically isotropic’ potentials I and II are also listed.

Au Aul  Aull Ag Agl  Agll

Egup (eV) 3787 3787 3787 2967 2967 2967
ag (&) 4078 4.078 4078 4086 4.086 4.086
E, (eV) 0940 0940 0940 1000 1.00¢ 1.000
E;r (eV) 0.007 0007 0.007 0007 0.007 0.007

Cn (10" Nm™2) 1860 2410 2227 1240 1856 1651
Co (0! Nm™2%) 1570 1570 1387 0934 093¢ 0729
Cas (101 Nm™2) 0420 0420 0420 0461 0461 0461
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Figure 1. The variation in the potential functions V (solid curve) and ¢ (dotted curve) with
distance for elastically anisotropic Au {thick curves) and elastically isotropic pseudo-Au I (thin
curves).

the fitting parameters a; and A; in equations (2), The elastic constants used in determining
the fitting parameters were modified to satisfy the isotropy condition (equation (3)). We
choose two simple and distinct ways in which to satisfy this condition. In the first (I), we
write the Lamé constants as s = Cas and A = Cya, where the C;; are the anisotropic elastic
constants of Ag or Au. In the second approach (II), we guarantee that both the isotropic
and the anisotropic solids have the same shear modulus Cy and bulk modulus. These
modified elastic constants are presented in table 1. The fitting parameters for these two sets
of potentjals describing elastically isotropic crystals are given in table 2 together with those
for the elastically anisotropic potentials. Note that there are slight differences between the
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parameters given in table 2 for Au and those previously reported [5] due to minor changes
made in the positions of the knot points in the present study.

Figure 1 shows the variations in V and ¢ with the interatomic distance r for both Au
and pseudo-Au I (isotropic case I). There are no qualitative differences between the two V
functions, and the two ¢ functions are essentially indistinguishable (this can also be seen
from the values of fitting parameters given in table 2). The V and ¢ functions corresponding
to the pseudo-Au II (isotropic case II) are similar to those in figure 1 and the corresponding
results for Ag and pseudo-Ag potentials show similar differences to those for Au.

As expected, these ‘elastically isotropic’ potentials predict that the FCC lattice is
more stable than the HCP iattice, consistent with the positive stacking-fault energies
employed in the fitting procedure. The relaxed intrinsic and extrinsic stacking-fault energies
corresponding to these potentials were determined and all are approximately 13=-0.5 mJ m~2.
The relative stability of the FCC structure compared with the BCC structure (employing
these ‘elastically isotropic’ potentials) is indicated in figure 2 where we show the variation
in energy with atomic volume for both the FCC and the BCC structures. At zero pressure
{where the slope of the energy curve is zero) the energy of the FCC structure is approximately
0.2 eV smaller than that corresponding to the BCC structure. For the anisotropic potentials,
the results show similar trends. Figure 2 also shows the energy predicted by the universal
binding energy relation [6] which was used in determining the fitting coefficients.

3. Uniaxial load response

An elastically isotropic solid responds similarly to loading in different directions. For
example, when a solid is uniaxially stressed (i.e. relaxation is allowed in the plane normal
to the load direction), the state of strain is independent of the load direction. Figure 3(a)
shows the result of such an ‘experiment’ in which we employed the pseudo-Au [ potential
to calculate the strain &;, as a function of the stress o,, where the z direction was chosen
to lie along the {001), {011) and {111} directions. Figure 3(b) shows the results of similar
calculations using the ‘elastically anisotropic’ Au potential. In the stress-free state, the
slopes of the different stress—strain curves corresponding to the psuedo-Au I potential (figure
3(a)) are all the same (t.e. Young’s modulus is independent of the load direction), while
those obtained using the ‘elastically anisotropic’ Au potential (figure 3(b)) are all different.
Similar results were found for the other potentials. We note that, although we determined
the stress—strain curves for only three high-symmeiry directions, stress—strain curves for all
other load axes will lie between these.

Figure 3(b) also shows that, beyond approximately 0.5% strain (compressive and
tensile), linear elasticity begins to break down and, therefore, the non-linear elastic terms
(higher-order elastic constants) become important. The stress—strain curve corresponding
to the pseudo-Au I potential (figure 3(z)) and those corresponding to the other isotropic
potentials are also linear within a similar strain range (0.5%). We note that the points
where the stress—strain curves in figure 3(a) and those for the other ‘elastically isotropic’
potentials start to diverge coincide with the point where they start to deviate from linear
functions. This is simply because while the second-order elastic constants corresponding
to these potentials satisfy the isotropy condition, the higher-order elastic constants are not
isotropic.

For an elastically isotropic solid the Poisson ratio —&,, /&, should not vary as the load
direction changes. The transverse strain versus normal strain curves for the three load
directions are plotied in figure 4 for both the pseudo-Au I and the ‘elastically anisotropic’
Au potentials. Again, as expected for an isotropic crystal, the slopes of the transverse strain
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Figure 2. The variation in the energy per atom of an FCC and 2 BCC crystal mode] with atomic
volume, The energy is determined employing the ‘elastically isotropic’ (@) Ag I potentials and
(&) Au II potentials. The solid ard broken curves represent FCC and BCC crystals, respectively.
The dotted curve shows the energy determined using the universal binding energy relation [6).
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Figure 3. Stress—strain curves for the load direction {001) (solid curve), {011} {dotted curve)
and {111} (broken corve) determined employing {2} the Au potential and (&) the ‘elastically
isotrapic® Au I potential. Stresses in the plane normal to the load direction are zero.
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Figure 4. The variation in the transverse strain (g, + £yy)/2 as a function of the normal strain
€, as determined for the loading directions in figure 3 employing the (2} Au potential and (b}
the ‘elastically isotropic’ Au 1 potential.-
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versus normal strain curves (negative Poisson ratio) in figure 4(b) are the same, while for
an anisotropic crystal the slopes are different as seen in figure 4(a). These results taken
in toto demonstrate that the modified interatomic potentials do produce elastically isotropic
crystals.

4, Surface properties

In order to determine the effects of the modifications of the Ag and Au interatomic potentials
on the properties of defects, we have performed a series of calculations (T = O energy
minimizations) on the (001), (011) and (111) surfaces of Ag and Au using the ‘elastically
anisotropic” and ‘elastically isotropic’ interatomic potentials. We note that the modifications
of the interatomic potentials necessary to describe an isotropic solid affects both the elastic
constants and the anharmonicity of the interatomic potential. Since different surfaces have
different relaxation symmetries, they should be controlled by different combinations of these
two effects.

To determine the surface properties, we employed a slab geometry for the simulation
cell and used periodic boundary conditions in the plane parallet to the slab surface. For all
surfaces studied here, the slab thickness was more than 50 atomic planes. We equilibrate
the surfaces by minimizing the total energy of the slab with respect to the positions of all
of the atoms employing a conjugate gradient method. The relaxed and unrelaxed surface
energies for the Au and two pseudo-Au potentials and those corresponding to Ag are listed
in table 3. The Au and Ag surface energies (second column) are slightly different (within
dpproximately 10%) from those recently reported for this potential [5] due to small changes
in the knot points used in the present study and the manner in which the coefficient as was
determined.

Table 3. Surface energies determined employing the potentials in table 2. The values in
parentheses are the unrelaxed surface energies,

Surface energy (mJ m™2)

Anisotropic Isotropic I Isotropic I1
Au{00ly 744338 (783.109) 728.183 (768.23%)  732.189 (766.975)
An{011) 794,357 (880.47%)  B800.705 (881.088) 807.235 (872.821)
Au(l1l)  647.738 (684.692) 678.443 (710.917) 580402 (709.962)
Ag(001) 752052 (760.007)  740.056 (749, 403)  744.492 (748.077)
Ag(011)  814.941 (844.633) 825152 (852.355) 835757 (851.131)
Ag(11l) 657.887 (672.292) 696,043 (708.845) 700.194 (708.128)

The (001) surface energies determined for the Au and Ag anisotropic potentials are fower
than those obtained for their corresponding isotropic potentials while the reverse trend is
observed for the (011) and (111) surfaces (compare the second column with the third and
fourth columns in table 3). The same trends also hold for the unrelaxed surface energies
(see table 3). If we take the ratio of the (001) to (111} surface energies (or the (011) to
(111) surface energies) as a measure of the surface energy anisotropy I' the results presented
here show that the I™-values for the ‘elastically isotropic’ potentials (I' ~ 1.07 and 1.06
for Au and Ag, respectively) are closer to unity than those corresponding to the elastically
anisotropic potentials (I" = 1,15 and 1.14 for Au and Ag, zespectively). Therefore, the
results determined for these potentials suggest that there is a correlation between elastic and
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swrface energy anisotropies; however, the present data are insufficient to prove that this is
a general trend.

Table 4. Changes in the spacing between the five atomic planes closest to the surface determined
employing the potentials given in table 2. Ad; is the change in the spacing between the ith and
(i + 1)th planes upon surface relaxation {i = 1 denotes the surface plane), A, I and II denote
elastically ‘anisotropic’ and ‘isotropic’ T and I potentials, respectively.

Change (%) in spacing

(001) {011} (i
A 1 i} A I i A I o

Au Ady —5.33 ~509 =501 -13.12 —12.13 -1201 —430 -376 -3.74
Auady, 177 192 177 244 3.00 271 13% 105 097
Au Ady —054 —-071 =062 1.11 -0.01 0.09 —0.40 —-026 -023
Auad; 017 026 022 -0.385 -023 -024 012 007 0.06

Ag Ady =301 -3.04 202 -875 -801 -619 —320 -2.690 —-2.30
Ag Ady 050 078 040 -003 088 008 067 047 033
Ag Ady —0.08 —-021 -0.10 .16 027 041 -0.13 -0.08 -0.04
Ag Ady 001 006 002 -050 017 -019 002 001 001

Surface relaxation changes the spacings between consecutive atomic planes parallel to
the surface from the spacing dp between plares in the perfect crystal. The changes in the
interplanar spacings Ad; (i.e. the spacing between the ith and (i 4 1)th planes from the
surface minus dy, where i = 1 corresponds to the surface plane), for the five atomic planes
closest to the surface are listed in table 4. For all six potentials, the Ad;-values for the (001)
and (111) surfaces show the same qualitative behaviour. There is a contraction between
the top two atomic planes followed by an expansion between the next two planes. This
alternation in the sign of the relaxation continves with a decaying amplitude for the next
several planes. The Ad;-values for the (011) surfaces show the same type of oscillatory
behaviour as for the other surfaces; however, the wavelength of the oscillation is greater than
twice the interplanar spacing. The surface relaxation (figure 5) obtained with the ‘elastically
anisotropic’ potentials is somewhat larger and extends further into the bulk than is found
when the ‘elastically isotropic’ potentials are employed.

The fact that the surface relaxations obtained using the ‘elastically isotropic’ and
‘elastically anisotropic’ potentials are very similar in the high-symmetry (001) and (111)
surface suggests that surface relaxation, in these cases, is dominated by the differences
between the anharmonicities of the potentials. On the other hand, the less good agreement
between the surface relaxation results obtained with the ‘amisotropic’ and ‘isotropic’
potentials on the (011) surface suggests that in lower-symmetry situations the differences
may be attributable largely to the differences in elastic constants.

5. Summary

‘We have developed interatomic potentials to represent elastically isotropic solid models. The
potentials are of the FS type and are parametrized to fit Au and Ag. Two different choices
for making the potentials isotropic are examined. Under the uniaxial load condition, it
was shown that the solids modelled employing the ‘elastically isotropic’ potentials remain
elastically isotropic for strains of 0.5% or less. The properties of the (Q01), (011) and



Interatomic potentials for elastically isotropic crystals 653

! i ! 1 1

3.0 1 '

i —a— Au
J —A— Aul L
2.0 1 —o—Aull | |-
—_ ] I
R . [
~., 10 -
o y L
<] L
0.0 M—ﬁ———*

-1.0 T T T T T T Y
1 2 3 4 5 6 7 8 g

Plane number (i)

Figure 5. Changes in the (011} interplanar spacing Ad, as a function of plane number (f =1
denotes surface plane).

(111) surfaces were determined and compared with the those of elastically anisotropic
Au and Ag. It was shown that the surface energies and structures determined employing
the “elastically anisotropic’ potentials are similar to those obtained for their corresponding
‘elastically isotropic’ potentials. It was also found that the surface energy anisotropy is lower
in solids modelled employing ‘elastically isotropic’ potentials than in those represented by
elastically anisotropic potentials,
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