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Abstract. Motivated by electromagnetic wave propagation in media where permittivity varies
in two dimensions, we address the problem of wave scattering for two-dimensional (2D) media
having variable speed. Wave speed variations are shown to produce scattering which can be
represented in terms of a Schrödinger scattering potential. The wave equation problem is thus
reformulated as a Schrödinger equation inverse potential problem, with a variable wave speed.
Throughout it is assumed that wave speed varies smoothly and slowly such that a finite-difference
approximation is valid, defining a discrete inverse scattering problem. For this discrete problem,
we define an equivalent medium on a variable-mesh grid for which the wave speed is constant
throughout, yet the equivalent medium has the same scattering response as the actual variable
wave speed medium. Going from actual to equivalent medium entails spatially warping the
medium, while going from equivalent to actual entails spatial dewarping. The discrete-time
forward and inverse scattering problems are then formulated and solved using the equivalent
medium. A numerical example illustrating the introduced concepts is presented.

1. Introduction

Inhomogeneous media are characterized by parameters which vary spatially. Waves
propagating through such media are affected by these parameter changes. In this paper
we investigate the wave scattering in 2D media inxz-space for which the wave speedc is a
function of position{c(x, z)} and is slowly and smoothly varying. For brevity we will refer
to the vertical direction (z coordinate) as depth and to the horizontal direction (x coordinate)
as breadth.

Our motivation for considering this problem is that fast layer stripping algorithms can
be easily implemented for the constant wave speed problem, but for the variable wave
speed problem implementation is presently difficult in the 1D case and impossible for
higher dimensions. Our goal is to show that the scattering problem for variable wave speed
media can be solved using equivalent constant wave speedwarped media. The scattering
of the warped medium is identical to that of the actual medium intime, but in spacethe
reconstructed warped medium has the right effective index values at the wrong places. Since
our warping and dewarping process is dependent only on the effective index values of the
actual and equivalent media, respectively, one can be found easily from the other.

Our approach differs threefold from other numerical methods such as finite-difference
time domain (FDTD) [3] and transmission line matrix (TLM) methods [6]. First, FDTD
and TLM methods are recursive methods for the forward problem only. Our approach
implements fast algorithms for both the forward and inverse problems. Second, FDTD
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and TLM methods are based on discretized Maxwell curl equations. We develop a new
finite-difference approximation of the Schrödinger equation applicable to variable wave
speed media. Finally, FDTD and TLM discretizations use a uniform spatial mesh, whereas
our approach uses a conformal variable spatial mesh which is equivalent to uniformly
discretizing the actual medium temporally. In addition, we approximate a continuous
medium as piecewise constant over a discretetime interval versus piecewise constant over
a discrete spatial interval. We assume the wavelength of the propagating wave is much
longer than the discretization interval so that surface roughness can be ignored. Recent
work in FDTD has considered a non-uniform spatial mesh for determining fields around
small features; however the lattice is still rectangular and is boundary driven, not medium
driven [3].

Our discrete Schrödinger equation for the variable wave speed problem (28) can be
viewed as a variable-mesh finite-difference approximation. Our work to date has started off
with such discrete equations as the formulation of the actual problem to be solved [1, 2, 7].
In this previous work the discrete equations have clear finite-difference interpretations and
therefore applications. In this paper, we are solving a discretized problem, which is an
approximation to another continuous problem.

Specifically the contributions of this paper are fourfold. First, the concept of an
equivalent constant wave speed medium having identical scattering characteristics to the
actual variable wave speed medium is introduced. Second, methodology for finding the
equivalent medium from the actual, orvice versa, consisting of spatially warping the medium
is developed. Third, a new variable-mesh finite-difference approximation of the Schrödinger
equation applicable to variable wave speed media was developed. Finally, new discrete-
time 2D formulations of the forward and inverse problem for variable wave speed media
which use the interim equivalent warped medium are presented. With these equivalent
representations and the results discussed in [1], layer stripping algorithms can be used on a
variable speed medium. The important point to note is that when layer stripping algorithms
are applied to scattering data from a variable wave speed medium it is the warped constant
speed medium that is being reconstructed. By understanding the relationship between the
actual and warped media the former can be found from the latter.

This paper is organized as follows. In section 2, we recast the general wave equation in
terms of travel time and energy normalized field components to obtain the Schrödinger
equations. In section 3, the concept of the equivalent warped medium is introduced.
The equivalent warped medium has the same scattering response as the actual variable
wave speed medium, but has uniform wave speed. We develop warping methodology for
1D media using an intuitive example and extend these results to the 2D case. In section 4,
we begin with the most general discretization of the Schrödinger equation using the central
difference approximation. In the subsequent subsections, variable-mesh finite-difference
approximations are used to find a constant wave speed Schrödinger equation equivalent to
the variable wave speed Schrödinger equation. Layer stripping algorithms for the forward
and inverse problem developed in [1] are quickly reviewed in section 5 and section 6,
respectively. To illustrate the introduced methodology, we present in section 7 a numerical
example of scattering from a 2D inhomogeneous wave speed media. Section 8 concludes
with a summary and suggestions for future research.

2. The Schr̈odinger equation for 2D variable wave speed media

The main results of this paper are obtained by discretizing the variable-velocity Schrödinger
equation using a variable-mesh grid to incorporate the effects of varying wave speed. In this



The variable wave speed scattering problem 911

section, we present the continuous analogues of our discrete results. In doing so, we illustrate
how some second-order effects are neglected in finite-difference approximations and thus
do not appear subsequently. Nonetheless, the discrete results are valid if the discretization
lengths are sufficiently small to make the finite-difference approximation (which must be
used in any case) valid. In this paper, we start with finite differences, rather than end with
them.

We begin by recasting the general wave equation in terms of travel time and energy
normalized field components. Using this formulation allows us to cancel out first-order
partial derivative terms due to the spatial variation of wave speed. The result of this
reformulation is the Schrödinger equation. Motivated by the problem of electromagnetic
wave propagation in inhomogeneous dielectrics, we begin with Maxwell’s curl equations

∇ × E = −µ
∂H

∂t
(2.1a)

∇ × H = ε
∂E

∂t
(2.1b)

whereE = E(x, z, t) andH = H(x, z, t) are the electric and magnetic fields, respectively,
andε andµ are the permittivity and permeability of the medium, respectively. Assuming
a non-magnetic medium,µ will be constant(µ(x, z) = µ0). The electromagnetic wave
equation for the electric field (2.2) is obtained by taking the curl of (2.1a) and substituting
in (2.1b) to give(

∇2 − µ0ε
∂2

∂t2

)
E = 0. (2.2)

Noting that c(x, z) = 1/
√

µ0ε(x, z) is the wave speed at spatial coordinate (x, z), we
see that variable permittivity is equivalent to variable wave speed. For our purposes, we
consider the scalar wave equation (2.3) noting that (2.2) is its electromagnetic form

∇2ψ − 1

c2

∂2ψ
∂t2

= 0. (2.3)

2.1. 1D case

For ease of notation, we derive the 1D Schrödinger equation in this section and extend the
result to 2D in the following section. For the 1D case, (2.3) becomes

∂2ψ(z, t)

∂z2
− 1

c(z)2

∂2ψ(z, t)

∂t2
= 0. (2.4)

Defining the energy-normalized wave field9 = ψ/
√

c and changing variables from
depth{z} to travel time{τ } using

τ(z) =
∫ z

0

1

c(z′)
dz′ ↔ dτ

dz
= 1

c
(2.5)

yields the well known Schrödinger equation in the time domain:

∂29

∂τ 2
− ∂29

∂t2
= √

c

(
∂2

∂τ 2

1√
c

)
9. (2.6)

The scattering potential in (2.6) is given byV = √
c(∂2(1/

√
c)/∂τ 2) which can be defined

in terms of a reflectivityr

V = r2 − ∂r

∂τ
(2.7a)
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r = √
c

(
∂

∂τ

1√
c

)
. (2.7b)

2.2. 2D case

We extend the 1D derivation of the previous section by first defining two different spatial
warping parameters: one as a function of depth{τz} and one as a function of breadth{τx}
(compare with the single travel time variableτ used in the 1D case (2.5)):

τz(z, x) =
∫ z

0

1

c(z′, x)
dz′ ↔ ∂τz

∂z
= 1

c
(2.8a)

τx(z, x) =
∫ x

0

1

c(z, x ′)
dx ′ ↔ ∂τx

∂x
= 1

c
. (2.8b)

Equations (2.8a) and (2.8b) are justz and x transformations, respectively, by the local
wave speedc(z, x). Note that the transformations given in (2.8) have a second-order
dependency on each other. Assuming that the wave speed variations are locally isotropic,
this dependency will thus not appear in the finite-difference approximations of section 4,
and we therefore neglect it in the following. Hence, the spatial warping can be performed
in either order (e.g.,x thenz or z thenx).

Beginning with the general wave equation (2.3) and proceeding as in the 1D case
using the 2D spatial warping transformations given in (2.8), we obtain the 2D Schrödinger
equation in the time domain,

∂29

∂τ 2
z

+ ∂29

∂τ 2
x

− ∂29

∂t2
= V 9 (2.9)

where the 2D scattering potential{V } is now described in terms of the local reflectivities
{rz andrx} (compare with their discrete 2D versions (4.3) and their continuous 1D version
(2.7b))

V = √
c

(
∂2

∂τ 2
z

1√
c

)
+ √

c

(
∂2

∂τ 2
x

1√
c

)
= √

c

(
∇2

τ

1√
c

)
= r2

z + r2
x − ∂rz

∂τz

− ∂rx

∂τx

(2.10a)

rz = √
c

(
∂

∂τz

1√
c

)
(2.10b)

rx = √
c

(
∂

∂τx

1√
c

)
. (2.10c)

3. Formulating the equivalent constant wave speed medium

Consider an actual 1D lossless medium consisting of a stack of layers in thez direction,
each having the same length1 = 1 (figure 1(a)). We assume that the wave speed in each
layer is quantized to a rational number (this is inevitable in a finite-precision computing
environment anyway). This is equivalent to assuming that the slowness (reciprocal wave
speed) in each layer is rational. Letc0 be the least common denominator of the rational
slownesses. Then the slowness in layeri can be written asN(i)/c0 for some integerN(i)

which can be different in each layer. This means that the wave speed in layeri is c0/N(i).
The scattering of the actual medium is identical intime to the scattering of a medium

constant wave speedc0, but with layers having thicknessN(i)1 (figure 1(b)). That is,
slower wave speed layers are equivalent to thicker layers in the constant wave speed medium,
as was shown in the numerical example of [2]. Since the medium we are considering is
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lossless, scattering magnitude effects are a function of the interface discontinuities only,
not of layer thickness (there is no attenuation with distance). Indeed, there is no way of
distinguishing between the responses of the actual and warped media. Note that interfaces
of the actual and warped media are identical in magnitude and occur at the identical places
in time, but different places inspace. This is the basic idea behind a Goupillaud (equal
travel time in each layer) layered medium, an assumption that was used extensively in the
seismic exploration literature in the 1960s.

Figure 1. Actual and warped 1D medium example. (a) Variable wave speed (actual) medium;
(b) constant wave speed (warped) medium.

The termwarped medium is used because, as described above, we are warping the
spatial dimensions of the actual medium, since the warped medium has constant wave
speed and therefore the spatial and temporal discretizations are uniform throughout the
medium (see section 4).

The warped medium can be reconstructed from the measured reflection response using
layer stripping algorithms (e.g., Levinson and/or Schur algorithms [8]). The equivalent
media cannot be distinguished withouta priori knowledge that the reflections are caused not
by density (ρ(i) or µ(i)) variations, but by wave speed variations (c(i) ≡ (µ(i)ε(i))−1/2).
For electromagnetic scattering problems, this condition is equivalent to assuming the
medium is non-magnetic, i.e.µ(i) = µ0.

3.1. 1D media

In figure 1 we presented an intuitive explanation of the relationship between the actual and
warped media. In this section, a more rigorous development of the 1D case is presented.
We warp the medium by means of a two-step process. First, divide the existing medium
into equal time steps by ‘sub-indexing’

îl+1 = îl + 1

Nîl

. (3.1)

Note that the slow layers (given byNi 6= 1) are subdivided so that all divisions are the
same length intime. Second, the new indexinĝil is used to map the original effective index
profile {N} onto the indexing defined byl giving the effective index profile of the warped
medium{Ñ} (∼ denotes a warped medium parameter throughout):

Ñli = Ni. (3.2)

To help illustrate the warping procedure, an example follows using the medium shown
in figure 1. Note that the index profile of the warped mediumÑl does not affect wave
speed as did the profileNî of the actual medium; the whole point of warping the medium
was to obtain an equivalent constant wave speed medium.
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Actual medium:

N0 = 1, N1 = 1, N2 = 2, N3 = 3, N4 = 1, . . . .

Sub-indexed medium:

î0 = 0, î1 = 1, î2 = 11
2, î3 = 2, î4 = 21

3, î5 = 22
3, î6 = 3, î7 = 4

N0 = 1, N1 = 1, N
1

1
2

= 2, N2 = 2, N
2

1
3

= 3, N
2

2
3

= 3, N3 = 3, N4 = 1, . . . .

Warped medium:

Ñ0 = 1, Ñ1 = 1, Ñ2 = 2, Ñ3 = 2, Ñ4 = 3, Ñ5 = 3, Ñ6 = 3, Ñ7 = 1, . . . .

If the continuous medium has a continuous effective index profile, we note that the
warped medium is a piecewise constant approximation over uniform intervals in space and
time. Its variable wave speed equivalent, the sub-indexed medium, is a piecewise constant
approximation over uniform intervals in time but variable intervals{1/N} in space.

3.2. 2D media

In this section, the 1D warping technique of section 3.1 is extended to the 2D case. Once
again, we assume that the local wave speed is quantized to a rational number, which can
be written as before aṡc0/N(i, j) for some integersc0 andN(i, j).

Consider two media, both with varying effective index profiles. In the first medium
(actual), the effective index variationsN(i, j) cause the wave speed in the medium to vary
(i.e. c(i, j) = c0/N(i, j)). In the other medium (warped; denoted by∼), the effective
index Ñ(l, m) does not affect wave speed (i.e.c(i, j) = c0). The warped medium does
not physically exist; we are merely using it to develop a discrete-time scattering model as
will be shown shortly. In order for the warped medium to have the same time sampled
wave field as that of the actual medium, the warped medium must be a distorted or warped
form of the actual medium. As with the 1D case we warp the actual medium in a two-step
process using the medium’s effective index profileN(i, j).

Assuming the effective index{N} profile to be locally isotropic, the distance that waves
travel {1x, 1z} during each time step1t ≡ 1 is 1x = 1z = 1/N(i, j) (compare with
(3.1)). As in the 1D case, the first step is to sub-index the grid.

îl+1,m = îl,m + 1

N(îl,m, ĵl,m)
(3.3a)

ĵl,m+1 = ĵl,m + 1

N(îl,m, ĵl,m)
. (3.3b)

Note that the slower the region is, the more that it is sub-indexed (i.e. more grid squares are
created). In the warped medium1x = 1z = 1 (sincec(i, j) = c0). That is, in the warped
medium the waves travelN(i, j) times the distance they do in the actual medium. We find
the warped mediumÑ(l, m) by using the appropriate warped grid (l, m) onto which the
actual effective index profileN(i, j) is mapped.

Ñl,m = N(îl,m, ĵl,m). (3.4)

4. New variable-mesh finite-difference approximation of the Schr̈odinger equation

In this section, we begin with the Schrödinger equation and, using the central difference
approximation, find the most general discretization. In the subsequent subsections,
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different temporal and spatial discretization constraints are used to find a constant wave
speed equivalent of the variable wave speed medium. These latter discretizations of the
Schr̈odinger equations can be viewed as a variable-mesh finite-difference approximation.

The Schr̈odinger equation in the time domain for a 2D variable wave speed medium
can be represented in terms of a scattering potential{V (x, z)} as follows (see section 2.2
for a derivation)

∇29(x, z, t) − 1

c2(x, z)

∂29(x, z, t)

∂t2
− V (x, z)9(x, z, t) = 0. (4.1)

9(x, z, t) is the wave field, wherex denotes breadth,z denotes depth andt denotes
time. c(x, z) is the wave speed and is a function of the effective index{N(x, z) > 1}; i.e.
c(x, z) = c0/N(x, z), wherec0 is the least common denominator of the rational slowness
at all points. The scattering potential{V (x, z)} is a function of the local reflectivities
{rx(x, z), rz(x, z)} of the medium which are themselves a first derivative function of the
effective index profile{N(x, z)} (again see section 2).

4.1. The general discrete Schr¨odinger equation

Using the central difference approximation, we discretize (4.1) to find

un
i,j+1 + un

i,j−1 − 2un
i,j

12
+ un

i+1,j + un
i−1,j − 2un

i,j

12

−N2
i,j

c2
0

u
n+1t

i,j + u
n−1t

i,j − 2un
i,j

12
t

− Vi,ju
n
i,j = 0. (4.2)

To emphasize the discrete 2D nature of (4.2), note that the following change of variables
has been made:9(x, z, t) → un

i,j (wave field), t → n (time), z → i (space: depth) and
x → j (space: breadth). In addition, we denote the discrete space and time increments
by the changes∂τx → 1, ∂τz → 1 and ∂t → 1t . We assumeN(x, z) is slowly
and smoothly varying over1, so that (4.2) is a valid approximation of the continuous
Schr̈odinger equation (4.1). Throughout we consider (4.2) as the starting point for our
problem, which is therefore explicitly discrete. Define the following discrete quantities (not
defined from (2.10), but discretely analogous to (2.10)):

Vi,j = rx
i,j r

x
i,j−1 + rz

i,j r
z
i−1,j − rx

i,j − rx
i,j−1

1
− rz

i,j − rz
i−1,j

1
(4.3a)

rx
i,j = − 2

1

Ni,j+1 − Ni,j

Ni,j+1 + Ni,j

(4.3b)

rz
i,j = − 2

1

Ni+1,j − Ni,j

Ni+1,j + Ni,j

. (4.3c)

Substituting equations (4.3b) and (4.3c) into (4.3a) yields the 2D scattering potentialVi,j :

Vi,j = 4

12

Ni,j+1Ni,j − 2Ni,j+1Ni,j−1 + Ni,jNi,j−1

N2
i,j + Ni,j+1Ni,j + Ni,jNi,j−1 + Ni,j+1Ni,j−1

+ 4

12

Ni+1,jNi,j − 2Ni+1,jNi−1,j + Ni,jNi−1,j

N2
i,j + Ni+1,jNi,j + Ni,jNi−1,j + Ni+1,jNi−1,j

. (4.4)
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4.2. The sub-indexed discrete Schr¨odinger equation

Using the sub-indexing concept developed in section 3.2 (i → î, j → ĵ ), we proceed to
provide an alternative discretization of (4.1). By noting that the distance a wave travels
during time increment1t depends on the local wave speedcî,ĵ , we have

cî,ĵ1t = 1î,ĵ . (4.5)

By defining the temporal discretization to be uniformly1t = 1/c0, the spatially-
varying discretization is thus given by1î,ĵ = 1/Nî,ĵ . In the following, for convenience
of notation, we omit the factor1 in all indices. We assume that1 is sufficiently small
that 1î,ĵ = 1/Nî,ĵ is also sufficiently small for the variable-discretization finite-difference
approximation to be valid. This leads to

[un

î,ĵ+1/Nî,ĵ

+ un

î,ĵ−1/Nî,ĵ

− 2un

î,ĵ
] + [un

î+1/Nî,ĵ ,ĵ
+ un

î−1/Nî,ĵ ,ĵ
− 2un

î,ĵ
]

−[un+1
î,ĵ

+ un−1
î,ĵ

− 2un

î,ĵ
] − Vî,ĵ u

n

î,ĵ
= 0. (4.6)

The sub-indexed scattering potentialVî,ĵ in (4.6) is given by

Vî,ĵ = 4
Nî,ĵ+1/Nî,ĵ

Nî,ĵ − 2Nî,ĵ+1/Nî,ĵ
Nî,ĵ−1/Nî,ĵ

+ Nî,ĵNî,ĵ−1/Nî,ĵ

N2
î,ĵ

+ Nî,ĵ+1/Nî,ĵ
Nî,ĵ + Nî,ĵNî,ĵ−1/Nî,ĵ

+ Nî,ĵ+1/Nî,ĵ
Nî,ĵ−1/Nî,ĵ

+4
Nî+1/Nî,ĵ ,ĵ

Nî,ĵ − 2Nî+1/Nî,ĵ ,ĵ
Nî−1/Nî,ĵ ,ĵ

+ Nî,ĵNî−1/Nî,ĵ ,ĵ

N2
î,ĵ

+ Nî+1/Nî,ĵ ,ĵ
Nî,ĵ + Nî,ĵNî−1/Nî,ĵ ,ĵ

+ Nî+1/Nîĵ ,ĵ
Nî−1/Nî,ĵ ,ĵ

. (4.7)

Recall from section 3 that what we have represented in (4.6) and (4.7) is a discretization
on a conformal variable spatial mesh and a uniform temporal mesh. In the following section
we warp the spatial indices resulting in a discretization on an equivalent constant wave speed
medium that is uniform in timeand space.

4.3. The equivalent constant wave speed discrete Schr¨odinger equation

Using the second warping step discussed in section 3.2, we now find the discrete Schrödinger
equation that is the constant wave speed equivalent of (4.6). The relationship between the
sub-indexed and warped media is

î → î ± 1

Nî,ĵ

⇒ l → l ± 1 ĵ → ĵ ± 1

Nî,ĵ

⇒ m → m ± 1. (4.8)

It is evident from the indexing strategy of (4.8) that the sub-indexed medium is
discretized on a uniform temporal mesh andvariable spatial mesh, whereas the equivalent
constant wave speed medium is discretized on a uniform temporal and auniform (in the
warped coordinates) spatial mesh. The discrete Schrödinger equation for the warped medium
is

[ũn
l,m+1 + ũn

l,m−1 − 2ũn
l,m] + [ũn

l+1,m + ũn
l−1,m − 2ũn

l,m]

−[ũn+1
l,m + ũn−1

l,m − 2ũn
l,m] − Ṽl,mũn

l,m = 0. (4.9)

The warped scattering potentialṼl,m in (4.9) is

Ṽl,m = 4
Ñl,m+1Ñl,m − 2Ñl,m+1Ñl,m−1 + Ñl,mÑl,m−1

Ñ2
l,m + Ñl,m+1Ñl,m + Ñl,mÑl,m−1 + Ñl,m+1Ñl,m−1

+4
Ñl+1,mÑl,m − 2Ñl+1,mÑl−1,m + Ñl,mÑl−1,m

Ñ2
l,m + Ñl+1,mÑl,m + Ñl,mÑl−1,m + Ñl+1,mÑl−1,m

. (4.10)
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With (4.9) and (4.10), we now have an equivalent constant wave speed formulation of
the discrete Schrödinger equation for a variable wave speed medium.

4.4. Laterally transformed discrete Schr¨odinger equation

In this section we quickly review the Schrödinger equation formulation discussed in [1].
We redefine the discrete 2D Schrödinger equation scattering problem from (4.9) as follows.
A wave field ũn

l,m, where l is depth,m is lateral position andn is time, satisfies the 2D
discrete Schr̈odinger equation

ũn
l+1,m + ũn

l−1,m + ũn
l−1,m+1 + ũn

l−1,m−1 − 2ũn
l−1,m − ũn+1

l,m − ũn−1
l,m = Ṽl−1,mũn

l−1,m. (4.11)

It is clear that since the indices in (4.11) are actually multiples of1, then (4.11) becomes
the time domain form of the continuous Schrödinger equation (4.1) as1 → 0. Note
that the differences corresponding to∂2/∂x2 are shifted in depthz from the differences
corresponding to∂2/∂z2 and ∂2/∂t2 as given in (4.9) (̃un

l−1,m+1 + ũn
l−1,m−1 instead of

ũn
l,m+1 + ũn

l,m−1). This is necessary to obtain the multichannel two-component wave system
below.

A discrete-time Fourier transform of (4.1) takingm into kx gives

un
l+1,kx

+ un
l−1,kx

− un+1
l,kx

+ un−1
l,kx

= (2 − eikx − e−ikx )un
l−1,kx

+
∞∑

m=−∞
V n

l−1,kx−mun
l−1,m (4.12a)

un
l,kx

=
∞∑

m=−∞
ũn

l,me−imkx ; Vl,kx
= 1

2π

∞∑
m=−∞

Ṽl,me−imkx . (4.12b)

Note that 2− eikx − e−ikx = 2(1 − coskx) ≈ k2
x as kx → 0. This also shows how the

discrete 2D Schr̈odinger equation reduces to the continuous 2D Schrödinger equation in
the limit as1 → 0. Note that the ill-conditioned lateral derivative∂2/∂x2, which makes
downward continuation ill-posed, is regularized to the smoothed wavenumber response
2(1 − coskx). The boundary conditions for (4.12) are

un
l,kx ;k′ =

{
δ(n − l)δ(kx − k′

x) + R(n + l, kx; k′
x) if l 6 0

T (n − l, kx; k′
x) if l → ∞ (4.13)

whereR(n, kx; k′
x) is the reflection response andT (n, kx; k′

x) is the transmission response
to an impulsive plane wave that excites the lateral wavenumberk′

x only.

5. The forward scattering problem

In the next two sections, we use (4.12) as a basis for the forward and inverse scattering
problems which are solved using layer stripping algorithms as discussed in [1]. The discrete
2D forward scattering problem is to reconstructR(n, kx; k′

x) from Vl,kx
. We discretizekx

into integer multiples of1. Equation (4.12) can then be rewritten as

un
l+1 + un

l−1 − un+1
l − un−1

l = Vl−1u
n
l−1 (5.1)

whereun
l is a matrix whose (m, o)th element isun

l,m;o and Vl is a Toeplitz-plus-diagonal
matrix with (m, o)th element (δ(m − o) is now a Kronecker delta)

Vl,m;o = 2(1 − cos(m1))δ(m − o) + V (l, (m − o)1)1. (5.2)
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The indices in (5.2) run from−M to M, whereM is an arbitrarily large integer, and
V is Hermitian, sinceṼl,m is real. Given the matrix potentialVl (5.2), define the matrix
reflectivity rl recursively from the transform [9]

rl = T −1
l (I − Vl)Tl(I − rl−1)

−1 − I (5.3a)

Tl =
l−1∏
p=1

(I − r2
p)1/2 (5.3b)

un
l = Tl(I − rl−1)

−1(Dn
l + U n

l ). (5.3c)

Then the matrix discrete Schrödinger equation (5.1) is equivalent to the discrete
multichannel two-component wave system [9][

Dn
l+1

Un
l+1

]
=

[
(I − r2

l )
− 1

2 0

0 (I − r2
l )

− 1
2

] [
I −rl

−rl I

] [
Dn−1

l

U n+1
l

]
. (5.4)

For each of the matrices (the bold quantities), different columns correspond to different
experiments, while different rows correspond to different channels for a given experiment.

Now suppose that the top interface is a free surface (perfect reflector), and that the
probing impulse in (4.13) is introduced just below this surface; i.e.I + R(n) = Dn

0 and
R(n) = U n

0 . The forward scattering problem is to find the responseR from the reflectivity
r and is solved using (5.4) and the multichannel form of the Schur algorithm runbackwards.
The multichannel Schur algorithm should be expected to work well, since it solves exactly
an explicitly discrete 2D scattering problem. The discrete matrix two-component system
(5.4) is lossless and well behaved numerically as long as the maximum singular value ofr
is less than unity.

6. The inverse scattering problem

The discrete 2D inverse scattering problem is to reconstructV (i, kx) from R(n, kx; k′
x).

The 2D discrete inverse scattering problem defined by (4.12) and (4.13), or equivalently
(5.4), can be solved very easily using the multichannel form [9] of the Schur algorithm
when incorporating the factor(I − r(i)2)−1/2, which produces additional coupling between
channels.

6.1. Reflectivity from impulse reflection response

The Schur algorithm computes the reflection coefficients associated with the block-Toeplitz
system of equations [8]:

I R(1) · · · R(n)

R(1) I · · · R(n − 1)
...

...
. . .

...

R(n) R(n − 1) · · · I


 F 0

n − Gn
n

...

F n
n − G0

n

 =


0
0
...

T (n)

 (6.1a)

R(n)(m,o) = R(n, m1; o1). (6.1b)

Note that theR(n) are themselves matrices defined from the reflection response
R(n, kx; k′

x) defined in (4.13). F i
n and Gi

n are elements of the matrix Green’s function
of (5.4). The matrix reflectivityrn can be recovered usingrn = G0

n − F n
n . Equation (6.1)

can thus be viewed as a discrete analogue of an integral equation, and the Schur algorithm
as a fast algorithm alternative to solving this discrete integral equation analogue.
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6.2. Warped scattering potential from reflectivity

Reformulating the transform given in (5.3) enables us to directly calculate the laterally
transformed scattering potential corresponding to the equivalent warped medium as

Vl = I − Tl(I + rl)(I − rl−1)T
−1
l (6.2a)

Tl =
l−1∏
p=1

(I − r2
p)1/2. (6.2b)

6.3. Warped effective index profile from warped scattering potential

From equation (4.9) we clearly see that the scattering potentialṼl,m of the warped medium
can be found when the warped effective index profileÑl,m is known. For the inverse
problem we wish to find a recursive relationship in which to findÑl,m from Ṽl,m. We
assume that the probing layer is known and that we reconstruct the profile layer by layer.
That is, in addition to knowing̃Vl,m, we knowÑl′,m′ , ∀l′ 6 l and∀m′. For ease of notation,
let

L̃l,m = Ñl,m+1Ñl,m − 2Ñl,m+1Ñl,m−1 + Ñl,mÑl,m−1

Ñ2
l,m + Ñl,m+1Ñl,m + Ñl,m+1Ñl,m−1 + Ñl,mÑl,m−1

. (6.3)

SinceṼl,m, L̃l,m and the appropriatẽNl′,m′ , are all known, we have the simple recursion

Ñl+1,m = ((Ṽl,m/4) − L̃l,m)(Ñ2
l,m − Ñl,mÑl−1,m) − Ñl,mÑl−1,m

Ñl,m − 2Ñl−1,m − ((Ṽl,m/4) − L̃l,m)(Ñl,m + Ñl−1,m)
. (6.4)

6.4. Variable wave speed effective index profile from warped profile

The final step of the inverse problem is to determine the actual medium from the
reconstructed warped medium. That is, one must determine the actual index profile{Nî}
from the warped medium’s index profile{Ñl}. We call this process dewarping of the
reconstructed medium, since it is essentially performing the methodology of section 3
backwards.

As with the warping of the actual medium, dewarping of the equivalent is a two-step
process. First, we form the sub-indexed grid(î, ĵ ) on which we map the warped index
profile Ñl,m:

îl+1,m = îl,m + 1

Ñl,m

(6.5a)

ĵl,m+1 = ĵl,m + 1

Ñl,m

(6.5b)

N(îl,m, ĵl,m) = Ñl,m. (6.5c)

From (6.5), note that the slower the region is, the more the grid is compressed. Note also
that there is a one-to-one relationship between the warped(Ñl,m) and sub-indexed (N(î, ĵ ))
effective index profile as given by (6.5c). Finally, the original effective index profileN(i, j)

can be found byinterpolating N(î, ĵ ) onto a uniform spatial mesh(i, j).
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Figure 2. Actual medium. (a) Effective index profile; (b) uniform spatial discretization.

7. Numerical example

In this section we present a numerical example to illustrate the methodology presented
in this paper. We begin with a variable wave speed medium on a uniform spatial grid,
then determine the corresponding sub-indexed medium, which we then warp to find our
equivalent constant wave speed medium. The scattering potential of the constant wave
speed medium is found from the warped index profile. The impulse reflection response of
the medium can be found from this warped scattering potential by running the Schur layer
stripping algorithm backwards. The inverse scattering problem can be solved by running
the Schur layer stripping algorithm, and then dewarping as discussed in section 6. The
effects of noise in the data on reconstruction and data feasibility criteria were addressed in
[1].

7.1. Original medium

We consider a 2D variable wave speed medium in which there exists a graded effective
index inclusion having a Gaussian profile as shown figure 2(a). Numerical methods, such as
FDTD and TLM, model the medium using a uniform spatial mesh as shown in figure 2(b).
Note that this amounts to a low wave speed inclusion in the medium.
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7.2. Sub-indexed medium

Using the methodology of section 3, we sub-index the actual medium (figure 2) creating
the sub-indexed contour shown in figure 3. Note that the sub-indexed contour (figure 3) has
approximately the same shape as the original contour (figure 2(b)) but with more grid points
in regions of higher effective index. Increasing the number of grid points (i.e. sub-indexing
at a higher rate) would improve the contour approximation. Note also that all squares in
figure 3 represent equal time increments.

Figure 3. Variable spatial mesh of sub-indexed medium.

7.3. Equivalent constant wave speed medium

By warping (i.e. re-indexing), the sub-indexed medium (figure 3), we have our desired
equivalent constant wave speed medium (figure 4) which is discretized on a uniform spatial
mesh corresponding to a uniform temporal mesh. Note that the contour of the warped
medium no longer approximates that of the actual medium (figure 2(a)). The warped
medium is distorted both in depth (vertical axis) and breadth (horizontal axis) as is prescribed
by the methodology of section 3 and, in particular, the 2D warping equations (3.3) and (3.4).

7.4. The forward scattering problem

The reflection responseRn,m is found from Ṽl,m by first finding the matrix reflectivityr
using (5.3) and then running the multichannel Schur algorithm backwards. Recall thatRn,m

is the free-surface impulse reflection response as measured at the surface boundary of the
medium (figure 5).

To better appreciate the effects of wave speed variation, we show in figure 6 snap shots
of the probing wave and scattered field as they propagate through the medium. Note that
the wave travels further in the faster sections of the medium as time progresses and the
scattering that occurs as the wave speed changes.
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Figure 4. Uniform temporal and spatial mesh of warped medium.

Figure 5. Reflection response for medium.

8. The inverse scattering problem

The inverse scattering problem is to reconstruct the wave speed profile from observations
of the scattered field at the surfacez = 0 (shown in figure 5). To do this we proceed as
follows.

1. Run the Schur layer stripping algorithm on the observed reflected scattered field
data. This incorrectly assumes uniform wave speed, but generates the correctvaluesof the
scattered field and reflectivity function{r̃(l, m)}, but at the wronglocations.

2. Compute the warped medium index profile{Ñ(l, m)} from the potential function
{Ṽ (l, m)} (6.3) and (6.4). The potential function is computed directly from the reflectivity
function (6.2).

3. Dewarp the medium using (6.5). This yields the sub-indexed medium{N(ĩ, j̃ )}
shown in figure 3.

4. Interpolate the sub-indexed medium onto a uniform spatial grid. This yields the
effective index on a uniform spatial grid{N(i, j)}, which in turn interpolates uniformly to
N(x, z).
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Figure 6. Propagating and scattering waves.

5. Compute the wave speed profile from the effective index profile usingc(x, z) =
c0/N(x, z).

Following this procedure correctly reconstructed the wave speed profile corresponding
to the effective index profile shown in figure 2. The effects of noise on 2D Schur layer
stripping algorithms were discussed in detail in [1]. In summary, as long as the data are
feasible, a stable but noisy reconstruction will result. In [1] we propose a procedure for
correcting noisy and unfeasible data to feasible data. Since the point of this paper is that
the variable wave speed problem can be recast as the problem considered in [1], there is no
need to repeat the results of [1] for noisy data here.

9. Conclusion

In this paper we have shown that the Schrödinger equation for 2D media with variable wave
speed may be discretized in one of two equivalent manners: (1) using a fixed square temporal
lattice and varying the spatial discretization due to the varying wave speed or (2) fixing the
temporal discretization and assuming a constant wave speed, and then warping the medium
so that the spatial discretization is also a uniform square lattice. The latter’s scattered field
is equivalent to the former’s scattered field in time but occurs at different places spatially.
This formulation can be viewed as a variable-mesh finite-difference approximation which
allows for the use of fast algorithms to solve the forward and inverse problems where the
scattering is due to the effective index profile of the warped medium. The wave speed
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profile of the warped medium is then used to dewarp the medium to find the desired actual
medium.

Future topics of research include applying these formulations to the problem of
inclusions having rough interfaces. This application is non-trivial as in this paper we
have assumed our inclusion to be smoothly varying and thus the warping of the medium
also occurred smoothly. By definition, a rough interface does not have a smooth effective
index transition. A possible solution to this problem is to divide the medium into regions
according to ranges of effective index and apply the discussed methodology to each region.
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