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Abstract: The dynamics of a Dp-brane can be described either by an open string

ending on this brane or by an open D(p − 2)-brane ending on the same Dp-brane.
The ends of the open string couple to a Dp-brane worldvolume gauge field while the

boundary of the open D(p−2)-brane couples to a (p−2)-form worldvolume potential
whose field strength is Poincaré dual to that of the gauge field on the Dp-brane

worldvolume. With this in mind, we find that the Poincaré dual of the fixed rank-2

magnetic field used in defining a (1 + p)-dimensional noncommutative Yang-Mills

(NCYM) gives precisely a near-critical electric field for the open D(p − 2)-brane.
We therefore find (1 + p)-dimensional open D(p− 2)-brane theories along the same
line as for obtaining noncommutative open string theories (NCOS), OM theory and

open Dp-brane theories (ODp) from NS5 brane. Similarly, the Poincaré dual of

the near-critical electric field used in defining a (1 + p)-dimensional NCOS gives a

fixed magnetic-like field. This field along with the same bulk field scalings defines

a (1 + p)-dimensional noncommutative field theory. In the same spirit, we can have

various (1+5)-dimensional noncommutative field theories resulting from the existence

of ODp if the description of open D(4−p)-brane ending on the NS5 brane is insisted.
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1. Introduction

By now we know that there exists not only the big M-theory but also a little m-

theory. The latter is particularly interesting since it shares many properties of the

big M-theory and yet appears as a decoupled theory without gravity. Therefore,

we have a better hand on this theory and hopefully we can learn new things and

gain insights for the big M-theory in the process of uncovering more on this little

m-theory.

The purpose of this paper is to show the existence of new non-gravitational

theories which are closely related to the recently discovered decoupled noncommu-

tative Yang-Mills theories (NCYM) [1]–[4], noncommutative open string theories

(NCOS) [5, 6, 7], OM theory and open Dp-brane (ODp) theories [8, 9, 10].

In particular, we will show that the Dp-brane worldvolume Poincaré dual of

the fixed rank-2 magnetic field used in defining a (1+ p)-dimensional NCYM gives a

critical (p−1)-form electric field1 for an open D(p−2)-brane ending on the Dp-brane.
1The scalings for the bulk fields such as the metric and the closed string coupling remain the

same.
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We therefore find (1+p)-dimensional open D(p−2)-brane theories in the same spirit
as for OM theory, NCOS and ODp. In other words, with the same bulk (the metric

and the closed string coupling) scaling limit, we can end up with either a (1 + p)-

dimensional open D(p− 2)-brane theory from the open D(p− 2)-brane perspective
or a (1 + p)-dimensional NCYM from the open string perspective. Moreover, the

open D(p − 2) brane theory provides a completion of the NCYM if the latter is
nonrenormalizable. In this sense, the former is in general a better description.

By the same token, we find that the existence of a (1 + p)-dimensional NCOS

implies also a (1+p)-dimensional “noncommutative” field theory.2 The corresponding

noncommutative geometry is determined through the quantization of the boundary

action which is obtained from a topological one for the open D(p − 2)-brane. For
the particular p = 3 case, the new noncommutative field theory is also a NCYM

resulting from an open D-string ending on a D3 brane and can actually be identified

with the usual NCYM resulting from an open F-string ending on the same base D3

brane.

The above results are consistent with the compactification of OM theory on either

a magnetic circle or an electric circle. The usual picture is: the compactification of

OM theory on a magnetic circle gives the usual (1 + 4)-dimensional NCYM while

on an electric circle it gives the (1 + 4)-dimensional NCOS. As we will show in

section 5, the actual path is: The magnetic-circle compactification of OM theory

gives our (1 + 4)-dimensional open D2 brane theory which provides a completion of

the effective (1+4)-dimensional NCYM. The electric-circle compactification gives the

(1 + 4)-dimensional NCOS which provides a completion of the new effective (1 + 4)-

dimensional noncommutative tensor field theory mentioned above. We will elaborate

these in section 5.

Along the similar line, we should also have new (1 + 5)-dimensional noncom-

mutative field theories given the existence of the ODp theories from NS5 brane for

p ≤ 5. We will discuss this in section 6. All these new non-gravitational theories are
consistent with U-duality, therefore lending support to the notion that U-duality is

inherited to the little m-theory without gravity.

This paper is organized as follows: in section 2, we give a rather detailed mo-

tivation for the work presented in this paper. In section 3, we show that the fixed

rank-2 magnetic field used in defining a usual (1 + p)-dimensional NCYM from the

open string perspective gives precisely a critical (p−1)-form electric field for an open
D(p − 2) brane theory if the dynamics of the base Dp-brane is described in terms
of the ending D(p − 2)-brane. We also discuss the relationship between the open
D(p − 2)-brane theory and the corresponding NCYM. In section 4, we follow the
same line as in section 3 but now for a (1 + p)-dimensional NCOS. We will show

that the resulting limit gives a noncommutative field theory with a noncommutative

2Here for p > 3, the noncommutative geometry is also expected to be nonassociative as well.
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geometry determined by the boundary action for the D(p − 2)-brane. In section 5,
we give a detailed picture on the compactification of OM theory on either a magnetic

or an electric circle. We will show that the results obtained in the previous sections

are consistent with the compactifications of OM theory. In section 6, we first argue

the proper limits for ODp theories from NS5 brane. Then we show that the (1 + p)-

dimensional open D(p−2)-brane theories discussed in section 3 are U-duality related
to the ODp’s. We also show that the bulk decoupling limits for ODp from NS5

brane give ones for noncommutative field theories living on NS5 brane in a similar

spirit as discussed in section 3 and 4. In section 7, we discuss S-duality between the

(1+3)-dimensional NCOS and our open D-string theory, and the implication for the

existence of a (1 + 3)-dimensional open (p, q)-string theory.

2. Motivation

Strominger some time ago in [11] concluded that a D(p− 2)-brane can end on a Dp-
brane (also M2 brane on M5 brane) without violating charge conservation along the

similar line for a fundamental string on a Dp-brane. This same conclusion was also

reached by Townsend in [12] from the analysis of Chern-Simons terms in D = 10 and

D = 11 supergravity theories. From the D-brane worldvolume perspective, the end of

a fundamental string (or F-string) appears as a point electric charge which couples to

the worldvolume U(1) field. The magnetic charge (or monopole) with respect to the

U(1) field implies actually a (p - 2)-dimensional extended object carrying an electric-

like charge which couples to a worldvolume (p - 1)-form field strength (Poincaré dual

to the U(1) gauge field strength) in the Poincaré-dual picture. Therefore, a (1 + p)-

dimensional NCYM as a decoupled theory of Dp-branes with a magnetic field in the

F-string picture implies the existence of a different decoupled theory of the Dp brane

in an electric-like (p − 1)-form field strength in the open D(p − 2)- brane picture.
This new theory is just our (1 + p)-dimensional open D(p− 2)- brane theory which
will be discussed in the following section. Similarly, a (1+p)-dimensional NCOS as a

decoupled theory of Dp brane with a near-critical electric field in the F-string picture

implies also the existence of a different field theory of Dp brane with a magnetic-like

(p − 1)-form field strength in the open D(p− 2)- brane picture. This new theory is
a “noncommutative” field theory defined on a noncommutative geometry.

Let us elaborate the above further. The dynamics of Dp-brane with a constant

magnetic flux in it can be described by the open F-string ending on the Dp-brane

with its boundary coupled to this background. In the decoupling limit, the kinetic

term of the string theory can be ignored and the dynamics is described by a topo-

logical term [4]. This topological term can be expressed as a boundary one and the

quantization of this boundary action gives rise to spatial noncommutativity along

the directions with nonvanishing magnetic field on the Dp-brane worldvolume.
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What is the picture if we look from the description in terms of the open D(p−2)-
brane ending on the Dp-brane with the same scalings for the bulk metric and the

closed string coupling as those for NCYM? As is well known that Dp-branes with

a constant magnetic flux represent a non-threshold bound state of Dp-branes with

smeared D(p − 2)-branes along the two co-dimensions [13, 14, 15]. The smeared
D(p− 2)-branes are within the Dp-brane worldvolume rather than end on them. As
discussed in [16], in the decoupling limit for NCYM, if we view the smeared D(p−2)-
branes as periodic vortices along the two co-dimensions, each vortex will decouple

from the rest. Therefore we need to consider only one vortex, for example, the one

in the origin of the coordinate system for the two co-dimensions. In other words, we

have localized D(p − 2)-branes within the Dp-brane worldvolume in the decoupling
limit for NCYM. We now know that in terms of the open D(p−2)-brane picture, this
system should also decouple from the bulk in the decoupling limit and its dynamics

is described by the open D(p − 2)-branes which couple to a Dp-brane worldvolume
(p− 1)-form field strength. The very fact that the D(p− 2)-branes reside within Dp
brane worldvolume must imply that the background (p− 1)-form electric field reach
its critical value.3 We will show that this is indeed true as expected.

The above picture is along the same line as for the decoupling limits for NCOS,

OM theory and those ODp from NS-5-branes. In particular, the gravity systems used

for their gravity descriptions [8, 7, 17, 18, 10] in the respective decoupling limits are

nothing but the corresponding non-threshold bound states. For example, for OM

theory, the gravity system is the (M5, M2) bound state [19]. For NCOS, the gravity

systems are the (F, Dp) bound state [20]. The gravity description of the present

open D(p−2)-brane theory is the same as the corresponding one of the usual (1+p)-
dimensional NCYM except that we have traded the asymptotic B-field for NCYM

with the asymptotic RR (p − 1)-form potential through the Dp-brane worldvolume
Poincaré duality.4

We have the following two additional pieces of evidence to support the existence

of the open D(p − 2)-brane theories found in this paper. First, OM theory results
from a critical electric 3-form H012 field limit. The non-linear self-duality constraint

for this 3-form field implies also a non-vanishing H345. As discussed in [8], this

theory reduces to a usual (1 + 4)-dimensional NCYM upon compactification on

a magnetic circle. The H345 gives a rank-2 magnetic field which gives rise to the

noncommutativity in the NCYM theory.

3This conclusion can only be drawn in the decoupling limit. From NCYM side, we know that in

the decoupling limit the open string massive modes decouple and the dynamics is described by its

massless modes, i.e., the gauge modes, which live on the brane. So we expect that the dynamical

degrees of freedom should also remain on the brane if the open D(p−2)-brane description is adopted.
Here what left in the decoupling limit is the D(p − 2)-branes and therefore the background field
must reach its critical value.
4We will use the constant bulk B-field or RR (p− 1)-potential only when we discuss the gravity

dual descriptions. Otherwise, we always use the worldvolume fields to avoid possible confusions.
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Upon the reduction on a circle along one of the M5 worldvolume directions,

the 3-form field strength on M5-brane will give either a 2-form gauge field strength

or a 3-form field strength but not both on the D4-brane worldvolume. Otherwise,

we double counting the degrees of freedom for the worldvolume field since the two

are not independent but related through a constraint inherited from the self-duality

on M5 brane. This is familiar for the self-dual 5-form field strength in the dimen-

sional reduction of type IIB supergravity on a circle to the N = 2 nine dimensional

supergravity.

The usual (1 + 4)-dimensional NCYM is nonrenormalizable and therefore this

description is an effective one which is good for relevant energy much smaller than

the inverse of the gauge coupling g2NCYM. If this effective description is valid, we can

choose to keep the 2-form gauge field strength rather than 3-form field strength.

Note that the magnetic-circle compactification of OM theory is along a direction

transverse to the open membrane which is used to define OM theory. One must be

wondering where is the open membrane and naturally expects an open membrane

theory in (1 + 4)-dimensions. In other words, we expect OM theory to reduce to an

open membrane theory in (1 + 4)-dimensions when the compactification radius is

invisible to the OM theory (i.e., the KK modes are too heavy in comparison to the

OM theory scale). This theory is also expected to provide a complete description

in (1 + 4)-dimension. As we will show in section 5, this is indeed true. This open

membrane theory is just our (1 + 4)-dimensional open D2-brane theory which we

will discuss in the following section. This theory provides the completion of the

usual (1 + 4)-dimensional NCYM. In other words, OM theory implies the existence

of the (1 + 4)-dimensional open D2-brane theory. For this theory, we need to keep

instead the 3-form H012 upon the reduction. Starting with this (1 + 4)-dimensional

open D2-brane theory, we can obtain in general (1 + p)-dimensional open D(p− 2)-
brane theories by T-duality along a direction either common or transverse to both

of D(p − 2)- and Dp-branes. We limit ourselves to p ≤ 5 in this paper because for
p > 5, the corresponding (1 + p) NCYM cannot decouple from the bulk [21]. This

might imply that we have only decoupled open Dp-brane theories for p ≤ 3.
By the same token, we may expect a new noncommutative tensor field theory

upon the compactification of OM theory on an electric circle when the spatial 3-form

H345 can be kept instead. We will discuss this possibility in section 4.

The ODp theories from NS-5-brane discovered in [8, 10] also imply the existence

of the (1 + p)-dimensional open D(p − 2)- brane theories found in this paper. As
discussed in [8], one direct evidence for ODp theories is from the fact that an open

string ending on a D5-brane is S-dual to a D-string ending on a NS-5 brane in type

IIB string theory. The former gives the (1 + 5)-dimensional NCOS in the critical

electric field limit. The S-dual of this gives OD1 now also in the corresponding

critical electric field limit. This can also be understood as the electric force, due

to the near-critical electric field, acting at the two ends of the D-string on the NS

5



J
H
E
P
0
8
(
2
0
0
1
)
0
4
9

-5-brane almost balances the D-string tension. As a result, the D-string decouples

from the bulk and is confined on the NS-5-brane worldvolume. T-dualities along

NS5-brane directions on this OD1 give in general ODp for p ≤ 5. In other words,
these ODp are just the results of open Dp-branes ending on the base NS5 in the

corresponding critical electric field limits.

The direct connection between these ODp and the ones found in this paper

occurs for OD3. Since the tension and the near-critical electric field associated with

the open D3-brane, and the scalings for the closed string parameters (metric and

closed string coupling) remain the same under S-duality, we conclude that the S-

dual of OD3 gives another OD3 since the D3-brane itself is intact under S-duality.5

This new OD3 theory is now from an open D3-brane ending on D5-branes in the

critical 4-form electric field limit. Therefore, this OD3 theory is our present (1

+ 5)-dimensional open D3-brane theory. T-dualities along the D3-brane directions

therefore give also our (1 + p)-dimensional open D(p− 2)-brane theories.
The field theories resulting from the existence of NCOS or ODp can be discussed

in a similar fashion and we will not repeat them here.

3. (1 + p)-Dimensional open D(p− 2)-brane theories
In this section, we will show that the decoupling limit for a (1 + p)-dimensional

NCYM with rank-2 noncommutative matrix from the open string perspective gives

precisely a critical field limit for an open D(p−2)-brane theory if this open D(p−2)-
brane description of Dp-brane is insisted. Let us begin with a summary of the

decoupling limit for NCYM [4]:

α̃′ = ε1/2α̃′eff ,

g̃s =
α̃
′ 3−p
2

eff g̃
2
NCYM

(2π)p−2
ε
3−(p−2)

4 , gµν = ηµν (µ, ν = 0, 1, · · · (p− 2)) ,
gij = εδij , (i, j = (p− 1), p) , gmn = εδmn (m,n = transverse) ,

2πα̃′B(p−1)p = ε1/2 , (3.1)

where g̃2NCYM is the fixed noncommutative Yang-Mills coupling. We know that

with the presence of Dp-brane, the worldvolume gauge invariant quantity is F =
2πα̃′(B + F ) with F the worldvolume gauge field. For the purpose of performing
the worldvolume Poincaré duality in the following, we replace the constant rank-2

B-field in Eq. (3.1) by a constant rank-2 gauge field strength using a gauge choice.

As a result, we have now

2πα̃′F(p−1)p = ε1/2 , B = 0 . (3.2)
5Some parameters of the original OD3 theory such as the effective open D3-brane coupling are

transformed under S-duality but the theory is not. This conclusion differs from that given in [8]

where the S-duality gives (1 + 5)-dimensional NCYM. We will reconcile this difference in section 6.
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The Dp-brane worldvolume Poincaré dual of the above magnetic background

gives an electric-like worldvolume (p - 1)-form field strength H012···(p−2) which is
associated with the D(p− 2)- brane ending on the Dp-brane. Note that the relevant
Dp-brane lagrangian for the purpose of obtaining such an electric-like background

field H012···(p−2) is

LDBI = − 1

(2π)pα̃′(1+p)/2g̃s

√
− det(gαβ + 2πα̃′Fαβ) , (3.3)

where α, β = 0, 1, · · ·p. We then have
√
− det gH012···(p−2)

2π
= −1
2

ε012···(p−2)ij√− det g
∂LDBI
∂Fij

, (3.4)

where we define εα0···αp = gα0β0 · · · gαpβpεβ0···βp with ε01···p = 1.
Using the scalings for g̃s, the metric in eq. (3.1) and the magnetic background

in eq. (3.2), we have from the above

H012···(p−2) =
1

(2π)p−2α̃
′ (p−2)+1

2
eff G̃2o(p−2)

(
1

ε
− 1
2

)
, (3.5)

where we have defined

G̃2o(p−2) =
g̃2NCYMα̃

′(3−p)/2
eff

(2π)p−2
. (3.6)

The scalings for the metric and the closed string coupling remain the same as those

given in eq. (3.1). The form of the above electric (p - 1)-form field strength indicates

that it reaches its critical limit as ε→ 0. Let us confirm this. The effective action of
an open D(p− 2)-brane ending on a Dp-brane can be written in its simplest form as

S(p−2) = − 1

(2π)p−2α̃′(p−1)/2g̃s

∫
Mp−1

dp−1σ
√
− det(ĝµν + 2πα̃′Fµν)+

∫
Mp−1

Hp−1+ · · · ,
(3.7)

where we have

Hp−1 = Cp−1 +Hp−1 , (3.8)

with Cp−1 the pull-back of the bulk RR (p - 1)-form potential and Hp−1 is the
aforementioned Dp-brane worldvolume (p− 1)-form field strength which comes from
the conversion of the open D(p− 2)-brane boundary term to its worldvolume along
the Dp-brane directions. The · · · terms are irrelevant for the discussion of this paper
and for this reason we drop them from now on. The D(p − 2)- brane worldvolume
gauge field Fµν is also irrelevant and we drop it for the following discussion. In the

above, the gauge invariant quantity is now Hp−1. Once again, we see that in the
presence of this D(p − 2)-brane, given Hp−1 and Hp−1, Cp−1 cannot be arbitrary
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but fixed according to the above equation.6 For the choice of eq. (3.5), we have

C01···(p−2) = 0.
With the above, let us calculate the effective proper (also coordinate) tension for

a D(p− 2)-brane along 12 · · · (p− 2) directions with the metric and the closed string
coupling given in eq. (3.1) and with the H01···(p−2) given in eq. (3.5), we then have

− 1

(2π)p−2α̃′(p−1)/2g̃s
+ ε01···(p−2)H01···(p−2) = − 1

2(2π)p−2α̃′(p−1)/2eff G̃2o(p−2)
, (3.9)

which indicates that our H01···(p−2) is indeed a near-critical electric field. The near-
critical electric force stretches the boundary of the D(p − 2)-brane to balance its
original tension such that a finite tension as given above is obtained. As a result, the

D(p− 2)-brane is now confined within the Dp-brane worldvolume. The conventional
discussion implies that we end up with an open D(p − 2)-brane theory for p ≤ 5.
For later use, let us summarize the decoupling limit for a (1 + p)-dimensional open

D(p− 2)- brane theory:

α̃′ = ε1/2α̃′eff , g̃
(p−2)
s = ε

3−(p−2)
4 G̃2o(p−2) , gµν = ηµν (µ, ν = 0, 1, · · · (p− 2)) ,

gij = εδij , (i, j = (p− 1), p) , gmn = εδmn (m,n = transverse) ,
H012···(p−2) =

1

(2π)p−2α̃
′ (p−2)+1

2
eff G̃2o(p−2)

(
1

ε
− 1
2

)
, (3.10)

where the coupling G̃o(p−2) for the open D(p−2)-brane theory is related to the gauge
coupling through (3.6).

Let us briefly discuss each of the open D(p− 2)-brane theories for 2 ≤ p ≤ 5.

Open D0 theory: This case can be discussed similarly following that for the

OD0 theory from NS5-brane given in [8]. The present open D0-brane theory results

from a D2-brane in the presence of a worldvolume near-critical 1-form field strength

H0 =
1

ε
√
α̃′eff G̃

2
o(0)

(1 − ε
2
). This field strength can be traded to a 1-form bulk RR

potential C0. The dynamical objects in this theory are the light D0 branes. Again,

the light excitations of this open D0-brane theory carry a conserved charge.

If we lift this open D0-brane theory to eleven dimensions on a transverse circle,

the D2-brane now becomes an M2-brane. We have the eleven-dimensional Planck

mass and the compactified radius as

R11 =
√
α̃′g̃(0)s = ε

√
α̃′effG̃

2
o(0) ≡ εR , Mp =

1√
α̃′(g(0)s )1/3

= ε−1/2M̃eff , (3.11)

6This example indicates that we cannot choose the asymptotic values as we wish for bulk po-

tentials whether they are NSNS or RR origins in the presence of various kinds of D branes
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where M̃eff =
1√

α̃′eff G̃
2/3
o(0)

. Choosing the fixed coordinate in the 11-th direction such

that x11 ∼ x11 + 2πR, the bulk 11-dimensional metric is

ds2M = −(dx0)2 +R211
(
dx11

R
− C0dx0

)2
+ εdx2⊥ = ε

[−(dx0)2 − dx11dx0 + dx2⊥] ,
(3.12)

where we have dropped a term proportional to ε2. Note that the lifted theory is

defined with respect to the metric ds2M/ε and now the compactified 11-th direction

is light-like. We have now the bulk Planck scale M̃eff which is the same as the proper

tension for the open D0-brane theory.

In other words, the open D0-brane theory with N units of D0-brane charge is

a DLCQ compactification of M theory with N units of DLCQ momentum in the

presence of a transverse M2-brane.

Open D1 theory: The decoupling limit for this theory can be summarized as

α̃′ = ε1/2α̃′eff , g̃
(1)
s = ε

1
2 G̃2o(1) , gµν = ηµν (µ, ν = 0, 1) ,

gij = εδij , (i, j = 3, 4) , gmn = εδmn (m,n = transverse) ,

H01 =
1

(2π)α̃′effG̃
2
o(1)

(
1

ε
− 1
2

)
. (3.13)

For this particular case, given the relation between the open D-string and the open

F-string, we expect that the open D-string metric and noncommutative parameter

can be obtained from the usual Seiberg-Witten relations for open F-string ending on

a D-brane through the following replacements:

α̃′ → α̃′g̃(1)s , g̃(1)s →
1

g̃
(1)
s

, Fαβ → Hαβ , (3.14)

i.e., we have now

Gαβ = gαβ − (2πα̃′g̃(1)s )2(Hg−1H)αβ ,

Θαβ = 2πα̃′g̃(1)s

(
1

g + 2πα̃′g̃(1)s H

)αβ
A

, (3.15)

where A in ()A denotes the anti-symmetric part of the matrix and α, β = 0, 1, 2, 3.

Using the above scalings, we have the open D-string metric and the nonvanishing

noncommutative parameter as

Gαβ = εηαβ , Θ
01 = 2πα̃′effG̃

2
o(1) . (3.16)

As expected, we have α̃′g̃(1)s Gαβ = α̃′effG̃
2
o(1)η

αβ. This is a well-defined perturbative

theory for small G̃2o(1). The usual (1 + 3)-dimensional NCYM is believed to be renor-

malizable and therefore it is a well-defined perturbative noncommutative field theory

9
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for small coupling g̃2NCYM. Further we have G̃
2
o(1) = g̃

2
NCYM/(2π) which implies that

the two perturbative theories break down at the same time when either of the cou-

plings is strong. As mentioned earlier, the two have basically the same gravity dual

description. Note that the NCYM can have T-duality, and therefore it is not really a

field theory since it does not have a well-defined energy-momentum tensor. All these

indicate that the usual (1 + 3)-dimensional NCYM and the (1 + 3)-dimensional open

D-string theory are just two different descriptions of the same physics.

Open D2 theory: This theory is related to OM theory compactified on a small

magnetic circle and provides a completion of the usual (1 + 4)-dimensional NCYM.

We will discuss this case in detail in section 5.

Open D3 theory: The decoupling limit for this theory contains D5-branes in the

presence of a near-critical 4-form worldvolume field strength H0123 =
1

(2π)3εα̃′2eff G̃
2
o(3)

(1−
ε
2
). The bulk scalings are

α̃′ = ε1/2α̃′eff , g̃
(3)
s = G̃

2
o(3) , gµν = ηµν (µ, ν = 0, 1, 2, 3) ,

gij = εδij , (i, j = 4, 5) , gmn = εδmn (m,n = transverse) . (3.17)

The coupling for this theory is related to the usual (1 + 5)-dimensional NCYM

coupling as

G̃2o(3) =
g̃2NCYMα̃

′−1
eff

(2π)3
. (3.18)

The usual (1 + 5)-dimensional NCYM is nonrenormalizable and as such it is an

effective theory. The present open D3-brane theory provides a completion of this

NCYM. Therefore this is an example that the open D3 brane description is better

than the usual NCYM one (or the F-string description). As we will discuss this case

further in section 6, this open D3-brane theory is actually self-dual under S-duality.

In a similar fashion as discussed in [8], different (1 + p)-dimensional open D(p−
2)-brane theories here can be related to each other either by a T-duality along a

direction of the D(p − 2)- brane or by a T-duality along a direction transverse to
both this D(p− 2)-brane and the parent Dp-brane. However, a T duality along any
codimension gives a D(p− 1)-brane which no longer lives inside the parent D(p− 1)-
brane. This indicates that such a T-duality may render the open D(p − 1)-brane
undecoupled. If we compactify the xp−2-direction with the identification xp−2 ∼
xp−2+2πRp−2, the usual transformations of bulk quantities under a T-duality along
this direction give the following

H01···(p−3) = 2πRp−2H01···(p−2) , R′p−2 =
α̃′eff
Rp−2

, G̃2o(p−3) =

√
α̃′eff
Rp−2

G̃2o(p−2) , (3.19)

where R′p−2 is the T-dual coordinate radius. One can check that the resulting decou-
pling limit is for a (1 + (p− 1))-dimensional open D(p− 3)-brane theory.

10



J
H
E
P
0
8
(
2
0
0
1
)
0
4
9

4. (1 + p)-Dimensional noncommutative field theories

We follow the same steps as what we did in the previous section but now for a (1+p)-

dimensional NCOS rather than for a (1 + p)-dimensional NCYM. From the open

string perspective, the critical electric field limit gives a (1 + p)-dimensional NCOS.

The question is: what is the corresponding decoupled theory with the same bulk

scalings but now from the open D(p−2)-brane perspective? As we will argue below,
the answer seems a decoupled (1 + p)-dimensional “noncommutative” field theory

defined on a noncommutative geometry which is in general different from that for

the usual (1 + p)-dimensional NCYM.

The decoupling limit for a (1 + p)-dimensional NCOS can be given collectively

as [8]:

α′ = εα′eff , gs =
G2o√
ε
, gµν = ηµν (µ, ν = 0, 1) ,

gij = εδij (i, j = 2, · · ·p) , gmn = εδmn (m,n = transverse) ,
2πα′ε01F01 = 1− ε

2
, (4.1)

where the scaling parameter ε → 0 and the NCOS parameters α′eff and Go remain
fixed.

The Dp-brane worldvolume Poincaré dual of F01, i.e., H2···p, can be obtained,
following the same steps as those given in the previous section, as

√
− det gH2···p

2π
= −1
2

ε2···pµν√− det g
∂LDBI
∂Fµν

. (4.2)

Using the scaling limit given in (4.1) for the metric, the closed string coupling

and the near-critical electric field, we have

H2···p =
1

(2π)p−2α
′ p−1
2

eff G
2
o

, (4.3)

which remains fixed.

In summary, from the open D(p−2)-brane perspective, we have now the following
scaling limits:

α′ = εα′eff , gs =
G2o√
ε
, gµν = ηµν (µ, ν = 0, 1) ,

gij = εδij (i, j = 2, · · ·p) , gmn = εδmn (m,n = transverse) ,
H2···p =

1

(2π)p−2α
′ p−1
2

eff G
2
o

. (4.4)

Let us inspect the action (3.7) proposed in the previous section for the open

D(p−2)-brane ending on the Dp-brane which moves in the background given in (4.4).
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For convenience, we write it down here as

S(p−2) = − 1

(2π)p−2α′(p−1)/2gs

∫
Mp−1

dp−1σ
√− det ĝαβ +

∫
Mp−1

Hp−1 , (4.5)

where we have dropped the D(p − 2)-brane worldvolume U(1) field for the reason
mentioned in the previous section, the D(p − 2)-brane worldvolume indices α, β =
0, 1, · · · (p− 2) and the induced worldvolume metric

ĝαβ = ∂αX
M∂βX

NgMN , (4.6)

where the metric gMN is the bulk spacetime one with M,N = 0, 1, · · ·9. The above
Nambu-Goto-type action is not convenient for considering the scaling behavior of

the action. We here follow the procedure given in [22] to introduce the auxiliary

worldvolume metric γαβ and recast the above action in Polyakov form as

S(p−2) = − 1

2(2π)2α′gs

∫
Mp−1
dp−1σ

√
−det γ (γαβ∂αXM∂βXNgMN−(2π)2(p− 3)α′)+

+

∫
Mp−1

Hp−1 , (4.7)

where we have again followed [9] by insisting the worldvolume coordinates σα as

dimensionless. One can check that the equation of motion for γαβ gives the induced

metric and if substituting this back to the above action, we end up with the Nambu-

Goto action (4.5). In the following, we consider the scaling behavior of the above

action under the scaling limit (4.4). As it is understood that the coordinates XM

are now fixed. The D(p− 2)-brane coordinates σα as well as its intrinsic metric γαβ
are also fixed. With these, we have

S(p−2) = − 1

2(2π)2α′effG2o

∫
Mp−1

dp−1σ
√
− det γ × (4.8)

×
[
ε−1/2γαβ∂αXµ∂βXνηµν + ε1/2γαβ∂αX i∂βXjδij +

+ ε1/2γαβ∂αY
m∂βY

nδmn − ε1/2(2π)2α′eff(p− 3)
]
+

+
1

(p− 1)!
∫
Mp−1

dp−1σεα0α1···αp−2∂α0X
i1∂α1X

i2 · · ·∂αp−2X ip−1Hi1i2···ip−1 ,

where Y m denote the bulk modes in directions transverse to the base Dp-brane. From

the above, we have the following:

1. The bulk modes Xµ for µ = 0, 1 are frozen out.

2. The action for the bulk modes X i and Y m vanishes.
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Since the bulk field H2···p as given in (4.4) is a fixed constant, the bulk theory is
now described by the following topological action

S(p−2) =
1

(p− 1)!
∫
Mp−1

dp−1σεα0α1···αp−2∂α0X
i1∂α1X

i2 · · ·∂αp−2X ip−1Hi1i2···ip−1 ,
(4.9)

which in turn can be expressed as the following boundary action for p ≥ 3

1

(p− 1)!
∫
∂Mp−1

dp−2ξεα0α1···αp−3∂α0X
i1∂α1X

i2 · · ·∂αp−3X ip−2X ip−1Hi1i2···ip−1 , (4.10)

where ξα with (α = 0, 1, . . . (p−3)) denote now the local coordinates for the boundary
(p− 3)-brane and X i are the embedding fields of the boundary (p− 3)-brane.
The boundary degrees of freedom for the D(p − 2)-brane are governed by the

above action. For p = 2, we can see that the action (4.9) has no local dynamics

for a constant Hi. We therefore don’t expect the noncommutative geometry to arise

for this case. For p = 3, the quantization of the above action gives [X i, Xj] 6= 0,
therefore implying the spatial noncommutative geometry of the base D3-brane along

the line as for the usual NCYM discussed in [4]. For p = 4, 5, we may follow [22]

to discuss the corresponding spatial noncommutativity geometries of the base Dp-

branes. However, for the p = 5 case, the S-dual of the resultant theory does not

appear to decouple from the bulk as we will discuss in section 6. This may indicate

that the present theory is not well-defined, either. For this reason, we postpone to

study this case carefully elsewhere, not pursuing it further in this paper. Therefore,

except for the p = 2 case, we expect in general that we have a noncommutative

geometry for the base Dp-brane upon the quantization of the above action. The

remaining question is: what is the decoupled theory at hand with the decoupling

limit (4.4)?

Our current knowledge is that a decoupled open brane theory requires usually

a near-critical electric-like background field while a decoupled field theory requires

a fixed magnetic-like background field (with respect to the fixed coordinates). With

this, we might expect that the decoupling limits (4.4) describe decoupled field theories

defined on noncommutative geometries determined through the quantization of the

action (4.10). Naively, we may take the field theory modes on Dp-branes as super

Yang-Mills multiplet. This would imply that the above decoupled field theories are

also “noncommutative” Yang-Mills theories but now defined on noncommutative

geometries which are in general different from those for the usual NCYM.

Given that the decoupled field theory is obtained from the open D(p− 2)-brane
perspective and the noncommutative geometry is determined through the fixed Dp-

brane worldvolume Hp−1-form, the resultant decoupled theory is naturally expected
to be a tensor field theory since the field theory modes on a single Dp-brane is a
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tensor multiplet7 which is Poincaré dual to the U(1) gauge modes on the brane. If

such a field theory for p > 3 exists indeed, the question is: Can we use the (1 +

p)-dimensional Poincaré dual to map this decoupled field theory to a NCYM? To

address this, we first need to know if it is consistent to Poincaré dual the dynamical

tensor field while leaving the “noncommutative” geometry intact. If this is true,

we can end up with a U(1) gauge field defined on a “noncommutative” geometry

determined by the boundary action (4.10). If this is not true, we don’t expect that

we can end up with a field theory since the Poincaré dual of spatial “noncommutative”

geometry would imply a time-space one. The expected theory should be the (1 +

p)-dimensional NCOS but we cannot get it by performing the Poincaré dual on

the decoupled tensor field theory since the later is expected to be an incomplete

description of the underlying physics while the former is a complete description for

p > 3. Work on this issue for p = 4 case is in progress.

In spite of what has been said above, directly confirming the existence of the

(1 + p)-dimensional “noncommutative” tensor field theories may not be easy since

we need to know the effective open D(p− 2)-brane metric which is hardly available
for p > 3. For p = 3, however, we are reasonably sure that we end up with a (1+ 3)-

dimensional noncommutative Yang-Mills which is actually identical to the usual (1

+ 3)-dimensional NCYM if their parameters are properly identified.

Let us give some detail about this theory. As discussed above, quantization of

the boundary action (4.10) for p = 3 gives

[x2, x3] = −i2πα′effG2o . (4.11)

Therefore, we have the spatial noncommutative parameter Θ23 = −2πα′effG2o. The
present decoupled theory is obtained from the open D-string ending on D3-branes

in the decoupling limit (4.4) for p = 3. Given the relation between D-string and F-

string, we expect that the low energy Born-Infeld action for D3-branes with the open

D-string ending on them can be obtained from that for D3-branes with a F-string

ending on them through the following replacements

gs → 1

gs
, α′ → α′gs , Fαβ → Hαβ , (4.12)

where Fαβ is the worldvolume gauge field in the F-string picture while Hαβ is the

corresponding one in the D-string picture. With the above, the decoupling limit (4.4)

is essentially the same as the one for the usual NCYM as given in (3.1) in the

previous section. Given the above, let us make a consistent check on the open

D-string metric, the noncommutative parameter and the gauge coupling using the

corresponding Seiberg-Witten relations for the present noncommutative Yang-Mills

7For p > 3, we know only how to deal with a single Dp-brane since at present we don’t know

how to generalize an abelian tensor multiplet to its non-abelian one.
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theory. They are now

Gαβ = gαβ − (2πα′gs)2(Hg−1H)αβ ,

Θαβ = 2πα′gs

(
1

g + 2πα′gsH

)αβ
A

,

1

g2NCYM
=
gs

2π

(
det(g + 2πα′gsH)

detG

)1/2
, (4.13)

where A in ()A denotes the anti-symmetric part of the matrix. Using the decoupling

limit (4.4) for p = 3, we have from the above

Gαβ = ηαβ , Θ
23 = −2πα′effG2o ,

1

g2NCYM
=
G2o
2π
. (4.14)

The noncommutative parameter Θ23 is the same as the one obtained above and the

open string metric is also expected. The Yang-Mills coupling is inversely related to

the open string coupling for NCOS. This is quite different from that between the

open D-string coupling and the usual NCYM coupling as given in (3.6) for p = 3.

Under S-duality, we expect that our open D-string theory discussed in the pre-

vious section is mapped to the present NCOS via

α̃′eff → α′eff = α̃′effG̃2o(1) , G̃2o(1) → G2o =
1

G̃2o(1)
, (4.15)

which are obtained from α̃′ → α′ = α̃′g̃s, g̃s → gs = 1/g̃s.
With the above relation, we have the same parameters for the usual NCYM

and the above NCYM. Therefore, they are identical theories. In other words, the

NCYM keeps intact under S-duality. This is just the consequence of S-duality given

the two S-duality related bulk scalings and the relation F23 = H23. In other words,

the low energy dynamics of the open F-string ending on the base D3-branes with

background F23 is identical to that of the open D-string ending on the same D3-

branes with background H23.

Note that the above S-duality for the NCYM is induced from that for the bulk

type IIB string theory. This is different from the usual one which requires in addi-

tion a worldvolume Poincaré duality for the background field. The usual S-duality

maps the usual NCYM directly to the NCOS as discussed in [6]. In terms of our

interpretation, the NCYM keeps intact under S-duality.

At low energies, the NCOS, our open D-string theory and the NCYM are all

expected to reduce to the corresponding usual Yang-Mills theories. The question is:

What are the relations among the three usual Yang-Mills theories. Let us find them

out. For the NCOS, we have the gauge coupling from [8] as g2YM = 2πG
2
o. For the

NCYM, the gauge coupling is just g2NCYM = g̃
2
NCYM = 2πG

2
(1) = 2π/G

2
o. For our open

D-string theory, we can calculate g2YM = 2π/G
2
(1). Given G

2
o = 1/G

2
(1), we have the
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same low energy Yang-Mills theory for the NCOS and our open D-string theory since

the gauge coupling is the same. However, we have g2YM = (2π)
2/g2NCYM. In other

words, the low energy Yang-Mills theory from either the NCOS or our open D-string

theory is strong-weakly related to that from the NCYM. This is the manifestation

of the S-duality for the usual (1 + 3)-dimensional YM. This result is consistent with

the S-duality relation between the NCOS and the usual NCYM discussed in [6] even

though our interpretation here is different as mentioned above.

5. Compactification of OM theory on a circle and (1 + 4)-

dimensional theories

In this sub-section, we try to make connections of the (1 + 4)-dimensional open

D2-brane theory and the new (1 + 4)-dimensional NCYM discussed in the previous

two sections to the compactification of OM theory on a (either magnetic or electric)

circle. We will see that the dimensional reduction of OM theory on either a magnetic

circle or an electric circle indicates the existence of the open D2-brane theory or the

new (1 + 4)-dimensional NCYM.

5.1 OM Theory on a magnetic circle and 5-D open D2-brane theory

In this section, we try to show that OM theory describes the strong coupling of the

usual (1 + 4)-dimensional open D2-brane theory discussed in section 2. We also show

that this open D2-brane theory provides a UV completion of the (1 + 4)-dimensional

NCYM.8

As discussed in [8], OM theory on a magnetic circle gives NCYM with rank-2

noncommutative matrix with the following parameters

α̃′ =
1

L
√
2M2effM

3
p

, g̃s =

(
2L2M2eff
Mp

)3/4
, g̃2NCYM = 4π

2L ,

gµν = ηµν (µ, ν = 0, 1, 2) , gij = 2
M3eff
M3p
δij , (i, j = 4, 5), F45 =

LM3eff
π
, (5.1)

where L is the coordinate radius of the magnetic circle, Meff is the energy scale for

the OM theory andMp is the eleven-dimensional Planck scale which is sent to infinity

in the decoupling limit for OM theory. It was also concluded in that paper that OM

theory provides a completion of the (1 + 4)-dimensional NCYM. The detailed path,

as we show below, is that the (1 + 4)-dimensional open D2-brane found in this paper

provides a completion of the NCYM and OM theory describes the strong coupling

of this open D2-brane theory.
8That the UV completion of the (1 + 4)-dimensional NCYM is an open D2-brane theory was

also briefly mentioned in a recent paper [23]. An open D3-brane theory as the UV completion of

the (1 + 5)-dimensional NCYM was also mentioned there. The author would like to thank R.-G.

Cai for bringing his attention to this reference.
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Comparing the above with the decoupling limit for NCYM with p = 4 in eq.

(3.1), we have also

ε = 2
M3eff
M3p
, α̃′eff =

1

2LM3eff
. (5.2)

The (1 + 4)-dimensional NCYM is nonrenormalizable and therefore this theory

does not have a complete (1 + 4)-dimensional description. However, when L �
1/Meff , the magnetic circle is invisible to OM theory. We should end up with a (1 +

4)-dimensional open membrane theory which provides a completion of the NCYM.

We will show below that this open membrane theory is our open D2-brane theory.

As discussed in the Introduction, an alternative description of this compactifi-

cation of OM theory is via the open membrane since the compactification along the

magnetic circle is transverse to the open membrane which is used in defining the OM

theory. With this in mind, we have from g̃s = ε
1/4G̃2o(2) and the relations given in

eqs. (5.1) and (5.2)

G̃2o(2) =
g̃2NCYMα̃

′−1/2
eff

(2π)2
= (2LMeff)

3/2 . (5.3)

The scalings of other parameters for the OM theory can be read from [8] as9

α̃′ = ε1/2α̃′eff , ε = e
−2β = 2

M3eff
M3p

gµν = ηµν (µ, ν = 0, 1, 2) , gij = εδij (i, j = 4, 5) ,

H012 =
M3p tanh β

(2π)2
=

1

(2π)2α̃
′3/2
eff G̃

2
o(2)

(
1

ε
− 1
2

)
. (5.4)

The above parameters and scalings are precisely what we used to define our (1 +

4)-dimensional open D2-brane theory in section 3. If we examine the coupling G̃o(2)
of our open D2-brane theory given (5.3), we have G̃o(2) � 1 if L � 1/Meff and
G̃o(2) � 1 if L� 1/Meff . The former implies that the magnetic circle is invisible to
OM theory while the latter says that the circle appears to be uncompactified to OM

theory. Therefore, our open D2-brane theory is OM theory on a magnetic circle when

L� 1/Meff and provides a completion of the usual (1 + 4)-dimensional NCYM. Its
strong coupling is OM theory.

In summary, when L � 1/Meff and the relevant energy scale � 1/g̃2NCYM, both
OM theory and our open D2-brane theory can be effectively described by the usual

(1 + 4)-dimensional NCYM. When we have only L� 1/Meff , OM theory reduces to
our open D2-brane theory. In other words, OM theory provides a completion of our

open D2-brane in coupling while our open D2-brane provides an completion of the

usual (1 + 4)-dimensional NCYM in energy.

9Our convention here for H012 differs from that used in [8] by a factor of (2π)
2.
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5.2 OM theory on an electric circle and 5-D noncommutative tensor field

theory

As discussed in [8], the compactification of OM theory on an electric circle (say in

the 2 direction) with proper (also coordinate) radius R gives (1 + 4)-dimensional

NCOS with the following parameters:

α′ =
1

RM3p
, gs = (RMp)

3/2 , 2πα′F01 = α′RH012 = 1− M
3
eff

M3p
,

gµν = ηµν (µ, ν = 0, 1) , gij =
2M3eff
M3p
δij (i, j = 3, 4, 5) ,

gmn =
2M3eff
M3p
δmn , (m,n = transverse) , (5.5)

whereMp →∞ is understood. Comparing with the decoupling limit for NCOS given
in (4.1) for p = 4, we have

ε =
2M3eff
M3p

, α′eff =
1

2RM3eff
, G2o =

√
2(RMeff)

3/2 . (5.6)

It is not difficult to see that Go � 1 implies R � 1/Meff . In other words, the
circle appears uncompactified. Therefore, OM theory provides a completion of the

(1 + 4)-dimensional NCOS in coupling. On the other hand, if Go � 1, we have
R � 1/Meff . This is to say that the circle is invisible to OM theory. Since one of
the dimensions of the open membrane in OM theory is wrapped on this circle, we

therefore end up with the above NCOS theory.

Again as discussed in the Introduction, we can instead focus on the magnetic 3-

form fieldH345 rather than on the electric one. The question is: what is the decoupled

theory in this case? Let us examine the decoupling limit. Since the change here is

to replace F01 by H345, we therefore have the following:

α′ = εα′eff , gs =
G2o√
ε
, H345 =

(
2M3eff
Mp

)3/2
sinh β

(2π)2
=
2M3eff
(2π)2

=
1

(2π)2α
′3/2
eff G

2
o

,

gµν = ηµν (µ, ν = 0, 1) , gij = εδij (i, j = 3, 4, 5) ,

gmn = εδmn , (m,n = transverse) , (5.7)

where the parameters ε, α′eff and Go are given in (5.6). Note that our convention for
the above H345 differs from that given in [8]: our H234 corresponds to −H345/(2π)2
used in [8]. With this in mind, the above limit gives precisely the one in (4.4) for

p = 4. As discussed in the previous section, this limit gives a (1 + 4)-dimensional

tensor field theory defined on a noncommutative geometry which is determined upon

the quantization of the boundary action (4.10).

This (1 + 4)-dimensional tensor field theory is expected to be an effective theory

and its completion is the (1 + 4)-dimensional NCOS.
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6. Relation to ODp theories from NS5-branes

As discussed in the Introduction, the existence of ODp theories from NS5-branes for

p ≤ 5, as discovered independently in [8, 10], can be traced back to the fact that an
open Dp-brane can end on NS5-branes. These ODp theories are also related to the

known NCOS theories (for example, the (1 + 5) NCOS) and to each other through

S- and T-dualities and their other properties have also been discussed in [8].

The scaling limits for these ODp are given in [8] as

ᾱ′ = ε1/2ᾱ′eff , g
(p)
s = ε

(3−p)/4Ḡ2o(p) , gµν = ηµν , (µ, ν = 0, 1, · · · , p) ,
gij = εδij (i, j = (p+ 1), · · ·5) , gmn = εδmn, (m,n = transverse) ,

ε01···pC01···p =
1

(2π)pḠ2o(p)ᾱ
′(p+1)/2
eff

(
1

ε
− 1
2

)
,

C(p+1)···5 =
1

(2π)4−pḠ2o(p)ᾱ
′(5−p)/2
eff

. (6.1)

In the above, both a RR (1 + p)-form and a RR (5 - p)-form potentials are

included for defining the ODp. These constant RR potentials can be traded to the

corresponding NS5-brane worldvolume (1+ p)-form field strength H01···p and (5 - p)-
form field strength H ′(5−p)···5. Given the fact that the two are related to each other by
the worldvolume Poincaré duality for p = 2 case, we expect that the two are related

so for a general p ≤ 5. In other words, the (1 + p)-form field strength H1+p and
the (5 - p)-form field strength H ′(5−p) are not independent to each other but related
by the worldvolume Poincaré duality. This is consistent with the low energy field

contents on a NS5-brane in either IIA or IIB string theory for which we don’t have

such two independent field strengths living on the NS5-brane worldvolume at the

same time. To avoid doubly counting degrees of freedom, we allow only one of them

present at one time except for the case of p = 2, 5. For the p = 2 case, we still have

only one 3-form field strength but with two nonvanishing components related to each

other by the non-linear worldvolume Poincaré duality. For the p = 5 case, neither

the 6-form field strength nor the the 0-form one carries local dynamics on the NS5

brane. For this reason, they are allowed to present at the same time. We therefore

interpret that the decoupling limit for ODp given in [8] should include only the C01···p
not the C(p+1)···5 one except for p = 2, 5 cases. This will affect the interpretations for
some of the ODp theories given in [8].

For different ODp, the origin of the worldvolume background field H01···p is dif-
ferent. Let us explain this briefly. For p = 0, the D0-brane used in defining OD0

theory couples to a 1-form field strength. This 1-form must be a derivative of one

of the five scalars in the (2, 0) tensor multiplet. Since this scalar interacts with D0

brane charge and therefore must be the zero mode associated with the compactified
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direction transverse to the original M5-brane which is now the NS5-brane in IIA.

The Poincaré dual of this 1-form field strength on the NS5-brane worldvolume gives

a 5-form field strength whose potential couples to the boundary of the open D4 brane

ending on the NS5-brane. The critical electric field limit of this 5-form field strength,

which is actually Poincaré dual to a magnetic-like 1-form H5, defines the OD4 theory.

For even p, only the OD2 theory is defined as the critical field limit of the self-dual

field strength H012 in the (2, 0) tensor multiplet.

For odd p, the NS5-brane is in type-IIB string theory. The low energy field

content on the NS5-brane is the (1, 1) vector multiplet. The OD1 theory results

from the critical electric field strength H01 whose potential is in the (1, 1) vector

multiplet. The OD3 theory results from a near-critical 4-form field strength H0123
which is Poincaré dual to the magnetic-like 2-form field strength H45. So the origin

of this 4-form field strength is also clear. However, we have neither a 6-form field

strength nor a 0-form field strength in the (1, 1) vector multiplet. Actually, a 6-form

or a 0-form field strength in (1 + 5)-dimensions carries no local dynamics. For this

reason, both of the 6-from and the 0-form can appear at the same time. So for OD5,

we can also have both the 6-form H012345 and a 0-form H . Because of this, we don’t

have a well-defined S-dual of OD5 as discussed in [8].

One of purposes in this section is to show that the open Dp-brane and the NCYM

theories discussed in sections 3 and 4 are also implied by the ODp theories given our

above interpretation for the NS5-brane worldvolume fields. For convenience, we

rewrite the scaling limits for ODp except for p = 2, 5 case using our interpretation as

ᾱ′ = ε1/2ᾱ′eff , g
(p)
s = ε

(3−p)/4Ḡ2o(p) , gµν = ηµν , (µ, ν = 0, 1, · · · , p) ,
gij = εδij (i, j = (p+ 1), · · · , 5) , gmn = εδmn (m,n = transverse) ,

ε01···pH01···p =
1

(2π)pḠ2o(p)ᾱ
′(p+1)/2
eff

(
1

ε
− 1
2

)
, (6.2)

Let us point out first that except for the dimensionality (here it is (1 + 5)-

dimensions), the scalings for the OD(p − 2)- theories in eq. (6.2) look exactly the
same as those for our (1 + p)-dimensional open D(p− 2)-brane theories discussed in
section 3 for p ≤ 5. We now explore the connection between these two.
For this purpose, let us consider p = 3 in eq. (6.2). The decoupling limit for this

OD3 is

ᾱ′ = ε1/2ᾱ′eff , g
(3)
s = Ḡ

2
o(3) , gµν = ηµν , (µ, ν = 0, 1, · · · , 3) ,

gij = εδij (i, j = 4, 5) , gmn = εδmn, (m,n = transverse) ,

ε0123H0123 =
1

(2π)2Ḡ2o(3)ᾱ
′2
eff

(
1

ε
− 1
2

)
. (6.3)
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For a better understanding of what follows, we digress to give a discussion of the

little string sector in ODp theory. As discussed in [8], there is a little closed string

sector in each of the ODp theories which provides the completion of the low energy

field theory for each of the ODp theories. The existence of the little closed strings

can be deduced as follows: the low energy theory for both the (1 + 5)-dimensional

NCOS and OD1 is the (1 + 5)-dimensional Yang-Mills. The instanton solution of

this Yang-Mills is a closed string with its tension inversely proportional to the Yang-

Mills coupling, i.e., 1/g2YM ∼ 1/ᾱ′eff . (Note that OD1 has parameters ᾱ′eff , Ḡ(1) and
the NCOS has parameters α′eff , Go with Ḡ(1) = 1/Go, ᾱ

′
eff = α

′
effG

2
o due to the S-

dual relation between the two. Both the OD1 and NCOS have the same tension

Teff = 1/4πα
′
eff = 1/4πḠ

2
(1)ᾱ

′
eff .)

For NCOS, in the limit α′eff → 0, Go →∞ with g2YM held fixed, the noncommuta-
tive parameter Θ01 = 2πα′eff → 0 and the NCOS tension blows up. We therefore end
up with a complete Lorentz invariant theory in this limit. As we know that the (1

+ 5)-dimensional Yang-Mills is incomplete and the little string remains light in this

limit. For this reason, it was conjectured in [8] that the NCOS in this limit reduces

to the little string theory.
In the S-dual theory of the above, i.e., OD1, the above limit says that Ḡ(1) → 0

with ᾱ′eff kept fixed. The above conjecture implies that the OD1 in this limit reduces
to type IIB little string theory since Ḡ(1) = 0 at fixed ᾱ

′
eff . Since the tension for little

strings in OD1 theories remains unchanged under T-dualities, it was concluded in [8]

that there is a closed little string sector in each of the ODp theories.
We now return to discuss the OD3 theory. There is a closed little string sector in

this theory with the string tension T = 1/4πᾱ′eff . As we will show later in this section,
we can have two identical (1 + 5)-dimensional Noncommutative Yang-Mills theories,

one is obtained from open F-string ending on D5-branes while the other from open

D-string ending on NS5-branes in their respective decoupling limits. The two theories

are once again S-dual invariant and have the same noncommutative parameter Θ45 =

2πᾱ′effḠ
2
o(3) = 2πα̃

′
eff and the same gauge coupling g

2
NCYM = g̃

2
NCYM = (2π)

3ᾱ′eff . In the
above, we have Ḡo(3) = 1/G̃o(3), ᾱ

′
eff = α̃

′
effG̃

2
o(3). In the limit Ḡo(3) → 0 with ᾱ′eff held

fixed (or G̃o(3) →∞, α̃′eff → 0 but with α̃′effG̃2o(3) held fixed), the NCYM reduces to the
(1 + 5)-dimensional Yang-Mills which is actually the same as the low energy theory of

both (1 + 5)-dimensional NCOS and OD1 which will be discussed later in this section.

The complete description of the (1 + 5)-dimensional ordinary Yang-Mills is given

by the type IIB little string theory. In other words, in the above limit Ḡo(3) → 0 with
ᾱ′eff kept fixed, the complete description of the NCYM is given by the little string
theory. In the same limit, the tension for OD3-brane is ∼ 1/Ḡ2o(3)ᾱ′2eff which blows
up while the tension for the closed little strings remains finite. Therefore the little

strings are light and we expect that the OD3 reduces to the little string theory. In

other words, the complete description of both OD3 and NCYM in this limit is in

terms of type IIB little string theory.
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When the noncommutative parameter remains nonvanishing, i.e., with both ᾱ′eff
and Ḡo(3) finite, what is the complete description of the NCYM? It cannot be the

little string theory any more and the natural answer is the OD3 theory.

For this reason, using our decoupling limit eq. (6.3) and the further discussion in

what follows, we interpret the OD3 theory to be self-dual rather than to be S-dual

to the usual (1 + 5)-dimensional NCYM since a complete theory cannot be mapped

to an incomplete one under S-duality. This case is quite different from that in (1 +

3)-dimensions where the NCYM is also a complete theory.

If we S-dual this OD3 theory, we end up with another OD3 theory whose scalings

look identical to the original ones except for some changes for the fixed parameters

ᾱ′eff , Ḡ
2
o(3). This is due to the fact that the D3-brane is intact under S-duality.

10 The

only possible effects associated with the base NS5-brane in the decoupling limit are

on the closed string constant ᾱ′ and the closed string coupling g(3)s . It turns out
that their scalings remain the same under S-duality for this case, a welcome and

yet expected result. If we denote with Ã as the S-dual of quantity A which is not

invariant under S-duality, we have

ᾱ′ → α̃′ = ᾱ′g(3)s = ε1/2α̃′eff , g(3) → g̃(3) =
1

g(3)
=
1

Ḡ2o(3)
= G̃2o(3) , (6.4)

for which we insist that the closed string metric remains the same as before.11 This

also implies that the D3 brane tension ∼ 1/(ᾱ′2g(3)s ) remains invariant under S-
duality, again a welcome and yet expected result. This further implies that the OD3

tension∼ 1/(ᾱ′2effḠ2o(3)) also remains invariant under S-duality which is consistent with
the fact that H0123 (or C0123) is intact under S-duality. Given that the closed string

metric, the proper tension of the D3-brane ending on the NS5-brane and the near-

critical electric field C0123 all remain unchanged under S-duality, we therefore still
10This is manifest by the fact that the near-critical electric field H0123 is intact under S-duality.

This becomes more clear if we use C0123 rather than the worldvolume H0123.
11The notion that the string constant α′ transforms under S-duality is due to our choice that
the asymptotic string-frame metric does not change under S-duality. This is an effective way in

implementing S-duality which is also useful. The original S-duality requires the Einstein-frame

metric and α′ to be invariant under S-duality. Let us demonstrate the above two cases in the
following simple examples: a) If we insist that the asymptotic string metric remain the same but the

α′ → α̃′ = α′gs, we have (1/α′)
∫
∂XM∂XNgMN → (1/α̃′)

∫
∂XM∂XNgMN under S-duality. This

basically says that a fundamental string with its parameter α′ is mapped to another fundamental
string with its parameter α̃′ = α′gs. However, if we interpret this new string in its original α′, it
is a D-string. b) If we insist that only Einstein metric and α′ remain invariant under S-duality,
we have (1/α′)

∫
∂XM∂XNeφ/2gEMN → (1/α′)

∫
∂XM∂XNe−φ/2gEMN = (1/gsα

′)
∫
∂XM∂XNgMN

where we have used the relation g = eφ/2gE in relating the original string-frame metric g to its

Einstein-frame metric gE in the last step. We have also used φ → −φ under S-duality. If we
interpret this string in the original string metric, this S-dual string is a D-string because of the

tension is now ∼ 1/(α′gs). However, it is still a fundamental string if we use the S-dual string
metric which is now g̃ = g/gs. Therefore the above two pictures don’t lead to any inconsistency. It

is merely a choice of attributing the change to the metric or to the string constant α′.
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have an open D3-brane theory under S-duality as claimed above with the following

decoupling limit:

α̃′ = ε1/2α̃′eff , g̃
(3)
s = G̃

2
o(3) , gµν = ηµν (µ, ν = 0, 1, 2, 3) ,

gij = εδij (i, j = 4, 5), gmn = εδmn (m,n = transverse) ,

ε0123H0123 =
1

(2π)2G̃2o(3)α̃
′2
eff

(
1

ε
− 1
2

)
, (6.5)

where we have

α̃′eff = ᾱ
′
effḠ

2
o(3) , G̃

2
o(3) =

1

Ḡ2o(3)
, (6.6)

which implies α̃′2effG̃
2
o(3) = ᾱ

′2
effḠ

2
o(3). This new open D3-brane theory has the same

tension as the original one but its coupling G̃2o(3) is inversely related to the original

one as indicated above. Therefore when one OD3 theory is strongly coupled, the

other is weakly coupled and vice-versa. This new OD3 theory is just the open D3

brane theory discussed in section 3. Our above discussion on the relation between the

OD3 and the NCYM from the decoupling of the open D-string ending on NS5-branes

is also consistent with that between our open D3-brane theory and the NCYM from

the decoupling of the F-string ending on D5-branes discussed in section 3. In other

words, either OD3 or our open D3-brane theory provides the complete description of

the corresponding NCYM. This further implies that there should exist a little string

sector in our open D3-brane theory. In other words, our open D3-brane theory

reduces to the little string theory in the limit G̃o(3) → ∞ but with α̃′effG̃2o(3) held
fixed. One can check indeed that the closed little strings remain light while our open

D3-brane tension blows up in this limit.

Subsequent applications of T-duality on this new open D3-brane theory along

x3, x2, x1 as described in section 3 will give our open Dp brane theories for p ≤ 3.
Therefore, the OD(p−2)- theories from NS5-branes also imply the existence of those
(1 + p)-dimensional open D(p− 2)-brane theories discovered in this paper.
It is clear now that the OD(p − 2)- theories from NS5-branes and those found

in this paper are U-duality related. Let us make some further comparisons between

them. First for p ≤ 5, our open D(p−2)-brane theories live in (1+p)-dimensions while
those from NS5-brane always live in (1 + 5)-dimensions. Assuming the respective

compactification radii to be the same, we have the ratio G̃2o(p−2)/Ḡ
2
o(p−2) = 1/Ḡ

p−1
o(3).

If Ḡo(3) > 1, then G̃o(p) < Ḡo(p) and the other way around if Ḡo(3) < 1. Further

G̃2o(p−2)α̃
′(p−1)/2
eff = Ḡ2o(p−2)ᾱ

′(p−1)/2
eff . This implies that our open D(p− 2)-brane theory

and that from NS5-brane have the same proper tension and the same near-critical

electric field H01···(p−2). The bulk metric in both cases remain the same. Therefore,
the reason that our open D(p−2)-brane theory can only see (1+p)-dimensions while
those from NS5-brane always see (1 + 5)-dimensions may be due to the difference in

their couplings.
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For p = 5, as discussed in section 3, the open D3-brane provides a completion of

the usual (1 + 5)-dimensional NCYM. Our discussion above says that the S-duality

of this open D3-brane theory is the OD3. This indicates that the S-duality of the

usual (1 + 5)-dimensional NCYM gives another (1 + 5)-dimensional NCYM. It is

for this case that our interpretation differs from that given in [8] where the S-duality

of OD3 was interpreted to give the usual (1 + 5)-dimensional NCYM. The question

is: what is the new (1 + 5)-dimensional NCYM? This is the topic to which we turn

next.

Following the discussion given in section 3 and 4, we expect that we might have

noncommutative field theories for p = 0, 1, 3, 4 if the open D(4−p)-brane description
is insisted with the following scaling limits

ᾱ′ = ε1/2ᾱ′eff , g
(p)
s = ε

(3−p)/4Ḡ2o(p) , gµν = ηµν , (µ, ν = 0, 1, · · · , p) ,
gij = εδij (i, j = (p+ 1), · · ·5) , gmn = εδmn, (m,n = transverse) ,

H(p+1)···5 =
1

(2π)4−pḠ2o(p)ᾱ
′(5−p)/2
eff

. (6.7)

Let us examine the action of open D(4− p)-brane ending on NS5-branes:

S(4−p) =− 1

2(2π)2ᾱ′g(p)s

∫
M5−p

d5−pσ
√
−det γ (γαβ∂αXM∂βXNgMN−(2π)2(3− p)α′)+

+

∫
M5−p

H5−p . (6.8)

With the scaling limits (6.7), we have

S(4−p) = − 1

2(2π)2ᾱ′effḠ
2
o(p)

∫
M5−p

d5−pσ
√
− det γ ×

×
[
ε−(p−5)/4γαβ∂αXµ∂βXνηµνε(p−1)/4γαβ∂αX i∂βXjδij +

+ ε(p−1)/4γαβ∂αY m∂βY nδmn − ε(p−3)/4(2π)2(3− p)
]
+

+

∫
M5−p

H5−p . (6.9)

where we denote Y m as the bulk modes along the directions transverse to the NS5-

brane.

Except for the p = 1 case, the only finite part of the above action is the bulk

topological term which can be expressed in terms of the following boundary action

(except for the p = 4 case)

1

(5− p)!
∫
∂M5−p

d4−pξεα0α1···α3−p∂α0X
i1∂α1X

i2 · · ·∂α3−pX i4−pX i5−pHi1i2···i5−p . (6.10)
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In other words, we can have noncommutative field theories for p = 0, 3 upon the

quantization of the above action which determines the geometry of the base NS5-

brane. For p = 0, this appears to be a noncommutative (2, 0) theory. Since the

background field used in defining this theory comes from the magnetic dual of the

derivative of the scalar in (2, 0) theory, whether we indeed have such a noncom-

mutative field theory needs further investigation. For p = 3, we end up with the

aforementioned NCYM which can actually be identified with the usual NCYM. We

will show this later on.

The p = 4 case does not give noncommutativity and therefore we expect that

we end up with the usual (2, 0) theory. For p = 1, the bulk modes X i, Y m remain

even with the decoupling limit. This may indicate that we don’t have a decoupled

noncommutative field theory. This also indicates that the (1 + 5)-dimensional non-

commutative tensor field theory discussed in section 4 may not be well-defined either

since it is expected to be related to the present one by S-duality.

We now discuss the p = 3 case mentioned above. The quantization of the

boundary action (6.10) for this case gives

[x4, x5] = −i2πᾱ′effḠ2(3) , (6.11)

which gives the noncommutative Θ45 = −2πᾱ′effḠ2(3).
Given the S-dual relation between the open F-string ending on D5 branes and

open D-string ending on NS5-branes, we expect, as before, that the open D-string

metric, the noncommutative parameter and the gauge coupling can be calculated

with the scaling limit (6.7) using the following Seiberg-Witten relations:

Gαβ = gαβ − (2πᾱ′g(3)s )2(Hg−1H)αβ ,

Θαβ = 2πᾱ′g(3)s

(
1

g + 2πᾱ′g(3)s H

)αβ
A

,

1

g2NCYM
=

g
(3)
s

(2π)3(ᾱ′g(3)s )

(
det(g + 2πᾱ′g(3)s H)

detG

)1/2
, (6.12)

where α, β = 0, 1, . . . , 5. We find

Gαβ = ηαβ , Θ
45 = −2πᾱ′effḠ2(3) , g2NCYM = (2π)3ᾱ′eff . (6.13)

The fixed open D-string metric indicates that we indeed end up with a noncommuta-

tive field theory. The noncommutative parameter is the same as the one calculated

above from the quantization of the boundary action. Let us understand the above

Yang-Mills coupling. Since an open D-string ending on NS5-branes are S-dual to

an open F-string ending on D5-branes, we expect that the bulk scaling limits for

this NCYM are S-dual to those for the usual NCYM. This further implies that the
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parameters for the two decoupled NCYM are related to each other. Let us find these

relations. The scaling limits for the usual (1 + 5)-dimensional NCYM are given in

(3.1). Under S-duality, we have

α̃′ → ᾱ′ = α̃′g̃(3)s , g̃(3)s → g(3)s =
1

g̃
(3)
s

. (6.14)

From the above, we have

Ḡ2o(3) =
(2π)3α̃′eff
g̃2NCYM

=
1

G̃2(3)
, ᾱ′eff =

g̃2NCYM
(2π)3

= α̃′effG̃
2
(3) . (6.15)

With this, we have

Θ45 = 2πᾱ′effḠ
2
o(3) = 2πα̃

′
eff , g

2
NCYM = (2π)

3ᾱ′eff = g̃
2
NCYM . (6.16)

In other words, the two NCYM theories have the same parameters and they can

actually be identified. Again this is just the consequence of S-duality. We have seen

this for the two (1 + 3)-dimensional NCYM theories discussed in section 4. In other

words, the NCYM keeps intact under S-duality.

At low energies, all these (1 + 5)-dimensional decoupled theories (i.e., the NCOS,

OD1, OD3, our open D3-brane theory and the NCYM) from type IIB string theory

are expected to give the usual (1 + 5)-dimensional Yang-Mills. The question is: Can

we have a unique usual Yang-Mills? We can check this at least for the NCOS, OD1

and the NCYM. For the NCYM, from the above, we can see that the low energy

limit can be achieved by insisting α̃′eff → 0 while keeping ᾱ′eff fixed. This in turn
implies that we set Ḡ2(3) → 0.
For the NCOS, it reduces to the usual Yang-Mills with gauge coupling g2YM =

(2π)3G2oα
′
eff as given in [8]. For the OD1, it reduces to

S =
Ḡ2(1)

4(2π)3ᾱ′g(1)s

∫
d6x
√−GGACGBDĤABĤCD ,

=
1

4(2π)3ᾱ′eff

∫
d6xηACηBDĤABĤCD , (6.17)

where the open D-string metric GAB = εηAB has been used. From the above, we

have g2YM = (2π)
3ᾱ′eff .

Since the NCOS (with parameters α′eff , Go) is S-dual to OD1 (with parameters
ᾱ′eff , Ḡ(1)), we have the following

Ḡ2(1) =
1

G2o
, ᾱ′eff = α

′
effG

2
o . (6.18)

This implies that the low energy Yang-Mills theories from the above three different

theories are actual the same since the gauge coupling is the same. This is different

from the (1 + 3)-dimensional case discussed at the end of section 4.
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7. (1 + 3)-dimensional open (p, q)-string theory

The discussion given in the previous sections hints already that we have interesting

story in (1 + 3)-dimensions. For example, our (1 + 3)-dimensional open D-string

theory discussed in section 3 is equivalent to the usual (1 + 3)-dimensional NCYM.

We intend to give explanations for related issues in this section.

In [6], it was shown that the S-duality of (1 + 3)-dimensional NCYM gives (1

+ 3)-dimensional NCOS. This conclusion, in spite of its correctness, does raise the

following puzzles: a) Why is this true only for the (1 + 3)dimensional NCYM, not

for the (1 + 5)-dimensional one, for example? b) How can we reconcile this with the

belief that the non-perturbative quantum SL(2,Z) symmetry of the parent type IIB

string theory is actually inherited to its decoupled sub-theory (we call it the little

type IIb string theory) without gravity?

As we know that the existence of D-string or in general a (p, q)-string is a

consequence of this SL(2,Z) symmetry in the non-perturbative type IIB string theory.

By the same token, if we have SL(2,Z) symmetry for the little type IIb string theory,

the existence of (1 + 3)-dimensional NCOS should imply a (1 + 3)-dimensional open

D-string or in general a (1 + 3)-dimensional open (p, q)-string theory. However, the

above conclusion given in [6] says that the S-dual of the NCOS is the usual (1 +

3)-dimensional NCYM.

The (1 + 3)-dimensional open D-string found in section 3 resolves this puzzle.

First the existence of this theory is consistent with the S-duality. Second that this

theory is equivalent to the usual (1 + 3)-dimensional NCYM as discussed in section 3

is also consistent with the S-duality between the (1 + 3)-dimensional NCOS and the

usual NCYM. Our interpretation for S-duality is a bit different from that given in [6]

where a worldvolume Poincaré duality is also employed as discussed in section 4.

In terms of our interpretation, the (1 + 3)-dimensional NCYM is actually S-dual

invariant while our open D-string theory is S-dual to the NCOS.

Our picture of S-duality for the decoupled theories from the parent type IIB

string theory is as follows: In general, a decoupled open brane theory is S-dual to an-

other decoupled open brane theory while a decoupled field theory is S-dual to another

decoupled field theory. The examples are: a) (1 + 3)-dimensional NCOS is S-dual

to the (1 + 3)-dimensional open D-string theory in this paper, (1 + 5)-dimensional

NCOS is S-dual to the (1 + 5)-dimensional OD1 theory and (1 + 5)-dimensional OD3

is S-dual to the (1 + 5)-dimensional open D3-brane theory in this paper. The usual

(1 + 3)-dimensional NCYM is S-dual to the (1 + 3)-dimensional NCYM discussed

in section 4 (actually self-dual), the usual (1 + 5)-dimensional NCYM is S-dual to

the (1 + 5)-dimensional NCYM discussed in the previous section. As discussed in

the previous section, an open brane theory should not be in general S-dual to a field

theory since the latter may not be complete (due to nonrenomalizability) while the

former is generally complete.
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As mentioned above, the reason that the usual (1 + 3)-dimensional NCYM can

be S-dual (using the interpretation of [6]) to the (1 + 3)-dimensional NCOS is due

to that this NCYM is a complete theory and is equivalent to the (1 + 3)-dimensional

open D-string theory. This is, however, not the case in (1 + 5)-dimensions.

Now the remaining question is: Does a general (1 + 3)-dimensional (p, q) open

string theory exist? The answer should be yes if the type IIB SL(2,Z) is inherited to

the little type-IIb string theory. The existences of both (1 + 3)-dimensional NCOS

and open D-string theories, both (1 + 5)-dimensional NCOS and OD1 and the two

versions of open D3-brane theory related by S-duality also strongly support this.

Given that an open (p, q)-string can end on D3-branes, one expects that a force due

to a proper background field can balance the tension. For examples, in the simplest

context, if we apply only a near-critical electric field B01,

2πα′ε01B01 = 1− ε
2
, (7.1)

with the usual scaling limit for NCOS,

α′ = εα′eff , gs =
G2o√
ε
, (7.2)

we have

− 1

2πα′
√
p2 + q2/g2s + pε

01B01 = − 1

4πpα′eff

(
p2 +

q2

G4o

)
(7.3)

which is finite and is the tension for the decoupled theory which is still a NCOS.

Similarly, we can have only a near-critical RR C01 and with the decoupling limit for

the open D-string theory, we can also end up with a deformed open D-string theory.

Recall that an open (p, q)-string is a non-threshold bound and its ends carry both

NSNS and RR charges (or electric and magnetic charges with respect to the D3-brane

worldvolume gauge field). So both the background NSNS B01 and C01 apply forces

on this string. A genuine open (p, q)-string theory requires the presence of both the

near-critical field B01 and C01. Further each of these two fields along with the proper

scalings for the closed string coupling and the bulk metric must act in a non-trivial

way such that we can end up with a finite tension for the (p, q)-string theory. One

can check easily that a naive critical field limit following that for either open D-string

theory or NCOS does not work. The investigation on this is in progress and we hope

to report this elsewhere. Nevertheless, the finite tension is expected to be

T(p,q) =
1

2πα′eff

√
p2 +

q2

G4o
. (7.4)

This should also be true for the (1 + 5)-dimensional open (p, q)-string theory. We

expect that the (p, q)-string action proposed in [24, 25] may be useful.
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Note added: during the course of writing up, we become aware that when the

spatial directions of the D(p − 2)-brane are compactified, our (1 + p)-dimensional
open D(p − 2)-brane theory may be related to the Galilean D(p − 2)-brane theory
discovered in [26] (see also [27, 28]). However, there are differences between these

two theories. Let us mention a few: 1)The spatial directions of the brane for our open

D(p− 2)-brane theory can be either non-compact or compact while by definition the
spatial directions of the brane for the Galilean D(p−2)-brane theory found in [26, 27]
must be compact due to the absence of the base D-brane. 2) As a result, our open

D(p− 2)-brane theory lives on (1 + p)-dimensional Dp-brane worldvolume while the
Galilean D(p− 2)-brane theory lives on the (1 + 9)-dimensional spacetime. 3) The
starting points are completely different.
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