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Abstract. Many one-dimensional inverse scattering problems can be formulated as a 
two-component wave system inverse problem, including inverse problems for lossless and 
absorbing acoustic and dielectric media. The advantage of doing so is that well known signal 
processing algorithms with good numerical stability properties can be used to reconstruct 
such media from either reflection or transmission responses to impulsive or harmonic 
sources. If the system is asymmetric, i.e. has different reflectivity functions in different 
directions, transmission data as well as reflection data are required. This paper summarises 
algorithms for a wide variety of one-dimensional inverse problems, derives some new ones, 
and presents a simple framework that reveals much about these problems. 

1. Introduction 

The one-dimensional inverse scattering problem is fundamental to many areas of 
physics. Such problems arise in transmission line theory, for acoustic and dielectric 
media, for lossy, dispersive and viscoelastic media, and for potential scattering of wave- 
functions. These problems are formulated in many different ways, making comparison 
between various approaches difficult. 

Often it is not obvious how much data are required to solve such problems, or 
what parameters can be recovered from a given amount of data. For example, impulse 
reflection data is sufficient for some lossy media problems, while other problems require 
transmission data, or data from both ends of the medium. Other problems cannot be 
solved using time-domain data at all, in which case it is not always clear what data is 
needed. 

This paper proposes the two-component wave system as a common framework 
for all of these problems. Although its utility for lossless inverse scattering is well 
known, its applicability to problems involving lossy, absorbing media is less familiar. 
However, the two-component wave system formulation of the inverse problem for a 
given medium is shown to be useful in determining the data needed to reconstruct it. 
Furthermore, we show how well known signal processing algorithms, whose numerical 
stability has been extensively studied, can be used to reconstruct a medium from either 
its reflection or transmission responses to impulsive or harmonic data. In all cases 
we desire an exact (in principle) solution, which includes the effects of dispersion, 
absorption, attenuation and multiple reflections. 

For many problems of interest, including lossy dielectric, absorbing acoustic and 
viscoelastic media, the system is asymmetric, i.e. has different reflectivity functions for 
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waves travelling in opposite directions. Such media require reflection and transmission 
data from both ends. We show here how harmonic (single-frequency) data may be 
used as an alternative for some problems. Note that in specifying an ‘inverse scattering 
problem’, we only describe a scattering medium. The available data is unspecified; 
the idea is to determine what data are needed to reconstruct the medium, and then 
reconstruct it from this data using a standard procedure. 

New contributions in this paper include several new algorithms for reconstructing 
inhomogeneous absorbing acoustic media and lossy dielectric media from their reflec- 
tion and transmission responses. In addition, a common formalism for lossless and 
lossy one-dimensional inverse scattering problems is presented that illuminates many 
common features of these problems. 

Section 2 introduces the asymmetric two- 
component wave system, and shows how it may be solved using the asymmetric Schur, 
Levinson and lattice algorithms. These algorithms are well known in signal processing, 
are easily implemented, and their numerical stability has been studied. The lattice 
algorithm uses transmission data rather than reflection data, and thus may be used as 
a check on the results of the other algorithms. 

Section 3 solves the inverse problem of reconstructing a lossy transmission line; 
this is a good physical illustration of how the algorithms function, and of how the two- 
component wave system formulation is derived. Sections 4 and 5 consider lossless and 
absorbing acoustic media and viscoelastic media, showing how various types of media 
can be reconstructed using a variety of data. Section 6 considers lossless, absorbing 
and dispersive electromagnetic inverse problems. Section 7 concludes with a summary 
of results and insights. 

The paper is organised as follows. 

2. Two-component wave system inverse problem and solution 

In this section the common framework for all of the inverse problems considered in this 
paper is specified. The asymmetric Schur, Levinson and lattice algorithms for solving 
the inverse problem for this system are specified; these algorithms require reflection 
and transmission data from both ends of the system. In the special case of a symmetric 
system, the first two algorithms require only reflection response data, while the third 
algorithm requires only transmission response data. 

2.1. The asymmetric two-component wave system 

As we shall see in the remaining sections, many one-dimensional inverse scattering 
problems can be formulated in terms of the following asymmetric two-component 
wave system: 

Here D ( z , k )  and U ( z , k )  are downgoing and upgoing waves, respectively, r ( z )  and 
s ( z )  are reflectivity functions, z is depth (increasing downward), and k may be either 
frequency or wavenumber. 

Equation (2.1) describes the scattering medium illustrated in figure 1. This medium 
varies smoothly for 0 < z < L, and it is homogeneous (i.e. r ( z )  = s ( z )  = 0)  for z < 0 
and z > L. At the interfaces z = 0 and z = L, there are two possible conditions: (1) 
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Figure 1. A section of the asymmetric two-component wave system 

r ( z )  and s ( z )  are continuous functions; or (2) a f r e e  surface (perfect reflector) exists. 
Both conditions will be used at various points in this paper. 

In the time domain (2.1) becomes the pair of equations 

( 7 fz + - :J D ( z ,  " t )  = - r (z )  C ( z ,  t )  (2.2a) 

(2.2b) 

where E(z, t )  = (1/2n) i-", D ( z ,  k)elki dk is the inverse Fourier transform of D ( z ,  k ) ,  and 
similarly for i i ( z ,  t )  (this notation will be used throughout the paper). 

D ( z , k )  and U ( z , k )  are considered to be waves since (2.2) describe quantities that 
propagate in increasing and decreasing depth z as t increases. The reflectivity functions 
r ( z )  and s ( z )  describe how much of each wave is reflected into the other wave at each 
z .  If r ( z )  = s ( z )  = 0 then the medium described by (2.1) is locally homogeneous, and 
no scattering occurs. Note also that the wave speed is assumed to be unity; although 
this assumption can be relaxed, it complicates matters greatly, as we shall see later. 

Sections 3-6 of this paper will formulate a wide variety of inverse scattering 
problems in the form (2.1). The advantages of doing so are as follows: (1) the form 
(2.1) has a clear physical interpretation that allows good intuition into the problem; 
(2) by casting all problems into the same form, similarities between different problems 
can be exposed, allowing results developed for one problem to be applied to another 
problem; and (3) standard procedures for solving the inverse problem associated with 
(2.1) are available, as we now show. 

2.2. Two inverse scattering experiments 

Suppose the system (2.1) is initialised with 

D ( z ,  k )  = e-''' U ( z ,  k) = RI (k)eik' Z I O  ( 2 . 3 ~ )  

~ ( z , k )  = ~ , ( k ) e - ' ~ '  U ( z , k )  = 0 z > L. (2.3b) 

This is the same as initialising (2.2) with 

D ( z , t )  = S ( t - z )  f i ( z , t ) = K , ( t + z )  z < o  ( 2 . 4 ~ )  

6 ( z , t )  = i . , ( t - z )  C ( z , t )  = o  z > L. (2.4h) 

Equations (2.3) and (2.4) describe an inverse scattering experiment that consists of 
probing the medium described by (2.1) and (2.2) with an impulsive plane wave S ( t  - z ) ,  
incident from above and propagating downward, and getting back a reflection response 
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Figure 2. A scattering experiment with probing from (a )  the left and ( b )  the right. 

k,( t )  that is causal and a transmission response fl(t) at the far end of the medium. 
This is described in figure 2(a). 

Since k ,  ( t )  is causal it is clear that 6 ( z ,  t )  and ( z ,  t )  have the forms [l, 21 

6 ( z , t )  = h ( t - z )  + d ( z , t ) l ( t - z )  

i i ( z , t )  = O ( z , t ) l ( t - z )  

(2.5a) 

(2.5b) 

where d(z , t )  and o ( z , t )  are the smooth parts of 6 ( z , t )  and 6 ( z , t )  (both of which 
jump at t = z )  and where 1(.) is the unit step or Heaviside function. Equations (2.5) 
are simply a statement of causality. 

Now insert equations (2.5) into (2.2), and use a propagation of singularities argu- 
ment (see [3] for details). Here, this amounts to equating coefficients of d ( t  - z ) .  This 
yields [l, 21 

( 2 . 6 ~ )  

(2.6b) 

s(z) = 2O(z, Z+) .  ( 2 . 6 ~ )  

The derivation of (2.6) from (2.2) is analogous to the derivation of transport equations 
for a system of partial differential equations. 

If r ( z )  = s(z), then equations (2.6), initialised using d(0, t )  = 0 and o(0, t )  = kl  ( t ) ,  
can be propagated in increasing z and t ,  as noted in [l]. However, if r ( z )  # s(z), then 
this is not possible. In this case, more data are needed. We now proceed as in [2]. 

Instead of initialising the system (2.1) at z = 0 using (2.3), we may, as an alternative, 
initialise it at z = L. In this case the initial conditions are 

U ( z ,  k )  = eiki D ( z ,  k )  = R,(k)ePikz z 2 L ( 2 . 7 ~ )  

U ( z , k )  = T2(k)eikz D ( z , k )  = 0 z < 0. (2.7b) 

Equations (2.7) describe an inverse scattering experiment in which the medium is 
probed with an impulsive plane wave incident from below, and propagating upward. 
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This is described in figure 2(b). Figures 2(a )  and 2(b) are summarised in the scattering 
matrix 

Now consider the adjoint system to (2.1) [2] 

The adjoint system is illustrated in figure 3. The term ‘adjoint system’ first appeared in 
[41. 

Figure 3. A section of the adjoint asymmetric two-component wave system. 

It is not difficult to see that the scattering matrix sad, for the adjoint system (2.9) 
is the Hermitian transpose of the inverse of the scattering matrix S [2] : 

sad, = (s-’)H. (2.10) 

This implies a system of equations analogous to (2.6), but with Y(Z) and s ( z )  inter- 
changed. These equations are initialised with the (1,2) element of s,,,, which is termed 
R , ( k ) .  

2.3. Solution: the asymmetric Schur algorithm 

The significance of introducing the adjoint system (2.9) is that equations (2.6) for the 
actual system, and the analogous equations for the adjoint system, can be propagated 
together to reconstruct ~ ( z )  and s ( z ) .  Discretising depth z and time t into integer 
multiples of a small constant A and using forward differences, these equations discretise 
into 

D ,  ( 2 ,  t )  (2.11a) -s(z)A 1 [ U,( z ,  t ) ]  

(2.1 1 b )  

(2.1 I C )  

r ( z ) A  = U , ( z , z ) / t ( z )  (2.11d) 

(2.1 1 e )  

U ~ ( Z  + A, t - A )  -Y ( z )A  1 

4 Z ) A  = U ,  ( z ,  z ) / t ( z )  

N-l 

D, ( N A ,  N A )  = D 2 ( N A ,  N A )  = t ( z  = N A )  =IT (1 - r(iA)s(iA)A2) 
i=o 

D1(O,t) = o  U,(O,t)  = i , ( t )  (2.1 If) 
D2(0, t )  = 0 U2(0, t )  = R,( t ) .  (2.1 1g) 
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Equations (2.11) constitute a layer-recursive procedure for reconstructing r ( z )  and s ( z )  
from the scattering data in the scattering matrix S .  Note that R , ( t )  can be found from 
(2.8) and (2.10). 

A forward discretisation of (2.6) was used because equations (2.11) first appeared 
in [5] in the context of fast algorithms for Toeplitz matrix factorisation for signal 
processing applications. They are called the generalised or asymmetric Schur algorithm. 
Applied to inverse scattering problems, the continuous version of equations (2.1 1) first 
appeared in [ 2 ] .  

There are some subtle differences between the discrete and continuous versions of 
the Schur algorithm. Note that the factor of 2 in ( 2 . 6 ~ )  disappears in (2 .11~)  and 
(2.11d). Equations (2 .11~)  and (2.11d) follow from ( 2 . 1 1 ~ )  and (2.11b) by setting t = z 
and noting that U,(z  + A,z  - A )  = 0 by causality. Equation (2.11e) simply propagates 
D , ( z , z )  as the transmission loss factor t ( z ) ;  (2.1 le)  also follows from ( 2 . 1 1 ~ )  and (2.1 l b )  
by setting t = z .  

2.4. Solution: the usymmetric Levinson algorithm 

As an alternative to propagating (2.1 11, we can use the asynzmetric Levinson algorithm. 
Applied to the inverse scattering problem, this algorithm is [6] 

(2.12a) U ,  ( Z  + A, t - A )  -s(z)A 1 

(2.12b) 

h -- I 

s (z  = N A ) A  = D,( z , t  = iA)R,(t  = ( N  - i )A ) / t ( z )  (2.12C) 
1=O 

2'- 1 

r ( z  = N A ) A  = D2(z,  t = iA)R,( t  = (N - i ) A ) / t ( z )  (2.12d) 
!=O 

N-I 

t ( z  = N A )  =n (1 - r(iA)s(iA)A*) 
i=O 

(2.12e) 

D ,  (0, t )  = 6, (2.12f) 

D2(0,t)  = 6, U2(0,t) = 0 (2.1% 1 
U ,  (0, t )  = 0 

where 6, = 1 iff  = 0 and 0 if t # 0. 
This algorithm also reconstructs r ( z )  and s(z)  from the reflection responses R,( t )  

and R , ( t )  of the real and adjoint systems. However, the quantities being propagated 
differ; from the initial conditions it is evident that D,(z, t )  and U,(z ,  t) are the elements 
of the first column of the sfate transition matrix of the real and adjoint systems, for 
i = 1,2. In fact, the state transition matrix for the real system (2.1) has the form 

1 Dl ( z ,  k )  U2 ( z ,  -k)  

This is discussed in more detail for the symmetric case in [l], and for the asymmetric 
case in [7].  
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The algorithm (2.12) cannot be parallelised as readily as can (2.11), due to the 
sum-of-products computations ( 2 . 1 2 ~ )  and (2.12d). However, the smoothing effects of 
these two computations may make this algorithm more robust, given noisy data. 

2.5. Asymmetric system with perfect rejectors 

Suppose now that both ends of the system in figure 1 are perfect reflectors. For acoustic 
media, these are called free or pressure-release surfaces. Note that this is fairly realistic 
for non-destructive testing, since the impedance contrast between material and air is in 
the thousands. 

The perfect reflectors create a feedback effect, altering the reflection responses 
from R,(k) to K , ( k )  and the transmission responses from T,(k)  to X i ( k ) ,  i = 1,2. 
The feedback between the reflection response and the perfect reflector implies that 
K ,  ( k )  = R,(k) + R?(k) + R: ( k )  + . . . and X i  ( k )  = T i ( k )  + T , ( k )  R, ( k )  + T,(k) R; ( k )  + . . ., which 
can be simplified to 

( 2 . 1 3 ~ )  

Identical relations hold for the reflection and transmission responses R ,  ( k ) ,  K , ( k ) ,  T , ( k )  
and X , ( k )  of the adjoint system. 

From (2.10) we have ( S ) ( S z , )  = I .  Writing out the ( i ,  i )  element of this for i = 1,2 
gives 

T , ( k ) T , ( k ) *  + R , ( k ) R , ( k ) *  = 1 i = 1,2 (2.14) 

and substituting the second of equations ( 2 . 1 3 ~ )  and (2.13b) into (2.14) yields 

1 + Ki + Kr = X i X :  i = 1,2. (2.15) 

Equation (2.15), which is new, states that the rejection response of the system is one 
side of the cross-correlation of the transmission responses of the system and its adjoint, 
assuming perfect rejectors at each end. 

This result is well known [8] in geophysics for symmetric two-component systems. 
For symmetric systems, the adjoint system is identical to the original system, and (2.10) 
becomes a statement that the scattering matrix is unitary. Then (2.14) is a statement 
of conservation of energy, i.e. symmetric systems are lossless, and (2.1 5) for symmetric 
systems is often interpreted as another statement of conservation of energy. 

However, it is now clear that this is a misleading interpretation, since asymmetric 
systems are not lossless (see equation (101) of [2] ) .  Equation (2.15) is new to the 
literature, although it was mentioned in [ 7 ] .  

2.6. Solution: the asymmetric lattice algorithm 

The significance of (2.15) is that it allows the lattice algorithm [9] to be applied to the 
inverse scattering problem for the asymmetric two-component wave system. Unlike 
the Schur and Levinson algorithms, this algorithm is initialised using transmission 
responses. 
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The algorithm as applied to the inverse scattering problem is [7] 

( 2 . 1 6 ~ )  U,(Z + A ,  t - A) -s(z)A 1 

(2.16h) U ~ ( Z  + A, t - A) -r(z)A 1 

(2 .16~)  

X 

r ( z  = N A ) A  = D 2 ( z ,  t = z + i A ) X ,  ( t  = i A ) / t ( z )  (2.16d) 
i=o 

Since this algorithm utilises the transmission responses, instead of the reflection re- 
sponses, of the real and adjoint systems, i t  may be used as a check on the values of r ( z )  
and s ( z )  computed using either of the previous algorithms. If the data contain noise, 
the profiles could be compared to gauge the effects of the noise. 

Note that for a symmetric system, corresponding to a lossless medium, the trans- 
mission response alone of the medium constitutes sufficient data to reconstruct it [lo]. 
We simply propagate D ,  ( 2 ,  t )  = D2(z ,  t )  and U, ( z ,  t )  = U 2 ( z ,  t )  using (2.16a), recovering 
r ( z )  = s(z) from (2.16d), and initialised using the transmission response X ( z ) .  Note 
that a perfect reflector is still assumed at the surface z = 0. Without the perfectly 
reflecting boundary condition at z = 0, the transmission response T ( z )  is still sufficient 
to reconstruct r ( z )  = s ( z ) ,  but very complicated transmutation methods must be used 

Note that all three algorithms have recursions that simulate the two-component 
wave system. However, the quantities being propagated differ, as well as the initial- 
isations and the equations for computing r ( z )  and s ( ~ ) .  Specifically, the Levinson 
algorithm propagates the elements of the state transition matrix of the system (2.1), 
the Schur algorithm propagates the waves associated with the reflection response, and 
the lattice algorithm propagates the waves associated with the transmission response. 

[ I l l .  

2.7. Solution: Riccati equations 

Defining the reflection responses of the real and adjoint systems below z as 

R, ( z , k )  = U , ( z , k ) / D , ( z , k )  i = 1,2 

it is easy to show from (2.1) and (2.9) that the R, ( z , k )  satisfy 

d R l ( z ’  k ,  = 2ikR1 ( z ,  k )  + r ( z )R ,  ( z ,  k)2 - s(z) 

dR2(z’ k ,  = 2ikR2(z ,  k )  + s ( z ) R 2 ( z ,  k ) 2  - r ( z )  

dz 

dz 

(2.17) 

the Riccati equations [2] 

(2 .18~)  

(2.18b) 
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where R,(O, k )  = R,(k). Furthermore, r(z) and s(z) may be computed using 

(2.19a) 

(2.19b) 

Equation (2.19a) follows from the forms (2.5) of the waves and the identity (2.6) used 
to compute s(z) (see equation (3.15) of [l]);  similar reasoning leads to (2.19b). In words, 
equations (2.19) state that the t = 0 value of the time-domain reflection response below 
depth z is due solely to the reflectivity function r(z) or s(z) at depth z. 

The occurrence of Riccati equations in inverse scattering problems is well known. 
Note that (2.18) and (2.19) can be propagated together. However, (2.18) should be 
properly discretised into the layer-removal or dynamic deconvolution equations 

2ikA (z, k ,  - s(z)A R , (z+A,k )  = e  

R2(z + A, k )  = e 

1 - r(z)R,(z, k)A 

2ikA R2(Z, k, - r(z)A 
1 - s(z)R~(z,  k)A'  

The symmetric (r(z) = s(z)) version of (2.20) appears as the layer-removal recursion of 
[121. 

(2.20a) 

(2.20b) 

Equations (2.20) can also be derived directly by noting that R ,  (z +A, k )  and R, (z, k )  
differ by: (1) a time shift, represented by e2ikA; (2) the reflection at depth z, represented 
by s(z)A; and (3) reverberations between the inhomogeneities at z and z+A, represented 
by the feedback term in the denominator (compare with (2.13)). 

It is also possible to associate a coupled pair of Gel'fand-Levitan or Marchenko 
integral equations to the two-component wave system (2.1) by generalising the argument 
given in [ l ]  for symmetric systems to asymmetric systems. However, the various fast 
algorithms given above are much simpler computationally than is the solution of an 
integral equation. 

It is important to emphasise that the discretised algorithms (2.1 l ) ,  (2.12) and (2.16) 
are the well known Levinson, Schur and lattice algorithms of digital signal processing 
[4-61. The fact that the inverse scattering algorithms discretise into well known, 
numerically stable signal processing algorithms is an important feature of the present 
work. The Levinson, Schur and lattice algorithms have been shown to be numerically 
stable (in the sense that they will not diverge for a well-conditioned problem) in [13-151, 
respectively. 

Having reviewed several algorithms for solving the asymmetric two-component 
wave system (2.1), we spend the rest of this paper formulating a wide variety of one- 
dimensional inverse scattering problems in the form (2.1). Then the material of this 
section can be used to solve them. 

3. The lossy non-uniform transmission line 

We start off with the lossy non-uniform (LCRG) transmission line, since this problem 
allows the easiest physical interpretation of the asymmetric two-component wave 
system, its adjoint and the algorithms of 0 2. Much of this material is from [2] ; however, 
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we also consider a general procedure for formulating problems as asymmetric two- 
component wave systems. Finally, the inverse potential problem for the Schrodinger 
equation is reformulated as a symmetric two-component wave system. 

3.1. Basic equations for  an LCRG transmission line 

An infinitesimal section of length A of an LCRG transmission line is shown in figure 4 
where L ( z ) ,  C ( z ) ,  R ( z )  and G(z )  are the inductance, capacitance, series resistance and 
shunt conductance, respectively, per unit length of the line. We assume that wave speed 
( L ( Z ) ~ ( Z ) ) - ’ / ~  is constant; without loss of generality let L ( z ) C ( z )  = 1. 

Figure 4. A section of a lossy LCKG non-uniform transmission line 

Kirchoff’s voltage and current laws and Fourier transforms result in 

v ( z ,  w )  = v(z + A, w )  + ( R ( z )  + iwL(z)) i (z ,  w)A 

i ( z ,  w )  = i(z + A, w )  + (G(z )  + iwC(z))u(z ,  w)A 

Divide (3.1) by A, let A -+ 0, and write the result in matrix form as 

( 3 . 1 ~ )  

(3.1 b )  

(3.2) 

The problem now is to transform system (3.2) into system (2.1). We outline a 

0 - (R( z )  + iwL(z))  
0 

general procedure for performing this transformation next. 

3.2. Formulation as a two-component wave system 

The first step is to define energy-normalised variables : 

V ( z ,  0) = z-”2(z)v(z, w )  

Z ( Z , O )  = Z ’ / 2 ( z ) i ( z , w )  

(3.3a) 

(3.3b) 

using the characteristic impedance Z ( z )  = ,/-. This is generally quite simple 
for most problems if proper attention is paid to dimensions or energy normalisation. 

The next step is to note that for a travelling wave on a lossless transmission line, 
the voltage u,(z,w) and current i,(z,w) in the frame of reference of the wave are 
related by 

c,(z,w)li,(z,w) = k Z ( z )  V,(z,w)lI,(z,w) = f l .  (3.4) 

This suggests picking off the variables that are constant in the frame of reference of a 
travelling wave : 

(3.5a) 

(3.5b) 
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Note that P ( z , w )  = 1 in the frame of reference of a wave travelling in the +z direction, 
while Q ( z , w )  = 1 in the frame of reference of a wave travelling in the -z direction. 
Since this transmission line is lossy, this is not yet sufficient. 

Substituting (3.3) and (3.5) in (3.2) gives 

(3.6) d P(Z70) 
- dz [ Q ( z , w )  ] = [ -m(z) - b(z)  iw + a(z )  

where 

1 dZ 
m(z )  = -- 

2 2  dz 
1 R G  

a( z )  = - (- + -) 
2 L C  

b(z)  = A ( 5  - "> 
2 L C  

(3.7a) 

(3.7b) 

(3.7c) 

Now the only problem is the extra a(z )  being added to iw. This can be eliminated 
by scaling P ( z , w )  and Q(z,w) as follows: 

D(z,  w )  = P ( z ,  w )  exp 

U ( z ,  w )  = Q(z ,  w )  exp (- J z  a@') dz') . 

( 3 . 8 ~ )  

(3.8b) 

Then D(z,  w )  and U ( z ,  w )  satisfy the asymmetric two-component wave system 

( 3 . 9 ~ )  

r ( z )  = (m(z)  - b(z ) )  exp ( 2  J z  a(z') dz') (3.9b) 

s ( z )  = (m(z)  + b(z ) )  exp (-2 Lz a(z')  dz') . (3.9c) 

The formulation of the lossy non-uniform transmission line inverse scattering 
problem as an asymmetric two-component wave system inverse scattering problem is 
complete. The algorithms of 0 2 may be used to reconstruct r ( z )  and s ( z )  from the 
reflection and transmission responses at both ends of the line. The expressions (3.96) 
and ( 3 . 9 ~ )  first appeared in [16], in which integral equations, rather than the fast 
algorithms of Q 2, were used to reconstruct them. 

3.3. Interpretation 

Note that if the Heaviside condition for a dispersionless line 

holds, and constant wave speed L ( z ) C ( z )  = 1 is still assumed, then b(z )  = 0 and each of 
L(z) ,  C ( z ) ,  R ( z )  and G(z )  can be reconstructed separately. For such a line, the voltage 
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and current propagating in a wave are in phase; no dispersion occurs, and (3.4) now 
holds exactly, even though the line is lossy. This explains why (3.9b) and ( 3 . 9 ~ )  simplify 
as much as they do. 

For a lossless line R(z)  = G ( z )  = 0, we have r ( z )  = s ( z ) ,  and the two-component 
wave system is symmetric. This is an important simplification, since reflection data 
from only one end of the line are now sufficient to reconstruct the line. Alternatively, 
transmission data alone from the other end of the line are now sufficient to reconstruct 
it (if the far end of the line is terminated with a perfect reflector, the lattice algorithm 
may be used; if not, transmutation methods [ l l ]  must be used). This is an example of 
how the type of medium being reconstructed dictates the data required to reconstruct 
it. 

For a transmission line, the concept of waves travelling in opposite directions and 
being scattered into each other is easy to visualise. The algorithms in 5 2 all have 
clear interpretations in terms of these waves. The adjoint system can be viewed as a 
fictitious line in which the signs of the inductances and capacitances have been changed. 
Although the lossy transmission line requires asymmetric scattering, the transformation 
above has fairly clear physical interpretations at each step. For acoustic media, these 
physical interpretations are often less obvious, but the same procedure may be used to 
formulate an asymmetric two-component wave system. 

3.4 .  Schr6dinger equation 

Here the inverse scattering problem for the Schrodinger equation 

( $ + k 2 - V ( z )  ) p(z,k)=O (3.1 1 )  

is considered, where the scattering potential V ( z )  is zero outside the interval 0 < z < L 
but is otherwise unknown. Note that V ( z )  may be either real or complex. Although 
the potential V ( z )  is written here solely as a function of z ,  the following procedure also 
works for a frequency-dependent potential V ( z ,  k ) ;  in this case r ( z )  defined in (3.13) 
below also becomes frequency dependent, i.e. r ( z ,  k ) .  This will be used in $4 4.3 and 5.4. 

Given the boundary conditions (compare with (2.3)) 

p(z,k) = e+ + R(k)eikz z I o 
p(z, k )  = T(k)e-ikz z > L  

(3 .12~)  
(3.12b) 

where either the reflection response R(k )  or the transmission response T ( k )  is known, 
the problem is to compute the scattering potential V ( z )  from R(k) .  This problem can 
be reformulated as a symmetric two-component wave system as follows [l, 21. 

Let r ( z )  satisfy the differential equation 

r ( z ) 2  - dr/dz = V ( z )  0 < z < L (3.13) 

and let V’(z)  be defined by 

V’(z) = r(z)’ + dr/dz O < z < L .  (3.14) 

Now dejne the associated Schrodinger equation 

(-$ + k2 - V’(Z)  q(z, k )  = 0 1 (3.15) 
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and dejine its boundary conditions to be 

q ( z ,  k )  = e@ - R(k)elkz 

q ( z ,  k )  = T(k)eCk2 

Z S O  

z > L. 

Then it is not difficult to show that [l, 21 

(3.16a) 

(3.16b) 

( 3 . 1 7 ~ )  

(3.17b) 

satisfy a symmetric two-component wave system. 
The Schrodinger equation inverse scattering problem may thus be solved as follows. 

Initialise any of the algorithms of 9 2 using the T ( k )  or R ( k )  from the Schrodinger 
boundary condition in (2.3), compute r ( z )  using these algorithms, and recover V ( z )  
from r ( z )  using (3.13). The initial condition r(0) is zero if R ( k )  is strictly proper (i.e. 
if limk+x R ( k )  = 0); if not, there is an immediate reflection at z = 0. The mapping 
between r ( z )  and V ( z )  specified by (3.13) is not one-to-one; see [17] for more details. 

The procedure specified by equations (3.13)-(3.17) can be reversed, to associate a 
Schrodinger equation with a symmetric two-component wave system (an asymmetric 
system requires two coupled Schrodinger equations). The Schrodinger equation can 
then be discretised and propagated as a three-term recurrence, as in [17]. This is the 
basis of the so-called split algorithms of signal processing, which constitute still another 
alternative to the algorithms of 3 2. 

4. Lossless acoustic media 

In this section algorithms for reconstructing lossless acoustic media from their reflection 
or transmission responses to impulsive or harmonic point source or plane wave data 
are derived. Several previous results are presented in a unified framework. Some 
new algorithms and procedures are derived; these include combining impulsive and 
harmonic data into a single algorithm, and the use of transmission data for both 
impulsive and harmonic sources. 

4.1. Lossless acoustic media: basic equations 

The basic equations for lossless acoustic media are 

where F(x, y ,  z ,  t )  is pressure, J(x ,  y ,  z ,  t )  is medium acceleration, p ( x ,  y ,  z )  is density, and 
c (x ,  y ,  z )  is wave speed. The acoustic medium is assumed to extend from z = 0 to z = L, 
and is bounded above and below by infinite homogeneous half-spaces with wave speed 
co in the upper half-space. 

If p and c vary only with depth z ,  and a point source at the origin is used 
to probe the medium, then the problem has cylindrical symmetry, as illustrated in 
figure 5. Take Hankel transforms of order zero of (4.lb) and the z component 
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i 
Homogeneous region 

of (4.la), a Hankel transform of order one of the radial component of (4.1u), and 
Fourier transforms of everything (this is sometimes called the Fourier-Bessel transform). 
Algebraic elimination of the radial component of acceleration results in [18] 

where p ( z ,  5 ,  o) is the Fourier-Bessel transform of pressure and a(z ,  5, o) is the Fourier- 
Bessel transform of the vertical component of acceleration. 

Figure 5. The point source inverse problem for a continuous layered medium. 

For a cylindrically symmetric medium, 5 is the radial wavenumber. Define the 
vertical wavenumber k,  by 

where co is the wave speed in the homogeneous half-space and 0 is the angle of 
incidence (measured from the vertical) of a harmonic plane wave. Probing the medium 
with a point source is equivalent to probing it for all possible angles of incidence 6,  
including both precritical incidence (real 6) and postcritical incidence (imaginary e) .  

Changing variables from 5 to k, gives 

Equations (4.4) are the starting point for our investigations. Note the use of the vertical 
wavenumber from the start, which is a new approach. Note also that the nature of the 
point source has not yet been specified. 

4.2. Lossless acoustic media: constant wave speed 

Assume for now that wave speed c(z )  = co is constant. Then (4.4) simplifies to 

(4.5a) 

(4.5b) 
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It is instructive to compare (4.5) with the lossless version of (3.2) for the transmission 
line. Proceeding as in 9 3, we define energy-normalised pressure and acceleration 
by dividing and multiplying, respectively, by the square root of density, and then 
multiplying pressure by ik,. Next, we pick off the quantities that are constant on waves 
(compare with (3.5)) 

and we find that D(z, k,, w )  and U (z, k,, 0) satisfy the symmetric two-component wave 
system 

(4.7b) 

Equations (4.7) imply that the algorithms of § 2 may be used to reconstruct p(z) 
from either the reflection coefficient R(k,) or the transmission coefficient T(k,) of the 
medium. Note that we still have not yet specified what the point source excitation is! 
However, we now know what is needed: the reflection or transmission response of the 
medium for all values of vertical wavenumber k,. There are several ways of obtaining 
this; for convenience we refer only to the reflection response, although all statements 
apply equally well to the transmission response. 

(i) Let the point source be an impulse in time, corresponding to an explosive 
source used to generate acoustic waves. In this case the reflection response R(k,) 
is known for all w,  hence for all k,  = (w/c0)cos8, for a fixed 8. This shows that 
the impulsive point source problem is overdetermined-the reflection response at only 
one angle of incidence suffices to reconstruct p(z). Note that in the Schur algorithm 
z is automatically scaled by co/cos8, since this is the effective wave speed through 
the medium for a plane wave at angle 8. This problem was solved using Schur-like 
algorithms in [18, 191 and elsewhere. 

(ii) Let the point source be harmonic in time, corresponding to a narrow-band 
source used to probe the medium. This approach has been used by Frisk [20] in 
investigating the ocean bottom. From the Hankel transform of the surface response 
data, we have {R(k,),O < k, < w / c o } .  The lack of high-wavenumber data will result in 
the loss of high-wavenumber components (i.e. smoothing) in the Fourier transform of 
the reconstructed p ( z ) ;  this may be acceptable. If not, complex analysis may be used 
to compute R(k,) for the missing points on the real axis [21]. This problem was treated 
in [21] using integral equations, and in [22] using the Schur algorithm. 

(iii) In measuring the impulse response of a medium, often the low-frequency 
components are not excited by the source, and hence not measured. This results in 
severe errors in the trend of the reconstructed p ( z )  [19]. However, R(k,) is the pertinent 
measurement, and it may be obtained in part (low k,) from point harmonic source 
data, as in (ii), and in part (high kZ) from impulse response data. Although from 
different sources, all of these data are used in a single standard inversion procedure 
(the Schur algorithm). 
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The use of transmission data from a harmonic point source is new. The possibility 
of mixing data from different sources, as in (iii), is also new to the literature. It arises 
from the recasting of the problem in terms of k,, which allows data from a variety of 
sources to be used in the same inversion procedure. This versatility in using different 
types of data, reflection or transmission, impulsive or harmonic, is a major justification 
of the use of the two-component system as a common framework. 

4.3. Lossless acoustic media: wrying wave speed 

If the wave speed c ( z )  is allowed to vary, matters become much more complicated. This 
is not due to the presence of another parameter to reconstruct (see the results of $ 5 
below) but is specific to wave speed. The problem is that attempting to transform (4.4) 
to two-component form, as in $ 4.2, leads to reflectivity functions that are functions of 
k,, so that ( 2 . 6 ~ )  no longer holds. Each stage of the lattice structure of figure 1 contains 
transfer functions r (k , ,  z )  and s (kz ,  z )  that filter waves travelling in one direction into 
waves travelling in the opposite direction. Hence a different approach must be used. 

For a harmonic point source, the results of Q 3.4 may be used. Defining the 
energy-normalised pressure 71 = p / &  and eliminating a ( z ,  k,, w )  from (4.4) results in 
the Schrodinger equation [22] 

($ + k l  - V ( z ,  0) n ( z ,  k,, 0) = 0 ) (4.8) 

where 

w' w 2  1 d2Z 
V ( z , w )  = - - ___ +-2 c 2 ( z )  2 dz 

(4 .9b)  

(4.9c) 

and (4.3) is used in ( 4 . 9 ~ ) .  
The Schrodinger equation (4.8) can then be transformed into a two-component 

wave system using the procedure specified in $ 3.4. Note that in general there is no 
closed-form expression for the reflectivity function r ( z ,  w )  defined in (3.13). The two- 
component wave system is then reconstructed using any of the algorithms of 9: 2, using 
either the reflection response or the transmission response, and the potential (4.9h) is 
recovered from r ( z ,  w )  using (3.13). 

The use of the reflection response in this way first appeared in [22] ; the alternative 
use of the transmission response is new. Another alternative would be to propagate the 
Schrodinger equation (4.8) as a three-term recurrence or split algorithm. This approach 
was used in [23],  although the use of the three-term recurrence as a fast algorithm was 
not then developed in the signal processing literature. The trace method used in [21] 
used a different discretisation of the Schrodinger equation. 

For an impulsive point source, the problem is still overdetermined, as noted above. 
However, if the plane wave angle of incidence 8 is fixed, then the lateral wavenumber 
is invariant throughout the medium, and (4.4) simplifies to [18] 

( d / 2 z ) p ( z ,  kZ,  0) = - d z ) a ( z ,  k,, w )  (4.10a) 

(4. lob)  
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where O(z)  is the local angle of plane wave propagation measured from the vertical. 
Defining 

(4.1 1 a )  

and changing variables reduces (4.10) to 

Note that k, parametrises the dependence on 0. 
Equations (4.12) have the same form as equations 

two-component wave system with the same form as (4.7). 

(4.1 1 b )  

(4 .11~)  

( 4 . 1 2 ~ )  
(4.12b) 

(4.5), and so they lead to a 
However, note that the travel 

time transformation (4.1 l b )  amounts to dynamic time warping; this is the time-domain 
effect of the variable wave speed. Note the complication this introduces, in addition to 
being an extra quantity to reconstruct. 

Once the two-component system has been attained, the algorithms of 4 2 may be 
used to reconstruct Z ( T )  from either reflection or transmission responses. Using plane 
wave data at two angles of incidence, the profiles p ( z )  and c ( z )  can be computed 
[24]. This procedure has been used to reconstruct acoustic media from their reflection 
responses at two angles of incidence in, for example, [18, 241; the possible use of 
transmission data is new. If reflection data are used, the profiles p(z)  and c(z) can also 
be computed directly using the Schur algorithm as in [ 1 8 ] ;  the approach used in [25] 
is similar. If the Levinson or lattice algorithms are used, Z ( T )  must be computed first. 

5. Lossy acoustic media 

In this section a wide variety of inverse problems for lossy, absorbing acoustic and 
viscoelastic media are formulated and solved. Several new algorithms are derived. 
Formulation as a two-component wave system clarifies what data are needed to 
reconstruct the medium; this is not always obvious from the original equations. 

5.1. Absorbing acoustic media: two-component wave system 

The basic equations for a one-dimensional absorbing acoustic medium are 

( 5 . 1 ~ )  

(5.lb) 

where j ( z ,  t )  is pressure, G(z, t )  is vertical medium displacement and d ( z )  is the absorp- 
tion factor. In comparing (5.1) with (4.1), note that medium displacement, rather than 
acceleration, is being used since medium absorption is proportional to medium velocity 
(the Maxwell model). 
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We assume that wave speed c ( z )  is constant; without loss of generality let c ( z )  = 1. 
However, density p(z) and absorption d(z) may vary with depth. Proceeding as in 
Q 4, we take Fourier transforms, define energy-normalised pressure and displacement 
by dividing and multiplying, respectively, by the square root of density, and then 
multiplying displacement by i o  to get medium velocity. Next, we pick off the quantities 
that are constant on waves in a lossless medium: 

and we find that P(z ,  w )  and Q(z, o) satisfy the system 

(5.3b) 

Equations (5.3) have the same form as (3.6) for the lossy transmission line. As in 
Q 3, we define (compare with (3.8)) 

D ( z ,  U) = P ( z ,  w )  exp (L’ a(z’) dz’) (5.4a) 

Then D(z, w )  and U ( z ,  w )  satisfy the asymmetric two-component wave system 

(5.4h) 

(5 .5a)  

r ( z )  = (m(z )  - a ( z ) )  exp (2 J’ a(z’) dz’) (5.5b) 

s ( z )  = (m(z )  + a ( z ) )  exp ( - 2  J z  u(z’) di‘) . (5.5c) 

Equations (5.5),  which are new, are the asymmetric two-component wave system 
formulation of an  inhomogeneous absorbing medium. 

5.2. Absorbing acoustic media: solution 

Now that the inverse scattering problem for a one-dimensional lossy absorbing acoustic 
medium has been formulated as the inverse scattering problem for the asymmetric two- 
component wave system (5 .5) ,  any of the algorithms of 9 2 may be used to reconstruct 
r(z) and s(z) from the reflection and transmission responses at  both ends of the medium. 
From these two reflectivity functions, the profiles p(z) and d ( z )  may be recovered. 

This is the first fast algorithm solution of this problem; previous approaches [26- 
281 required the solution of coupled integral equations. Although fast algorithms can 
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be derived for these integral equations, it is clearly more perceptive to use algorithms 
that propagate physical quantities associated with the inverse problem. The possible 
application of the asymmetric lattice algorithm, initialised using the transmission 
responses of the actual and adjoint media, is also new. 

If the density p ( z )  is also assumed to be constant, an interesting simplification 
occurs. Although r ( z )  and s ( z )  are still unequal, they both are functions of d ( z ) ,  so that 
either of r ( z )  or s ( z )  may be computed from the other. This implies that reflection data 
from one end of the line, or transmission data, are sufficient to reconstruct d ( z ) ,  even 
though the system (5.5) is asymmetric! The possibility of propagating an asymmetric 
two-component system when one reflectivity function is a function of the other was 
noted in [l]; this is the first practical use of this possibility. This is also the first 
reconstruction of an absorbing acoustic medium from transmission data. 

5.3. Viscoelastic media: basic equations 

The basic equations for a one-dimensional viscoelastic medium are [29] 

( 5 . 6 ~ )  

(5.6b) 

Here G,(z)  is the elastic part of the stress-strain modulus and G,(z, t )  is the viscoelastic 
part of the stress-strain modulus. Note that 6, ( z ,  t )  acts as a memory function in that 
it relates the present value of stress -;(z, t )  to past values of strain rate X ( z ,  t ) / d t ;  it 
can also be interpreted as a filter or impulse response. 

Fourier transforming (5.6) and defining the resolvent h ( z ,w)  to 1 +iwG,(z,o)/G,(z) 
by 

results in 

( 5 . 8 ~ )  

Here 

is the local wave speed of propagation through the medium at z .  Note that acoustic 
wave speed is dictated solely by the elastic part of the stress-strain modulus; the 
viscoelastic part produces dispersion and losses. 

Equations (5.8) are identical to the lossless acoustic equations (4.1), except for the 
factor 1 - h(z ,w)  in (5.8b). This factor thus characterises the viscoelasticity of the 
medium since, along with the elastic parameters p ( z )  and c ( z ) ,  i t  determines 6\(z ,  t ) .  
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5.4. Viscoelastic media: harmonic source solution 

We assume that wave speed c(z)  = co is constant. However, the factor 1-h(z, w )  dividing 
c(z)' in (5.8b) has the same effect as a wave speed varying in both depth and frequency. 
This suggests that impulse response data will not be helpful in reconstructing an 
inhomogeneous viscoelasic medium. Formulation of this problem as a two-component 
wave system confirms this: the reflectivity functions are functions of frequency as well 
as of depth. 

We must therefore use a harmonic (single-frequency) point source, with the reflec- 
tion or transmission responses measured over the entire surface of the medium. Since 
1 - h(z,  w )  is similar to a variable wave speed, it should not be surprising that an asym- 
metric two-component wave system formulation in terms of the vertical wavenumber 
k,  is not possible, as in § 4.3. However, a Schrodinger equation formulation is easy 
[30] (compare with (4.9)) 

( $ + ~ ~ - V ( Z , C O )  1 n(z ,k , ,w)  = O .  (5.10) 

Here n(z ,  k Z ,  w )  and Z ( z )  are defined in (4.9); the only difference is the potential V ( z ,  U) ,  

which is now 

w 2  1 d2Z 
4 Z dz V ( z , w )  = --h(z,w) + -2. 

The inverse potential problem for (5.10) can be solved as in 4 3.4. Note that 
the density p ( z )  is determined from the low-frequency w + 0 data, while h(z ,w)  is 
determined as a separate profile for each w.  Thus the harmonic point source data is 
required over a wide range of frequencies. Note that h(z,O) cannot be reconstructed 
at  all; this results in a slight bias in the time domain that is easily corrected since the 
time response is known to decay to zero. 

This approach was proposed for reflection data in [30] ; the possible reconstruction 
of an inhomogeneous viscoelastic medium from its transmission response is new, 
although [3 11 gave an algorithm for reconstructing a homogeneous viscoelastic medium 
from its impulsive plane wave transmission response. 

Inhomogeneous viscoelastic media with variable wave speed can be treated in the 
same way. The only difference is that the potential (5.11) is altered to 

w 2  w 2  1 d 2 Z  
c; c2(z)  Z dz 

V ( Z , O )  = - - -(1 - h(z ,w) )  + -7. (5.12) 

From (5.12), the wave speed c(z)  can evidently be recovered from the reflection data 
in the limit w + cc; however, this is a numerically dubious operation. 

It is possible to use impulsive plane wave reflection or transmission responses for a 
special class of viscoelastic media. We must assume that h(z ,w)  a,"d p(z)  are piecewise 
constant, corresponding to a discrete-layered medium, and that h(z,  t )  = F - ' { h ( z ,  0)) 
decays to zero in less than the two-way travel time through a layer. Given D ( z , o )  and 
U ( z ,  0) at an interface, the reconstruction of s(z,  w )  then amounts to a deconvolution 
problem, since the next interface will not affect non-zero values of h(z,  t ) .  This algorithm 
was derived in [30], extending [29] to multilayered media. 
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5.5. Other comments for  acoustic media 

It is important to distinguish (5.5) from the systems which arise from splitting operations 
on the pressure and displacement. The result of a splitting operation is generally a 
system similar to (5.3). The problem with (5.3) is as follows. While P ( z , o )  and Q(z,w) 
are wave-like quantities in the sense that they propagate like waves if m(z) = a(z) = 0, 
inhomogeneities affect the transmitted waves as well as the reflected waves; there is no 
interpretation of waves scattered into each other. This makes it much more difficult to 
reconstruct the medium using (5.3); the signal processing algorithms of § 2 cannot be 
used. 

It should also be noted that diagonalising the matrix associated with (5.1), which 
was suggested for lossless media in [32], is insufficient. It is necessary to define energy- 
normalised quantities, to take the sums and differences which are constant on plane 
waves in lossless media, and to scale these using the loss factor as in (5.8). 

Finally, there is one type of inhomogeneous lossless medium for which impulsive 
plane wave response data is useful. A constant-Q lossy acoustic medium is one for 
which the fraction of energy lost per unit cycle is independent of frequency; this is a 
fairly realistic model for most solids over seismic frequencies of interest [33-351. 

A constant-& medium can be characterised by a complex but frequency-independent 
wave speed c(z) = c,(z)+ic,(z) sgn(w). The wave propagator through a layer of thickness 
A is then 

exp(-iwA/c) = exp(-iwAc,/lc12) exp(-/wlAci/lc12). (5.13) 

The first term represents travel time delay through the layer, and the second term 
represents frequency-dependent attenuation. Furthermore, the complex but frequency- 
independent wave speed implies a complex but frequency-independent reflectivity func- 
tion r(z) = (l/c(z))(dc(z)/dz). The resulting two-component wave system is symmetric 
and independent of frequency; this allows the medium to be reconstructed from 
reflection data alone (see [35]). 

6. Electromagnetic inverse problems 

Several lossy and dispersive electromagnetic inverse problems are considered. These 
problems are in general analogous to those of 6 5, allowing the results of 5 5 to be 
applied to these problems as well. 

6.1. Lossy electromagnetic two-component wave system 

Maxwell’s equations for a medium with varying electrical permittivity E ( Z )  and conduc- 
tivity o ( z ) ,  and constant magnetic permeability po,  are 

(6.la) 

aB V X E = - -  
d t  

(6.1 b )  
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where E and B are electric and magnetic field strengths, respectively. The Fourier 
transforms of the components of (6.1) transverse to the z axis are 

2B(z ,  w )  
C3Z 

-- - po(o(z) + iwE(z))E(z, o) ( 6 . 2 ~ )  

(6.2b) 

where E ( z , w )  is the y-component of E and B ( z , o )  is the x component of B. 
Equations (6.2) describe a plane wave propagating with wave speed ~ ( i )  = 

( , u , , ~ ( z ) ) - ’ ~ *  and undergoing absorption due to the non-zero conductivity .(z). Changing 
variables from depth z to travel time z, where 

T ( z )  = (p0e ( z ’ ) ) ’ /*  dz’ (6.3) 

and defining the linear combinations of normalised electric and magnetic field strengths 
that are constant on lossless plane waves 

( 6 . 4 ~ )  

we find that P ( z > w )  and Q ( z , w )  satisfy the system 

1 dc(z) 
??I(?) = -~ 

2C(T) dT 
(6.5b) 

Equations (6.5) have the same form as (5.3) for absorbing acoustic media. As in 
5 3, we define (compare with (5.4)) 

D ( r , w )  = P(r ,w)exp ( 6 . 6 ~ )  

~ ( T , o )  = Q(T,w)exp (- lT a(z’) dr‘) . (6.6b) 

Then D ( T ,  w )  and U ( z , w )  satisfy the asymmetric two-component wave system 

~(z) = ( m ( t )  + u ( t ) )  exp (2 L7 a(z ’ )  dr’) (6.7b) 

S ( T )  = ( m ( t )  - 4 5 ) )  exp (-2 l7 u(T’)  dr ’) . ( 6 . 7 ~ )  



One-dimensional inverse scattering problems 663 

Equations (6.?), which are new, are the asymmetric two-component wave system 
formulation of electromagnetic wave propagation in an inhomogeneous lossy medium. 

6.2. Lossy electromagnetic solution 
Equations (6.7) have the same form as (5.5) for an absorbing acoustic medium. All of 
the comments made in 0 5.2, including methods of solution using the algorithms of 5 2 
and novelty of results, apply equally well here. The only difference is that the present 
problem allows variable wave speed, and hence requires a travel-time transformation. 

Although [26-281 briefly noted the analogy between electromagnetic propagation 
in lossy media and lossy transmission lines, this is the first solution to this problem 
using either fast algorithms (instead of coupled integral equations) or transmission data 
for the real medium and its adjoint. The embedding approach used in [36] is closer 
in spirit to the present procedure, but the clear interpretations of the two-component 
wave system and the fast algorithms of 5 2 are lacking. 

If wave speed is constrained to be constant, then (6.7) becomes an asymmetric 
system with reflectivity functions r (z )  and s(z) that are both functions of a(z).  Therefore 
reflection data from one end of the medium, or transmission data, are sufficient to 
reconstruct a(?),  even though (6.7) is asymmetric. This is the same simplification that 
occurred for absorbing acoustic media with constant density. 

If conductivity ~ ( z )  = 0, then the medium is lossless. In this case the wave speed 
profile as a function of travel time IC(?) can be computed from either reflection data 
from one end of the medium, or from transmission data. The wave speed as a function 
of depth c ( z )  can then be computed from ~ ( 7 ) .  

6.3. Dispersiue media 

In this section the basic equations for a dispersive electromagnetic medium are pre- 
sented. Neglecting displacement current, two of Maxwell’s equations are 

d 
2t 

v x E ( x ,  t )  = -&) - H ( x ,  t )  ( 6 . 8 ~ )  

2 
d t  

V x H ( x ,  r )  = -D(x ,  t )  (6.8b) 

where E ( x , t )  is electric field strength, H ( x , t )  is magnetic field intensity, D ( x , t )  is 
displacement field strength, and p ( x )  is magnetic permeability, which is now allowed 
to vary with x E R3. 

The displacement and electric field strengths are related by [3?] 

D(x,  t )  = E(x )E(x ,  r )  - E ( X )  ? ) E @ ,  t - T) dz (6.9) 

where L(x,r)  is the susceptibility kernel and E ( X )  is electrical permittivity. Note that 
L ( x , t )  acts as a memory function in that it relates the present value of displacement 
to past values of electric field strength; it is entirely analogous to the resolvent for 
viscoelastic media. 

For a medium varying only along the z axis, the Fourier transform of the transverse 
components of (6.8) are 

2 
--E(z, w )  = iwp(z)H(z, o) 
i?Z 

2 
- H ( z , w )  = iwE(z)(l - h ( z , o ) ) E ( z , o )  
22 

(6.10a) 

(6.10b) 
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where E ( z ? w )  is the y component of E ,  H ( z , w )  is the x component of H ,  and (6.9) has 
been used. 

Equations (6.10) have exactly the same form as (5.8) for viscoelastic media. Hence 
the discussion of 9: 5.4 applies directly to the inverse electromagnetic problem for dis- 
persive media. This is the first exact procedure for general inhomogeneous dispersive 
media, although [37] dealt with homogeneous dispersive media and multilayered dis- 
persive media with parametrised susceptibility kernels i ( t )  (e.g. for a Debye medium 
h ( t )  = uePhr for some parameters a ,  b). 

7. Conclusion 

The asymmetric two-component wave system has been used as a framework for a 
wide variety of one-dimensional inverse scattering problems. The asymmetry allows the 
treatment of lossy and absorbing media; as expected, such media in general require 
transmission data as well as reflection data for both ends of the medium. However, the 
reflectivity functions in the two-component form of the medium specify what types of 
data are needed. For example, if frequency w appears in them, then it is necessary to 
use a harmonic source so that the frequency dependence becomes parametric. If one 
can be computed from the other, or if the system is symmetric, then either reflection 
data or transmission data for either end of the medium may be used to reconstruct it. 

It is interesting to note that dispersion and variable wave speed make the inverse 
problem much harder than with frequency-independent losses. In this case the use of 
harmonic source data is essential; fortunately the problem can in general be cast as 
a Schrodinger equation inverse potential problem, which in turn can be recast as a 
two-component wave system. It is also interesting that so many different problems can 
be cast in this form, and then solved with the algorithms of 9: 2;  this allows comparison 
between results of different problems. No computational results have been presented; 
these are available in [22], [30] and [35] ,  and this paper is long enough already. 
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