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Abstract .  The two-dimensional layered volume conductor forward and inverse prob  
le- are solved by modelling the medium as an equivalent two-dimensional filter 
relating the soume and measured potentials. This extends previous results to the 
multi-dimensional multi-layered case. In principle, the inverse problem can be solved 
as easily as the forward problem, using ZD FFT algorithms. In fact, it  is ill-conditioned 
and must be regularized. We show that Tikhonov regularization, constrained least 
squares regularization, and stochastic regularization using a Wiener filter all lead to 
the same spatial low-pass regularizing filter. New contributions of this paper include: 
(1) extenrion of the medium filter concept from one to two dimensions; (2) a simple 
layer-recursive formula for computing the medium filter for a layaed medium; and 
(3) application of various regularization techniques, in the form of regularizing filters, 
to this problem. Numerical simulations are presented which show that conductivity 
discontinuities have a significant ellect on the potential in the volume conductor. 

1. Introduction 

1.1. Problem staiemeni 

The twc-dimensional volume conductor forward and inverse problems may be for- 
mulated as follows. Given an electrically active sheet or plane at  the bottom of a 
inhomogeneous layered conducting medium, the forward problem is to determine the 
resulting potential distribution in the surrounding medium. The inverse problem is 
to determine the potential distribution on the sheet from measurements made in the 
surrounding tissue. In biomedical applications, the electrically active sheet represents 
a layer of electrically active cells, and the conducting medium represents interstitial 
fluid or other electrically inert tissue. 

Recent research in cardiology [l-41 has generated interest in volume conductor 
solutions in rectangular coordinates. This cardiac research is concerned with the 
propagation anomalies which result from damaged sections of otherwise healthy car- 
diac tissue. Typically, potential measurements made at  the surface of the heart are 
used to infer the surface potential of the buried active tissue. A detailed mapping of 
the potentials a t  the surface of cardiac cells can be used to determine the point of 
activation, useful in the study of arrhythmias [l, 2,5,6].  
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The computation of such potentials non-invasively is desirable, since features ob. 
scured by the volume conductor (e.g. cell-to-cell propagation irregularities [l]) can then 
he distinguished more clearly. Furthermore, even in situations where the electrically 
active cell can he monitored directly, there is a thin layer of conducting fluid between 
the cell surface and the test electrodes. It will he shown that even thin conducting 
layers can significantly distort the measured potential. 

Other techniques, such as the boundary element technique, have the advantage of 
allowing the use of more arbitrary geometries. The motivation of our work is to obtain 
computationally efficient procedures for relating potentials within the ventricular m u 5  
cle, a few mm from the pericardium, to measured potentials on or very near the surface 
of the pericardium. Although the surface of the heart is not a plane, i t  is reasonable 
to consider i t  to be planar over such a localized region, due to the rapid attenuation 
caused by volume conductors even at  small distances. The planar heart approxima- 
tion has been used in the past for the volume conductor forward problem at small 
distances, as well as in the interpretation and simulation of tissue bath experiments 
in which the planar assumption is rigorously met [3,5-61. As stated in previous work 
[9-111 describing the use of medium filters to solve volume conductor problems for 
idealized cylindrical geometries, ‘The major impetus for the use of the medium filter 
method is in the reduction in computational complexity which results from such sim- 
plifying geometric assumptions.’ Furthermore, the solution of two-dimensional volume 
conductor problems in which the source is a non-planar surface can easily he handled 
in rectangular coordinates by conformally mapping the surface into a plane [12]. 

The assumption of a layered medium is appropriate and useful for the proposed 
application of the algorithm: the study of the distortion of epicardial potentials in 
hearts damaged by patchy infarction, i.e. epicardial tissue with several discrete active 
layers separated by regions of fibrous growth. ‘rhe modelling of these different regions 
as homogeneous layers is reasonable, since the smoothing and attenuation caused 
by minor inhomogeneities within a layer are far less significant than the smoothing 
caused by large conductivity discontinuities between layers (see [lo, 111 and references 
therein). This explains why even the assumption of a homogeneous volume conductor, 
used extensively in previous work [1,9-11,13-171 has  given reasonable results. 

This paper presents an exact solution to the forward and inverse two-dimensional 
volume conductor problems for a inhomogeneous layered Conducting medium. By 
‘exact’ we mean that all effects of Laplace’s equation are included; arbitrary accuracy 
can be obtained in the absence of noise by using sufficiently finely sampled data. The 
volume conductor is assumed to consist of distinct layers of arbitrary conductivities 
and thicknesses. This is the firsc exaci solucion for this probiem. The inverse problem 
can also be solved, although regularization using a special spatial low-pass filter is 
required. 

1.2. Previous results 

The onedimensional volume conductor problem has been extensively described in the 
literature [ l ,  15-17], using a variety of approaches. Ganapathy el a/ [9] proposed 
solutions to the one-dimensional forward and inverse problems by modelling the effect 
of the extracellular medium as an equivalent medium filler. They applied signal pro- 
cessing ideas t o  a formulation of the problem by Clark e t  al [13,14]. A medium filter 
was also used later for the radial geometry problem in [lo, 111. 

The medium filter approach formulates the expressions describing the desired po- 
tential as Fourier integrals. By subsequently approximating the continuous parameter 
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Fourier transform as a discrete Fourier transform (DFT), these expressions can be 
rapidly computed using a fast Fourier transform (FFT) algorithm, 

Multi-dimensional forward problems have been studied by several authors [2,3,7]. 
Spach el a l  [2] recently studied the two-dimensional case. They were able to relate the 
intercellular currents to the extracellular potentials by utilizing a discretization of the 
solution t o  an integral equation derived using Green theorem (discussed below). In [7], 
Geselowitz et a1 applied a finite-difference model to the problem discussed in [Z]. They 
related the transmembrane current to extracellular voltage by modelling the medium 
as a network of resistors and computing the transfer impedance. By virtue of the finite- 
difference formulation, they were able to easily incorporate medium inhomogeneities 
into their solution. 

1.9. Inverse electrocardiography using epicardial potentials 

In [18] various electrocardiographic inverse problem solutions for inhomogeneous media 
are discussed. An extensive bibliography is also provided; the reader is referred to 1181 
for a summary of previous work on this problem. In all the cases discussed, a suitable 
forward problem solution method, such as a n  integral equation [2], or a finite element 
[19] formulation, is used to form a set of linear equations relating potentials on the 
surface of the heart (collected into a vector Vheart) to measured potentials (collected 
into the vector Vmearured): 

The inverse problem is to solve the above system thus obtaining an expression relating 
V,,,,, to Vmeasured. It is pointed out in [18] that as a result of the ill-posedness of 
such inverse problems, A has a large condition number, resulting in a n  ill-conditioned 
and numerically unstable solution. Several regularization methods are also discussed. 

In  this study, we are concerned not with inverse electrocardiography, but with the 
recovery of fine potential features from measurements made close to the surface of 
the heart. Our work is broadly related to that discussed in [18] in that we also are 
faced with the inversion of a large ill-conditioned transfer matrix to obtain our inverse 
problem solution. Our approach differs, however, in that we solve the forward problem 
in a manner facilitating inverse problem solutions; specifically, we model the medium as 
an equivalent filter. This approach allows both numerically simplified computations of 
the forward and inverse problems, and also a simple, physically intuitive regularization 
procedure. 

2. Problem statement 

The volume conductor forward and inverse problems can be stated as follows. Given 
a distributed electrical source buried in a conducting medium, the forward problem is 
to determine the resulting electrical potential distribution in the surrounding medium. 
The inverse problem is to determine the characteristics of the source from electrical 
potential measurements made in  the conducting medium. 

We make the following assumptions: 

1. The extracellular medium consists of homogeneous, passive, layers of infinite lateral 
extent, and arbitrary conductivities and thicknesses. 
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2. The problem can he considered to be quasistatic, implying that the medium has  
negligible reactance and propagation delay. Therefore, all potentials are computed 
for an instant in time. For time-varying signals, the procedure can be repeated for 
each time sample desired. The quasistatic assumption ensures that  each sample 
will be independent of the other samples [20]. 

3. The only source for the extracellular potential is the surface of the active tissue. 
The source potential is described by a function S(I, y)  and lies in a plane parallel 
to the layers of the extracellular medium. 

Bioelectrical sources have also been modelled as current source densities [3], trans- 
membrane potentials [9], as well as evoked extracellular potentials, as assumed above. 
These formulations can be related to each other: evoked extracellular potentials and 
transmembrane potentials have been related to current source densities by Clark and 
Plonsey [13,20], among others. Linearity of the medium implies that  a given source 
type corresponds to a unique source of each other type, to within an additive con- 
stant [9,20]. 

This paper uses extracellular potentials in its presentat,ion; current source densities 
or transmembrane potential source representations can also he used. However, use of 
the latter two source models requires an additional assumption: the active tissue 
must be assumed to act as a syncytium. This equivalent cell approach has been used 
[3,9,13,16]; the assumption is reasonable if individual cell contributions to the source 
functions need not be considered separately. Otherwise, the only difference is that 
the medium filters for transmembrane potentials and current densities are obtained 
from the medium filter for extracellular pot.entials by multiplication bv an additional 
function (see appendixes B and C in [21]). 
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3. Medium filter solut ion 

3.1. Introduction 

Here the forward and inverse problems are solved by representing the effects of the 
medium as an equivalent filter, generalizing the approach of [9,13,14] to the multi- 
dimensional case. 

Let x and y be lateral coordinates and z be the vertical coordinate perpendicular 
to the layer interfaces, with the planar source s( i ,y)  located at  t = 0. Since the 
medium is homogeneous and h a s  infinite extent in x and .v, the Green function relating 
the source s(x.y) t o  the potential c$(z,y-z) at. an arbitrary location has the form 
(2?~/z)h(z - zo, y - yo, 2). IIence 

+(X,Y,Z) = h(z,Y>z)* *S(",Y)  (2) 

where ** denotes convolution. 
Within each layer, the potential $(z,y,z) generated by the source satisfies 

Laplace's equation, V*+(x, y, z )  = 0 with suitable boundary conditions (see subsection 
3.3 below). In the frequency domain, the right-hand side of (2) becomes 
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where H ( k , , k y ,  z )  and S(&, ky) are the two-dimensional Fourier transforms of 
h ( z ,  y, z )  and s(z, U), respectively. Substituting (3) into Laplace’s equation gives 

For a non-trivial (non-zero) surface potential solution to exist, the square-bracketed 
expression in the integrand must be zero, which implies 

The general solution to (5) is 

where Ai and Bi are distinct const.ants for each layer to be determined from the 
boundary conditions. 

3.2. Derivation of ihe medium. Flier for anisotropic media 

The medium filter for a homogeneous anisotropic medium can he derived by trans- 
forming this problem into an equivalent isotropic medium problem. Consider a layer 
with a conductivity matrix of t,he form 

The electric field E ( z ,  y, z )  is related to the potential 4(z, y, z )  by E = - V ~ ( Z ,  y, z), 
and Ohm’s law is J ( z , y ,  z )  = u E ( z , y , z ) ,  where J ( z , y , z )  is current density. Since 
the extracellular region is assumed to be source free, we have 

Now if we make the coordinate transformation 

z’ = (uvu*)z y‘ = (u,a,)y I‘ = (u,uy)z (9) 

then 4’(z’, y’, 2’) = +(z, y, z )  satisfies Laplace’s equation V2+’(z’, y’, 2’) = 0. 
At this point we have reduced the anisotropic medium problem to the isotropic 

medium problem considered earlier. Hence the procedures used for isotropic media 
can also be used on anisotropic media, by simply scaling the coordinate axes. 
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3.3. Boundary conditions 

The boundary conditions for a multi-layered extracellular medium are as follows. At 
the peripheries of the medium we have 
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i.e. the medium potential must agree with the surface potential a t  z = 0, and tend to 
zero as z + 05. 

At the nth interface z = z, between two conducting layers with conductivities U, 

and u,,-~,  we have the following two additional boundary conditions (for 6 + 0): 

H ( k , , k , , z , ,  - 6) = H(k,,ky,z,, + 6 )  (12) 

i.e. the medium potential and normal current density must be continuous across an 
interface. 

3.4. Recursive computation of f i l ter  coeficients 

Substituting the general form of the medium filter (6) into the boundary conditions 
(12) and (13) results in the following recursion relating the filter coefficients A ,  and 
B, in a given layer to those in the layer below: 

Here z = z ,  is the interface between the nth and (?I - 1)th layers, the interface 
reflection coefficient r, is defined as 

and the layer attenuating factor Q, is defined as 

9.5. Initialization of recursion using linearity 

Define the outermost layer of the medium as the Nth layer, and the innermost layer 
of the medium, just above the planar source, as the zeroth layer, To initialize the 
recursion (14), we utilize the lineariby of the volume conductor. The Nth  layer may 
be a non-ideal conductor (with finite non-zero conductivity), a perfect conductor, or 
a perfect insulator. We consider each case separately. 
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3.5.1. Non-ideal conductor. Assume the top (Nth)  layer has finite, non-zero conduc- 
tivity U,, and has the form zN < z < 00. B, is known to be zero by (11). A,, 
which is needed to initialize the recursion, is unknown; however, if (14) is initialized 
(incorrectly) using A, = 1 and E ,  = 0, the resulting computed A, and E, will be 
incorrect by a factor of A,. 

By equation (10) we know that A, + B, = 1. However, the incorrectly computed 
A,, + B, will be l /AN, not 1, so that the incorrectly computed A, + Bo specifies 
precisely the factor A, by which the computed A, and E,  are in error. 

Therefore the recursion (14) is initialized using 

A, = 1 B,  = 0. (17) 

Then proceed as follows: 

1. Propagate (14) in decreasing i, computing Ai and Bi in each layer. These A, and 

2. Compute C = l /(A, + Bo).  
3. Compute the correct A; and E, in each layer by multiplying the previously com- 

B; will be incorrect by a factor C (which is the correct A,). 

puted values by C. 

3.5.8. Perfect conductor. Now assume the outermost layer is a perfect conductor 
(U, - m). In this case, i t  is necessary to initialize (14) in the ( N  - 1)th layer 
(the first layer below the top layer). Siuce the potential inside a perfect conductor 
is constant, equations (6) and (11) show that A N j  = BN,j = 0. Inserting this into 
equation (6) and then inserting the result into equation (12) with n = N - 1 yields 

BN-I  = -AN-la,v. (18) 

The recursion (14) is initialized in the ( N  - l ) th  layer using A N - l  = 1 and BN-l = 
-aN.  Then proceed as in the non-ideal conductor case above. 

3.5.3. Perfect insulator. Now assume the outermost layer is a perfect insulator (U, = 
0). In this case it is also necessary to initialize (14) in the (N - 1)th layer. Setting 
n = N - 1 and U, = 0 in (13) yields 

B N - ~  = AN-laN. (19) 

The recursion (14) is initialized in the (N-1)th layer using AN-l = 1 and EN- l  = a,. 
Then proceed as in the non-ideal conductor case above. Note that the same procedure 
is used to initialize the recursion in each case, although the actual initial values (17), 
(18), and (19) differ. 

4. Medium filters for homogeneous media 

For homogeneous media, only two boundary conditions apply. As z -+ cc the potential 
must tend t o  zero, so that E = 0. At z = 0 the medium potential must equal the 
surface potential, so that H ( k , ,  t,, 0) = 1 and A = 1. 
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Figure 1. The response of the medium filter vemus spatid frequency, at selected 
distances. Note that as the distance from the source incrrases, the attenuation of the 
medium filter becomes more severe. Spatid frequencies of up to ahout 25 rad cm-l 
are required to accurately reproduce the test waveform given in figure 2. 

Then the medium filter for a homogeneous medium has the form 

Another way of deriving (20) is as follows. For a homogeneous medium, the extra- 
cellular potential d(z, y,  z )  is related to the source potential by (3) with H ( k , ,  k.,, z )  
given in (20). Since the solution t o  Laplace’s equation is unique, equation (3) canHlso 
be derived by directly taking the two-dimensional Fourier transform of the extracel- 
lular potential expression using Green theorem 

d ( z , ~ , z )  = - d(z’,y’)G(z,z‘,y,y‘,z)dz’dd (21) 2n J J  
where for a homogeneous unbounded medium the Green function is 

(22) 
2n 

G(z,z’,y,y’,r)= [ ( z -z ’ )2+ (y -y ‘ )2+z2 ] -3 /2=  --h(z-z’,y-y’,z). 
z 

The convolution (21) can also be implemented in the Fourier domain as (3), where 
(20) is the 2D Fourier transform of h(z ,y ,z )  in (22). 

This shows that the filtering approach is mathematically equivalent t o  the solution 
using Green theorem, and thus can be interpreted as a fast method for solving the 
integral equation (21). This can also be shown for the generai iayered case, although 
the Green function is more complicated than equation (22). 

4.1. Physical in ierpdnl ion of the medium filters 
By examining the functional form of the homogeneous medium filter (20) the effect 
of the medium on the potential field can be easily illustrated and understood. A plot 
of the magnitude response of the filter for various values of z is provided in figure 1. 
Note that the medium filter is a low-pass filter in k, and k,. Also, as z increases, 
higher frequencies are attenuated more rapidly. This corroborates experimental re- 
sults that volume conductors both attenuate and smooth the potential field. However, 
the medium filter provides specific numerical information on the amount of attenua- 
tion of features a t  a specific spatial frequency and distance, information that is not 
immediately apparent from (21). 
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The exponential form of the filter shows that the inverse problem is ill-conditioned 
at large distances and at  high spatial frequencies, since the field due t o  a given feature 
attenuates exponentially with distance and with spatial frequency. Consequently, no 
inverse problem solution procedure can recover high-spatial-frequency information (i.e. 
fine detail), except at small distances. 

By viewing the potential distribution as an evanescent wave field, one can readily 
see the effect of the conductivity discontinuities on the extracellular potential. The 
terms in the general solution (6) in each layer can be identified with evanescent waves 
Ae-'" attenuating with increasing depth z ,  and Bekz growing with increasing depth 
z .  The effect of the medium discontinuities is that  of a frequency-dependent, partially- 
reflecting boundary. This observation explains the functional form of the reflection 
coefficients in (15) ,  governing the coupling of the potential field from one region t o  
the next. 

If the top layer is the exterior of the tissue (i.e. the air), it is effectively an in- 
finite half-space. Even in situations where no convenient top layer can be found, the 
potential field attenuates so rapidly that for distances of 10 cm or greater the field 
can be assumed to be zero, with an error hounded hy 0.1% for spatial frequencies of 
greater than 1 rad cm-'. By examining the form (15) of the reflection coefficients, one 
can also observe a limitation of all solutions to volume conductor problems: potential 
fields cannot be resolved behind large conductivity discontinuities. 

For example, from equation (14) i t  is apparent that  if the nth medium has high 
conductivity (e.g. blood or salt water), or very low conductivity, the coupling be- 
tween the layers approaches zero due to the l/- term. This situation results 
in a poorly-conditioned inverse problem, since the large conductivity discontinuity 
dramatically attenuates the extracellular potential. 

5. I m p l e m e n t a t i o n  of the medinm f i l ter  

The Fourier transform @(kz,ky,z) of the potential 4(z, y,z) is related to the Fourier 
transform S(k,,k,) of the source potential s(z,y)  by (3). The forward problem of 
computing 4(z, y, z )  from s(z, y) is solved by Fourier transforming S(Z, y), multiply- 
ing by H ( k z ,  k , , , ~ ) ,  and then inverse Fourier transforming to get #(z, y,z). Neglecting 
for the moment any regularization issues, the inverse problem of computing the source 
s(z, y)  from the potential +(z, y,z) measured a t  a specific t can he solved by Fourier 
transforming +(z, y,z), multiplying by l/H(k,, k,, z ) ,  and then inverse Fourier trans- 
forming to  get s(z, y). Unfortunately, as will be discussed below, the inverse problem 
is generally ill-conditioned, which precludes the straightforward solution outlined here. 

5.1. Ill-posedness of the  inverse problem 

Since t,he medium filter H ( k , , k , , r )  has no finite zeros, the inverse medium filter 
l / H ( k , ,  k,, z )  is always defined. However, due to the exponential rolloff of the medium 
filter H ( k z , k y , z ) ,  as  one moves away from the source the potential is both attenuated 
and smoothed. Consequently, the inverse filter l/H(k,, k,, r )  is a high-pass filter, 
which amplifies fine detail to compensate for the effects of the intervening medium. 

When comput,ing inverse problem solutions in the presence of noise, the noise com- 
ponents at high spatial frequencies will be amplified exponentially relative to lower- 
frequency components. Furthermore, due t o  the action of the forward filter, the signal 
power a t  high spatial frequencies will he weakest. The combination of t,hese two effects 
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makes it impractical to recover high-spatial-frequency features of the source potential, 
i.e. the inverse problem is ill-conditioned. Therefore, it is necessary to regularize the 
inverse problem, resulting in a smoothed reconstruction of the source potential. 

Note that  these properties are a result of the effects of the volume conductor 
itself, and would be present in any exact inverse problem solution-at high spatial 
frequencies and large distances, the inverse problem itself is ill-conditioned. This ill- 
conditioning appears in integral equation based procedures, since the integral equation 
kernel has a large condition number, resulting in a poorly-conditioned solution. 

5.2. Regularization and data fi1terin.g 

Now suppose that  measureinents are made in the presence of additive wide-band 
noise. Then the exponential characteristic of the inverse filter I / H ( k , ,  k,, z) results 
in an estimate of the potential source corrupted with a noise whose power spectral 
density increases exponentially with spatial frequency over the bandwidth of the noise. 
Consequently, no polynomial-based low-pass filter, such as a Chehyschev filter, can 
roll off at  the rate required to  compensate for this exponential rise. 

Ganapathy e t  a1 [9] also faced this problem in their one-dimensional medium filter 
inverse problem solution. They modeled the source potential as a random process, 
with power spectral density equal to the squared magnitude of the spectrum of the 
source potential, which was assumed to be known. A Wiener filter was then used as 
a low-pass filter. 

Here a different Wiener filter is used. In this section this filter is derived using 
---~-,,",.-",-,-"l.""*:- ^^^..--A:--- ,ST- ..I^^ ^L 1L-1 TV1.L ---.. 1.-:--11-- --I 
111"1~ 6u.L..LY. " y " c I , I y " , ~  Iy , ,uLILyur"rr~ .  ,,c (1,ov D l l V l l  Y ' l (1Y  LlnllVll"" L ~ ~ U L ~ " 0 " L L " "  (11," 

constrained least-squares regularization of the discretized integral equation of equation 
(21) also lead to the same filter. 

5.9. Formulation as a linear systenz of equations 

The problem is to reconstruct the source potential s ( x , y )  from measurements of 
$ ( z , y , z )  for a known value of L .  Recall that + ( z , y ,  L)  is related to s ( z , y )  by the 
integral equation (21). We now discretize this integral equation to obtain a linear 
system of equations relating discretized versions of s(z, y) and + ( z , y , z ) .  

The spatial variables z and y are discretized into z = iA and y = jA.  Define 
vectors b and z as the lexicographic orderings of the discretized s(z, y) and 4(z, y, 2): 
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b = [4(0, O , Z ) ,  +(O, A, z ) ,  ... ,+(O,jA, I), . . .  I +(A,o,  z), . . . I  
2 = [s(O, O),s(O, A), . . ' , S(O,jA), ' .  . ,*(A, O ) ,  - - .IT. 

(23) 

(24) 
The kernel in (21) is discretized into a block-Toeplitz matrix A 
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where the function h ( i , j )  is defined as 

ZA2 
h ( i , j )  = -((iA)2 2T + ( jA)2  + ~ 2 ) - ~ ’ ~  

for a homogeneous medium, and a more complicated expression for a layered medium. 
Now (21) can be written as the matrix equation b = A z .  

We now argue as follows: 

1. The large Toeplitz-block-Toeplitz matrix A can be zero-padded into a circulant- 
block-circulant matrix, due to the symmetry of A and its blocks, which follows 
from h ( i , j )  = h( i ,  -j) and I f j  = H - j  (see (27)). This is commonly performed in 
image restoration ([22], [23] p 880). 

2. The eigenvalues of the zero-padded A are the 2D DFT frequency spectrum of its 
first row A, which is the discretized medium filter, lexicographically ordered. Its 
eigenvectors are the vectors implementing the DFT. 

3. Since the zero-padded A is circulant-block-circulant, b = A z  implements a circular 
2D convolution. Alternatively, the eigendecomposition of A implements b = A z  
using the 2D DFT and the discretized medium filter. 

4. Hence a discretized implementation of the  medium filter using the DFT is equivalent 
to solving the (zeropadded) b = A z .  

Thus the inverse problem is to solve the ill-conditioned linear system of equations 
for x 

b = A z .  (28) 

The solution minimizing the error Ilb - Ax11 is the pseudoinverse i, of A found by 
solving the square system 

(ATA)Z, = ATb (29) 

However, since ATA is also ill-conditioned, a small perturbation in the data b will 
greatly perturb the pseudoinverse i, Thus (29) must be regularized. 

5.3.1. Tikhonov regularization. Tikhonov regularization [24] replaces minimization of 
the error Ilb- Azl l  with minimization of 

E = IIb- Ail12 +yllillz (30) 

which puts a premium on not allowing the small singular values of A to make i too 
large. Minimization of this functional replaces (29) with 

(31) T (ATA + 7 l ) i  = A b 

where I is the identity matrix. This will clearly be a better-conditioned system than 

Zero-padding A into circulant-block-circulant form implies that ATA is also 
circulant-block-circulant, so that their eigenvectors implement the 2D DFT, and their 
eigenvalues are their Fourier spectra. Therefore (31) can be written as 

(29). 

(32) 
- *  - 

([Ail2 + y)ii = Ai bi 
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where Ai is the i th element of the DFT of the first row A of A,  Gi is the ith element 
of the DFT of the elements of the vector i, and similarly for gi.  The solution of this 
equation is 
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In the limit as 7 - 0, the Tikhonov solution i approaches the pseudoinverse zp, 
which tends tooscillate wildly and grow large since the inversion of A is ill-conditioned, 
As y - 00, i - 0. The problem is to choose an intermediate value of 7 that  will 
produce a reasonable solution. The form of the error criterion (30) suggests that  
l /7 be chosen to be the signal-to-noise ratio. This follows since IJb - Azl12 is the 
noise energy and llzllz is the signal energy; the units of 7 follow from dimensional 
considerations. Let N = Ilb- A z #  be the noise energy and S = llzllz be the signal 
energy. Choosing l / y  = S/N allows (33) to be rewritten as 

which has the form of a Wiener filter for estimating a white ZD random field (lex- 
icographically ordered into i) with strength S from observations (lexicographically 
ordered into 6) made in uncorrelated ZD white noise with strength N .  

5.9.2. Constmined least-squares regularitation. Since the measurements are made in 
the presence of noise, it is unreasonahle to expect the estimate ?z determined from the 
noisy data b to be 'closer' to the actual z than a direct measxement of z would be 
in the presence of the same noise. In constrained least-squares regularization (251, we 
choose the Z which minimizes IICZ - dll, where C is a matrix that acts as a stabilizing 
functional. 

The constrained least-squares regularization procedure thus reduces to the mini- 
mization of IICi - dll subject to the constraint that llAZ - b1l2 = c. The solution, 
easily obtained using Lagrange niult,ipliers, is 

(XATA + CTC)?z = XATb + CTd (35) 

where the Lagrange mu!tip!ier X is cliosei: so ?!:at A i  - "11 1.1~ = e .  !n particn!ar, 
the iiiiniriiuiii-liurlrr aoluliori is found by selling C = I and d = 0. In this case, (35) 
reduces to (31) with y = l/X. 

We apply constrained least-squares regularization to the system b = A z ,  where 
the vector of observations b has noise added to it. We wish to determine the 2 which 
minimizes 116- Ai l1  such that lli112 < c; note that this constrains the energy of the 
reconstructed potential s(z,y) to be less than c. Noting the symmetry of (35) in A 
and C, and b and d,  the constrained minimum-norm least-squares solution to b = A z  
is identical to the Tikhonov solution wit,h 7 = 1 / X .  

5.9.9. Wiener filtehng. The problem is now reformulated as the stochastic problem 
of computing the linear least-squares estimate of s(z, y), which is now modelled as 
a zero-mean white random field with power spectral density S, from observations of 
the potential # ( z , y , r ) ,  to whicb a zero-mean white noise field with power spectral 
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density N has been added. The linear least-squares estimate i (z ,  y) is computed from 
the noisy observations using the Wiener filter [a] 

(note that since H ( k z , k y , z )  is real, H(k , ,  k,, z )  = H'(k,, k , , ~ ) ) .  Multiplying (36) by 
(l/S)/(l/S) shows that this is the same as Tikhonov and constrained minimum-norm 
least-squares regularization. 

Therefore, the Wiener regularizing filter, derived under the stochastic assump- 
tions that the source potential is a ZD white random field, and that a ZD white noise 
field is added to the observations, is identical to the Tikhonov and constrained least- 
squares regularizing filters, which made no stochastic assumptions. The fact that  
three completely different regularizing procedures give rise to the same regularizing 
filter strongly suggests the use of that  filter. 

Note that the assumption that the source potential is a ZD white random field is 
reasonable: since the spectrum of the source is actually unknown, the independent 
frequency components of the random field are all weighted equally a priori. This is 
tantamount to making no assumptions on the form of the source potential-its value 
a t  one location bas no influence on its value a t  another location. 

The  use of Wiener filters to regularize volume conductor inverse problem solutions 
has been employed previously [9,11] in  radial geometry. The source was modeled as a 
random field with power spectral density approximated as the squared magnitude of 
the spectrum of the source potential. We rejected this approach since it was felt that 
a priori knowledge of the squared magnitude of the spectrum of the source potential 
(what we are attempting to find) was au unreasonable requirement. 

The only information needed to compute our regularizing Wiener filter (36) is: 
(1) the depth z of the source (which is also required by the medium filter); and (2) 
a n  estimate of the signal-twnoise ratio S I N .  The latter is computed as follows. The 
average signal-plus-noise power S + N is computed by summing the squares of the 
data  points. The average noise power N is computed by summing the squares of 
the da ta  points a t  a different time, at which the tissue is unexcited. Assuming that 
measurements are made in relatively low-noise environments ( S I N  > lo), the signal- 
tonoise ratio SIN can be approximated by SIN = ( S  + N ) / N ,  which is valid for 
S >  N .  

In practice we are most interested i n  reconstructing the lower spatial frequencies 
of the source potential, for two reasons: ( 1 )  these are most important in specifying 
its form; and (2) these are least affected by the medium. Hence i t  is important that 
the regularizing filter be unbiased a t  low frequencies. To achieve this, the regularizing 
Wiener filter (36) should be multiplied by 1 + N / S ,  the reciprocal of its response at  
( k  k ) = ( O , O ) ,  to ensure an unbiased estimate a t  ( k , , k y )  = (0,O). This is a common 

0 '  Y 
practice in image processing [23]. 

The overall filter O ( k , ,  k Y 3 z )  relating the observed potential to the reconstructed 
source potential is a cascade of the regularizing filter (36) and the unbiasing factor 
( 1  + NIS). Note that this is not cascaded with the inverse medium filter, since the 
effect of the medium was included in  (36)). The result is 
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where the average powers of the noise N and source S are computed as described above. 
Note that in the absence of noise ( N  = 0) equation (37) reduces to O(k,,k,,z) = 
l / H ( k , ,  k, ,  z ) ,  which is the ideal inverse medium filter, regardless of the value of S. 

One additional advantage of using a filtering approach is that by evaluating the 
regularization filter for various values of z ,  spatial frequency, and signal-to-noise ra- 
tios, one can predict a priori  what features of the source potential are recoverable 
reliably. Furthermore, when intrepreting the results of an inverse problem solution, 
the evaluation of the regularization filter can be useful in judging the possibility of 
the existence of higher-spatial-frequency components which are unobservable in the 
inverse problem solution. 

T G Xyd i s  et  al  

6. Issues in numerical implementation 

6.1. Discretization isues 

To allow implementation on a digital computer, the above continuous-parameter filter 
must be reformulated as a discrete filter. The discrete filter H,(n,m,z) is obtained 
from H(k,,ky,z) by sampling the latter at  regular intervals in ks  and ky, closely 
enough to avoid spatial aliasing. This method of FIR filter design is called frequency 
sampling [27] Specifically, 

H [ k z ,  k,, 2 )  = H ( n A k , ,  mAk,,z) = H d ( n , m ,  2 )  (a8j 

where the sampling intervals A k z ,  Ak, must be no greater than 

(39) 
n n 

Ak, < -rad cm-' Ak, < -rad cm-'. 
sz SY 

Here sz and sy are the spatial extents in cm of the source potential in the I and y direc- 
tions, respectively. Note that the Nyquist sampling rate accounts for the numerators 
of T instead of 2n. 

If the surface potential @(kz,ky,z) is measured over a grid with mesh cell size ez 
by ey,  then we also require tha t  the discrete spatial Fourier transforms have orders 

Nz > 2sz/e, Ny > 2s,/e,. (40) 

The factors of two in (40) are present since the filtering operations are performed in 
the discrete frequency domain, Hence a circular convolution of the periodic extensions 
of S ( I ,  y) and h ( z ,  y, z )  is computed, rather than the linear convolution desired in (2). 
To make the computed circular convolution equal to the desired linear convolution, 
the original sequences must be zero-padded to at  least twice their spatial extent in 
both I and y. 

A power-of-two zD FFT algorithm can be used by zeropadding the required trans- 
form orders 2s,/e, and 2s,/e, to the next higher power of two. Note that if the entire 
mesh has size greater than sz by s,, then: (1) spatial aliasing will be avoided; (2) 
the resolution of the source potential will be the same as the mesh cell size; and (3) 
equation (2) will be accurately computed. 
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6.2. Measurement issues 

The actual potential to he reconstructed is a waveform moving in space over time. 
Measurements are assumed to be made by a brush electrode oriented perpendicular 
to the direction of propagation of the waveform. The temporal measurements a t  this 
specific location are then ma,pped into a similar waveform with spatial, rather than 
temporal, extent, by setting time equal to the z-coordinate divided by wave speed 
(t  = z / c ) .  This is permissible due to the quasistatic assumption [20]. We assume 
here the direction of propagation is known, from measurements along two orthogonal 
lines [5]; without loss of generality we select the z-axis along this direction. If it is 
unknown, the wave speed can he determined by measurements at two different spatial 
locations, as described in (51. 

For example, a ventricular action potential lasting 300 ms and propagating at  
2 m s-' (these are typical values [20]) would have a spatial extent of (300 ms) x 
(2 m s-') = 60  cm. Note that this is greater than the spatial extent of cardiac tissue; 
this simply reflects the fact that the entire waveform does not appear simultaneously 
in space. To spatially sample this waveform every 0.5 cm would require a temporal 
sampling rate of the brush electrode signal of (2 in s-')/(0.5 cm) = 400 IIz. 

The sensitivity of the inverse problem solution to noise suggests h a t  measurements 
should he finely quantitized (typically eight hits or great,er) to minimize the effects of 
quantitization noise. 

7. Numer ica l  results 

To evaluate the new procedure, several simulated experiments were conducted. Ex- 
perimental data were generated by solving the forward problem a t  various distances, 
and corrupting the solutions with additive white Gaussian noise. The use of additive 
white Gaussian noise is common in  the literature [9-111; it is used here to: (1) facil- 
itate comparison with other papers on volume conductor problems; and (2) permit 
easy confirmation of the results by diflerent researchers. 

The noise-corrupted data was then used as input for the inverse problem procedure. 
A test waveform simulating the extracellular potential of a sheet of cardiac muscle 
tissue w a s  utilized. The test action potential was designed to emphasize its rising 
edge, which is the most easily observed feature i n  the extracellular space. 

7.1.  Test woveform 

The test action potential, a modification of one given in [16], is shown in figure 2.  
It represents a wave moving i n  the +x direction, representing a situation where the 
tissue of interest is only active for specific regions in y. It describes an action potential 
with the following characteristics: 

1 .  Duration 300 ms and wave speed 2 m s-l This corresponds to a spatial extent of 
60 cm in the  direction of propagation (see above). 

2.  Extent of 4 cm perpendicular to the direction of propagation. This was chosen to 
be on the order of the size of the ventricle; we neglect effects of tissue curvature 
due t o  the severe attenuation of the volume couductor (see section 1). 

3.  Maximurn repolarization rate of 200 V s - ' .  

The test waveform was sampled using N, = N, = 128, at  intervals of cl = 0.5 cm 
and E,, = 0.3125 mm, corresponding to spatial extents of sz = 64 cm and sY = 4 cm 
(the test waveform is zero outside the range shown in figure 2). 
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0 2 (4 Ea 

Figure 2. The ZD test function used BS a source potentid for all the simulated 
experiments. The repion 0 < < 2 c m  represents the extracellular potential indueed 
by activated cardiac muscle. The region 2 cm < y < 4 cm represents inactive tissue. 
Since the test function represents a moving wave in the r direction, such a waveform 
could be experimentally observed in cardiac tissue using a brush electrode and the 
techniques described in subsection 6.2. 

7.2. .Discussion of simulaiion m u l l s  

Forward problem solutions were computed for distances of 1 and 5 cm. In light of 
the proposed applicat.ion of the algorithm, these distances are too large. They were 
"..-l".. ...~-".~~- ".." YLYybLY.u"  ". ,"I"lllti L " I I " " C U V L  , l ,*C,ll i  p,"",~,,,, a W Z l '  

as to test the limits of the inverse problem procedure. Two cases were considered: 
a homogeneous extracellular medium, and a layered extracellular media assumed to 
have three layers with characteristics as given in table 1. Note that due to the form 
of equation (14) only relative conductivities are required. 

?hnean ke ; l l , s ~ + . ~ + a  +he -.,.n,.-&;..- ..C&I.- . . - I  - - -A . . -& - -  : -...... -.. L1 .... .- ~..~'l  

Table 1. 

Layer Thickness (cm) Relative Conductivity 

3 m 0 

The one-dimensional cross sections Cor the forward problem soliitions in homo- 
geneous media are displayed with the source potential in figure 3(a). This clearly 
displays the action of the volume conductor on the computed potential field. Note the 
additional attenuation and snioothing observed a t  5 cm over that at 1 cm. 

The  one-dimensional cross sections for the forward problem solutions in both hc- 
mogeneous and layered media at  5 cm are illustrated in figure 3 ( b ) .  The layer pa- 
rameters are as in table l ,  Note blie greater attenuat,ion and smoothing of the source 
waveform due to the conductivity discontinuity, as compared to  the homogeneous case. 

Inverse problem solutions were computed for measurements made in homogeneous 
media at 0.1, 0.5, 1 and 5 cm, with signal-t*noise ratios SIN = 10, 100 and infinity 
(no noise). In the absence of noise, exact inverse problem solutions (no error) were 
obtained for all distances tested (and additionally up to about 100 cm). In this case 
accuracy of the solutions was only limited by finite-register effects and overflow in 
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z (cm) 

Figure 3. 1D CTOSS sections (at y = 1 cm) of the solution to the 20 forward problem. 
(a) at B = 0, and 5 cm. lor both homogeneous and layered media. Note increased 
attenuation in the observed potential due to the conductivity discontinuity in the 
layered media. ( b )  At i = 0, 1,  and 5 cm in a homogeneous medium. Note thal 
the observed potential is both attenuated and smoothed as one moves away from the 
source. 

the computations. Additionally, for distances of less than 1 cm, the inverse problem 
solution was virtually exact for the above noise levels. This result is reasonable in light 
of the exponentially increasing attenuation of the volume conductor with distance. For 
these cases, no figures are given since the actual and reconstructed potentials coincide. 

Figures 4(a) and 4(b) show the results for measurements made at  5 cm in homoge- 
neous media with SIN = 10 and 100, respectively. These figures are one-dimensional 
cross sections, since the two-dimensional plots are difficult to interpret. For SIN = 10 
there is so much smoothing that only the general features of the potential are recov- 
erable, although many of the features of the waveform (e.g. the point of activation 
and rising edge) are still visible. Therefore even in very high noise environments some 
important features of the waveform can still be resolved. 

For SIN = 100, the recovered potential is still significantly smoothed, but addi- 
tional details, (e.g. higher spatial frequencies) are now present. This result can be 
expected in light ofsubsection 5.2, i.e. as the signal-to-noise ratio increases the inverse 
problem solution improves for higher spatial frequencies. Note that a measurement 
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Figure 4. I D  cross sectioils (at y = 1 c m )  of the solution to the zn inverse problem at 
z = 5 cm in a lioinogeiierrus medium. ( a )  For SIN = 10 there is so much smoothing 
that only the general feal,wes of the potential (e.g. the point of activation and rising 
edge) are still visible. ( 6 )  Poor S I N  = 100, the recovered potential is still significantly 
smoothed, hut adrlitioml delails (e.g. higher spatial frequencies) are now present. 

distance of 5 cm is far greater t l iai i expectcd i n  our proposed application. Nonetheless, 
the inverse problem solution is st,ill reasonable. 

Figures 5(a) and 5 ( b )  sliow the  result,s for measurements made at 1 cm with SIN = 
10 and 100, respectively. A t  this distalice, one can see llial reasonable inverse problem 
solutions, exhibit,ing t.he form of t l i c  waveform, can be obtained even for SIN = 10, 
while for SIN = 100 the  inverse problem solution is an excellent approximation to the 
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Figure 5. I D  cross sections (at y = 1 cm) of the solution to the ZD inverse problem 
at I = 1 cm in a homogeneous medium. (a) SIN = 10. Note that re-onable inverse 
problem solutions can be obtained even under this high noise condition. ( b )  SIN = 
100. A t  this noise level the invem problem solution is M excellent appmxhation 
to the origin$ source potential. In our proposed application this is a reasonable 
me-urement distance. 

original source potential. 
For larger values of signal-tenoise ratio performance improves rapidly. Ganapathy 

and Clark, among others, have pointed out that  ‘experimentally, one is generally able 
to easily achieve signal-to-noise ratios that are larger than 100 by using high-quality 
differential amplifiers with adequate gain and good common-mode rejection (CMR) 
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properties, coupled with a capacity for cumulative averaging t o  enhance the S I N  
ratio' ([9] p 574). 60 Hz power line hum can also be reduced using adaptive filtering 
techniques [28]. 

T G Xydis e l  a/  

8. Conclusion 

A fast procedure for solving the two-dimensional volume conductor forward and in- 
verse problems has bein presented. It was shown that forward solutions can be com- 
puted quite readily, and inverse problem solutions can be obtained provided that the 
measurement distance is not too great and the signal-tenoise ratio is sufficiently high, 

These solutions were obtained in a computationally efficient manner, by represent- 
ing the extracellular medium as an  equivalent filter, extending the work of [9,13,14] 
to multi-dimensional sources. The  filtering approach was also useful in interpreting 
the effects of the volume conductor on the potential field, and it also allowed the con- 
venient use of regularization filters. The same regularization filter was derived using 
both stochastic and deterministic reasoning. In t,he stochastic approach we assumed 
that both the noise and the waveform to be reconstructed were white fields; thus no 
a priori knowledge about the waveform was required. In the deterministic approach 
we found that selecting the minimum-energy solution in the constrained least-squares 
regularization procedure and by using S I N  as the Lagrange multiplier in a Tikhonov 
regularization procedure resulted in the same regularization filter. 
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