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Abstract
We describe a first passage time Markov chain analysis of rare events in kinetic
Monte Carlo (kMC) simulations and demonstrate how this analysis may be used
to enhance kMC simulations of dislocation glide. Dislocation glide is described
by the kink mechanism, which involves double kink nucleation, kink migration
and kink–kink annihilation. Double kinks that nucleate on straight dislocations
are unstable at small kink separations and tend to recombine immediately
following nucleation. A very small fraction (<0.001) of nucleating double
kinks survive to grow to a stable kink separation. The present approach replaces
all of the events that lead up to the formation of a stable kink with a simple
numerical calculation of the time required for stable kink formation. In this
paper, we treat the double kink nucleation process as a temporally homogeneous
birth–death Markov process and present a first passage time analysis of the
Markov process in order to calculate the nucleation rate of a double kink
with a stable kink separation. We discuss two methods to calculate the first
passage time; one computes the distribution and the average of the first passage
time, while the other uses a recursive relation to calculate the average first
passage time. The average first passage times calculated by both approaches
are shown to be in excellent agreement with direct Monte Carlo simulations for
four idealized cases of double kink nucleation. Finally, we apply this approach
to double kink nucleation on a screw dislocation in molybdenum and obtain the
rates for formation of stable double kinks as a function of applied stress and
temperature. Equivalent kMC simulations are too inefficient to be performed
using commonly available computational resources.

1. Introduction

The motion of a dislocation along its glide plane can be described by the kink mechanism
(figure 1); kink nucleation, followed by kink migration and annihilation. Kinks nucleate and
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annihilate in pairs of opposite sense (i.e. double kinks). There is an energy barrier to dislocation
motion, known as the Peierls barrier, which is associated with both the energy required to form
a double kink and to move the individual kinks. Given the full energy landscape, it is, in
principle, possible to predict the kinetics of dislocation migration within an absolute reaction
rate theory framework.

The free energy �F of a double kink as a function of kink separation w has the general
form shown in figure 2 [1]. At some critical separation w∗, the attractive elastic interaction
between two oppositely signed kinks is exactly balanced by an external force associated with
an applied stress oriented to push the two kinks apart. The external force associated with the
applied stress σ is simply [b · σ × ξ]b̂h, where b is the Burgers vector of the dislocation, h

is the kink height, ξ is the dislocation line direction and the ˆ indicates a unit vector. At w∗,
the free energy of the pair is at its maximum �F ∗. A kink pair separated by more than w∗

will lower its free energy by further increasing the separation. Such a kink pair is unbounded.
Opposite signed kinks separated by less than w∗ are attracted towards each other and will
mutually annihilate. This description of annihilation and growth in terms of the free energy
versus double kink size is equivalent to classical steady-state nucleation theory.

Double kink
Potential barriers for dislocation glide

Kink migration

Figure 1. A schematic illustration of dislocation motion by the kink mechanism. The solid line
is the dislocation. The circular dots indicate local maxima in the energy landscape (i.e. the Peierls
barrier for dislocation glide). The dislocation moves across the Peierls barrier by nucleating kinks
in pairs (double kinks). As the kinks migrate along the dislocation line, they meet and annihilate
and the dislocation moves to the next Peierls valley.
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Figure 2. A schematic plot of the variation of the free energy (�F ) of a double kink as a function
of kink separation distance (w). The dotted and solid curves represent the free energy profile in the
absence and presence of an applied stress. The free energy of the double kink exhibits a maximum
�F ∗ at a kink separation w∗. w′ is the distance beyond w∗, where the free energy of the double
kink is �F ∗ − kT .
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Nucleation theory can be applied to the double kink problem to obtain the effective width
of the saddle point and hence the width of a stable double kink. Let us define w′ as the
distance beyond w∗ where the free energy of the double kink is �F ∗ − kT , where kT is the
thermal energy. Kink pairs of a width greater than w∗ + w′ have a negligible probability of
self-annihilation, since this would require an energy larger than kT to move the kinks back
over the saddle point. Kink pairs of width greater than w∗ but less than w∗ + w′ have not
passed the activation barrier yet, because a fraction of them can diffuse against the applied
stress, annihilate and never contribute to the net motion of the dislocation.

Kinetic Monte Carlo (kMC) methods provide an ideal approach for simulating dislocation
migration in terms of the kink model [2, 3]. In a kMC simulation of dislocation migration, the
rates at which the kinks nucleate and move are calculated from the energy landscape and the
kinks are moved in accordance with these rates. Before the dislocation can move, however,
we must first nucleate the double kinks. Unfortunately, nucleating a stable double kink can
be very slow in a kMC simulation since when w is smaller than w∗ only exponentially few
sub-critical double kinks ever grow to reach w > w∗. In fact, the vast majority of double
kinks nucleated will self-annihilate before they reach the critical size. An alternative approach
to avoid this vast number of wasted Monte Carlo steps is to nucleate the double kinks with a
sufficiently large width (>(w∗ +w′)) to avoid most of the double kink self-annihilation events.
In doing so, we must properly account for the time it would have taken the standard kMC
simulation to actually nucleate such a stable double kink.

Several researchers have addressed the issue of the long times required for double kink
nucleation in their kMC models of dislocation glide [4–7]. In the pioneering kMC simulations
of dislocation glide performed by Lin and Chrzan [5] and Tang et al [6], several ad hoc
assumptions were made about the nucleation rates of double kinks of fixed separation. Lin
and Chrzan assumed that the nucleation rate is proportional to exp(−Eb/kT ), where Eb is
the barrier height for double kinks of width 20b. Tang et al assumed that the double kink
nucleation rate is inversely proportional to the kink separation (which they fixed at 15b). This
approach does not account for the fact that a double kink can form with separations smaller
than the critical size and then grow to the critical size or self-annihilate. This process should
clearly depend on the magnitude of the applied stress and the temperature (neither of which
were explicitly included in these analyses). Cai et al [4] addressed this issue by treating the
formation of a critical double kink as a Markov process on the discrete width of the double
kink separation. They calculated the probability that a double kink reaches the critical width
without self-annihilating and used this survival probability to compute the nucleation rate of a
stable double kink. While this is an advance over the earlier approaches, it does not account
for the time that the double kink spends at sub-critical kink separations.

In this paper, we extend the Markov process analysis of Cai et al [4] to determine the true
rate of nucleation of a stable double kink by including the full energy landscape the double
kink sees as it grows and the time it spends at each sub-critical width. This approach yields
the distribution of times required for a double kink to achieve the stable kink separation. The
theoretical predictions of the nucleation rate are tested against full Monte Carlo simulations.
Finally, we examine several approximations that can be used to efficiently model arbitrary
energy landscapes such that this double kink nucleation model can be incorporated directly
into kMC simulations of dislocation motion.

2. Double kink nucleation as a Markov process

We consider double kink nucleation as a temporally homogeneous birth–death Markov process;
i.e. a discrete state jump Markov process in which the local jump probabilities are time invariant
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and the double kink spacing can increase by 1 (birth) or decrease by 1 (death). Markov processes
and random walks [8, 12, 13] can be used to describe several physical phenomena and their
characteristics are well studied. In this model, a double kink is nucleated with separation 1,
in some units, and this separation can change by ±1 in any step. This is a one-dimensional
model where the single variable is the discrete double kink separation.

Any discrete state jump Markov process X(t) (the double kink separation here) can be
described by the following characterizing functions in the manner of Gillespie [8]:

(a) a(n, t) dt is the probability that the process will jump away from state n in the next
infinitesimal time interval [t, t + dt],

(b) w(v|n, t)dt is the probability that the process, upon jumping away from state n at time t

will land in state n + v at time t + dt ,

where n = X(t) and n and v are integers. The Markov process is temporally homogeneous if
the characterizing functions do not change with time. Since X(t) is temporally homogeneous,
a(n, t) = a(n) and w(v|n, t) = w(v|n).

A temporally homogeneous birth–death process X(t) can be defined as any discrete state
jump Markov process whose characterizing functions a(n, t) and w(v|n, t) have the respective
forms

a(n, t) = a(n), (n � 0), (1a)

w(v|n, t) =



w+(n), if v = +1 and n � 0,

w−(n), if v = −1 and n � 0,

0, otherwise.
(1b)

Thus the Markov process X(t) at any state i, has only two states accessible to it; i − 1 and
i + 1. The consolidated characterizing function W(v|n, t) can be defined as the product of
a(n, t) and w(v|n, t)

W(v|n, t) = W±(v|n) =



W+(n) = a(n)w+(n), if v = +1 and n � 0,

W−(n) = a(n)w−(n), if v = −1 and n � 0,

0, otherwise,
(2)

where W+(n) and W−(n) are the stepping functions of the process or the probability that the sys-
tem at statenwill jump ton+1 andn−1 in time dt . The nature of the characterizing functions for
the Markov process that describes double kink nucleation is described in the following section.

3. Simulation of the double kink nucleation as a one-dimensional random walk

The double kink nucleation can be simulated as a one-dimensional random walk on the
discrete, non-negative integer kink separations. The random walk is biased by the nature
of the dependence of the free energy on the kink separation as shown in figure 3. There is an
activation barrier associated with the migration of the individual kinks (see figures 1 and 3),
known as the secondary Peierls barrier to distinguish it from the Peierls barrier associated with
translating the entire dislocation perpendicular to itself in its glide plane. As described in the
previous section, discrete non-negative values of the kink separation correspond to distinct
Markov states for the one-dimensional random walk. Thus, the double kink separation i can
change to state i+1 with a rate λi and to state i−1 with a rate µi given by the expressions below:

λi = ν exp

(
− Q+

i

kBT

)
, (3a)

µi = ν exp

(
− Q−

i

kBT

)
. (3b)
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Figure 3. A schematic illustration of the nucleation of a double kink treated as a birth–death
Markov process. The figure shows an arbitrary double kink energy landscape, which is a plot
of the double kink energy as a function of the kink separation distance. The rates at which the
double kink increases or decreases in size by a unit Burgers vector can be obtained from the energy
landscape (see equations (3)) and used to compute the forward and backward jump probabilities of
the Markov process at each state (see equations (4)).

The pre-factor ν is the rate at which the kink attempts to migrate (associated with the vibra-
tional spectrum of the solid). The probability that the double kink separation will go from i

to i + 1 is w+(i), and to state i − 1 is w−(i), as shown in figure 3, where the characterizing
functions w+(i) and w−(i) were defined for the Markov process X(t) in the previous section:

w+(i) = λi

λi + µi

, (4a)

w−(i) = µi

λi + µi

. (4b)

The simulation is started with the random walker in state i = 0. This corresponds to the
Markov process X(t) = 0, where no double kink is present. From any state i (i > 0), the
random walker is allowed to jump to states i + 1 or i − 1 with probabilities w+(i) and w−(i),
respectively. From i = 0, the random walker moves to i = 1 with probability 1. The direction
of the jump is determined by sampling a random number ζ from [0,1). If ζ < w+(i), the
random walker moves to state i + 1; if not, it moves to state i − 1.

The time that the random walker spends in a state before it makes the next move is
exponentially distributed over the sum of the rates of all possible jumps from that state. On
average, the time spent in state i is 1/(λi +µi). This is the inverse of the characterizing function
a(i) of the Markov process X(t), defined in the previous section:

a(i) = λi + µi. (5)

This simple simulation procedure captures the nature of embryonic double kink nucleation
and growth. Using this procedure, it is possible to determine the time it would take a double
kink to reach a stable kink separation by repeating this simulation many times to obtain an
average time for the kink separation to reach a pre-determined size. However, it is not practical
to do so in the case of many real materials. For small kink separations in real systems, the
forward probabilities are very small (such as in molybdenum for which w+(i) < 0.001 for
i = 0, 1, 2 [7, 9]). Thus, in this simple simulation, the random walker gets trapped at small kink
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separations and would never reach the critical separation during easily realizable simulations.
Therefore, this method is not a practical approach to determining double kink nucleation
rates. There are two approaches to overcome this difficulty: (1) by refining the MC simulation
procedure using importance sampling techniques and (2) by analysing the Markov process to
obtain first passage [8, 12, 13] (or first crossing) times for the double kink to reach a critical
kink separation. We follow the second approach below.

4. First passage time analysis

If a temporally homogeneous birth–death process X(t) is placed in some specified state n0

at time t = 0, the first passage (or first crossing) time T (n0 → n1) is the time of the first
arrival of the process in state n1. In the case of the double kink nucleation process, we are
interested in the case where n0 corresponds to the absence of the double kink (n0 = 0) and
n1 corresponds to the presence of a stable double kink (i.e. one with a kink separation greater
than w∗ + w′) as shown in figure 1. The exact value of n1 depends on the energy landscape for
double kink nucleation and growth.

The first passage time T (n0 → n1) is a random variable. We denote its density function
by Q(t; n0 → n1) and its kth moment by Tk(n0 → n1). The moments can be calculated from
the density function as

Tk(n0 → n1) =
∫ ∞

0
tkQ(t; n0 → n1) dt. (6)

For any temporally homogeneous birth–death process, Gillespie [8] has shown that the
distribution of the first passage time Q(t, n0 → n1) can be obtained by computation of the
eigenvalues of an (m × m) matrix M where m = n1 + 1 is the number of states accessible to
the process in the course of a first passage from state n0 = 0 to state n1. The matrix M is
tri-diagonal with elements that are the characterizing function a(n) and the stepping function
W±(i) of the Markov process X(t):

M =




a(0) −W−(1) 0 . . . . . . . . . . . . 0
−W+(0) a(1) −W−(2) . . . . . . . . . . . . . . .

0 −W+(1) a(2) . . . . . . . . . . . . . . .

. . . 0 −W+(2) . . . . . . . . . . . . . . .

. . . . . . 0 . . . . . . . . . 0 . . .

. . . . . . . . . . . . . . . . . . −W−(n1 − 1) 0

. . . . . . . . . . . . . . . . . . a(n1−1) 0

. . . . . . . . . . . . . . . . . . −W+(n1 − 1) 0




, (7)

where we recall thata(n) = W−(n)+W+(n). In the case of double kink nucleation, the functions
a(i) and W±(i) are the characterizing function and the stepping functions, respectively, that
are obtained from the energy landscape by using equations (2)–(5).

The density function for the first passage time for the case n0 < n1 is given by the
relation [8]

Q(t : n0 → n1) =
n∑

i=1

Ci(n0, n1)λi exp(−λit). (8)

Here λ1, λ2, λ3, . . . , λn1 are the n1 non-zero eigenvalues of the matrix M. The coefficients
Ci(n0, n1) are obtained from the elements of the canonical matrix V of matrix M (the columns
of the matrix V are the eigenvectors of the matrix M):

Ci(n0, n1) = −(V )n1+1,i+1(V
−1)i+1,n0+1, (n0 < n1; i = 1, 2, 3, . . . , n1). (9)
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The kth moment of Q(t; n0 → n1) can be obtained by using equation (6) and the expression
for Q(t; n0 → n1) (equation (8)):

Tk(n0 → n1) = k!
n1∑

i=1

Ci(n0, n1)

λk
i

, (n0 < n1; k � 0). (10)

The average first passage time T1(n0 → n1) is the first moment of Q(t; n0 → n1):

T1(n0 → n1) =
n1∑

i=1

Ci(n0, n1)

λi

, (n0 < n1). (11)

In the case of the double kink nucleation the density function and the average of the first
passage time for the double kink to reach a stable kink separation is given by

Q(t : 0 → n1) =
n1∑

i=1

Ci(0, n1)λi exp(−λit), (12a)

T1(0 → n1) =
n1∑

i=1

Ci(0, n1)

λi

, (12b)

with

Ci(0, n1) = −(V )n1+1,i+1(V
−1)i+1,1, (i = 1, 2, 3, . . . , n1). (12c)

An alternative expression can also be derived for the average first passage time
T1(n0 → n1) based on a recursion relation [8, 10]. The derivation of this relation is more
intuitive and it can be used for more computationally efficient calculation of the average first
passage time. The average first passage time is simply the sum of the average time that the
Markov process spends in each state:

T1(n0 → n1) =
n−1∑
n=0

t (n; n0 → n1), (n0 < n1). (13)

The average time, t (n; n0 → n1), spent in each state n during the process of going from n0 to
n1 is obtained from the following recursive relationship:

t (n1 − 1; n0 → n1) = 1

W+(n1 − 1)
, (n0 < n1), (14a)

t (n; n0 → n1) = �(n + 1 − n0)

W+(n)
+

W−(n + 1)

W+(n)
t (n + 1; n0 → n1), (14b)

where �(j) is the Heaviside step function. Thus, equation (13) provides a method to
calculate the average first passage time T1(n0 → n1) using the recursive relationships from
equations (14a) and (14b). As before, for double kink nucleation n0 = 0, and n1, the
characterizing function a(n) (equations (3) and (5)) and the stepping functions W ± (n)

(equation (2)) depend on the energy landscape.
We have described two ways of calculating the average first passage time for a Markov

process to reach a certain state. The first approach is comprehensive and leads to the
computation of the entire density function along with all the moments of the first passage times.
The second approach is much more computationally efficient but only yields the average first
passage time.

In the case of a Markov process that describes kink nucleation, we are interested in the
time that the process takes to reach a state that corresponds to stable kink separation. For some
simple energy landscapes, the simulation procedure described in the previous section can also
be used to estimate this time. In the next section, we compare the results of the simulation
procedure and the first passage analysis for some simple cases of double kink nucleation. Then,
we discuss the application of this process to dislocation motion.
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5. Idealized energy landscape

We now apply the first passage time analyses, discussed in the previous section, to four idealized
cases of double kink nucleation, before turning to the more important case of double kink
nucleation on a screw dislocation in molybdenum. In these idealized cases, we compare the
first passage time predictions with the results of direct Monte Carlo random walker simulations.
Comparisons are made for both the full eigenvalue approach (equations (12)) and the recursion
approach (equations (13) and (14)).

For each case, there is an activation barrier (secondary Peierls barrier—the horizontally
spaced circles in figure 1) associated with the migration of kinks. The simulation is started
with no kinks present, corresponding to X(0) = 0. At each step, a random number ζ is
sampled from [0,1). If ζ < w+(i), the Markov process jumps to state i + 1, if not it jumps to
i − 1 (the Peierls barrier height only scales time). For simplicity, we assume that the time the
Markov process spends in each state that it accesses is unity, in some arbitrary time units, i.e.
a(i) = (λi + µi) = 1. As the simulation proceeds, we record the first passage time for each
accessible state. The simulation is terminated when the double kink reaches a kink separation
distance of 15b, i.e. the Markov process has the following accessible states: 0, 1, 2, . . . , 15.
We repeat the simulation 104 times to determine the distribution of first crossing times and the
average first crossing times for each state.

5.1. Case 1: double kink energy does not vary with kink separation

We first consider the simplest possible case; that is, the energy of the double kink is independent
of the state in which the double kink resides, as shown in the free energy–kink separation plot
in figure 4(a). In this case, the Markov process at any state i has equal probability of jumping
to states i + 1 or i − 1 ( i.e. w+(i) = w−(i) = 0.5).

The distribution of the first passage times for the Markov process to reach the final
state Q(t; 0 → 15) is shown in figure 4(b). The maximum in the distribution of first
passage times occurs at approximately 70τ , where τ is the reduced unit of time. The tail
of the distribution is very long because many of the double kinks that form and grow, self-
annihilate before they reach the critical size. Because of this long tail (even on a logarithmic
scale), the average first crossing time is much longer than the most probable first crossing
time. In the present case, the average of the first passage time (225τ ) coincides with the square
of the number of Markov states between i = 0 and i = wc (=15). This is not surprising
as the Markov process is a random walker on a level energy surface and, hence, in the long
time limit its evolution is well-described by a one-dimensional diffusion equation (i.e. the mean
squared displacement of the random walker is proportional to the number of random walk steps
taken).

Figure 4(c) shows the average first passage time T1(0 → n) taken by the Markov process
X(t) to reach each accessible state (n = 1, . . . , 15) from the initial state n0 = 0 for each
state n. We compare the results of the analytical approaches (the eigenvalue approach and
the recursive formula) and the simulation procedure. In this case (equal forward and back
probabilities), the results of the two analyses coincide exactly and are in excellent agreement
with the Monte Carlo simulation results. As in the results in figure 4(b), for n = 15, the
average first passage time to reach each state is given by the square of its distance from the
initial state.

This parabolic dependence can be obtained analytically from equation (13) and the
recursion relations in equations (14) for the special case in which the probabilities are
independent of i for all i > 0, i.e. w+(i) = f and w−(i) = b. This is the situation in
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Figure 4. Idealized case 1: (a) The double kink energy separation relation for the case in which
the energy of the double kink is independent of kink separation. In this case, the probability of
the double kink growing or shrinking by a unit width is 0.5 for all kink–kink separations. (b) The
distribution of first passage times for the double kink to reach a width of 15b; the vertical line
indicates the average first passage time T1(0 → n1). (c) The average first passage times T1(0 → n)
for the double kink to reach a width n1. The solid grey line, dotted black line and triangles represent
the results of the eigenvalue approach, the recursion formula, and the Monte Carlo simulations,
respectively.

the present case, case 1, and cases 2 and 3 (figures 4(a), 5(a), 6(a)). The average first passage
time can be written as

T1(0 → n1) =
n1−1∑
i=0

αi +
1

f

n1−1∑
j=1

n1−1−j∑
i=0

αi

= n1

f

(
n1−1∑
i=0

αi

)
− 1

f

(
n1−1∑
i=0

(i + 1)αi

)
+

(
n1−1∑
i=0

αi

)
, (15)

where α = W−(i + 1)/W+(i) = w−(i + 1)w+(i) = b/f . For the case described by figure 4(a),
α = 1 and f = 0.5, which, when inserted in equation (15), leads to T1(0 → n1) = n2

1. This
is in agreement with the results presented in figure 4(c).

5.2. Case 2: double kink energy increases with increasing kink separation

Now, consider double kink nucleation such that the double kink energy increases linearly with
increasing kink separation distance. The energy–kink separation relationship is plotted in
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Figure 5. Idealized case 2: (a) the double kink energy separation relation for the case in which
the energy of the double kink increases linearly with the double kink width. At any state i the
probability to move forward (to state i + 1) is less than the probability to move backward (to state
i − 1). (b) The average first passage times T1(0 → n1) for the double kink to reach width n1,
where the lines and symbols have the same meaning as in figure 4(c).

figure 5(a). From each state i, the Markov process X(t) can jump to states i + 1 or i − 1 with
probabilities w+(i) and w−(i) defined by equations (4a) and (4b). In this case, w+(i) < w−(i)

for each state.
The average first passage time for the Markov process to reach each accessible

state (n = 1–15) from the initial state n0 = 0 is T1(0 → n) and can be obtained directly using
the eigenvalue (equations (12)) and the recursive (equation (13)) approaches. In figure 5(b),
we compare the average first passage time obtained from the two analytical approaches and
from the simulation procedure for each accessible state (n = 1–15).

For large n, T1(0 → n) increases exponentially with increasing n. As for the energy
profile in figure 4, there is excellent correspondence between the two analytical results and the
Monte Carlo simulation results. However, in the present case, the two analytical results are
not in exact agreement (although the agreement appears nearly perfect in figure 5(b)). Since
the double kink energy increases with increasing kink separation, the two kinks attract at all
kink separation distances. Thus, the Markov process X(t) always has higher probability of
travelling backwards (towards state 0). This explains why, in this case, it takes much longer
for the Markov process X(t) to reach a particular state than in the case where there is no
interaction between kinks (case 1). Note that in this case, the double kink is never stable, since
the lowest energy configuration is one with no double kinks (state n0 = 0).

The results in figure 5(b) can be understood by reference to equation (15) for the special
case in which the double kink energy increases linearly with the kink separation. This implies a
constant value ofα > 1. We rewrite the expression for the average passage time equation (15) as

T1(0 → n1) = αn1−1 + αn1−2

(
1 +

1

f

)
+ αn1−3

(
1 +

2

f

)
+ · · · + α0

(
1 +

n1 − 1

f

)
. (16)

The first term dominates for large values of n1 and α > 1. This suggests that for large n1, T1

increases exponentially with n1. This is consistent with the results plotted in figure 5(b) for
α = 3.2 and f = W+(i) = w+(i) = 0.238. In this case, the exponential approximation is
accurate for n1 > 3.
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5.3. Case 3: double kink energy decreases with increasing kink separation

The third case examines the situation where the double kink energy decreases with increasing
kink separation. The energy–kink separation relationship is shown in figure 6(a). The
probabilities, w+(i) and w−(i), defined in equations (4a) and (4b), are such that w+(i) is
greater than w−(i) for every state i accessible to the Markov process.

Figure 6(b) compares the average first passage time results from the two analytical
approaches with the Monte Carlo simulation. We see that T1(0 → n1) increases with increasing
n1 in a nearly linear manner. There is excellent correspondence between the two analytical
results and the Monte Carlo simulation results over the entire range of n1. The free energy of
the double kink decreases with increasing kink separation. Thus, at every state, the kinks repel
each other. Therefore, the Markov process X(t) always has higher probability of travelling
forward (away from state 0). This results in the Markov process X(t) taking a very short time
to reach large n1 states compared with results of cases 1 and 2. Note that in this case the double
kink is always stable, since the highest energy configuration is the one with no double kinks
(state n0 = 0).

We can also analyse the present situation in which the energy decreases with increasing
kink separation using equation (15). It is convenient to rewrite equation (15) for the constant
α < 1 case as

T1(0 → n1) =
(

1 +
n1 − 1

f

)
+ α1

(
1 +

n1 − 2

f

)
+ α2

(
1 +

n1 − 3

f

)
+ · · · + αn1−1

≈ −2α

(1 − α)2
+

(
1 + α

1 − α

)
n1,

(18)

where the second expression is valid for large n1 and α < 1 and where we have substituted
f = (1+α)−1. This result demonstrates that, for n1 sufficiently large, T1 is a linear function of
n1, which is consistent with the results in figure 6(b). A linear regression analysis of the data in
figure 6(b) (for α = 0.312) suggests that T1 = −1.17 + 1.90n1 while the second expression in
equation (18) gives T1 = −1.32 + 1.91n1. Therefore, the second expression in equation (18) is

(a) (b)
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0.1eV

i–1 i

T
1(

0→
n 1)

, τ

Figure 6. Idealized case 3: (a) the double kink energy separation relation for the case in which
the energy of the double kink decreases linearly with the double kink width. At any state i the
probability to move forward (to state i +1) is greater than the probability to move backward (to state
i − 1). (b) The average first passage times T1(0 → n1) for the double kink to reach width n1,
where the lines and symbols have the same meaning as in figure 4(c).
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Figure 7. Idealized case 4: (a) the double kink energy separation relation for the case in which the
energy of the double kink increases linearly with the double kink width to a critical size, beyond
which it decreases linearly. (b) The average first passage times T1(0 → n1) for the double kink to
reach width n1, where the lines and symbols have the same meaning as in figure 4(c).

an excellent approximation to the average first passage time for the case of linearly decreasing
double kink energy.

5.4. Case 4: triangular double kink energy separation profile

We can combine cases 2 and 3 to consider the case in which the double kink energy increases
with kink separation up to a critical width, and then decreases with increasing kink separation
distance. The double kink energy–kink separation relationship is shown in figure 7(a). This
case corresponds to classical nucleation, where double kinks separated by less than a critical
width tend to decay away, while double kinks separated by more than the critical separation
grow. In this case, w+(i) is smaller than w−(i) for small kink separations and larger than w−(i)

at large separations.
Figure 7(b) compares the average first passage time results from the two analytical

approaches with the Monte Carlo simulation. We see that T1(0 → n1) increases nearly
exponentially with increasing n1 at small n1 (well below the critical value of n1 = 6) and
then increases nearly linearly with increasing n1 at large n1 (well above the critical value
of n1 = 6). Results from the simulation and both analytical approaches are in very good
agreement. Below the critical separation, the kinks attract one another. For these n1’s, the
energy separation profile is identical to that in case 2, where the average first passage time
increases exponentially with n1. At kink separations greater than the critical width, the kinks
repel. For these n1’s, the energy separation profile is identical to that in case 3, where the
average first passage time increases linearly with n1. The results shown in figure 7(b) are
consistent with these earlier observations except for double kink separations that are close to
the critical separation n1 = 6 (i.e. 5 � n1 � 8).

6. Screw dislocation in molybdenum

The above case studies demonstrate that both first passage time analyses produce results that
are in excellent agreement with the Monte Carlo simulation results. With the confidence
gained from these case studies, we now examine the more realistic case of a kink motion
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Figure 8. Double kink nucleation on a screw dislocation in molybdenum: (a) the double kink
energy as a function of kink separation. (b) The distribution of first passage times for the double
kink to reach a width of 15b. The vertical line indicates the average T1(0 → n1) of the distribution.
(c) Average first passage times for double kink nucleation using the energy profile represented
by (a). The solid grey line shows the results of the eigenvalue approach and the dotted black line
shows the results of the recursion formula analysis.

on a dislocation where the double kink separation profile has contributions from kink self-
energies, kink–kink elastic interactions and work term associated with an applied stress. For
reasonable applied stresses, the time required for a Monte Carlo simulation to form and grow
a double kink to a super-critical size is much too large to be practical. Hence, we only employ
the two analytical methods described above and do not compare directly with Monte Carlo
simulations. As a concrete example of a real dislocation, we consider double kink nucleation
during the glide of a 〈111〉 oriented screw dislocation in molybdenum with Burgers vector
b = (a0/2)[111], where a0 is the cubic lattice parameter. The free energy varies with double
kink separation as [1]

�F = 2Fk − µb2h2

8πw
− σbhw, (19)
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where Fk is the energy of an isolated kink, w is the double kink width or kink separation, σ is
the applied stress (see above), h is the kink height and µ is the shear modulus.

We consider double kink nucleation on a screw dislocation in Mo with an external stress of
100 MPa. The variation of the energy of a double kink on a screw dislocation in molybdenum
with kink separation for an external applied stress of 100 MPa is plotted in figure 8(a) using
data obtained from the literature [1, 7, 9]. The probability that a double kink expands to a
critical kink separation is very low because of kink–kink attraction. Thus double kinks with
small kink separations tend to annihilate immediately after nucleation. For this applied stress,
the critical kink separation w∗ is approximately 7b. In the present analyses, we determine the
first passage time for a kink separation of 15b.

Figure 8(b) shows the distribution of the first passage times Q(t ; 0 → 15) for a double kink
of 15b determined from equations (12) at T = 1000 K. The first passage times are distributed
over a very large timescale (approximately five orders of magnitude). The average first passage
time is 7 µs. Rather than simply using the average first passage time, the first passage time
should be randomly chosen from the distribution Q(t ; 0 → 15). A kMC simulation of this
process would require a time step of order 7 ps. Therefore, inserting a double kink with a
separation of 15b and adjusting the kMC simulation clock, rather than forming one with a
separation of b and waiting for it to grow to 15b, requires a factor of approximately 106

fewer MC steps. Even with the overhead associated with calculating the distribution of first
passage times, this should accelerate the kMC simulation by a factor of at least 104. The kMC
simulation could be accelerated even further by replacing the true distribution of first passage
times with the mean first passage time, determined using the recursion formula, equations (13)
and (14). Figure 8(c) demonstrates that the average first passage time for the conditions in
figures 8(a) and (b) determined using the full eigenvalue equation and the recursion formula
yield very similar results (the per cent error in replacing the full eigenvalue result with the
simpler method is approximately 0.1%).

The rate of double kink nucleation depends on both the applied external stress and the
temperature. Figure 9(a) shows the variation of stable double kink nucleation rate with applied
stress and figure 9(b) shows the variation of stable double kink nucleation rate with temperature.
The double kink nucleation rate increases with increasing external stress and with increasing
temperature. Increasing the external stress effectively lowers the barrier in figure 8(a), while
increasing the temperature decreases the time required to obtain a thermal fluctuation needed
to overcome the barrier.

7. Discussion and conclusion

The first passage time analysis presented above can be applied in the context of kMC
simulations where there is a clear separation of timescales between different types of events.
Such situations frequently arise in kMC simulations of a wide variety of materials phenomena
in addition to the double kink nucleation example discussed above.

As another example of this, consider the kMC simulation of the chemical vapour deposition
of {111} oriented diamond [11] under conditions that are of hot filament and microwave
plasma CVD reactor environments. The diamond surface evolves by the chemisorption,
desorption/abstraction and incorporation of molecular species. The gas phase in the CVD
reactor commonly contains H, H2 and various hydrocarbons. Under typical growth conditions,
the diamond surface is largely covered with a passivating layer of H atoms. Surface sites are
activated by H desorption or abstraction which leaves an open surface site where hydrocarbons
can attach. Typically, such open surface sites are repassivated by H adsorption before any
hydrocarbon reaches that site. The diamond surface is extremely dynamic with rapid H
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Figure 9. The average nucleation rates jdk of double kinks on a screw dislocation in molybdenum
as a function of (a) applied stress σapplied (MPa) and (b) temperature T (K).

adsorption, desorption and abstraction which occurs on timescales much faster than any other
surface event. The growth of a new {111} layer diamond on a flat {111} surface requires the
formation of a 3-carbon nucleus (island). However, deposition of three adjacent carbons on the
surface before any of them desorb is very rare. The simulation, therefore, uses a large number
of Monte Carlo steps simulating sub-critical nucleation events that involve adsorption and
desorption of H as well as carbon containing radicals such as CH3, C2H2 which desorb prior to
nucleation. Under typical growth conditions (T = 1200 K, partial pressures PH = 0.04 Torr,
PH2 = 18 Torr, PCH3 = 0.004 Torr and PC2H2 = 0.04 Torr), it takes 105 Monte Carlo steps to
simulate the nucleation of a stable island of carbon atoms on the diamond film surface. In such
a case, the first passage time analysis can be used to improve the computational efficiency of
the kMC simulation by calculating the consolidated rate for a stable nucleus of carbon atoms.
A first passage time analysis could include all of the H-events leading up to the insertion of a
hydrocarbon or all of the events leading up to the formation of a critical carbon island nucleus
on the surface. This elimination of the hydrogen abstraction–adsorption reactions from the
simulation (which do not contribute to the overall growth of the diamond film) would lead to
kMC simulations that are as much as 104 times faster than standard methods [11]. This type
of gain in efficiency would not be atypical for kMC simulations involving nucleation events
or other rare events.

In this paper, we have described how the first passage time analysis may be used to obtain
consolidated rates of rare events; i.e. the nucleation of double kinks during dislocation glide in
the present case. The double kink nucleation process is treated as a temporally homogeneous
birth–death Markov process. We analyse the Markov process to obtain the distribution and the
average of first passage times for the nucleation of a double kink of a particular size (critical
kink separation). We have discussed two methods to determine the first passage time; one
computes the distribution and the average of the first passage times (the eigenvalue approach),
while the other uses a recursive relation to calculate the average first passage time (the recursion
formula). The average first passage times calculated by both approaches were compared with
the results of kMC simulations for four idealized cases of double kink nucleation. We found that
the first passage time analyses were both in excellent agreement with Monte Carlo simulation
results. Finally, we applied this method to the realistic case of double kink nucleation on a
screw dislocation in molybdenum. This results in very efficient predictions of double kink
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nucleation rates as a function of applied stress and temperature. The present approach of
nucleating a critical double kink on an otherwise straight dislocation allows us to increase
the computational efficiency of the kMC simulations of dislocation migration by a factor of
106 compared with the more straightforward kMC simulations that account for double kink
formation from a straight dislocation line and allowing it to grow to the critical size.
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