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1. Introduction

The accurate study of B meson decays is a main source of information for under-

standing CP violation. We expect that the upcoming experiments will measure a

variety of B decay properties with good precision [1]. In order to over-constrain the

unitary triangle one pursues not only a measurement of the various angles, but tries

as well to determine the length of the sides of the triangle. One important quantity

is the CKM matrix element |Vub|, which is proportional to the length of one side of
the unitary triangle. |Vub| can be obtained from semileptonic B decays. There are
two complementary strategies for a determination of |Vub|, relying either on exclusive
or inclusive measurements. The inclusive decay B → Xlν can be calculated using
the heavy-quark expansion [2, 3]. However one of the main obstacles here is that

experimentally it is mandatory to impose restrictive cuts to suppress the background

from B → Xclν decays.
On the other hand an exclusive measurement through the channels B → πlν or

B → ρlν is easier from an experimental point of view. It requires however a reliable
theoretical calculation of the heavy-to-light transition form factors. These form fac-

tors parameterize the relevant hadronic matrix elements and are non-perturbative

quantities. They can be calculated using lattice methods [4]-[8] or QCD sum rules

on the light-cone. In this paper we focus on the sum rule approach.

The QCD light-cone sum rule method (LCSR) has been suggested in [9, 10, 11]

and is a combination of the operator product expansion (OPE) on the light-cone [12,

13, 14] with QCD sum rule techniques [15]. For a review of the method and results

we refer the reader to [16, 17].
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Within the sum rule approach results for the heavy-to-light form factors corre-

sponding to the B → π, B → K, D → π or D → K transitions are easily obtained
from one master formula [18]–[25]. Changing the light meson from a pseudo-scalar

meson to a vector meson (e.g. ρ, ω, K∗ or φ) the form factors of semi-leptonic or
rare radiative decays of a B-meson into vector mesons are obtained [25, 26, 27].

To illustrate our method we focus on the form factors relevant to the B → π
transition, defined through

〈π(q)|ūγµb|B(p+ q)〉 = 2f+(p2)qµ +
(
f+(p2) + f−(p2)

)
pµ , (1.1)

where p+ q, q and p denote the B and π four-momenta and the momentum transfer,

respectively, and f± are the two independent form factors. If one neglects lepton
masses only the form factor f+ is relevant. The standard sum rule technique starts

from the correlation function of two heavy-light currents

Fµ(p, q) = i

∫
dxeip·x〈π(q)|T{ū(x)γµb(x), mbb̄(0)iγ5d(0)}|0〉 . (1.2)

The correlation function is then expanded near the light-cone x2 ≈ 0. Each power of
x2 in the light-cone expansion leads to an additional power of m2b − (p+ uq)2 in the
denominator. Here u denotes the momentum fraction carried by one of the quarks

inside the pion. The light-cone expansion is justified, provided that (p + q)2 and p2

are sufficiently smaller than m2b . In particular this implies that p
2 < m2b − 2mbχ,

where χ is a scale of order ΛQCD. This limits the application of the sum rule to the

kinematic region to

0 < p2 < m2b − 2mbχ . (1.3)

However, in order to extract |Vub| one needs a prediction for the form factor f+ in
the whole kinematical range 0 < p2 < (mB −mπ)2, which is much wider than (1.3).
Several attempts have been made in the past to overcome this problem. One of

the first solutions [23] consisted of extrapolating the form factor from the region

0 < p2 < m2b − 2mbχ to the region m2b − 2mbχ < p2 < (mB −mπ)2 by assuming the
functional form

f+(p2) =
f+(0)

1− ap2/m2B∗ + b(p2/m2B∗)2
. (1.4)

Another analysis used the fact that close to the point p2 = m2B∗ the form factor can

be described by a simple pole model (see for example [28, 29, 30]), assuming vector

meson dominance:

f+(p2) =
fB∗gB∗Bπ

2mB∗ (1− p2/m2B∗)
. (1.5)

The coupling gB∗Bπ can be calculated by QCD sum rules techniques, starting from

the same correlation function eq. (1.2) and using a double dispersion relation. This

additional information was used in [17] by fitting a function of the form of eq. (1.4)

to the low p2-behavior obtained from the standard light-cone sum rule and to a single
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pole model description for high p2. A third approach was used in the analysis of [22]:

The Becirevic-Kaidalov parameterization [31]

f+(p2) = cB

(
1

1− p2/m2B∗
− α

1− p2/(γm2B∗)
)

(1.6)

was assumed as functional form and the parameters of this ansatz were determined

from QCD sum rules, using the light-cone sum rule for 0 < p2 < m2b − 2mbχ as well
as the information on the coupling gB∗Bπ. In the parameterization eq. (1.6) the first

term corresponds to the vector meson pole, whereas the second term represents an

effective contribution from all higher resonances.

All of the methods mentioned above involve ad hoc assumptions, which are

difficult to justify from first principles. In addition we cannot easily quantify the

error associated with these additional assumptions.

In this letter we suggest a new method for calculating heavy-to-light form factors

which yields a prediction in the whole kinematical range of momentum transfer and

overcomes the problem outlined above. We start from the same correlation function

eq. (1.2). The derivation of the new sum rule is based on a combination of double

and single dispersion integrals. The particular combination of double and single

dispersion integrals ensures that our sum rule is valid over the whole kinematical

region. As input data we need the value of f+(0), together with the first l derivatives

f+(l)(p2) at p2 = 0 (with l an integer), which can be obtained (numerically) from the

standard sum rule for f+(p2). In addition we need the value of the coupling gB∗Bπ,

which can be obtained from the sum rule for the coupling. We derive the new sum

rule to the same accuracy to which the two other sum rules are known [20, 21, 23]:

to next-to-leading order in twist 2 and to leading order in twist 3 and 4. We present

numerical results for the form factor f+(p2) for the B → π transition.
This paper is organized as follows: In the section 2 we introduce the new sum

rule. In section 3 we give for the new sum rule the QCD corrections to twist 2 relevant

for the B → π transition. Numerical results are given in section 4. Section 5 contains
our conclusions.

2. The formalism

We write the correlation function eq. (1.2) in terms of invariant amplitudes F (p2, (p+

q)2) and F̃ (p2, (p+ q)2)

Fµ(p, q) = F (p
2, (p+ q)2)qµ + F̃ (p

2, (p+ q)2)pµ , (2.1)

and focus on F (p2, (p+ q)2). We denote by

σ(p2, s2) =
1

π
Ims2 F (p

2, s2),

ρ(s1, s2) =
1

π2
Ims1 Ims2 F (s1, s2) (2.2)
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the imaginary part of F with respect to s2 and the double imaginary part of F ,

respectively. Furthermore we define by

Bp2 = lim
p2→−∞
n→∞

−p2/n=M2

1

(n− 1)!
(−p2)n( d

dp2

)n
(2.3)

the Borel operator with respect to the variable p2. Hadronic representations for the

spectral densities σ(p2, s2) and ρ(s1, s2) are written by singling out the ground state:

σhadr(p2, s2) = 2m
2
BfBf

+(p2)δ(s2 −m2B) + σhadr(p2, s2)Θ(s2 − s0) ,
ρhadr(s1, s2) = m

2
BmB∗fBfB∗gB∗Bπδ(s1 −m2B∗)δ(s2 −m2B) +
+ ρhadr(s1, s2) (1−Θ(s1, s2))Θ(s1 −m2b)Θ(s2 −m2b) . (2.4)

Here Θ(s1, s2) defines the duality interval in the (s1, s2)-plane for the ground state.

A convenient choice is given by the square

Θ(s1, s2) = Θ(s0 − s1)Θ(s0 − s2) . (2.5)

The standard sum rule for the form factor f+(p2) is obtained from writing a single

dispersion relation for F (p2, (p+ q)2) in the (p+ q)2-channel, inserting the hadronic

representation and borelizing in (p+ q)2:

B(p+q)2F (p2, (p+ q)2) = B(p+q)2
(
2m2BfBf

+(p2)

m2B − (p+ q)2
+

∫
s2>s0

ds2
σhadr(p2, s2)

s2 − (p+ q)2
)
. (2.6)

The Borel operator ensures that any subtraction terms which might appear will

vanish after borelization. One proceeds to replace σhad by σQCD and equate the

r.h.s. of eq. (2.6) to the QCD calculation of B(p+q)2F (p2, (p + q)2). This yields the
standard sum rule for f+(p2):

f+(p2) =
1

2m2BfB

∫ s0
m2b

σQCD(p2, s2)e
− s2−m

2
B

M2 ds2 . (2.7)

In a similar way the standard light-cone sum rule for the coupling gB∗Bπ is obtained

from a double dispersion relation:

Bp2B(p+q)2F (p2, (p+ q)2) = Bp2B(p+q)2
(

m2BmB∗fBfB∗gB∗Bπ
(p2 −m2B∗)((p+ q)2 −m2B)

+

+

∫
Σ

ds1ds2
ρhadr(s1, s2)

(s1 − p2)(s2 − (p+ q)2)
)
, (2.8)

where Σ denotes the union of s1 > s0, s2 > m
2
b with s1 > m

2
b , s2 > s0. Again the

presence of the Borel operators ensures that any subtraction will give a vanishing

contribution. The LCSR for the coupling gB∗Bπ reads:

gB∗Bπ =
1

m2BmB∗fBfB∗

∫ s0
m2b

ds1

∫ s0
m2b

ds2ρ
QCD(s1, s2)e

− (s1−m
2
B∗ )+(s2−m

2
B)

M2 . (2.9)

Here we took the two Borel parameters to be equal.
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To derive our new sum rule we suggest here to use a dispersion relation for

σ(p2, s2)/(p
2)l in the p2-channel (with l being an integer)

σ(p2, s2) = − 1

(l − 1)!
(
p2
)l dl−1
dsl−11

σ(s1, s2)

s1 − p2
∣∣∣∣
s1=0

+

∫
s1>m2b

ds1
(p2)l

sl1

ρ(s1, s2)

s1 − p2 (2.10)

and to replace σ(p2, s2) in eq. (2.6) by the r.h.s. of eq. (2.10). By choosing l high

enough the dispersion relation eq. (2.10) will be convergent. We obtain

B(p+q)2F (p2, (p+ q)2) =

= B(p+q)2
(
2m2BfBf

+(p2)

m2B − (p+ q)2
+

∫
s1>m

2
b

s2>s0

ds1ds2
(p2)l

sl1

ρ(s1, s2)

(s1 − p2)(s2 − (p+ q)2)−

− 1

(l − 1)!
∫
s2>s0

ds2
s2 − (p+ q)2 (p

2)l
dl−1

dsl−11

σ(s1, s2)

s1 − p2
∣∣∣∣
s1=0

)
. (2.11)

Furthermore we write down a double dispersion relation for F (p2, (p+ q)2)/(p2)l:

B(p+q)2F (p2, (p+ q)2) =
= B(p+q)2

(
(p2)l

(m2B∗)
l

m2BmB∗fBfB∗gB∗Bπ

(p2 −m2B∗)((p+ q)2 −m2B)
+

+

∫
Σ

ds1ds2
(p2)l

sl1

ρ(s1, s2)

(s1 − p2)(s2 − (p+ q)2) −

− 1

(l − 1)!
∫
s2>m2b

ds2
s2 − (p+ q)2 (p

2)l
dl−1

dsl−11

σ(s1, s2)

s1 − p2
∣∣∣∣
s1=0

)
. (2.12)

Again, by choosing l high enough the dispersion integral will be convergent in the

s1-channel. The Borel operator ensures that any subtraction terms in the s2-channel

will vanish. Now equating the r.h.s. of eq. (2.11) with the r.h.s. of eq. (2.12) we

obtain the sum rule

f+(p2) =
1

2

(p2)l

(m2B∗)
l

fB∗gB∗Bπ

mB∗
(
1− p2

m2
B∗

) − 1

(l − 1)!
(
p2
)l dl−1
dsl−11

f+(s1)

s1 − p2
∣∣∣∣
s1=0

+

+
1

2m2BfB

∫
Σ′
ds1ds2

(p2)l

sl1

ρ(s1, s2)

s1 − p2 e
− s2−m

2
B

M2 , (2.13)

where the region Σ′ is defined by s1 > s0 and m2b < s2 < s0. This sum rule is valid
in the whole kinematical range of p2. As input data we need the first (l − 1) terms
of the Taylor expansion of f+(p2) around p2 = 0. These parameters can be obtained

numerically from the standard sum rule eq. (2.7). We further need the residuum at

the pole p2 = m2B∗ , which can be obtained from the sum rule eq. (2.9). The new

sum rule agrees by construction with the standard sum rule eq. (2.7) in a Taylor

expansion around p2 = 0 up to the first (l − 1) terms. Furthermore the residuum at
p2 = m2B∗ agrees with the coupling sum rule eq. (2.9).
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We remark that the parameter l plays a similar role as the Borel parameter M2:

There is a lower limit on l since the dispersion relations eq. (2.10) and eq. (2.12)

have to converge. Going to higher values for l will improve the convergence of the

dispersion relations and suppress higher resonances in the B∗-channel. But there
is also an upper limit on l: The higher the value of l, the more derivatives of

f+(p2) at p2 = 0 we have to know. At some point we start probing the region

p2 > m2b − 2χmb, at which the standard sum rule eq. (2.7) might break down.
By using the sum rule with various values of l, say l = 1, 2, 3 and by looking

at the variation of the results, we can get an estimate of the uncertainty of our

method.

In the case l = 0 the second term is absent. For l = 0 the first term corresponds

to the pole model. As we will show explicitly below, the last term vanishes for the

leading order twist 2, 3 and 4 contributions. The first non-vanishing contribution

comes from the αs-corrections to the twist 2 contribution. This might explain the

empirical fact that for some heavy-to-light transitions (like for D → π) the simple
pole model approximates the form factor reasonably well.

3. The additional term

We now consider the last term in eq. (2.13)

f+corr(p
2) =

1

2m2BfB

∫
Σ′
ds1ds2

(
p2

s1

)l
ρ(s1, s2)

s1 − p2 e
− s2−m

2
B

M2 , (3.1)

which has to be evaluated. The sum rules eq. (2.7) and eq. (2.9) are known in twist

2 to NLO accuracy, and in twist 3 and 4 to LO. Aiming at the same accuracy for

eq. (3.1) we find that the LO contributions of twist two, three and four vanish. This

is due to the fact that the spectral density ρ(s1, s2) at leading order is localized along

the diagonal s1 = s2, whereas the integration region Σ
′ lies beyond the diagonal.

At next-to-leading order the situation is different. The radiative corrections give

contributions which are smeared over the whole s1 − s2 plane, overlapping with the
region Σ′. For the twist 2 NLO contribution we find:

f+corr(p
2) = 3CF

αs

π

m2bfπ

2m2BfB

(
p2

m2b

)l
exp

(
−m

2
b −m2B
M2

)
×

×
{[∫ ∞

1

dr
g1(r)

(r − 1)3 −
∫ ∞
1

dr
g′1(1)
(r − 1)2 −

1

2

∫ 2
1

dr
g′′1(1)
r − 1

]
+

+ 2

[∫ ∞
1

dr
g2(r) ln(r)

(r − 1)3 −
∫ 2
1

dr
g′2(1)
r − 1

]}
, (3.2)
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where

g1(r) = −
∫ (1+r)z0
1+r
r
z0

ds r e−
bs
1+r

(
1 + r

1 + r + rs

)l
1

1 + r + rs− a− ar ×

×
(

s

1 + r + s
+ ln

(
1 + r + rs

1 + r + s

))
,

g2(r) =

∫ (1+r)z0
1+r
r
z0

ds r e−
bs
1+r

(
1 + r

1 + r + rs

)l
1

1 + r + rs− a− ar . (3.3)

Here we used the dimensionless variables

a =
p2

m2b
, b =

m2b
M2
, z0 =

s0 −m2b
m2b

. (3.4)

Eq. (3.2) is written in such a form that singularities at r → 1, which are present
in individual contributions, cancel explicitly in the combinations inside the square

brackets. The values of g1 and g2 and their derivatives at r = 1 are

g1(1)= 0, g′1(1) = −e−bz0
1

(1 + z0)l
z20
1 + z0

1

1 + z0 − a,

g′′1(1)=−e−bz0
1

(1 + z0)l
z20

(1 + z0)2
1

(1 + z0 − a)2 ×

×
(
lz0a− 2z0a− bz0a− bz20a− a+ bz0+ bz30+2bz20+ z20− lz20− lz0+1+ 2z0

)
,

g2(1)= 0 , g′2(1) = −e−bz0
1

(1 + z0)l
z0

1 + z0 − a . (3.5)

The integrations over r and s can be performed numerically.

4. Numerical results

We perform a numerical evaluation of the new sum rule eq. (2.13) for the values

l = 0, 1, 2 and 3. We need therefore the values of f+ and its first two derivatives at

p2 = 0. These numbers can be obtained from the sum rule eq. (2.7). The derivatives

are obtained numerically according to

(f+)′(0) =
f+(∆s)− f+(0)

∆s
, (f+)′′(0) =

f+(2∆s)− 2f+(∆s) + f+(0)
(∆s)2

. (4.1)

The sum rules eq. (2.7) and eq. (2.9) depend on various input parameters, where each

parameter is only known within a certain range. A complete error analysis, where

each parameter was varied within an interval, was carried out in [22]. In this letter

we do not repeat such a complete error analysis. We only study the dependence

7
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Figure 1: The results of the new sum rule for the form factor f+B→π(p
2) for different

numbers l. The dotted line corresponds to l = 0, the solid lines correspond to l = 1, 2, 3.

on l and we fix here these additional parameters to certain values. As numerical

input parameters we use mb = 4.7GeV, s0 = 35GeV
2 and α(mZ) = 0.118. We note

that the value of the pole mass is compatible with the recently updated MS mass

m̄(m̄) = 4.2±0.1 (for a review of recent results see [32]). The same values of mb and
s0 have been used in the two-point sum rule for estimating the decay constant fB.

We obtained fB = 183MeV. The coefficients of the leading twist pion distribution

amplitude have recently been updated in [33, 34], the coefficients of the twist three

and four amplitudes can be found in [11, 18, 19, 35]. Table 1 shows the results for

the form factor f+ and its first two derivatives at p2 = 0 calculated from the sum

rule eq. (2.7).

We further need the B∗Bπ coupling
f+Bπ(0) (f+Bπ)

′(0) (f+Bπ)
′′(0)

0.28 0.014GeV−2 0.0014GeV−4

Table 1: The form factor f+Bπ and its first

derivatives at p2 = 0GeV.

as input data. This value is obtained from

the sum rule eq. (2.9) as fB∗gB∗Bπ = 4.4

GeV [19, 21, 36]. With these input values

we evaluate the sum rule eq. (2.13) for l =

0, 1, 2 and 3. For the Borel parameter we

use M2 = 10GeV2. Our results are shown in figure 1. First of all we note a

remarkable stability of the numerical results with respect to changing the number

of subtractions l. The results for l = 1, 2 and 3 are almost identical. Secondly, the

result for l = 0 (which is the pole model plus an αs-correction term) differs at low

momentum, but approaches for high momentum the results with subtractions. This

corresponds to the known fact, that for the B → π transition the pole model does not
describe the form factor accurately at low momentum. This is also shown in figure 3.

We also note that the standard sum rule for f+ eq. (2.7) will differ significantly

from our results at high momentum. Our results for l = 1, 2, 3 agree well with the

8
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p2[GeV2]

R =
g�f+

l=2

f+
l=2

Figure 2: The relative deviation of the the numerical results with l = 1 from l = 2 (solid

line), of l = 3 from l = 2 (dashed line) and of the result quoted in [22] from l = 2 (dotted

line).

parameterization given in [22]:

f+Bπ(p
2) =

f+Bπ(0)

(1− p2/m2B∗)(1− αBπp2/m2B∗)
, (4.2)

f+Bπ(0) = 0.28± 0.05, αBπ = 0.32±0.210.07 . (4.3)

To see the difference we take l = 2 as our main result and plot in figure 2 the

deviation

R =
g(p2)− f+l=2(p2)
f+l=2(p

2)
, (4.4)

where we take for g the results f+l=1, f
+
l=3 and the values according to eq. (4.2) with

f+Bπ(0) = 0.28 and αBπ = 0.32. The deviations are small.

In figure 3 we show the sum rule results for the B → π form factor, eq.(2.13)
with l = 2 (solid line) and the pole model prediction (dotted line) in comparison

to lattice results. The lattice results come from FNAL [5] (full circles), UKQCD [6]

(triangles), APE [7] (full square), JLQCD [8] (open circles), and ELC [5] (semi-full

circle). Taking into account the uncertainty of our result, which is estimated to be

roughly 15−20% [22], we observe a satisfactory agreement with most lattice results.
However, the results from the JLQCD collaboration lie systematically above our

values. In addition, this group quotes rather small uncertainties. In general, further

improvements in the accuracy of lattice calculations are welcome.

5. Conclusions

In this letter we have shown a method how to obtain the form factor for heavy-to-

light transitions in the whole range of momentum transfer. Our method extends the

9
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Figure 3: The sum rule results for the B → π form factor, eq. (2.13) with l = 2 (solid
line) and the pole model result (dotted line) in comparison to lattice results. The lattice

results come from FNAL [5] (full circles), UKQCD [6] (triangles), APE [7] (full square),

JLQCD [8] (open circles), and ELC [5] (semi-full circle).

QCD sum rule approach and uses a combination of single and double dispersion re-

lations. It involves an additional (integer) parameter l, corresponding to the number

of subtractions in one channel. We have derived the corresponding sum rule for the

B → π transition to twist four accuracy and including radiative corrections to the
twist-2 contribution. As input data we need the first (l − 1) terms of the Taylor
expansion of f+(p2) around p2 = 0 as well as the residuum at the pole p2 = m2B∗ ,

which can reliable be obtained from standard sum rules. The new sum rule involves

an additional term, which vanishes in leading order for the twist two, three and four

contributions. We have calculated the non-vanishing next-to-leading order twist two

contribution to this term. We have shown that variation of the parameter l intro-

duces only small numerical changes in the final result for the form factor, which are

negligible against other uncertainties.
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