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1. Introduction

A widespread interest in non-commutative theories from the perspective of string

theory started with the paper of Seiberg and Witten [1]. They realized that, among

other things, open strings probing the D-brane are most naturally described using

open string moduli which depend on the 2-form F on the D-brane; the open string
metric (G−1os )ab and the open string coupling constant λos. As first discussed in [2],
this situation was generalized to include the M5-brane of M-theory, which involved

a conjectured open membrane (OM) metric which depended on the nonlinearly self-

dual 3-form H on the M5-brane.
In a somewhat different context it was shown in [3, 4] that both the open string

and the open membrane metric provide the propagation cone for all D3- and M5-

brane degrees of freedom, which always lies inside the bulk Einstein light-cone. Con-

sequently they also showed explicitly that all equations of motion on the M5-brane

and the D3-brane can be conveniently written using a symmetric tensor that is in

the same conformal class as the open string and open membrane (co-) metric, the

so-called Bouillat metric.

Attempts to decouple D-brane theories from the bulk supergravity were at first

only successful for magnetic field strengths giving rise to non-commutative gauge

theories [1]. To avoid problems with unitarity in spatio-temporal non-commutative

field theory [5, 6] one was lead to the discovery of decoupled non-commutative open

string theories (NCOS) on D-branes [7, 8], forcing one to take a critical limit for the

electric field strength. By considering a decoupling limit where the electric 3-form

field strength on the M5-brane becomes (nearly) critical this lead to the introduction

of OM-theory [9, 10], which can be understood as the mother of all (spatially and

spatio-temporally) non-commutative theories.
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In [10] the conformal factor in front of the open membrane metric was fixed using

a decoupling argument: the open membrane metric (G−1OM)ab and the D = 11 Planck
length `p should define a finite (non-commutative) length scale `g in the OM-theory

decoupling limit. This allowed one to fix the conformal factor, but only up to terms

that vanish in the decoupling limit. In this paper we would like to determine the

conformal factor without ever considering a decoupling limit. Our guiding principle

will be that we want the open membrane metric (G−1OM)ab to reduce to the open string
metric (G−1os )ab and the open string coupling constant λos. As we will see this will
enable us, using reduction ansatze analogous to the bulk M-theory/IIA relations, to

fix the conformal factor.

Reducing the open membrane metric to an expression depending only on the

2-form F is non trivial because of the non-linear self-duality equation on the M5-
brane and consequently, the non-linear duality equation on the D4-brane (described

by non-linear Dirac-Born-Infeld (DBI) theory, for a review see [11]). The reduction

of the open membrane metric was performed in [12, 13], but to obtain their result

we will proceed in a slightly different (and less general) manner. More importantly,

they were unaware at that time of the interpretation of their symmetric tensor as

the open membrane metric and therefore did not consider the internal component

of that tensor upon reduction, which we will now interpret as the open string cou-

pling constant. So keeping these newly acquired insights in mind and redoing their

calculation [12, 13], simplifying matters by imposing a constraint that will restrict

our attention to rank 2 solutions of the 2-form F , we are able to fix the confor-
mal factor of the open membrane metric as to give us both the open string metric

and the open string coupling constant upon (double dimensional) reduction of the

M5-brane.

After fixing the conformal factor we reduce the open membrane metric on a

2-torus giving an SL(2,R) invariant open string metric and introducing a complex

open string coupling constant as the modular parameter of the torus as seen by the

open membrane. We find that generically the situation on the D3-brane is very

similar to the M5-brane in the sense that the doublet of 2-form field strengths has

to satisfy a non-linear self-duality equation. By SL(2,R) rotating into a special

frame we can reproduce the Seiberg-Witten results, at the cost of giving up manifest

SL(2,R) invariance. These results are of course intimately connected to previous

investigations of SL(2,R) invariance on the D3-brane [14]–[18], but we will make full

use of the open membrane metric idea in the sense that the SL(2,R) symmetry is

generated by the open membrane torus, instead of the usual “bulk” torus. In that

way we will also be connecting to work done with respect to the SL(2,R) symmetry

of NCOS theories on the D3-brane [19, 20, 21]. In the same section we also comment

on the decoupling limit that would give rise to (p, q) non-commutative open strings

that were discussed recently in [22, 23]. We end with some conclusions, remarks and

possible future extensions of our work.
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2. M5-brane preliminaries

Our starting point1 will be the following six-dimensional symmetric tensor defined

on a single (abelian) M5-brane (â, b̂ ∈ (0, 1, . . . , 5)),

Ĉ âb̂ =
1

K

[(
1 +

1

12
Ĥ2
)
ĝâb̂ − 1

4
(Ĥ2)âb̂

]
, (2.1)

which depends on the gauge invariant 3-form field strength Ĥ = dB̂ + Ĉ, where B̂
is a 2-form gauge field living on the M5-brane and Ĉ is the 3-form gauge field of

D = 11 supergravity. We also used (Ĥ2)âb̂ ≡ Ĥâĉd̂Ĥb̂
ĉd̂
and introduced a function K

equal to

K =

√
1 +

1

24
Ĥ2 . (2.2)

This tensor is conformal to the open membrane co-metric2 and was shown to reduce

to the so-called Bouillat metric of non-linear DBI electrodynamics in [4].

The equations of motion of the tensor multiplet, the non-linear self-duality equa-

tion and the energy momentum tensor on the M5-brane can all be conveniently writ-

ten using this tensor (2.1) [4] (which implies that C−1 defines the propagation cone
for all perturbative degrees of freedom). For our purposes we only need the non-linear

self-duality equation the 3-form Ĥ satisfies on the M5-brane, which is

Ĉâ
d̂ Ĥd̂b̂ĉ =

√− det ĝ
3!

εâb̂ĉd̂êf̂Ĥd̂êf̂ . (2.3)

For ease of computation we will from now on assume that the M5-brane world-

volume is flat, so ĝâb̂ = η̂âb̂. In [12, 13] many of the calculations made use of relating

the 3-form Ĥ to another (unphysical) 3-form ĥ which satisfies a linear self-duality
equation. If possible, we would like to avoid using the linearly self-dual 3-form ĥ,

but we are going to use it to deduce a constraint on (Ĥ4)âb̂ ≡ (Ĥ2)âĉ(Ĥ2)b̂ĉ, which
will turn out to be useful.

The two 3-forms are related in the following way

ĥâb̂ĉ =
1

4
m̂â

d̂ Ĥd̂b̂ĉ , (2.4)

with

m̂âb̂ ≡ η̂âb̂ − 2k̂âb̂ ,
k̂âb̂ ≡ ĥâ ĉd̂ ĥb̂ĉd̂ . (2.5)

1We use a mostly plus signature convention for the metric and the 3-form fields are dimensionless.

We also use hats to distinguish the D = 6 fields and indices from the D = 5 fields and indices.
2Because indices are lowered and raised with the usual metric ĝâb̂, we have to make a clear

distinction between inverse open brane metrics and co-metrics, i.e. (Ĝ−1)âb̂ 6= Ĝâb̂.
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Because ĥ satisfies a linear self-duality equation we find first of all that Tr k̂âb̂ ≡
η̂âb̂k̂

âb̂ = 0 and we also deduce

ĥâb̂êĥ
ĉd̂ê =

1

4
δ̂
[ĉ
[â k̂
d̂]

b̂]
, (2.6)

k̂â
ĉ
k̂ĉ
b̂
=
1

6
k̂2 δ̂b̂â . (2.7)

Using (2.7) it is straightforward to calculate the inverse of m̂, which is equal to

(m̂−1)âb̂ =
1

1− 2
3
k̂2
(η̂âb̂ + 2k̂âb̂) . (2.8)

To find a constraint on (Ĥ4)âb̂ we replace ĥ by Ĥ in (2.6) giving us

Ĥâb̂êĤĉd̂ê = 4
2
3
k̂2

(1− 2
3
k̂2)2
δ̂
[ĉ
[â δ̂
d̂]

b̂]
+

4

(1− 2
3
k̂2)2
k̂
[ĉ
[â k̂
d̂]

b̂]
+ 4

1 + 2
3
k̂2

(1− 2
3
k̂2)2
δ̂
[ĉ
[â k̂
d̂]

b̂]
. (2.9)

Tracing this equation once allows us to express k̂âb̂ as

k̂âb̂ =
1

16

(1− 2
3
k̂2)2

1 + 2
3
k̂2

[
(Ĥ2)âb̂ − 1

6
Ĥ2 η̂âb̂

]
(2.10)

and tracing again gives

Ĥ2 = 96
(

2
3
k̂2

(1− 2
3
k̂2)2

)
, (2.11)

enabling us to write the right hand side of (2.10) solely in terms of Ĥ.
So far we have just repeated part of the analysis performed in [12] and [4]. To

continue we use the expression (2.10) and plug that into eq. (2.7) to find the following

expression for (Ĥ4)âb̂
(Ĥ4)âb̂ = 2

3
Ĥ2
[
η̂âb̂ +

1

2
(Ĥ2)âb̂

]
. (2.12)

Tracing eq. (2.12) we obtain3

1

4
Ĥ4 = Ĥ2

(
1 +

1

12
Ĥ2
)
. (2.13)

It should be possible to deduce this constraint from the non-linear self-duality equa-

tion (2.3) directly but we expect that to be more elaborate. From now on we will no

longer use the (unphysical) field ĥ (and the tensors that depend on it).

Using (2.12) one can easily verify that the inverse of Ĉ âb̂ is given by

(Ĉ−1)âb̂ =
1

K

[
η̂âb̂ +

1

4
(Ĥ2)âb̂

]
. (2.14)

We note that the traces of Ĉ and its inverse are both equal to 6
√
1 + 1

24
Ĥ2 and that

we have, according to [4], the remarkable identity det(C−1)ab = det gab.
3Note that we will write (Ĥ2)2 to distinguish it from Ĥ4, where the first expression should be

understood in matrix notation as (Tr(Ĥ2)âb̂)2 and the second as Tr(Ĥ4)âb̂.
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We define the open membrane co-metric as

Ĝâb̂OM = z Ĉ
âb̂ (2.15)

and it will be our goal in the next section to determine the conformal factor z by

performing the double dimensional reduction.

3. The open membrane metric on the circle

First of all we split the D = 6 indices into â = (a, y) where xy is a compact direction

in the worldvolume of the M5-brane and identify the D = 5 (dimensionless) 2-form

and 3-form fields as follows

Ĥaby ≡ Fab ,
Ĥabc ≡ Habc . (3.1)

As a consequence of the non-linear self-duality equation in D = 6 (2.3) the 3-

form H and the 2-form F are related through a set of non-linear duality equations
given by

Ca
dHdbc + Ca y Fbc = 1

2
εabcdeFde , (3.2)

Cy
dHdab + Cy y Fab = − 1

3!
εabdefHdef , (3.3)

Ca
dFdb = − 1

3!
εabdefHdef , (3.4)

where the different components of Ĉ are

Cab ≡ Ĉab = 1
K

[(
1 +

1

12
H2 + 1

4
F2
)
ηab − 1

4
(H2)ab − 1

2
(F2)ab

]
, (3.5)

Cay =
−1
4K
Ha cdF cd, (3.6)

Cyy =
1

K

(
1 +

1

12
H2
)
ηyy . (3.7)

In these expressions we used that Ĥ2 = H2 + 3F2 and (Ĥ2)ab = (H2)ab + 2(F2)ab.4
Our goal is to express Cab and Cyy solely in terms of F , using the set of non-

linear duality equations (3.2), (3.3) and (3.4). Looking at these equations it is clear

that this is not an easy problem. Instead of solving eqs. (3.2), (3.3) and (3.4) one

4We note that our definition of (F2)ab differs by a minus sign with conventional matrix multi-
plication.
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could also look at the reduced expression for (Ĥ4)âb̂ (2.12), giving us the following
set of equations(
(H2)a c + 2 (F2)a c

) (
(H2)cb + 2(F2)cb)+ (HacdFcd) (HbklFkl) =

=
2

3
(H2 + 3F2)

(
ηab + (F2)ab + 1

2
(H2)ab

)
, (3.8)[

1

3
H2ηac − ((H2)ac + 2(F2)ac)]HcmnFmn = 0 , (3.9)

(HcklFkl)(HcmnFmn)− 2
3
(H2 + 3F2)− 1

3
H2F2 = 0 . (3.10)

The solution to these equations can be found in the most general case [13], but

in this paper we will find it useful to simplify matters considerably by insisting that

the off-diagonal terms in the compact direction of the M5-brane Bouillat co-metric

vanish, i.e.

Vc ≡ HcmnFmn = 0 . (3.11)

This simplifies the equations considerably and we will proceed by focusing our at-

tention on the duality equation (3.3), where the term containing Cy
d now vanishes.

Multiplying that equation with CyyFac one finds the following useful relations (where
the second one is obtained by tracing the first one5)

(H2)ab = 1

1 + 1
2
F2
(
2(F2)ab − F2ηab) , (3.12)

H2 = −3F2
1 + 1

2
F2 . (3.13)

This is all we need to write Cab and Cyy strictly in terms of F . As it turns out,
we can also find a constraint on (F4)ab. Using both results (3.12) and (3.13) and
plugging them into eq. (3.8) we find a surprisingly simple expression for (F4)ab

(F4)ab = 1
2
F2(F2)ab . (3.14)

An analysis of this equation in terms of the eigenvalues of Fab quickly reveals that
our solutions for Fab are restricted to rank 2 only. This is a direct consequence of
the constraint (3.11) we imposed in order to simplify our analysis.

We are now ready to express Cab and Cyy in terms of F only. We find

Cab =
1√
1 + 1

2
F2

((
1 +
1

2
F2
)
ηab − (F2)ab

)
, (3.15)

Cyy =
ηyy√
1 + 1

2
F2

(3.16)

5Actually, using (3.11), the second equation can also be deduced directly from (3.10).
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and the inverse of Cab, using (3.14),

(C−1)ab =
1√
1 + 1

2
F2
(
ηab + (F2)ab

)
(3.17)

We note that by imposing that the off-diagonal components Cay vanish (3.11), we

would have found the same result by reducing the inverse M5-brane Bouillat metric

(instead of reducing the M5-brane Bouillat co-metric). This is no longer true when

we would not have imposed this constraint.

The symmetric tensor (C−1)ab should be equal to the Bouillat metric. At first
sight it looks like there is a discrepancy with the result obtained in [4] where the

conformal factor is equal to the inverse of
√− det(ηab + Fab) instead of √1 + 1

2
F2.

However, the 5-dimensional determinant − det(ηab + Fab) can be worked out to be
equal to

− det(ηab + Fab) = 1 + 1
2
F2 + 1

8
(F2)2 − 1

4
F4 . (3.18)

Tracing eq. (3.14) it is clear that the last two terms in this expression of the deter-

minant cancel each other and the right-hand side of (3.18) reduces to 1+ 1
2
F2. So we

conclude that we end up with the expected result, that agrees with [4, 12], using a

procedure in which we have restricted ourselves to consider rank 2 F solutions only
by imposing the (consistent) constraint Vc = 0 (3.11).

Our next goal is to determine the conformal factor z (2.15). As discussed in [9,

10], the relation between the 6-dimensional OM-theory parameter `g and the 5-

dimensional NCOS parameters αos, λos, after the decoupling limit, mimics the bulk

relations between M-theory and IIA string theory. An important assumption we

will make is that these relations continue to hold beyond the decoupling limit. As a

result, in analogy with the bulk relation ηyy ≡ gs−4/3, we will define the open string
coupling constant λos as follows

λ−4/3os ≡ GyyOM = z Cyy =
z g
−4/3
s√
1 + 1

2
F2
. (3.19)

We can now fix z by demanding this expression to be equal to the Seiberg-Witten

one [1] (replacing the determinant with our result 1 + 1
2
F2)

λos = gs

√
1 +
1

2
F2 . (3.20)

This determines z to be equal to

z =

(
1 +
1

2
F2
)−1/6

. (3.21)
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The next thing we should show is that upon including gs’s everywhere in our

expressions for Cab we precisely find the open string metric and the open string

coupling upon reduction of the open membrane metric. First of all we define the

open membrane metric and the open string metric to be related in the following way

(analogous to the well-known bulk relation ηab = g
−2/3
s η

(s)
ab )

(G−1OM)ab ≡ z−1(C−1)ab ≡ λ−2/3os (G−1os )ab . (3.22)

Using this definition, plugging in our expressions for z and λos we indeed find precisely

the open string metric

(G−1os )ab = η
(s)
ab + (F2)ab , (3.23)

where (F2)ab is now defined with respect to the string frame metric, i.e. (F2)ab =
Fac ηcd(s)Fbd. We have now successfully shown that the open membrane metric, with
the previously unknown conformal factor z now determined, reduces to the Seiberg-

Witten expressions for the open string metric and the open string coupling. We

note that our procedure that lead to this result was restricted to rank 2 F only and
assumed reduction ansatze analogous to the bulk.

The only thing left to do is to rewrite this conformal factor z (3.21) in terms of

Ĥ, using (3.13) and the fact that Ĥ2 = H2 + 3F2. It turns out to be useful to write
this expression in terms of K (2.2) and we find

z =
(
(2K2 − 1)± 2K2√1−K−2

)−1/6
. (3.24)

Because the relation between Ĥ2 and F2 is quadratic there is a sign ambiguity in
this expression.

The sign ambiguity can be fixed by performing the following consistency check.

Our result for the conformal factor should reproduce the result reported in [10] that

the conformal factor scales as (`p/`g)
2 in the OM-theory decoupling limit. One can

check that in the OM-theory limit K2 scales as

K2 = 1 +
1

24
Ĥ2 ∼

(
`g
`p

)3
. (3.25)

As it turns out, only when we choose the (−) sign in the expression for z (3.24),
due to some crucial cancellations (expanding the square root to second order), the

conformal factor precisely scales as

[
(2K2 − 1)− 2K2√1−K−2]1/6

K
∼ (K2)−2/3 =

(
`p

`g

)2
, (3.26)

therefore reproducing the result of [10]. Taking the (+) sign however, results in a

diverging open membrane metric with respect to the Planck length `p (the conformal

8
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factor is proportional to `p/`g to leading order) in the OM-theory decoupling limit.

So, finally, after getting rid of the sign ambiguity to agree with the expected behavior

in the decoupling limit, the open membrane metric is determined to be equal to

(G−1OM)ab =

(
(2K2 − 1)− 2K2√1−K−2)1/6

K

[
η̂âb̂ +

1

4
(Ĥ2)âb̂

]
. (3.27)

4. The open membrane metric on the torus

Our results support the idea that the open membrane metric can be understood, upon

reduction, as providing the geometric origin of the open string (or more generally,

open brane) moduli, independent of whether the M5-brane or D-brane is decoupled

from the bulk or not. This also implies the existence of an SL(2,Z) generalization

of the open string coupling constant, i.e. a complex open string coupling constant,

which should equal the modular parameter of the (OM) torus, analogous to what

happens when wrapping M-theory on a torus.

We will consider zi, with i = 4, 5, to be the coordinates on the torus and xa,

with a = 0, 1, . . . , 3 as the (directly reduced) D3-brane coordinates. From the start

we will assume that the off-diagonal open membrane (co-) metric components Ĝai

vanish, again effectively restricting us to rank 2 solutions. For our purposes here we

will also assume that after reduction on the T 2 we will be left with 2-forms only.6 So

we define

Ĥabi ≡ Fab, i , (4.1)

Ĥaij ≡ Va ≡ 0 ,
Ĥabc ≡ Habc ≡ 0 .

Because we restricted the fields H and V to be zero, we can write

(Ĥ2)ab = 2 (F iζijF j)ab (4.2)

and

Ĥ2 = 3F iζijF j , (4.3)

where ζij is the metric on the torus (it is understood that the absence of D = 4

spacetime indices means they are summed over). Obviously these expressions are

SL(2,R) invariant. Again, as a consequence of the non-linear self-duality equation on

the M5-brane, the doublet of two-forms on the D3-brane has to satisfy the following

6One can check that after imposing Ĝai = 0 the duality equations relating the 2-forms “decouple”

from the duality equations relating the 1- and 3-forms, allowing for a consistent truncation with

vanishing 1- and 3-forms.
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set of (self-) duality equations

C ijFab, j = 1
2
εabef (ε

ij F ef j) , (4.4)

CadFdb, i = 1
2
εabef (εij F ef, j) , (4.5)

where the tensors C are now given by

Cij =
1

K

[(
1 +
1

4
FkζklF l

)
ζ ij − 1

4
(F2)ij

]
, (4.6)

Cab =
1

K

[(
1 +
1

4
FkζklF l

)
ηab − 1

2
(FkζklF l)ab

]
. (4.7)

The reduction of eq. (2.12) gives the following relations for (F2)ikζkl(F2)jk and
((FkζklF l)2)ab

(F2)ikζkl(F2)jl = 2(FkζklF l)
[
ζ ij +

1

2
(F2)ij

]
, (4.8)

(
(FkζklF l)2

)ab
=
1

2
(FkζklF l)

[
ηab + (FkζklF l)ab

]
, (4.9)

which are useful for checking that the inverses of C on the torus and the D3-brane

are given by

(C−1)ij =
1

K

[
ζij +

1

4
(F2)ij

]
, (4.10)

(C−1)ab =
1

K

[
ηab +

1

2
(FkζklF l)ab

]
. (4.11)

Previously, when reducing the M5-brane on a circle we used the duality equations

to rewrite everything in terms of F only and we obtained the expected Seiberg-
Witten results. However, in this case the set of duality equations generically relate

the SL(2,R) doublet F i to the doublet F i in a complicated (intertwined) way, i.e.
it is more like a self-duality equation. Another way of saying this is that generically

both electric and magnetic components of both field strengths in the doublet have

to be turned on to satisfy the set of duality equations (4.4) and (4.5). The question

arises as to how we can obtain the Seiberg-Witten results for the D3-brane, which

should still be valid when only one of the 2-forms in the doublet is turned on.7

The answer is that in the special case where the off-diagonal components of C ij

vanish, the set of duality equations allows for solutions with only one of the 2-forms

turned on in a particular direction, i.e. the set of self-duality equations reduces to

a set of ordinary (non-linear) duality equations relating one of the 2-forms in the

7To be more precise, we need the off-diagonal components of Cij to vanish. As we will see, this

means that the bulk axion has to vanish as well.
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doublet to the other one. This enables us to follow the same procedure as before,

solving for just one of the 2-forms in the doublet and we will check that this indeed

gives the expected result for the open string metric and coupling constant. Another

way to understand this is that in a generic SL(2,R) basis we are clearly forced to use

both 2-forms and the result for the open membrane metric is proportional to (4.10),

whereas in the special case we should be able to rewrite (4.10) in terms of just one of

the 2-forms and it is only then that we will find the Seiberg-Witten results. It must

be clear that on the D3-brane it is always possible to find such an SL(2,R) basis,8

at the cost of giving up manifest SL(2,R) invariance.

After clearing that up we now want to rewrite our results (4.10) and (4.11) in

terms of the appropriate open string quantities, the open string (“Einstein”) metric

G−1osE and the complex open string coupling constant T = X + i λ
−1
os . First of all

we make the following standard identifications of the bulk quantities (τ = χ +

i g−1s )

ηab =
1√
A
(bulk)

T 2

η
(E)
ab , (4.12)

A
(bulk)
T 2 =

√
det ζij =

√
ζ44ζ55 − ζ245 , (4.13)

χ = −ζ45
ζ44
, (4.14)

g−2s =
ζ55 − ζ245

ζ44

ζ44
. (4.15)

Together with (4.1), this enables us to write the SL(2,R) invariant quantity (F iζijF j)
as follows

(F iζijF j) = gs(F4 − χF5)2 + g−1s (F5)2 , (4.16)

which is invariant under the following SL(2,R) transformations

τ −→ aτ + b
cτ + d

, (4.17)(F4
F5
)
−→

(
a b

c d

) (F4
F5
)
, (4.18)

with ad− bc = 1. We note that when calculating (F iζijF j)ab, because we defined the
two-forms contravariantly (4.1), we obtain an extra factor (A

(bulk)
T 2 )−1/2 as compared

to eq. (4.16).

8Upon considering SL(2,Z) this is no longer necessarily true, in that case one needs a rational

axion to be able to rotate to a frame in which the axion vanishes.
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The next step is to define the corresponding open string quantities on the D3-

brane in an analogous way using the open membrane metric (3.27). So we define

(G−1OM)ab ≡
1√
A
(OM)
T 2

(G−1osE)ab , (4.19)

A
(OM)
T 2 =

√
det(G−1OM)ij =

√
(G−1OM)44(G

−1
OM)55 − (G−1OM)245 , (4.20)

X ≡ −(G
−1
OM)45

(G−1OM)44
, (4.21)

λ−2os ≡
(G−1OM)55 − (G−1OM)

2
45

(G−1OM)44

(G−1OM)44
. (4.22)

Using these definitions and (4.1), we find the following results for the D3-brane

open string quantities expressed in terms of the appropriate bulk quantities (4.12)–

(4.15)9

(G−1osE)ab =
1

z K

√√√√A(OM)T 2

A
(bulk)
T 2

[
η
(E)
ab +

1

2

(
gs(F4 − χF5)2 + g−1s (F5)2

)
ab

]
, (4.23)

X =
χ+ 1

4
gs(χF4 − |τ |2F5)ab(F4 − χF5)ab
1 + 1

4
gs(F4 − χF5)2 , (4.24)

λ−2os =
|τ |2 + 1

4
gs(χF4 − |τ |2F5)2

1 + 1
4
gs(F4 − χF5)2 −X2 , (4.25)

where it should be understood that all contractions of D = 4 indices are now taken

with respect to the Einstein frame metric η
(E)
ab and where z is the conformal factor

that was determined in the previous section (3.24). For completeness we should also

give the expressions for K2 (2.2) and A
(OM)
T 2 (in terms of bulk quantities)

K2 = 1 +
1

8

(
gs(F4 − χF5)2 + g−1s (F5)2

)
, (4.26)

A
(OM)

T 2
= (G−1OM)44 λ

−1
os =

A
(bulk)
T 2 gs

z K

(
1 +
1

4
gs(F4 − χF5)2

)
λ−1os . (4.27)

As a first check that these expressions are correct we observe that S-duality

transformations of bulk quantities induce S-duality transformations on the D3-brane.

One can check that upon the S-duality transformation

F4 ←→ F5 , τ −→ 1
τ
, (4.28)

9We apologize for using the numbers 4 and 5 to denote the different components of the SL(2,R)

vector, which should not be confused with taking fourth or fifth powers of F .
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one induces the following S-duality transformation on the open string modular pa-

rameter T

T −→ 1
T
. (4.29)

Another straightforward check is to consider shift transformations, i.e.

F4 −→ F4 + bF5 , F5 −→ F5 , τ −→ τ + b . (4.30)

Although perhaps not immediately obvious these transformations indeed induce shift

transformations on the open string modular parameter T , i.e.

T −→ T + b . (4.31)

Based on these explicit checks we are therefore confident that the full group of

SL(2,R) transformations is indeed induced from the closed string modular parameter

τ onto the open string modular parameter T (also transforming the SL(2,R) vector

F i), as it should.
We now want to check that when we take χ = 0 and (F4)ab(F5)ab = 0 (giving

X = 0 and necessarily giving up manifest SL(2,R) invariance) we obtain the Seiberg-

Witten results. This should involve solving F4 in terms of F5 with the help of the
duality equations (4.4) (solving for F5 we expect to find the S-dual result). Setting
χ = 0 in (4.23)–(4.25) gives us

(G−1osE)ab =
1

z K

√√√√A(OM)T 2

A
(bulk)
T 2

[
η
(E)
ab +

1

2

(
gs(F4)2 + g−1s (F5)2

)
ab

]
, (4.32)

λ−2os = g
−2
s

(
1 + 1

4
g−1s (F5)2

1 + 1
4
gs(F4)2

)
. (4.33)

When X = 0 (giving us only diagonal entries in C ij) we can now use the duality

equation (4.4) and/or eq. (4.8) to write F5 in terms of F4. The appropriate relations
that can be deduced are

g−1s (F5)2ab =
1

1 + 1
2
gs(F4)2

[
gs(F4)2ab −

1

2
gs(F4)2η(E)ab

]
, (4.34)

g−1s (F5)2 =
−gs(F4)2
1 + 1

2
gs(F4)2 . (4.35)

We note that by performing an S-duality transformation gs(F4)2 → g−1s (F5)2 we
obtain the other set of equations (which are of course redundant because they fol-

low uniquely from (4.34) and (4.35)). These equations can first of all be used to

find the following expression for the conformal factor in (G−1osE)ab (4.23) (also us-
ing (3.24), (4.26) and (4.27))

1

z K

√√√√A(OM)T 2

A
(bulk)

T 2

=

(
1 + 1

2
gs(F4)2

)3/4
1 + 1

4
gs(F4)2 . (4.36)
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Plugging these expressions (4.34)–(4.36) into the D3-brane open string metric (4.32)

and open string coupling (4.33) we find the following results

(G−1osE)ab =
(
1 +
1

2
gs(F4)2

)−1/4 [
η
(E)
ab + gs(F4)2ab

]
, (4.37)

λos = gs

√
1 +
1

2
gs(F4)2 . (4.38)

We should keep in mind that until now we have been using a contravariant defi-

nition of the 2-form field strengths (4.1), which is not standard. To transform to

the standard covariant definition one actually needs to include a factor of g−2s =

(A
(bulk)

T 2
)2(ζ44)2 in all (F4)2 terms. Doing this and realizing that we should now

transform to the string frame metric, using η
(s)
ab = g

1/2
s η

(E)
ab and defining analogously

(G−1os )ab ≡ λ1/2os (G−1osE)ab , (4.39)

we finally obtain the open string metric and coupling, as promised,

(G−1os )ab = η
(s)
ab + (F4)2ab , (4.40)

λos = gs

√
1 +
1

2
(F4)2 . (4.41)

As mentioned before, when solving in terms of F5 instead, we expect to find
the S-dual result. We want to emphasize however that performing an S-duality

transformation is definitely not the same as solving in terms of the other field in

the doublet. Using the duality equations one interchanges electric and magnetic

components, whereas the S-duality transformations do not interchange electric and

magnetic components. The fact that we do find the S-dual result explains why on the

D3-brane S-duality can be effectively represented by an interchange of electric and

magnetic field strengths; starting with an electric F4, S-duality gives us an electric
F5, but by using the duality equations we can relate this electric F5 to a magnetic
F4 giving us an effective interchange of electric and magnetic components of F4 upon
S-duality. Starting from (4.32) and (4.33) and now solving for F5 we indeed find

(G−1os )ab =
λos

gs

[
η
(s)
ab + g

2
s(F5)2ab

]
, (4.42)

λos =
gs√

1 + 1
2
g2s(F5)2

, (4.43)

which can easily be checked to be equivalent to performing an S-duality transfor-

mation on (4.40) and (4.41) (remember that the string frame metric transforms as

η
(s)
ab → η(s)ab /gs). It seems natural to relate the above result to an open D-string metric
(G−1od )ab and open D-string coupling, defined in the following way

(G−1od )ab ≡
(G−1os )ab
λos

, λod ≡ 1

λos
. (4.44)
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Also identifying η(s)/gs ≡ η(d) and rewriting the square of F5 with respect to this
metric, we can rewrite the expressions (4.42) and (4.43) as

(G−1od )ab = η
(d)
ab + (F5)2ab , (4.45)

1

λod
= λos =

gs√
1 + 1

2
(F5)2

. (4.46)

This metric can also be used to describe the same physics on the D3-brane, a priori

there is no reason to prefer using the open string metric instead of the open D-string

metric. Only when considering a particular limit of the closed string moduli will one

create a distinction. To give a concrete example; it is not hard to show that the

NCOS limit in (4.40) and (4.41) maps to the open D-string NCYM limit in (4.45)

and (4.46), illustrating the fact that the NCOS theory can equivalently be described

by an open D-string NCYM theory (and vice-versa of course) [23, 24].

Going back to our SL(2,R) covariant expressions (4.23), (4.24) and (4.25) it

seems natural to interpret these as a result of probing the D3-brane with open (p, q)

strings [25]. The existence of an OM-theory decoupling limit should at first sight

guarantee the existence of a correspondingly well-defined decoupling limit for (p, q)

open strings ending on the D3-brane. Indeed, the situation is very similar to the M5-

brane, because generically our doublet of 2-forms satisfies a non-linear self-duality

equation (4.5). This means we will have to consider constant 2-form doublet field

strengths in all directions (electric and magnetic) on the D3-brane. It should be

possible to deduce a parametrisation of these (constant flux) solutions by reducing

the M5-brane parametrisation as given in [2], but we will not do so here [26]. Another

observation strengthening our belief that the decoupling limit for (p, q) strings is

similar to the one on the M5-brane, is that in the OM-theory limit the conformal

factor of the (p, q) open string metric (4.23) scales as

1

z K

√√√√A(OM)T 2

A
(bulk)
T 2

∼
(
lp

lg

)3
∝ α′

α′(eff)
. (4.47)

This means that in order to obtain a finite length scale α′(eff) the other part of the
open (p, q) string metric (4.23) should be fixed in the decoupling limit, analogous to

what happens in the OM-theory limit on the M5-brane.

5. Summary and discussion

For the readers convenience let us start this section by summarizing the main results

presented in this paper. To fix the conformal factor of the open membrane metric we

first of all assumed the following reduction ansatze (in analogy to the bulk) between
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the open membrane and open string moduli

(G−1OM)ab ≡ λ−2/3os (G−1os )ab , (5.1)

(G−1OM)yy ≡ λ4/3os . (5.2)

Upon reduction we effectively restricted our attention to rank 2 solutions by imposing

the (simplifying) constraint HamnFmn = 0. Using one of the two reduction ansatze
fixes the conformal factor of the open membrane metric in order to reproduce one

of the Seiberg-Witten results, the other definition then consistently reproduces the

other Seiberg-Witten result. In the reduction procedure we made important use of

the following relations, which are consequences of the (self-) duality equations and

imposing HamnFmn = 0 upon reduction

(Ĥ4)âb̂ = 2
3
Ĥ2
[
η̂âb̂ +

1

2
(Ĥ2)âb̂

]
,

(H2)ab = 1

1 + 1
2
F2
(
2(F2)ab − F2ηab) ,

(F4)ab = 1
2
F2(F2)ab , (5.3)

where the last constraint on (F4)ab implies that we have restricted ourselves to rank
2 solutions only and √

− det(ηab + Fab) =
√
1 +
1

2
F2 . (5.4)

Using all this information we showed that the following open membrane metric

(G−1OM)ab =

(
(2K2 − 1)− 2K2√1−K−2)1/6

K

[
η̂âb̂ +

1

4
(Ĥ2)âb̂

]
(5.5)

indeed scales as anticipated in [10] in the OM-theory decoupling limit and reproduces

the open string metric and coupling as first given in [1] upon double dimensional

reduction (for rank 2 solutions).

One thing to worry about is whether our solution for the conformal factor z

depends on our restriction to rank 2 solutions. Because from the point of view of the

M5-brane the difference between rank 2 and rank 4 solutions is nothing but a trivial

rotation, we would argue that our final result is independent of that restriction.

However, it would be interesting and worthwhile to show this by actually performing

the reduction in this more general (and more complicated) case and we hope to report

on this (and some other issues) in the near future [26].

After fixing the conformal factor we performed a double dimensional reduction

of the M5-brane on a 2-torus (again effectively restricting our attention to rank 2

solutions only) to obtain manifestly SL(2,R) covariant results for the open string
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metric and complex open string coupling T = X + iλos

(G−1osE)ab =
1

z K

√√√√A(OM)T 2

A
(bulk)

T 2

[
η
(E)
ab +

1

2

(
gs(F4 − χF5)2 + g−1s (F5)2

)
ab

]
,

X =
χ+ 1

4
gs(χF4 − |τ |2F5)ab(F4 − χF5)ab
1 + 1

4
gs(F4 − χF5)2 ,

λ−2os =
|τ |2 + 1

4
gs(χF4 − |τ |2F5)2

1 + 1
4
gs(F4 − χF5)2 −X2 . (5.6)

We showed that S-duality and shift transformations of the bulk quantities induce

S-duality and shift transformations on the D3-brane quantities, as they should. To

reproduce the Seiberg-Witten NCOS metric and coupling we used the non-linear

duality equations on the D3-brane and we emphasized the important role played

by the duality equations in the context of manifest SL(2,R) invariance on the D3-

brane. Here we would also like to anticipate the existence of an elegant manifestly

SL(2,R) covariant formulation of the (single) D3-brane equations of motion (and

perhaps even an action) in terms of the SL(2,R) invariant open string metric. The

natural interpretation of our SL(2,R) covariant results would be in terms of (non-

commutative) (p, q) open strings and we gave some (mainly OM-theory) arguments

to suggest that a (p, q) open string decoupling limit should exist.

One thing we did not consider in this paper is the non-commutativity parameter

θab. We concentrated our attention on the open string metrics and coupling as they

can be directly related to the reduced open membrane metric. As explained in [3],

there does exist a non-linear electrodynamics analogue of the non-commutativity

parameter which is related to the dual Maxwell field. It would be interesting to find

the expression for the non-commutativity parameter in our SL(2,R) covariant case.

Also, it would be very interesting to see if and how we can generalize this relation

between the non-commutativity parameter and the dual Maxwell field to the M5-

brane and the self-dual tensor multiplet. In [4] a 3-form P was introduced on the

M5-brane which could have all the properties we are looking for. We hope to report

on this interesting possibility in a future publication [26].

As a consequence of quantum effects one expects the SL(2,R) symmetry group

to reduce to SL(2,Z). One immediate consequence would be that only when the

axion is rational can we SL(2,Z) rotate into a frame in which the axion vanishes.

The same is therefore true for the D3-brane (open string) axion X; it has to be

rational in order to be able to SL(2,Z) transform to a frame where X vanishes.10

This would imply that when X is irrational one is forced to present the D3-brane

theory in terms of an SL(2,Z) doublet of field strengths. This is just an observation,

it is not clear to us at this time whether this has any profound meaning.
10Similarly one needs a rational axion to be able to SL(2,Z) rotate into a perturbative open

string regime.
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There are many extensions of our work that one can think of. First of all, the

precise decoupling limit describing the non-commutative (p, q) open strings in this

context still has to be worked out. Doing this is expected to connect to (some of) the

results reported in [22], either by using a “flat space” closed string moduli approach

or by making use of holographic methods (using the dual supergravity background

in order to find a decoupling limit) [27]. A very concrete goal would for example be

to obtain the SL(2,R) invariant tension formula for the decoupled non-commutative

open (p, q) strings on the D3-brane. Another interesting project would be to see

whether we can generalize our discussion of SL(2,R) covariant moduli of open strings

on the D3-brane to the worldvolume of (m,n) five-branes in type-IIB theory [22].

This will inevitably introduce a “little (closed) strings” sector into the theory and it

would be interesting to see how this would affect our results. At first sight it seems

like a good idea to take an OM-theory or M5-brane perspective again, because little

strings can be naturally understood as open membranes wrapped around a compact

direction transverse to the M5-brane (this idea was first exploited in [24]).

From another point of view it would be very nice if one could provide a more

direct understanding of the open membrane metric. So instead of defining this object

indirectly via string theory, we would prefer to understand the open membrane metric

directly from an M-theory perspective. Quantizing the open membrane presumably

has all the usual problems, so that does not seem to help us. A more fruitful, less

ambitious, point of view seems to be the conformal relation of the open membrane

metric to the M5-brane Bouillat metric [4]. This relation in some sense leaves us with

the “smaller” problem of “explaining” the (rather complicated) conformal factor of

the open membrane metric (3.27) as compared to the M5-brane Bouillat metric

(where the M5-brane Bouillat metric can be understood as the metric naturally

preferred by the M5-brane low energy effective equations of motion and providing

the propagation cone for all perturbative degrees of freedom). This remains an

important problem for the future.

Note added. During the completion of this paper the preprint [28] appeared,

discussing an interesting AdS3 self-dual string phase of OM-theory. Although their

main results do not depend on the precise conformal factor of the open membrane

metric, they present a result for the conformal factor that differs from ours. We hope

to settle this issue after their forthcoming preprint appears in which they will explain

in more detail how they obtained their result.
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