INSTITUTE OF PHYSICS PUBLISHING MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING

Modelling Simul. Mater. Sci. Eng. 13 (2005) 389-399 doi:10.1088/0965-0393/13/3/008

Monte Carlo simulation of linear aggregate formation
from CdTe nanoparticles

A Sinyagin'>, A Belov'-> and N Kotov'-3*

! Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA

2 Karpov Institute of Physical Chemistry (NIFHI), Moscow, 103064, Russia

3 Department of Materials Science, University of Michigan, Ann Arbor, MI 48109, USA

4 Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA

E-mail: sau@umich.edu

Received 28 October 2004, in final form 11 February 2005
Published 21 March 2005
Online at stacks.iop.org/MSMSE/13/389

Abstract

In recent works it was found that nanometre sized particles of CdTe could
spontaneously reorganize into crystalline nanowires (NWs) upon controlled
removal of the protecting shell of organic stabilizer in an aqueous medium.
At present, there is no possibility of predicting for certain the outcome of
each particular NW self-assembly experiment or influencing the geometric
parameters of the aggregates. A model for the simulation of the interaction of
CdTe nanoparticles (NPs) and their aggregation into clusters has been developed
and a Monte Carlo simulation was performed. A ‘linearity coefficient’ has been
developed and introduced into the model that allows for the comparison of NP
aggregate geometries and investigation of the dependence of aggregate shapes
on NP charge and dipole strength. The simulation results show that the presence
of a dipole moment is crucial to the formation of chain-like NP aggregates. The
shapes of the clusters that were obtained during simulations resemble those seen
in the experiment, although serious differences are still observed, which hint
at the influence of other, most probably, short-range interparticle forces on the
clustering process.

1. Introduction

Low-dimensional species of semiconductor materials, such as nanoparticles (NPs), nanowires
(NWs) and quantum wells, have been widely studied in recent years. The interest in
quantum-confined structures is fuelled by the many possibilities of using their size-tunable
optical and electrical properties in a new generation of optoelectronic devices [1-5]. At the
present time, many different methods for the synthesis of NPs [5—7] and NWs are available.
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The two major approaches are the gas-phase methods, such as vapour-liquid—solid (VLS),
and the solution/liquid phase synthesis. The advantages of the solution-based synthesis
include relatively lower reaction temperatures and precise control over the dimensions of
the NPs. Liquid phase NW synthesis methods have been developed for a wide range of
semiconductors [§—12]. A simple and versatile method for the synthesis of CdTe NWs by
means of a spontaneous organization of single NPs was shown recently [13, 14]. Here, the
removal of some of the organic stabilizer induced the formation of pearl-necklace aggregates,
which subsequently recrystallized into NWs with a high aspect ratio and a diameter precisely
defined by the starting NPs. However, at the present stage, there is no possibility of predicting
with certainty the outcome of each particular NW self-assembly experiment or influencing
the geometric parameters of the aggregates, because the exact mechanism of NW formation
is as yet unknown. A prime candidate for the driving force behind the self-organization
process is the dipole—dipole interaction of the particles. II-VI semiconductor NPs in both
hexagonal and cubic crystal structures were, experimentally found to possess significant
dipole moments [15,16]. Whether these dipole moments are intrinsic to the NPs, or are
the results of charged defects and other causes, is still a matter of debate [16—18]. In any
case, the existence of a dipole moment will influence the aggregation of the NPs, since dipole—
dipole interactions could be, by far, larger than the Van der Waals interaction at intermediate
particle separations [19]. The mutual electrostatic repulsion of the NPs, which counters the
dipole—dipole attraction, is provided by the stabilizer shell and decreases with decreasing
stabilizer concentration. This process further enhances dipole—dipole interaction of the NPs.
At the same time, the formation of pearl-necklace agglomerates was observed for metal
NPs in solution [20,21]. For these materials, the origin of the dipole moment is not quite
as understandable as for the wurtzite semiconductor NPs and different explanations for the
aggregation have been proposed. Additionally, the formation of the NP chains of CdTe NPs
is observed in aqueous media, while dipole attraction can potentially be substantially stronger
in organic media due to lower dielectric constants.

Since spontaneous self-organization of NPs [13,22-27] usually involves millions of
colloidal particles, any theoretical description of it needs to have substantial statistical
accuracy. The most convenient method of calculation of the spatial arrangement of a large
ensemble of particles, taking into account spontaneity and the random character of individual
assembly steps, is computer simulation. Monte Carlo (MC) modelling methods are widely
used in research, including in the simulation of nanocolloid chemical potentials and pair
potentials between dipolar proteins or colloids [28-31]. Because of their stochastic nature,
MC methods are frequently applied for treating equilibrium self-assembled structures such as
self-assembled polymers and equilibrium polymerization [32,33], electrostatically directed
self-assembly [34], assembly of bis-biotinylated DNA and streptavidin [35] and others.
Previous computer simulation of colloidal systems showed that the attractive interaction
potential between colloidal macro-ions with a net dipole moment in ionic solution strongly
increases at short distances and may overweigh the charge—charge repulsion at relevant
separations [28-30].

Thus, a model that would describe the interaction of the NPs in solution during
aggregation, taking into account all possible forces acting between NPs and providing
the correlation between NP properties, aggregation procedure parameters (solvent type,
temperature, concentration, etc) and final aggregate and NW geometry, would, on the one
hand, provide a definitive answer about what forces cause this interesting and potentially
useful phenomenon, and, on the other hand, help determine whether a synthesis of aggregates
of predesigned geometrical layouts would be possible and which parameters would have to be
controlled in order to achieve that. From this point of view, the need of quantitative evaluation,
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Figure 1. Implementation of classical MC moves for NP diffusion.

which would allow us to compare the system configurations from different simulation runs and
its affinity to the line, becomes a necessity. Such a quantitative parameter would also allow us
to compare simulation data with experimental results.

MC simulations of systems consisting of a number of particles interacting in water were
carried out to estimate the degree of influence of the dipole moment of the individual NPs on
the patterns of their aggregation. The simulation results show that, indeed, the presence of
a dipole moment is crucial to the formation of chain-like NP aggregates. The shapes of the
clusters that were obtained during simulations resemble those seen in the experiment [13, 14],
although serious differences are still observed, which hint at the influence of other, most
probably, short-range interparticle forces on the clustering process.

2. Modelling

2.1. Simulation method

The NVT MC method was used to obtain the equilibrium geometric configuration of the system.
At the beginning of the simulation the particles were arranged randomly within the simulation
box. During each step of the simulation, the particles were either randomly rotated around the
X, Y and Z axes or moved by a random walk procedure 7;(s,+1) = ri(s,) +&,i=1,..., N,
where &; (x, y, z) was obtained from a Gauss distribution in accordance with the prescriptions
of the random number generator on the basis of the previous configuration and the diffusion
coefficient for the assigned environment parameters (figure 1). Every new arrangement of the
particles was accepted or rejected according to the Metropolis criteria [36], with the probability
determined by the Boltzmann distribution factor. From thermodynamical considerations, we
would expect the global energy minimum of the system to correspond to a hexagonal close-
packed array of particles, but, since we know that stable particle aggregates of various shapes
are formed experimentally [13] our present goal was to find local minima that they match.

It is a known fact that classical MC methods become less efficient when used for
simulation of particles aggregating into clusters [37—40]. The strong interaction of the particles
dramatically inhibits the mobility of the clusters because it is dependent on the number of
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Figure 2. Translational (a) and rotational (b) movement of a NP cluster.
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particles in the cluster and, therefore, the majority of the steps, where any one of the constituents
tries to move away from the group, are rejected [40]. This leads to the situation where only
individual particles or dimers have any mobility in the system, the larger aggregates being
confined to the spot where they were formed. To reduce the number of steps with zero

probabilities and avoid the confinement of the system to a global minimum, the method above
was slightly modified. An aggregate, or cluster A, was formed at any stage of the simulation if

Vie A, ke A:di k) < e, (1

which means that for any particle within the cluster there exists at least one particle from the
same cluster with the centre-to-centre distance less than &g = R + §, where R is the radius.
Then particles were assigned to a ‘group’ and from that moment forth the group was moved
or randomly rotated around the centre of mass, with the relative positions of the particles in
the group intact, as seen in figure 2. This method generates an equilibrium configuration of
the system with a finite number of simulation steps and meets the detailed balance conditions
due to the separation of the rotation and translation steps, as well as step inversity. The above-
mentioned cluster (group) assignment procedure was implemented using a recursive algorithm
based on equation (1) during each step of the simulation. The particle interaction modelling
process employed two- and three-dimensional systems, which consisted of up to 600 CdTe
NPs with diameters d = 1.5-5.5nm. CdTe nanocrystals have a cubic zinc blended structure
and TEM images of the experimentally observed pearl-necklace aggregates show the shape of
the NPs to be spherical [13]; therefore, each NP was approximated by a solid sphere with a
permanent dipole moment and a net charge located at the centre of the particle. The magnitude
of the dipole and net charge varied during different simulation runs. The experimental values of
dipole moments for II-VI type semiconductor NPs like CdTe lie in the range of 20-100 D [16].
The simulation showed that the system of 20 particles reaches relative energy balance condition
after ~10° MC steps.
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2.2. Force field

The simulation force field was based on the classical DLVO theory, which takes into account
only the electrostatic and Van der Waals dispersion interactions of the NPs [41,42]. Based on
the model for a system of charged dipolar colloids or proteins presented by Phillies [43]
and Bratko et al [29,30], the energy required to form an aggregate of a certain shape
from its constituent particles located at infinite separation (W) was approximated as a
sum of the Coulombic charge—charge, charge—dipole, dipole—dipole interactions and the
Van der Waals interaction. All the interaction potentials were dependent on the mutual
geometric configuration of the system:

Weota (1, 0, ) = quq (r) + quu (r,0) + W/qu (r,0) + W;L—//,(r, 0, @) + Wvan der Waats (7).
2)

The potential arising from net charge and dipole contributions may be calculated as [43]

W)= —L9I ok c2 4 2Me—km(1 — kr))CoCr + —EI_ (cos(6r) cos(0))
dmeper;; dmeger); Aeger?,
(2 + 2k + (2kri)?] + sin(6;) sin(6;) cos(@; — ¢)[1 +kri;De ™ C2, (3)
where
N s
1+ka’ [242ka + (ka)? + (1 + ka)/ 3]

Here, 6; is defined as an angle between the dipole vector i and the vector 7 connecting the
centres of the particles, 0 < 0 < 27, ¢; is the angle describing the rotation of dipole around 7,
0 < ¢ < m, and r is the distance between two particles. 1/k is the Debye screening length, &
the permittivity of vacuum, ¢ the effective permittivity of the medium, which was approximated
as a function of interparticle distance by the use of the logarithmic composite mixing rule [44].

The Hamaker molecular model of London—Van der Waals forces was used in the
simulation [45,46]. The dispersion interaction energy for two equal sized spherical particles
with radius r and a centre-to-centre distance R in this model is given as [47]

A121 27‘2 2r2 47‘2
WVanderWaals(r):_T m‘*ﬁ‘”n 1 s 4

where Aj,; is the Hamaker constant. The value for a closely related semiconductor, CdS,
interacting across water, was used as the actual value (A = 4.85 x 1072 J) [47]. No adjustment
of the Hamaker constant value for size dependent NP properties was necessary since the
interatomic distances for both CdTe and CdS NPs in the size regime considered here (3—5 nm)
do not differ excessively from the bulk values [48, 49], and, therefore, neither do their dielectric
properties nor the Hamaker constant [50]. Since at distances where retardation becomes
relevant (>5nm), the electrostatic repulsion between similarly charged NPs outweighs the
dispersion attraction, retarded interactions were not considered.

2.3. Linearity coefficient

In order to be able to analyse and compare the geometrical layouts of the resulting
configurations, as applied to the degree of linearity, we used such values as the average
interparticle distance, the number of nearest neighbours for each particle and a linear length
coefficient that was calculated as the ratio between the maximum possible one-dimensional
length of a chain of N particles and the actual distance between two most distant particles in
the simulated system.
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Figure 3. Calculation of the linearity coefficient. The original system (a), All-Pairs-Shortest-
Paths (b) and the shortest path between two most distant particles (c).

The following algorithm, based on graph theory [51], was used in its calculation. First,
the system structure (figure 3(a)) was represented as a connected, undirected graph G defined
asapair G = (V, E), where V is a set of vertices and E is a set of edges between the vertices.
The undirected graph G was considered as a directed graph with two directed edges for each
undirected edge and was represented by the adjacency matrix W with the edges weighted
equal to one. The adjacency of the edges was calculated according to whether particle i and
particle j are neighbours or not, i.e. d(i, j) < 6. Then, the Floyd—Warshall All-Pairs-Shortest-
Path [52] algorithm was used to solve the shortest-path problem by means of an adjacency
matrix (figure 3(b)):

wj Js if k < 0,
fijk) =1 . (%)
min (fij(k — 1), fix(k — 1) + fri(k — 1)), if k >0,
where w;; isa (i, j) cell of adjacency matrix W and f;; (k) is ai, j value from a Floyd—Warshall
minimum distances matrix. Finally, the minimum distances matrix is calculated and the ratio
between the maximum value of f;; and the number of particles in the system gives the final
coefficient:

Ko = %(f’) x 100, (6)

where N is the number of particles in the simulated system. Physically, this coefficient
represents how far apart the two particles are that have the longest path from all the possible
shortest paths between them in the simulated system (figure 3(c)), compared to an ‘ideal’
situation where all the particles are arrayed in a single line.

3. Results

Several series of NP aggregation simulations with different system parameters, summarized
in table 1, were carried out. The influence of the dipole, the net charge and the size of the NP
on the aggregation behaviour, was considered to be of major interest.

The results of the simulation show that the aggregation patterns of the NPs and the linearity
of the NP clusters depend, to a greater or lesser extent, on all the investigated parameters.

Figure 4 shows simulation results for a system of 50 NPs with dipole values 0, 25, 100
and 400 D. From these pictures it is possible to assess visually, how the geometrical layout of
the aggregates changes with increasing dipole moment strength. It is evident that the presence
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Table 1. System parameters for different series of simulation runs.

System parameters Dipole influence Charge influence Large N

Box size [20R x 20R x 20R] [20R x 20R x 20R] [70R x 70R x 70R]
Number of particles, N 50 50 300-600

Particle diameter 4.4nm 4.4nm 4.4nm

Net charge —1e° 0-5¢° —1e°

Net dipole 0-400D 100D 100D

Figure 4. Simulation results for a system of 50 NPs with a charge of —1e and dipole values of: 0 (a),
25D (b), 100D (c) and 400 D (d).

of a dipole favours a more linear or chain-like form for the resulting configurations, especially
at high dipole values.

In order to investigate the dependence of the system configuration on the dipole moment (a)
and net charge (b) and (c) of the NPs, figure 5, the simulation results were averaged over
20 simulation runs for each particular system configuration, and the coefficient of linearity
K¢ described earlier was analysed. The unbiased estimation of the standard deviation

S, = \/ I/n—1)> (xi — m,)* was used as a measure of the dispersal in a group of
linearity coefficients, and a percentage representation of the coefficient of variation CV =
Sa/m, x 100% was used to measure the relative variability of the linearity coefficient within
similar simulation runs, where m, is the mean value of the set and » is the number of runs.
A total of 220 simulation tests was conducted for different parameter sets from table 1. It
was found that the coefficient of variation of the linearity coefficient K ranged from 7.1% to
11.2%, with an overall average of 9.85%. Figure 5(a) shows K¢ as a function of the particle
dipole value at a fixed charge of —1le. Considering the statistical error margins, it can be seen
that the dependence of K¢ on the dipole is not very pronounced. While higher dipole values
(400 D) certainly seem to enhance the linearity of the aggregates, the influence of the dipole is
small in the range of experimentally found NP dipole values [15, 16]. The NP charge has also
been found to influence the linearity coefficient. Figures 5(b) and (c) show the dependence of
K¢ on the charge at a dipole value of 100D and 400 D, respectively. It can be seen that an
increase of the charge leads to an increase in linearity in both cases, although the profile of the
dependence is slightly different.

For an assessment of the similarity between the simulated configurations and the experi-
mental TEM photographs of NP pearl-necklace aggregates from the work of Tang et al [13],
a simulation of a system containing a relatively large number of particles (300) was performed.
Figure 6 shows the resulting aggregate from two different viewpoints. It can be seen that in
comparison to the experimental pictures the simulated aggregates have far more defects. Very
few if any of the long, highly linear, single-particle ‘pearl-necklace’ chains that are observed
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Figure 5. Linearity coefficient K¢ (see text) as a function of: NP dipole at fixed charge (—1e) (a),
and net charge at two different dipole values 100 D (b) and 400D (c).

in the experiment are formed during the simulation. Of course, one other point that should be
kept in mind when comparing three-dimensional simulated pictures with TEM photographs, is
that during TEM measurements the system is forced into a planar two-dimensional state by the
drying of the solvent, a process that may influence the final shape. The calculation of the linear
coefficient K from TEM images of Tang ef al [13] gives arange of values from 78.46 to 87.54,
while the maximum value of K¢ for the simulated 300 particles systems was 61.22. Thus, while
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Figure 6. An aggregate of 300 NPs as viewed from two different points.

the current model can provide a rough estimate of the geometry of NP aggregates as a function
of the parameters of the interacting particles, it has its deficiencies in that it does not take
into account all the forces that act between the CdTe NPs in the experiment. While charge—
dipole and dipole—dipole interactions are certainly very important for the process of NW
self-assembly, it seems that, in addition, other, probably short-range interparticle forces, are
responsible for organizing and holding together long and stable NP chains.

4. Conclusion

A model for the calculation of the interaction of semiconductor NPs and their aggregation into
clusters has been developed. A ‘linearity coefficient’ has been introduced into the model that
allows for the comparison of NP aggregate geometries and investigation of the dependence
of aggregate shapes on NP charge and dipole strength. The described linearity coefficient
K¢ can serve as a powerful tool to investigate the influence of variable parameters, such as
the dipole moment, net charge, NP sizes, etc on the final system configuration from the point
of view of its affinity to the linear structure. Computer simulations, based on this model,
showed that aggregates with varying degrees of linearity can be formed if the values for the
NP charge and dipole that are used are in the range of those found experimentally. However,
the simulated aggregate shapes are different from those seen in the experiment as regards the
length and number of defects. The inclusion in the model of further forces acting between
NPs in solution could possibly increase its reliability in predicting aggregate shapes. This
modelling approach can be applied to the study of the aggregation of different kinds of NPs,
although currently CdTe NPs are the only species that have been experimentally found to form
extended pearl-necklace chain networks.
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