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Abstraci We introduce a simple approach to fitting interatomic potentials to represent 
elastically isotropic solids, in order to ma!e direct compwisons with the predictions of isotropic 
linear elasticity. The potentials are of the FinWinclair  type and are pamemized to fit Au and 
Ag. Under uniaxial loading, it was shown that the solids modelled employing the ‘elastically 
isotropic’ potentials remain elastically isotropic for strains of 0.5% or less. The properties of 
the (OOI), (011) and (111) surfaces were determined and compared with those of elastically 
anisotropic Au and Ag. It was also found that the surface energy anisotropy is lower in solids 
modelled employing ‘elastically isotropic’ potentials than in those represented by elastically 
anisotropic potentials. 

1. Introduction 

Atomistic simulations provide an excellent complement to elastic theories in describing 
the structure of defects in crystals. Isotropic linear elasticity has been very successful in 
describing atomic displacements far from the defect but is inapplicable near the defect 
where the small strain assumption of linear elasticity is invalid. It is in describing the 
structure of the core region that atomistic simulations of defects have proven invaluable. 
In order to understand the detailed properties of defects using both atomistic and elasticity 
approaches [ 11, it is imperative that the two approaches are consistent. For example, the 
elastic constants used in the elastic calculations must be consistent with the interatomic 
potentials used in the atomistic study. Making sure that the elastic and atomistic methods 
are consistent with each other is often very difficult owing to the inherent complexity of 
solving for the anisotropic elastic fields of defects, such as dislocations, grain boundaries, 
steps on surfaces, and point defects. Because of these difficulties associated with obtaining 
anisotropic solutions, it would greatly simplify these studies if isotropic, linear elasticity 
could be used instead of anisotropic elasticity. In order to do this, however, we must emure 
that the interatomic potentials employed in the atomistic simulations yields isotropic linear 
elastic results in the small strain limit. This paper addresses the development of interatomic 
potentials which are consistent with isotropic linear elasticity. 

The structures of the cores of defects in crystals are often dficult to analyse because 
there are often competing effects that synergistically determine the structure. Therefore, 
one of the prime benefits of using elastically isotropic interatomic potentials is to allow one 
to separate the effects of anisotropy from other effects, such as anharmonicity. Using these 
interatomic potentials, we have been able to show unambiguously that the excess volume 
(expansion) associated with twist grain boundaries is attributable largely to the anhannonicity 
of the atomic interactions and only weakly to the elastic anisotropy [2]. Further, in cases 
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where a detailed elastic model of the defect is not known, it is advantageous to investigate 
several competing models. While this may, in principle, be done using anisotropic elasticity, 
the simplifications inherent to isotropic elasticity greatly simplify the analysis and therefore 
makes it easier to investigate many models. For example, isotropic elastic models of steps 
or adatoms on surfaces are much simpler than the corresponding anisotropic models. 

We present a set of many-body interatomic potentials of the FinnisSinclair (FS) [3] 
type which describe elastically isotropic, cubic crystals. In order to assess the effects of 
modifying the original interatomic potentials that describe anisotropic solids, we present 
several comparisons of surface data obtained using the isotropic and anisotropic elastic 
potentials. 
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2. Interatomic potentials 

The basic interatomic potentials which we analyse and m o d e  here are of the many-body 
FS [3] type. In both the FS and the embedded atom method (EM) [4] potentials, the 
energy of an atom is described in terms of a central pair potential V, and an embedding 
function f as 

vi = 4 Kj - f ( P i )  ( l a )  
j 

where 

pi = x$ij W )  

and both V, and q4ij are functions of only the interatomic distance rij. In the FS model the 
embedding function is given simply as f ( p )  = fi. 

To determine the functions Vij and $ij for the FCC metals considered here, we follow 
the procedure developed by Ackland et a1 [5] and express these functions as 

1 

2 

$V) = x A t ( R t  - - r )  (26) 

where H is a Heaviside function ( H ( x )  = 0 for x c 0 and H ( x )  = 1 for x =- 1). As 
in [5]. the knot points rt and Rk are first chosen and then the sublimation energy, lattice 
constant, elastic constants, vacancy formation energy and stacking-fault energy of the metal 
of interest are employed to determine the fitting parameters ak and At .  As was noted in 
[5] for r6 < r,. (rnn is the nearest-neighbour distance), the above equilibrium properties 
do not depend upon a6 and hence this parameter may be determined from the properties of 
the metal at higher densities (lattice constants smaller than the zero-pressure lattice constant 
m). We choose a g  to yield the best fit between our calculated energies and those determined 
using the universal binding energy relation [6] as a function of lattice constant. 

Cubic crystals have three independent elastic constants. This number is reduced to two 
in an isotropic elastic solid, through the following equation: 

(3) 

k=l 

C,] - c,z = 2c44 
where the above elastic constants are defined in the principal-axes coordinates. 

In order to develop interatomic potentials to describe Ag and Au as isotropic elastic 
solids, we employed the equilibrium properties of Ag and Au as given in table 1 to determine 
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Table 1. Properties of Au and Ag used to fit the patenW.  EIVb is the sublimation energy, 
is the lattice parameter, E" is the vacancy formation energy, Ea) is the stacl;ing-fault energy. 
and the Cij-values are elastic constank. The modified Cu and Clz used in the development of 
'elastically isotropic' potentials I and I1 are also listed. 

Au A u l  AuII Ag A g I  AgII  

Entb~(eV)  3.787 3.787 3.787 2.967 2.967 2.967 
og (A) 4.078 4.078 4.078 4.086 4.086 4.086 
E ,  (ev) 0.940 0.940 0.940 i.ooa i.aoo i.oao 
&I (eV) 0,007 0.007 0.007 0.007 0.007 0.007 
C11 (IO" N m-2) 1.860 2.410 2.227 1.7.40 1.856 1.651 
Clz (IO" N N2) 1.570 1.570 1.387 0.934 0.934 0.729 
C A ~  (IO" N m+) 0.420 0.420 0.420 0.461 0.461 0.461 

Figure 1. The variation in the potential functions V (solid c w e )  and 6 (dotted curve) with 
distance for elastically anisotropic Au (thick c w e s )  and elastically isotropic pseudo-Au I (thin 
curves). 

the fitting parameters ak and Ax in equations (2). The elastic constants used in determining 
the fitting parameters were modified to satisfy the isotropy condition (equation (3)). We 
choose two simple and distinct ways in which to satisfy this condition. In the first (I), we 
write the Lam6 constants as @ = C a  and ,I = Clz, where the Cij are the anisotropic elastic 
constants of Ag or Au. In the second approach (Il), we guarantee that both the isotropic 
and the anisotropic solids have the same shear modulus Ca and bulk modulus. These 
modified elastic constants are presented in table 1. The fitting parameters for these two sets 
of potentials describing elastically isotropic crystals are given in table 2 together with those 
for the elastically anisotropic potentials. Note that there are slight differences between the 
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parameters given in table 2 for Au and those previously reported [SI due to minor changes 
made in the positions of the knot points in the present study. 

Figure 1 shows the variations in V and @ with the interatomic distance r for both Au 
and pseudo-Au I (isotropic case r). There are no qualitative differences between the two V 
functions, and the two q5 functions are essentially indistinguishable (this can also be seen 
from the values of fitting parameters given in table 2). The Land @ functions corresponding 
to the pseudo-Au II (isotropic case 11) are similar to those in figure 1 and the corresponding 
results for Ag and pseudo-Ag potentials show similar differences to those for Au. 

As expected, these ‘elastically isotropic’ potentials predict that the FCC lattice is 
more stable than the HCP lattice, consistent with the positive stacking-fault energies 
employed in the fitting procedure. The relaxed intrinsic and extrinsic stacking-fault energies 
corresponding to these potentials were determined and all are approximately 13Jr0.5 mJ n r 2 .  
The relative stability of the FCC structure compared with the BCC structure (employing 
these ‘elastically isotropic’ potentials) is indicated in figure 2 where we show the variation 
in energy with atomic volume for both the FCC and the BCC structures. At zero pressure 
(where the slope of the energy curve is zero) the energy of the FCC smcture is approximately 
0.2 eV smaller than that corresponding to the BCC structure. For the anisotropic potentials, 
the results show similar trends. Figure 2 also shows the energy predicted by the universal 
binding energy relation [6] which was used in determining the fitting coefficients. 

3. Uniaxial load response 

An elastically isotropic solid responds similarly to loading in different directions. For 
example, when a solid is uniaxially stressed (i.e. relaxation is allowed in the plane normal 
to the load direction), the state of strain is independent of the load direction. Figure 3(a) 
shows the result of such an ‘experiment’ in which we employed the pseudo-Au I potential 
to calculate the strain cZr as a function of the stress uTz where the z direction was chosen 
to lie along the (001). (011) and (111) directions. Figure 3(b) shows the results of similar 
calculations using the ‘elastically anisotropic’ Au potential. In the stress-free state, the 
slopes of the different stress-strain curves corresponding to the psuedo-Au I potential (figure 
3(u)) are all the same (i.e. Young’s modulus is independent of the load direction), while 
those obtained using the ‘elastically anisotropic’ Au potential (figure 3(b)) are all different. 
Similar results were found for the other potentials. We note that, although we determined 
the stress-strain curves for only three high-symmetry directions, stress-strain curves for all 
other load axes will lie between these. 

Figure 3(b) also shows that, beyond approximately 0.5% strain (compressive and 
tensile), linear elasticity begins to break down and, therefore, the non-linear elastic terms 
(higher-order elastic constants) become important. The stress-strain curve corresponding 
tu the pseudo-Au I potential (figure 3(a)) and those corresponding to the other isotropic 
potentials are also linear within a similar strain range (0.5%). We note that the points 
where the stress-strain curves in figure 3(a) and those for the other ‘elastically isotropic’ 
potentials start to diverge coincide with the point where they start to deviate from linear 
functions. This is simply because while the second-order elastic constants corresponding 
to these potentials satisfy the isotropy condition, the higher-order elastic constants are not 
isotropic. 

For an elastically isotropic solid the Poisson ratio - - E ~ ~ / E ~ ~  should not vary as the load 
direction changes. The transverse strain versus normal strain curves for the three load 
directions are plotted in figure 4 for both the pseudo-Au I and the ‘elastically anisotropic’ 
Au potentials. Again, as expected for an isotropic crystal, the slopes of the transverse strain 
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Figure 2.' The variation in the energy per a" of an FCC and a BCC crystal model with atomic 
volume. The energy is determined employing the 'elastically isouopic' (a) Ag U potentials and 
(b)  Au I1 potentials. The solid and broken curves represent FCC and BCC crystals, respectively. 
The dotted curve shows the energy determined using the universal binding energy relation [6]. 
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Figure 3. Stress-saain cwes for the load direction (001) (solid curve). (011) (dotted c w e )  
and (111) (broken curve) determined employing (a )  the Au potentid and (b) the 'elastically 
isotropic' Au I potential. Stresses in the plane normal m h e  load direction are zero. 
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Figure 4. The variation in the tmsverse strain t cyy) /2 as a function of the normal shain 
E,, as determined for fhe loading directions in figure 3 employing the (a )  An potential and (b) 
the 'elastically isompic' Au I potentia.. 
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versus normal strain curves (negative Poisson ratio) in figure 4(b) are the same, while for 
an anisotropic crystal the slopes are different as seen in figure 4(a).  These results taken 
in toto demonstrate that the modified interatomic potentials do produce elastically isotropic 
crystals. 

4. Surface propertis 

In order to determine the effects of the modifications of the Ag and Au interatomic potentials 
on the properties of defects, we have performed a series of calculations (T = 0 energy 
minimizations) on the (001). (011) and (111) surfaces of Ag and Au using the ‘elastically 
anisotropic’ and ‘elastically isotropic’ interatomic potentials. We note that the modifications 
of the interatomic potentials necessary to describe an isotropic solid affects both the elastic 
constants and the anharmonicity of the interatomic potential. Since different surfaces have 
different relaxation symmetries, they should be controlled by different combinations of these 
two effects. 

To determine the surface propehes, we employed a slab geometry for the simulation 
cell and used periodic boundary conditions in the plane parallel to the slab surface. For all 
surfaces studied here, the slab thickness was more than 50 atomic planes. We equilibrate 
the surfaces by minimizing the total energy of the slab with respect to the positions of all 
of the atoms employing a conjugate gradient method. The relaxed and unrelaxed surface 
energies for the Au and two pseudo-Au potentials and those corresponding to Ag are listed 
in table 3. The Au and Ag surface energies (second column) are slightly different (within 
approximately 10%) from those recently reported for this potential [5] due to small changes 
in the knot points used in the present study and the manner in which the coefficient ab was 
determined. 

Table 3. Surface energies determined employing the potentials in table 2. The values in 
parentheses are the unrelaxed surface energies. 

~~ ~ ~ ~~ 

surface energ): (nd m-?) 

Anisotropic Isotropic I Isotropic I1 

Au(001) 744.338 (783.109) 728.183 (768.239) 732.189 (766.975) 
Au(Ol1) 794.357 (880.479) 800.705 (881,088) 807.235 (879.821) 
Au(ll1) 647.738 (684.692) 678.443 (710.917) 680.402 (709.962) 

Ag(O0l) 752.052 (760.007) 740.056 (749.403) 744.492 (748.077) 
Ag(Ol1) 814.941 (844.633) 825.152 (852.355) 835.757 (851.131) 
Ag(ll1) 657.887 (672.292) 696.643 (708.845) 700.194 (708.128) 

The (001) surface energies determined for the Au and Ag anisotropic potentials arehyer  
than those obtained for their corresponding isotropic potentials while the reverse trend is 
observed for the (01 1) and (1 1 I) surfaces (compare the second column with the third and 
fourth columns in table 3). The same trends also hold for the unrelaxed surface energies 
(see table 3). If we take the ratio of the (001) to ( I l l )  surface energies (or the (011) to 
(1 11) surface energies) as a measure of the surface energy anisotropy r the results presented 
here show that the r-values for the ‘elastically isotropic’ potentials (r % 1.07 and 1.06 
for Au and Ag, respectively) are closer to unity than those corresponding to the elastically 
anisotropic potentials (r % 1.15 and 1.14 for Au and Ag, respectively). Therefore, the 
results determined for these potentials suggest that there is a correlation between elastic and 
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surface energy anisotropies; however, the present data are insufficient to prove that this is 
a general rend. 
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Table4. Changes in the spacing between the five atomic planes closest to thc surface determined 
employing the potentials given in table 2. Ad, is the change in the spacing between the ith and 
(i t 1)th planes upon surface relaxation (i = I denotes the surface plane). A, I and U denote 
elastically ‘anisotropic’ and ‘isotropic’ I and U potentials, mpectively. 

Change (S) in spacing 

(001) (011) ( I l l )  

A I I I A  I 11 A I U  

Au Adi -5.33 -5.09 -5.01 -13.12 -12.13 -12.01 -4.30 -3.76 -3.74 
Au Ad? 1.77 1.92 1.77 2.44 3.00 2.71 1.39 1.05 0.97 
Au Ad3 -054 -0.71 -0.62 1.11 -0.01 0.09 -0.40 -0.26 -0.23 
A u A h  0.17 0.26 0.22 -0.85 -0.23 -0.24 0.12 0.07 0.06 

Ag Ad, -3.01 -3.04 -2.02 -8.75 -8.01 -6.19 -3.20 -2.69 -2.30 
Ag Ad2 0.50 0.78 0.40 -0.03 0.88 0.08 0.67 0.47 0.33 
Ag Ad3 -0.08 -0.21 -0.10 1.16 0.27 0.41 -0.13 -0.08 -0.04 
AgAda 0.01 0.06 0.02 -0.50 -0.17 -0.19 0.02 0.01 0.01 

Surface relaxation changes the spacings between consecutive atomic planes parallel to 
the surface from the spacing & between planes in the perfect crystal. The changes in the 
interplanar spacings Adj (i.e. the spacing between the ith and (i + 1)th planes from the 
surface minus &, where i = 1 corresponds to the surface plane), for the five atomic planes 
closest to the surface are listed in table 4. For all six potentials, the Ad{-values for the (001) 
and (1  11) surfaces show the same qualitative behaviour. There is a contraction between 
the top two atomic planes followed by an expansion between the next two planes. This 
alternation in the sign of the relaxation continues with a decaying amplitude for the next 
several planes. The Ad;-values for the (011) surfaces show the same type of oscillatory 
behaviour as for the other surfaces; however, the wavelength of the oscillation is greater than 
twice the interplanar spacing. The surface relaxation (figure 5) obtained with the ‘elastically 
anisotropic’ potentials is somewhat larger and extends further into the bulk than is found 
when the ‘elastically isotropic’ potentials are employed. 

The fact that the surface relaxations obtained using the ‘elastically isotropic’ and 
‘elastically anisotropic’ potentials are very similar in the high-symmetry (001) and (111) 
surface suggests that surface relaxation, in these cases, is dominated by the differences 
between the anharmonicities of the potentials. On the other hand, the less good agreement 
between the surface relaxation results obtained with the ‘anisotropic’ and ‘isotropic’ 
potentials on the (01 1) surface suggests that in lower-symmetry situations the differences 
may be attributable largely to the differences in elastic constants. 

5. Summary 

We have developed interatomic potentials to represent elastically isotropic solid models. The 
potentials are of the FS type and are parametrized to fit Au and Ag. Two different choices 
for making the potentials isotropic are examined. Under the uniaxial load condition, it 
was shown that the solids modelled employing the ‘elastically isotropic’ potentials remain 
elastically isotropic for strains of 0.5% or less. The properties of the (OOI), (01 1) and 
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Figure 5. Changes in the (01 1) interplmar spacing Ad, as a function of plane number (i = 1 
denotes surface plane). 

(111) surfaces were determined and compared with the those of elastically anisotropic 
Au and Ag. It was shown that the surface energies and structures determined employing 
the ‘elastically anisotropic’ potentials are similar to those obtained for their corresponding 
‘elastically isotropic’ potentials. It was also found that the surface energy anisotropy is lower 
in solids modelled employing ‘elastically isotropic’ potentials than in those represented by 
elastically anisotropic potentials. 
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