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Abstract. We point out that: (1) the major contribution of [l] is the generalised fast 
Cholesky algorithm, not the integral equations; (2) the Marchenko integral equation in [I] 
is correct as written, but does not determine the scattered field; and (3) in [l]  it is implicitly 
assumed that the regular solution exists. The last two points suggest that the generalised 
fast Cholesky algorithm may be the only viable solution to the non-local problem. 

The purpose of [l] was twofold: (1) to derive fast, differential, ‘layer stripping’ 
algorithms €or solving inverse scattering problems with non-local potentials diagonal 
in the radius; and (2) to present integral equation counterparts to these differential 
algorithms. 

Two different types of solution are involved. The scattering solution ~ ( x ,  t ,  e) is 
used in the generalised fast Cholesky differential algorithm, and in the Marchenko 
integral equation. The regular solution q ( x ,  t ,  e) is used in the generalised Levinson 
differential algorithm, and in the Gel’fand-Levitan integral equation. The object is to 
generalise the one-dimensional results of [2]. 

Hence [ l ]  proposes four, not two, methods for solving the inverse scattering 
problem with a non-local potential (although one of them is in fact incorrect). In real 
applications, the generalised fast Cholesky algorithm seems to be the simplest 
procedure, since it requires the least amount of computation. The other three 
methods may be primarily of academic interest, showing how the integral equations 
generalise to the non-local potential case. 

There seems to be some confusion over equations reducing to other equations. In 
interpreting the reduction of (3.5) and (3.6) to the local potential case, it should be 
noted that the limit of time tin both equations, for a given x, is the instant at which the 
scattered field u(x, t, e,) becomes non-zero, as the wavefront passes x. In the non-local 
case this is t = - 1x1, while in the local case this is t = e, - x. The reduction of (3.5) and 
(3.6) to the local case must be made with this in mind. Note that if t =  - 1x1 in (3.5) and 
(3.6) is replaced with t = tLIM, where u(x, t, e,) has support [tLIM, a], then the reduction 
is as noted in the paper. I think this would be overly cumbersome to the reader; 
nonetheless the reductions should indeed have been explained in more detail. 

I disagree with the last comment. The regular solution q ( x ,  t, e,) has the support 
indicated in (2.7), and solves the Schrodinger equation. This leads directly to (3.17) 
and (3.19). q ( x ,  t ,  e,) also satisfies the orthogonality condition (3.7), and this leads to 
the Gel’fand-Levitan equation. Assuming that a given A ( k ,  e,, e,) is uniquely asso- 
ciated with a V ( x ,  e), the proposed Gel’fand-Levitan procedure must lead to the 
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correct answer. This uniqueness is an assumption, and this issue is still open even in 
the local case. However, (2.6) does provide some justification. 

The Marchenko equation (3.5) is correct. An alternative derivation amplifying the 
comment in the line below it is as follows. Using a representation theorem argument, 
for all t we have [3,4] 

4 x 9  t, e,) - - t ,  - e,) 

G(t+ z, -e‘, e,)u(x, z, e’) de’. 
= J ~ * G ( t - e ~ . x , e ~ , e ~ ) d e , +  JL 

In the local case u(x, t, e,) = 0 for t< e, * x implies u(x, - t ,  - e,) = 0 for t>  e, * x ,  so that 
the u(x, -t ,  -e , )  term in the above equation disappears for t>e , .x .  This is the 
Marchenko integral equation for the local case. However, for the non-local case 
u(x,  t ,  e,) = 0 for t<  - 1x1 implies u(x, - t, -e,) = 0 for t >  1x1, so that the u(x,  - t, -e,) 
term in the above equation disappears only for t> 1x1. ‘This is (3.5). 

However, (3.5) does not determine the scattered field u(x,  t ,  e,), for the reasons 
noted in the Comment. Hence the proposed Marchenko procedure does indeed 
collapse. This is of course an error, but it does not invalidate the rest of the paper. 
And (3.5) is interesting in that it shows that the Marchenko form does generalise to 
the non-local case-it just cannot be used to solve an inverse scattering problem. 

Also, the Comment makes the important point that the regular solution q(x ,  t ,  e,) 
is assumed to exist in the non-local case, as it does (generically) in the local case. This 
assumption certainly should have been stated in the paper, although there is some 
evidence in its favour. Note that if q(x ,  t ,  e) has support in [ - 1x1, 1x11, and J ( t ,  e,, e.) is 
causal in t ,  then their convolution (the inverse Fourier transform of the integrand in 
(2.8b) of [l]) will have support in [ - 1x1, a], which is the support of the non-local 
~ ( x ,  t ,  e ) .  q ( x ,  t ,  e) and J ( t ,  e,, e*) must have additional properties for the q ( x ,  t ,  e) 
associated with a local potential to have support [In], w 1. Of course this does not show 
p(x, t, e) exists, but it does provide some indirect evidence. 
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