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Abstract: We study decoupling limits and S-dualities for non-commutative open

string/Yang-Mills theory in a gravity setup by considering an SL(2,Z) invariant

supergravity solutions of the form ((F, D1), D3) bound state of type-IIB string

theory. This configuration can be regarded as D3-brane solution with both electric

and magnetic fields turned on along one of the spatial directions of the brane and

preserves half of the space-time supersymmetries of the string theory. Our study

indicates that there exists a decoupling limit for which the resulting theory is an

open string theory defined in a geometry with noncommutativity in both space-time

and space-space directions. We study S-duality of this non-commutative open string

(NCOS) and find that the same decoupling limit in the S-dual description gives

rise to a space-space non-commutative Yang-Mills theory (NCYM). We also discuss

independently the decoupling limit for NCYM in this D3-brane background. Here we

find that S-duality of NCYM theory does not always give a NCOS theory. Instead,

it can give an ordinary Yang-Mills with singular metric and infinitely large coupling.

We also find that the open string coupling relation between the two S-duality related

theories is modified such that S-duality of a strongly coupled open-string/Yang-Mills

theory does not necessarily give a weakly coupled theory. The relevant gravity dual

descriptions of NCOS/NCYM are also given.
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1. Introduction

Non-commutative geometry has appeared on various occasions in string theory start-

ing from Witten’s original proposal as a framework for open string field theory [1].

While this appearance might seem natural in the matrix theory formulation of

string/M-theory [2]–[5], a more direct approach to extract the non-commutative na-

ture of the underlying space in the conventional open string theory set up has been

given in [6]–[10]. In these cases, the open string boundary condition in the presence

of non-zero constant NSNS B-field plays a crucial role. In general, it is difficult to

define a consistent quantum field theory in a non-commutative space-time because of

the loss of manifest Lorentz covariance and causality. However, the fact that they can

be embedded in string theory in a particular background suggests that they might

exist as consistent quantum theory at least in some special cases. So, we ought to

understand the nature of these theories in order to understand quantum gravity at

very high energies where our notion of space-time changes drastically.

The appearance of non-commutative geometry particularly in space-space direc-

tions has been elucidated by Seiberg and Witten [10] in general setup by identifying

a decoupling limit in which closed strings decouple from the open strings ending on

Dp-branes in the presence of non-zero B-field (with only spatial components). The

resulting theory is a Yang-Mills theory defined in non-commutative spaces. This

decoupling limit has been studied for a special system by Hashimoto and Itzhaki [11]

and also by Maldacena and Russo [12]. They studied D3-brane supergravity solution

of type-IIB string theory with magnetic fields along one of the spatial directions of
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the brane. The supergravity solution in this case is nothing but the (D1, D3) bound

state solution of type-IIB string theory, found in [13, 14], where there are infinite

number of D-strings along, say x1 direction of D3-brane (lying along, say x1, x2, x3

directions). Under the decoupling limit, this (D1, D3) system provides the gravity

dual description of N = 4 SUSY non-commutative Yang-Mills theory (NCYM). The
decoupling limit in this case corresponds to a purely field theoretic limit where the

spatial directions x2, x3 become non commutative. The S-duality of the gravity dual

description of NCYM has been considered by two of the present authors sometime

ago1 in [15], which, as we know now, provides the gravity dual description to the

newly discovered non-commutative open string theory (NCOS) [16, 17].

On the other hand, if one considers D3-brane with an electric field along one

of the spatial directions of the brane, the corresponding supergravity solution is

given by (F, D3) bound state [13, 18] and is S-dual to (D1, D3) system. In this

case there are infinite number of fundamental strings along, say, x1 direction of D3-

brane. It has been shown recently [16, 17] that even though it is not possible to

obtain a field theory decoupling limit, a careful examination in this case reveals a

decoupling limit in which the resulting theory is a non-commutative open string

theory (NCOS) [16, 17]. This is consistent since in this case the coordinates x0, x1

become non commutative and a field theory with a non-commutative time coordinate

cannot be unitary in general [19, 20, 21]. Moreover, it is shown in [17] that the S-dual

of NCYM in the case with purely magnetic field gives just NCOS theory. The S-dual

descriptions of NCOS in six and fewer spacetime dimensions are recently proposed

and analysed in [22, 23, 24]. The gravity dual descriptions of these NCOS with pure

electric fields are given in [25]. S-duality in non-commutative gauge theories has been

discussed in [26, 27].

It is then natural to ask whether there exists a decoupling limit, when we consider

D3-branes with both electric and magnetic fields turned on along the brane world-

volume, such that the resulting theory decouples from the closed strings (or bulk

supergravity). Also if such a decoupling limit exists, what kind of a theory does it

correspond to and what is its strong coupling dual? We would like to address this

issue based on a gravity consideration in this paper. In order to study the decoupling

limit we consider the SL(2,Z) invariant ((F, D1), D3) bound state solution of type-

IIB string theory in two versions related by S-duality.2 It is not a priori clear whether

decoupling limits for this solution exist and whether the corresponding decoupled

1Unfortunately, we failed to recognize its conncetion to the non-commutative open string theory

(NCOS). This same gravity dual description in the context of NCOS has also been given recently

in [17].
2This solution has been constructed in [28]. There are infinite number of (p, q)-strings of Schwarz

type along one of the spatial directions of D3-brane. Thus we note that the electric field and the

magnetic field are parallel to each other and the solution preserves half of the spacetime supersym-

metries of string theory.
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theory is an NCYM or NCOS. We will first show that for D3-branes with both electric

and magnetic fields, there exists a decoupling limit such that the corresponding

theory can be described by an open string with both space-space and space-time

noncommutativity. Then we will show that in the S-dual description the same NCOS

decoupling limit always gives rise to NCYM with only space-space noncommutativity.

We therefore show, in the present case, that the S-dual of NCOS theory is a NCYM

theory, which is the converse to what has been shown in [17] for purely magnetic field

case. Next we will describe that there also exists an independent decoupling limit,

using this D3-brane configuration, for NCYM with space-space noncommutativity.

However, we will show that this same decoupling limit in the S-dual description

of NCYM does not always give rise to an NCOS, unlike the purely magnetic field

case. For example, in some cases we end up with an ordinary Yang-Mills theory

with a singular metric and an infinitely large gauge coupling. This is because the

magnetic field in the dual description (or the electric field in the original description)

modifies the would-be critical elecric field to a non-critical one eventhough with the

electric field in the original description we have had a decoupling limit for nicely

behaved NCYM. Let us clarify this point further to see how the magnetic field in

the dual description controls the S-dual behaviour of NCYM. The ratio of electric

field to the magnetic field in this case is of the order 1/α′1+β in the decoupling limit
as we will show later, where α′ is the fundamental string constant and the index
β ≥ 0. For 0 ≤ β < 1, the S-dual of NCYM is an ill-defined ordinary YM theory
with a singular metric and an infinitely large gauge coupling. For β = 1, we end

up with NCOS as the S-dual of NCYM with noncommutativity in both space-space

and space-time directions. For β > 1, the S-dual of NCYM is also a NCOS but

with only space-time noncommutativity. In other words, for β > 1, the effect of

magnetic field on this theory becomes less important. For β > 1, the parameters

used to define the NCOS or its gravity dual are independent of the actual value

of β. This indicates that different scaling limits corresponding to different β with

β > 1 are actually equivalent, i.e. giving the same NCOS.3 For β = 1, the magnetic

field is just right to have an effect on the NCOS such that it causes the space-space

noncommutativity and modifies the relation between the open string coupling and

its S-dual. For 0 ≤ β < 1, the magnetic field is too strong such that we do not even
end up with a well defined theory. In particular, for β = 0, the electric field does not

reach its critical value. So β plays the role of an order parameter. The critical value is

β = 1. So NCYM and NCOS are related to each other by S-duality when β ≥ 1. For
β > 1, the coupling constants are related inversely to each other, therefore a strongly

coupled theory is related to a weakly coupled theory by S-duality. For β = 1, this

relation is modified and a strongly coupled theory does not necessarily give rise to a

weakly coupled theory by S-duality.

3We thank the referee for pointing this out to us.
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The organization of this paper is as follows. In section 2, we present the gen-

eral setup for the quantities relevant for the decoupling limit in a flat background.

We can take these quantities as the asymptotic values of various fields in a gravity

configuration. In section 3, we first show how to obtain the two versions related

by S-duality for the gravity configuration of ((F, D1), D3) bound state [28]. We

then present these two versions explicitly for this bound state. In section 4, we first

discuss the NCOS decoupling limit with space-space and space-time noncommuta-

tivity based on one version of the gravity description of ((F, D1), D3) bound state.

We find that the corresponding decoupling limit in the S-dual version always gives

NCYM. Therefore, we have the NCYM as the S-dual of the NCOS. We then discuss

the decoupling limit for NCYM and study its S-duality. We find that the S-duality

of NCYM does not necessarily give NCOS. In section 5, we present both the gravity

dual description of the NCYM and that of NCOS in the respective decoupling limits.

The conclusions drawn here agree completely with what we obtain in section 4. In

section 6 we clarify some confusions which might arise in sections 4 and 5 and discuss

possible quantizations of the open string coupling.

While preparing this manuscript we became aware of a paper [29] in which some

related aspectes were also discussed.

2. The general set-up

We are considering D3-brane to lie along x1, x2, x3 spatial directions and both electric

and magnetic fields are turned on along the x1 direction. Since the field strengths

F01 (F23) corresponding to electric (magnetic) fields can be suitably traded for NSNS

B-field components B01 (B23), so D3-brane can be regarded as living in a constant

gµν and Bµν background, where µ, ν = 0, 1, 2, 3. The consideration here simplifies

the discussion of the decoupling limits presented in the following section. The closed

string metric we consider has the form

−g00 = g11 = g1 and g22 = g33 = g2 (2.1)

and the NS-NS field has the form

B01 = −B10 = b1 and B23 = −B32 = b2 , (2.2)

where g1, g2, b1, b2 are some constant parameters.

Because of the presence of Bµν field, the open string boundary condition is

not of purely Neumann type, but rather is a Neumann-Dirichlet mixed boundary

condition [30] given as:

gµν∂σx
ν + 2πα′Bµν∂τxν |boundary = 0 , (2.3)
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where ∂σ and ∂τ are respectively the normal and tangential derivatives to the world-

sheet boundary. We stress that the coordinates xµ defined in the above equation are

the scaled ones used later in the paper.

The effective Seiberg-Witten open string metric is given by

Gµν = gµν − (2πα′)2
(
B g−1B

)
µν
. (2.4)

Substituting gµν and Bµν from eqs. (2.1) and (2.2) we obtain

−G00 = G11 ≡ G1 = g1 − (2πα
′b1)2

g1
= g1t(1− Ẽ2), (2.5)

G22 = G33 ≡ G2 = g2 + (2πα
′b2)2

g2
= g2(1 + B̃

2), (2.6)

where dimensionless electric field Ẽ = E/Ecr = 2πα
′b1/g1 with E = b1 and the criti-

cal value of the electric field Ecr = g1/2πα
′. Similarly we have defined dimensionless

magnetic field B̃ = B/B0 = 2πα
′b2/g2 with B = b2 and B0 = g2/2πα′.

The Seiberg-Witten relation for the antisymmetric non-commutativity parameter

is

Θµν = 2πα′
(

1

g + 2πα′B

)µν
A

, (2.7)

where “A” denotes the antisymmetric part. We find from (2.1) and (2.2)

Θ01 ≡ Θ1 = −(2πα′)2b1
(2πα′b1)2 − g21

=
Ẽ

Ecr(1− Ẽ2)
, (2.8)

Θ23 ≡ Θ2 = (2πα′)2b2
(2πα′b2)2 + g22

=
B̃

B0(1 + B̃2)
. (2.9)

Also the open string coupling constant is given by

Gs = gs

(
detGµν

det(gµν + 2πα′Bµν)

)1/2
, (2.10)

where gs denotes the closed string coupling constant. From eqs. (2.1), (2.2), (2.5)

and (2.6) we obtain the open string coupling of the form

Gs = gs

[
1− (2πα

′b1)2

g21

]1/2 [
1 +
(2πα′b2)2

g22

]1/2
= gs(1− Ẽ2)1/2(1 + B̃2)1/2. (2.11)

It should be pointed out here that the dimensionless electric field Ẽ cannot exceed 1,

otherwsie the open string coupling would become imaginary. There is no such bound

for the dimensionless magnetic field B̃. When |Ẽ| → 1, the corresponding electric
field attains a critical value, i.e. |E| ≈ Ecr and then for a finite value of B̃, gs has
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to scale appropriately to make the open string coupling Gs finite. Similarly when

|Ẽ| < 1 and B̃ →∞, gs has to scale accordingly to make Gs finite. But when both
|Ẽ| → 1, and B̃ →∞ gs can remain finite if the two factors (1−Ẽ2)1/2 and (1+B̃2)1/2
compensate each other to make open string coupling in (2.11) finite. We will point

out what the resulting theory is in each of the cases in the following sections. Unlike

in purely electric case, a critical electric field does not always give rise to a NCOS.

Finally we note that the effective open string metric (2.4) and the non-commu-

tativity parameter (2.7) has been obtained by looking at the disk propagator at the

boundary [31, 10]:

〈xµ(τ)xν(0)〉 = −α′Gµν ln τ 2 + iΘ
µν

2
ε(τ) . (2.12)

We mention here that, in the decoupling limit, when the second term in the r.h.s.

of (2.12) remains finite while the first term goes to zero as α′ → 0, we get an NCYM
theory as in (D1, D3) (i.e. purely magnetic case). But when both the terms remain

finite then we get NCOS theory as in (F, D3) case. We will see in the folowing

sections how these two cases can be realised in the decoupling limit of the same ((F,

D1), D3) bound state, i.e. D3-brane with both electric and magnetic fields.

3. ((F, D1), D3) bound state

As we mentioned earlier ((F, D1), D3) bound state solution of type-IIB string theory

corresponds to D3-brane with both electric and magnetic field turned on along one

of the spatial directions of the brane. This solution has been explicitly constructed

in [28] and is known to preserve half of the spacetime supersymmetries of string

theory. For the purpose of this paper, we need to write this gravity configuration

in two versions related by S-duality. Since we have non-vanishing RR scalar χ, the

S-duality cannot be implemented in a simple fashion as is usually done. The main

reason is that the dilaton does not go to its inverse under S-duality in the presence

of χ. Here we adopt the following approach. We first write down the manifestly

SL(2,Z) covariant ((F, D1), D3) configuration in the Einstein frame for the metric,

dilaton, and the NSNS B-field in the NSNS sector and the RR scalar χ, RR 2-form

A2 and RR 4-form A4 with its self-dual field strength F5 in the RR sector as:

dS2E = e
U0(HH ′)1/4

[
H−1

(−(dx0)2 + (dx1)2)+H ′−1 ((dx2)2 + (dx3)2)+
+ dr2 + r2dΩ25

]
,

eφ = gs
H ′′√
HH ′

,

χ =
pq(H −H ′) + gsχ0∆(p,q)H ′
q2H + g2s(p− χ0q)2H ′

,
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2πα′B = gseU0(p− χ0q)∆−1/2(p,q,n)H
−1dx0 ∧ dx1 − q

n
H ′−1dx2 ∧ dx3 ,

A2 = e
U0
[
qg−1s − χ0(p− χ0q)

]
∆
−1/2
(p,q,n)H

−1dx0 ∧ dx1 + p
n
dx2 ∧ dx3 ,

F5 = 16πnα
′2(?ε5 + ε5) , (3.1)

where harmonic functions H,H ′ and H ′′ are defined as

H = 1 +
Q3

r4
, H ′ = 1 +

n2e2U0

∆(p,q,n)

Q3

r4
,

H ′′ = 1 +
g−1s q

2 + e2U0n2

∆(p,q,n)

Q3

r4
. (3.2)

In the above, p, q, n are integers.4 n represents the number of D3-branes and is

inert under S-duality (or in general under SL(2,Z)). There are actually an infinite

number of (p, q) strings of Schwarz type in D3-brane world volume. To be precise,

there is a single (p, q) string per (2π)2α′ area of the infinite x2, x3 plane of the D3-
brane (note that (p, q) strings lie along x1). (p, q) transforms as a doublet under

SL(2,Z). In particular, p → p̂ = q and q → q̂ = −p under S-duality. Also, r =√
(x4)2 + · · ·+ (x9)2, dΩ25 is the line element on unit 5-sphere, ? denotes the Hodge

dual in 10-dimensions, ε5 is the volume form defined on the 5-sphere of unit radius,

and gs is the closed string coupling constant and is given as gs = e
φ0 with φ0 the

asymptotic value of the dilaton. χ0 is the asymptotic value for the RR scalar and we

set it to zero for the rest of this paper. This implies that for the asymptotic closed

string coupling, we still have gs → 1/gs under S-duality (but not for the general
coupling eφ). The constant U0 is inert under SL(2,Z). This constant is chosen for

the purpose of labeling different vacua of non-perturbative type-IIB string theory.5

For example, U0 = 0 corresponds to the supergravity vaccum while U0 = −φ0/2
corresponds to the vacuum for the perturbative type-IIB string theory. Usually, when

we choose a special U0 (or vacuum), we break the SL(2,Z) symmetry manifestly such

as the above perturbative type-IIB string vaccum. With this U0, the Q3,∆(p,q) and

∆(p,q,n) are all SL(2,Z) invariant and are given as

∆(p,q) = gs(p− χ0q)2 + g−1s q2 , ∆(p,q,n) = ∆(p,q) + e
2U0n2 ,

Q3 = 4πα
′2∆1/2(p,q,n)e

−3U0 . (3.4)

Note that the string constant α′ is also inert under SL(2,Z) which is consistent with
the expression for the self-dual 5-form field strength given in (3.1). With the above,
4We can replace the integral charges p and q in the above equations by the trigonometric functions

of two angles defined as:

cos θ =
eU0n√

g−1s q2 + e2U0n2
, cosα =

√
g−1s q2 + e2U0n2√

gsp2 + g
−1
s q2 + e2U0n2

. (3.3)

We will make use of these definitions later.
5The asymptotic region of a gravity configuration corresponds to such a vaccum.
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one can check easily that the harmonic functions H and H ′ are SL(2,Z) invariant but
the harmonic functionH ′′ is not. These are consistent with the Einstein-frame metric
(which is SL(2,Z) invariant) and the expression for the dilaton. The transformation

of the harmonic function H ′′ under SL(2,Z) is determined by that of the dilaton.

With the above, we can easily write down the gravity configuration for the ((F,

D1), D3) bound state in two versions related by S-duality. They would look the same

in form as given above in eq. (3.1). If we denote the above configuration as version

A and denote the corresponding fields in the S-dual version (called version B) with

a hat over the fields,6 then the S-dual version (i.e. version B) is related to version A

through the following relations (for vanishing χ0):

p̂ = q , q̂ = −p , ĝs =
1

gs
. (3.5)

Note that the constant U0, the harmonic functions H and H
′ and the 5-form field

strength F5 remain the same in the two versions while the rest of the fields are related

as

eφ̂ = g−1s
Ĥ ′′√
HH ′

, χ̂ = − pq(H −H ′)
p2H + g−2s q2H ′

,

2πα′B̂ = A2 , Â2 = −2πα′B , (3.6)

where the harmonic function Ĥ ′′ is now given as

Ĥ ′′ = 1 +
gsp

2 + e2U0n2

∆(p,q,n)

Q3

r4
. (3.7)

Our purpose in this paper is to study decoupled theories and their respective

S-dualities in type-IIB string theory. So we should use the string-frame rather than

the Einstein-frame description of the above configuration. In version A, we have the

string-frame metric as ds2 = eφ/2ds2E while in version B, we have dŝ
2 = eφ̂/2ds2E with

ds2E the above Einstein-frame metric. Given the asymptotic region of the gravity

configuration as a vacuum of the underlying string theory, we can choose, as is

usually done, either of the two S-duality related string-frame metric to have the form

ηMN with ηMN = (−1, 1, . . . , 1) (M,N = 0, 1, . . . , 9) asymptotically. To be specific,
we impose this on version A. This choice breaks the SL(2,Z) symmetry manifestly

as is evident from U0 = −φ0/2. This can also be understood from the fact that we
have made a preferable choice for strings over the other objects such as 3-branes and

5-branes in this theory.

6We use Â to denote the field A in the S-dual version.
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With the above, the gravity configuration in version A can be re-expressed as:

ds2 = H ′′1/2
[
H−1

(−(dx0)2 + (dx1)2)+H ′−1 ((dx2)2 + (dx3)2)+
+ dr2 + r2dΩ25

]
,

e2φ = g2s
H ′′2

HH ′
χ =

g−1s sin θ tanα (H −H ′)
H sin2 θ +H ′ tan2 α

,

2πα′B = sinαH−1dx0 ∧ dx1 − tan θH ′−1dx2 ∧ dx3 ,
A2 = g

−1
s sin θ cosαH

−1dx0 ∧ dx1 + g−1s tanα cos−1 θH ′−1dx2 ∧ dx3 ,
F5 = 16πnα

′2(?ε5 + ε5) , (3.8)

where the harmonic functions are

H = 1 +
4πgsnα

′2

r4
1

cos θ cosα
,

H ′ = 1 +
4πgsnα

′2

r4
cos θ cosα ,

H ′′ = 1 +
4πgsnα

′2

r4
cosα

cos θ
, (3.9)

with

cos θ =
n√
q2 + n2

, cosα =

√
q2 + n2√

(pgs)2 + q2 + n2
. (3.10)

The S-dual description (i.e. version B) of the above can be written as:

dŝ2 = ĝsĤ
′′1/2
[
H−1

(−(dx0)2 + (dx1)2)+H ′−1 ((dx2)2 + (dx3)2)+ dr2 + r2dΩ25] ,
e2φ̂ = ĝ2s

Ĥ ′′2

HH ′
,

χ̂ = −ĝ−2s
H ′′

Ĥ ′′
χ , (3.11)

where harmonic functions H(= Ĥ), H ′(= Ĥ ′) and H ′′ are the same as in version A,7

ĝs = 1/gs with gs the closed string coupling in the original version and the harmonic

function Ĥ ′′ is not SL(2,Z) invariant (neither is H ′′) and is given as

Ĥ ′′ = 1 +
4πngsα

′2

r4
cosα cos θ

(
1 +
tan2 α

cos2 θ

)
. (3.12)

We also have 2πα′B̂ = A2 and Â2 = −2πα′B with A2 and B given in (3.8). The
five-form remains the same as in the original version. For later comparison, we give

7Because of our special choice U0 = −φ0/2, harmonic functions H and H ′ do not appear to be
manifestly invariant under S-duality.
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the angles in the dual frame as,

cos θ̂ =
n√

g2sp
2 + n2

=

(
1 +
tan2 α

cos2 θ

)−1/2
,

cos α̂ =

√
g2sp

2 + n2√
g2sp

2 + q2 + n2
=

(
1 +
tan2 α

cos2 θ

)1/2
cos θ cosα . (3.13)

4. The decoupling limit and S-duality

In this section we will be looking for decoupling limits such that the D3-brane in the

presence of both electric and magnetic fields decouples from the bulk closed strings

(or bulk gravity) and at the same time it gives rise to sensible quantum theories

for the decoupled D3-brane. This requires the open string coupling to remain fixed

in the decoupling limit. In the following, we first discuss NCOS decoupling limit

and study its S-duality (We will refer this as case (I)). Then we will discuss NCYM

decoupling limit and its S-duality (We call this as case (II)).

4.1 Case I: NCOS decoupling limit and S-duality

Since we have given two versions of the gravity configuration for the ((F, D1), D3)

bound state related by S-duality in the previous section, we should be able to show

if there exists a connection between NCYM and NCOS by using purely the gravity

description (if such decoupled theories exist at all). In the case of purely magnetic

field on D3-brane it has been shown by Gopakumar et al. [17] that starting from

the known NCYM limit, one can use the S-duality and gauge transformation on the

background B-field to get an NCOS theory. Thus in this case the S-dual of NCYM

is a NCOS theory. In the following, we will show that in the presence of both electric

and magnetic fields, the decoupling limit for NCOS in version A corresponds to a

decoupling limit for NCYM in version B. This implies that the S-dual of NCOS is

NCYM even in the present case. However, the converse is not quite true, i.e. the

S-duality of NCYM does not always give an NCOS, as we will demonstrate later in

subsection 4.2.

Let us start with the ((F, D1), D3) configuration in version A (eq. (3.8)). The

fields discussed in section 2 correspond to the asymptotic values of the respective

fields in this gravity configuration. For general purpose, we assume

x0,1 =
√
g1x̃

0,1 , x2,3 =
√
g2x̃

2,3 , (4.1)

where x̃µ for µ = 0, 1, 2, 3 remain fixed in the decoupling limit. We then have

Ẽ =
2πα′b1
g1

= sinα , B̃ =
2πα′b2
g2

= − tan θ , (4.2)
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where b1 = g1 sinα/(2πα
′) and b2 = −g2 tan θ/(2πα′). Using (2.5), (2.6), (2.8), (2.9)

and (2.10), we have

−G00 = G11 = G1 = g1 cos2 α , G22 = G33 = G2 =
g2

cos2 θ
,

Θ01 = Θ1 =
2πα′ sinα
g1 cos2 α

, Θ23 = Θ2 = −2πα
′ sin θ cos θ
g2

,

Gs = gs
cosα

cos θ
. (4.3)

In order to have NCOS limit, we need at least the non-commutative parameter

Θ1 in (4.3) to be non vanishing in the decoupling limit α
′ → 0, which requires

g1 cos
2 α ∼ α′. So α′G00 = −α′G11 remain fixed and therefore the resulting theory

will be stringy rather than a field theory according to eq. (2.12) if the corresponding

decoupling limit exists. Since cos2 α ≤ 1, we must have g1 ∼ α′δ with δ ≤ 1. We
limit ourselves to δ < 1 since we do not have decoupling for the special case δ = 1.8

Let us now examine the metric in version A. The decoupling limit requires that the

near-horizon region decouples from the asymptotic flat region. In other words, we

need the metric describing the near-horizon region to scale homogeneously in certain

power of α′. This uniquely determines the scalings in terms of α′ for all the relevant
quantities except for the A01 component of the RR 2-form A2 if δ < 1. For the

present purpose, we list the decoupling limit collectively in the following:

r =
√
b̃′α′ u , g2 =

α′

b̃′
, g1 =

(
α′

b̃′

)δ
,

cos θ =
b̃

b̃′
, cos2 α =

(
α′

b̃′

)1−δ
, (4.4)

where u, b̃ and b̃′ all remain fixed and δ < 1. The above condition cos θ = b̃/b̃′ is
needed only for NCOS with noncommutativity in both space-space and space-time

directions. To include all the cases of NCOS, we should use sin θ = c(α′/b̃)δ′ instead,
with constant c ≤ 1 and parameter δ′ ≥ 0. As will be shown in section 6, the
δ′ ≥ 0 corresponds to β ≥ 1 which will be discussed in the following subsection. In
particular, δ′ = 0 corresponds to β = 1. The δ′ = 0 is the same condition as cos θ =
b̃/b̃′. But for δ′ > 0, we have the non-commutative parameter Θ2 vanishing and so
we end up with noncommutativity only in space-time directions, corresponding to

vanishing magnetic field. Here we just concentrate on δ′ = 0 case.
8For δ = 1, cosα remains fixed as α′ → 0. Given fixed open string coupling Gs = gs cosα/ cos θ,

the string metric can only scale homogeneously in α′ if r ∼ √α′, g2 ∼ α′ and cos θ remains fixed.
Then gs also remains fixed. Since α

′Gµν remain fixed for µ, ν = 0, 1, 2, 3 and Ẽ = sinα is fixed and
not equal to unity, we do not expect to have a decoupled open string theory. What is interesting

in this case is that both non-commutative parameters Θ1 and Θ2 are non-vanishing even as we

take α′ → 0. In other words, in the near horizon region, the open string feels the geometry of the
D3-brane to be non commutative.
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If we calculate G1, G2,Θ1,Θ2 and Ẽ, using eqs. (4.2), (4.3) and (4.4), we have

G1 =
α′

b̃′
, G2 =

α′b̃′

b̃2
,

Θ1 = 2πb̃
′ , Θ2 = −2π b̃

b̃′

√
b̃′2 − b̃2 ,

Ẽ = sinα = 1− 1
2

(
α′

b̃′

)1−δ
. (4.5)

Since Θ1 and Θ2 remain fixed (note that Θ2 vanishes in the special case of b̃ =

b̃′, corresponding to vanishing magnetic field), we have noncommutativity in both
space-space and space-time directions. Further we have Ẽ → 1 as α′ → 0 (since
δ < 1), i.e. electric field reaching its critical value. We therefore expect a decoupled

theory. Since both α′G−11 and α
′G−12 remain fixed, by looking at the correlator in

eq. (2.12), we must conclude that this decoupled theory is an open string theory

(rather than a field theory) defined on a spacetime with space-space and space-time

non-commutative geometry. Therefore, in the decoupling limit (4.4), the ((F, D1),

D3) system is described by a space-space and space-time non-commutative open

string theory. Open strings are lying along x1-direction, and x0, x1 coordinates are

non-commuting (as Θ1 =finite) as in purely electric field case discussed by Seiberg

et al. [16] and Gopakumar et al. [17]. However, unlike in that case, we also have

x2, x3 coordinates non commuting (as Θ2 =finite). As in purely electric case here

also open strings cannot bend to form closed strings, i.e. closed strings completely

decouple. This can be understood as discussed by Seiberg et al. [16], from the

expression of the electric field at critical value E ≈ Ecr ∼ α′δ−1 → ∞. So, it
would require an infinite amount of energy to bend such a string and therefore

closed strings cannot be formed. Another way to understand the decoupling of the

open string from the bulk closed strings is to compare the relevant energy scales.

The closed string scale is Ms = 1/
√
α′ while the NCOS scale is determined by

the non-commutative parameter Θ1 as Meff ∼ 1/
√
b̃′. This NCOS scale can be

determined from: 1/(4πα′)
∫
∂x̃1∂x̃1G11 = 1/(4πb̃

′)
∫
∂x̃1∂x̃1. In other words, the

effective α′eff = b̃
′. In the limit α′ → 0, the former becomes infinite while the latter

is fixed, therefore the open string decouples from the closed strings. We can further

understand this in the following way. Using α′eff , the metric for NCOS can be scaled
to Gµν = ηµν . The mass spectrum for NCOS is

α′effM = α
′
eff

(
p20 − p21 − p22 − p23

)
= N − 1 , (4.6)

where for simplicity we consider only bosonic string and N is the number of string

excitations. Given that α′eff is fixed as α
′ → 0, the above equation is consistent

with the non-zero α′G−1 in the two-point function (2.12). In other words, we have

12



J
H
E
P
0
9
(
2
0
0
0
)
0
2
0

undecoupled massive open string states from the massless ones and the energies of

these finite exciations remain fixed in the decoupling limit. Let us see if any of these

open strings can be away from the brane and turn into closed strings. If this is true,

we should have the mass spectrum for the closed strings (using the closed string

metric) as

b̃′
(
α′

b̃′

)1−δ
(p20 − p21)− b̃′

(
p22 + p

2
3

)
= 2N + 2N̄ − 4 . (4.7)

The above equation cannot be satisfied unless the energy goes to infinity as α′ → 0
(since α′1−δ → 0). We therefore conclude that any NCOS with finite energy decouples
from the closed strings and is confined to the branes.

We like to point out that the NCOS discussed above is insensitive to the pa-

rameter δ even though the scaling limits are. This can be understood by the fact

that the NCOS is defined by the effective open string metric, the non-commutative

parameters and the open string coupling, none of which has any dependence on the

δ parameter. This is also true for the gravity dual description of NCOS which will

be discussed in the following section. Therefore, the scaling limits for different δ < 1

appears equivalent.

Let us now examine what this NCOS would look like in the S-dual theory, i.e.

in version B. From the dual string metric and dual B-field, we have the following:

−Ĝ00 = Ĝ11 = Ĝ1 = g1g−1s
(
1− sin2 θ cos2 α) ,

Ĝ22 = Ĝ33 = Ĝ2 = g2g
−1
s

(
1 +
tan2 α

cos2 θ

)
,

Θ̂01 = Θ̂1 =
2πα′ sin θ cosα

g1g−1s
(
1− sin2 θ cos2 α) , Θ̂23 = Θ̂2 =

2πα′ tanα/ cos θ

g2g−1s
(
1 + tan2 α

cos2 θ

) ,
Ĝs = g

−1
s

(
1− sin2 θ cos2 α)1/2(1 + tan2 α

cos2 θ

)1/2
,

˜̂
E = sin θ cosα ,

˜̂
B =

tanα

cos θ
. (4.8)

Using the decoupling limit in (4.4), we have

Ĝ1 = G
−1
s

b̃′

b̃

(
α′

b̃′

)(1+δ)/2
, Ĝ2 = G

−1
s

(
b̃′

b̃

)3(
α′

b̃′

)(1+δ)/2
,

Θ̂1 = 0 , Θ̂2 = 2πGs
b̃2

b̃′
, Ĝs =

1

Gs

(
b̃′

b̃

)2
,

˜̂
E ∼ α′(1−δ)/2 , ˜̂

B ∼ α′−(1−δ)/2 . (4.9)
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As α′ → 0, ˜̂E → 0 and ˜̂B → ∞ (b̂2 fixed). Further we have α′Ĝ−11 ∼ α′Ĝ−12 ∼
α′(1−δ)/2 → 0, since δ < 1, and the open string coupling Ĝs and non-commutative
parameter Θ̂2 are all fixed. Therefore, we end up with NCYM as expected. Notice

that for δ = −1, Ĝ1 and Ĝ2 are also fixed.9 The open string coupling relation given
in (4.9) gives ĜsGs = (b̃

′/b̃)2 > 1, since b̃′/b̃ = 1/ cos θ > 1. This implies that a
strongly coupled theory does not necessarily give rise to a weakly coupled theory

after S-duality unless the couplings for the strongly coupled theory is greater than

(b̃′/b̃)2 in the presence of both electric and magnetic fields. This is quite different
from the purely electric or magnetic field case. The reason for this is actually simple.

In the presence of both electric and magnetic fields, we have the term F ∧F non van-
ishing. In other words, we can effectively have an axion coupling. As we know, with

non-vanishing axion, the coupling in the S-dual theory is not inversely related to the

coupling in the original theory. We will demonstrate this in the gravity dual descrip-

tion by using the fact that the open string coupling is the same as the closed string

coupling at the IR and the fact that there is an induced S-duality in the field theory

from the S-duality of type-IIB string theory. In summary, we have shown that the S-

duality of NCOS in the presence of both electric and magnetic fields gives an NCYM

theory, like in the purely electric case [17]. Using the effective description discussed

in the previous footnote, NCYM is essentially inert to the parameter δ < 1. The

decoupling of the NCYM from the bulk gravity is the usual one and we do not repeat

the discussion here. In the following, we want to know whether the converse is true.

9For other values of δ < 1, the metric for NCYM appears to be singular while the coupling

constant remains fixed. Note that one cannot simply rescale the coordinates x̃µ to make the metric

nonsingular anymore because we assume the coordinates x̃µ to be fixed from the outset. Further,

the two-point function (2.12) is defined with respect to these fixed coordinates. If we rescale x̃µ

to x̄µ in order to have a nonsingular metric, we would end up with < x̄µx̄ν >∼ 0, an ordinary
field theory rather than a non-commutative one. From (4.9), we see that the singular factor in the

metric is (α′/b̃′)(1+δ)/2 which is also the singular factor appearing in the asymptotic (i.e. r → ∞)
closed string metric in version B. In other words, in the decoupling limit, unlike the usual case

corresponding to δ = −1, the asymptotic closed string metric is not flat Minkowski rather a flat
Minkowski times the above singular factor (α′/b̃′)(1+δ)/2. So, the singular behavior of the open
string metric is being inherited from that of the asymptotic closed string metric. As we know,

the closed string is quantized perturbatively with respect to the flat Minkowski vacuum, which

usually corresponds to the asymptotic region of a gravity configuration. In the present case, we

could either choose δ = −1 with string constant α′ or we can have an effective description in the
sense that we have an effective string constant α′eff = b̃

′(α′/b̃′)(1−δ)/2 (which can be obtained from
1/(4πα′)

∫
∂xM∂xNgMN (r →∞) = 1/[4πb̃′(α′/b̃′)(1−δ)/2]

∫
∂yM∂yNηMN , with y

0,1 = x0,1/
√
g1 =

x̃0,1, y2,3 = x2,3/
√
g1, y

4,...,9 = x4,...,9/
√
g1), with again flat Minkowski metric ηMN = (−,+, . . . ,+).

Using this effective description, we calculate again the two-point function (2.12) (with respect to

the same fixed x̃µ) and find that the new open string metric (Ĝeff)µν is nonsingular and is related

to the original string metric as α′Ĝµν = α′effĜ
µν
eff . Using the effective open string metric (Ĝeff)µν ,

the NCYM is well-defined and is independent of the parameter δ < 1. This is true also for the

gravity dual description which will be discussed in the following section. In other words, many of

these scaling limits corresponding to different δ < 1 are actually equivalent.
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4.2 Case II: NCYM decoupling limit and S-duality

In this case we discuss the decoupling limit for NCYM for the configuration ((F, D1),

D3) in version A (eq. (3.8)). To be specific, we insist10 that Gµν (µ, ν = 0, 1, 2, 3)

remain fixed (we choose them to be normalized to ηµν) as α
′ → 0. In order to have

NCYM, we need Θ2 and b2 = −g2 tan θ/(2πα′) to remain fixed. From (4.3), we have
the following scalings:

g1 cos
2 α = 1 , g2 =

(
α′

b̃

)2
, cos θ =

α′

b̃
, (4.10)

where b̃ is a fixed parameter and is not related to the b̃ in the previous section.

We also insist that the open string coupling Gs to be fixed which can be used to

determine the scaling behavior of the closed string coupling gs. With g1 cos
2 α = 1,

one can check from (4.3) that the non-commutative parameter Θ1 always vanishes

as α′ → 0. In the decoupling limit, the gravity dual description of NCYM in the
near horizon region decouples from the asymptotic region. This requires that the

near-horizon metric scales homogeneously in terms of certain power of α′. It is not
difficult to check that for any g1 satisfying g1 cos

2 α = 1, the scaling behavior for the

radial coordinate can be determined uniquely as

r = α′u , (4.11)

with u fixed. We would like to point out one special case for which the closed string

coupling gs remains unscaled. From Gs = gs cosα/ cos θ, the choice cosα ∼ α′ will
do the job.

Let us now examine the S-duality of the NCYM. For g1 cos
2 α = 1, we have three

cases which can be studied:

(1) g1 and cosα(6= 1)11 are both fixed and independent of the limit: α′ → 0,

(2) g1 = (α
′/b̃′)δ with δ < 0 and cosα = (α′/b̃′)−δ/2

(3) g1 → 1 and sinα = (α′/b̃′)β with β > 0.

Note here that the parameters δ and b̃′ are different than those discussed in the
previous case. From (4.8), we know that the quantity determining whether we have

NCOS in the dual theory or not is
˜̂
E = sin θ cosα. Only for

˜̂
E → 1 as α′ → 0, we can

potentially have decoupled NCOS. From the above decoupling limit for NCYM, we

10We could give a more general discussion by insisting only α′Gµν → 0, i.e. for a field theory.
11The cosα = 1 corresponds to vanishing electric field which is not our interest here. We want

to have both electric and magnetic field non vanishing even though one of them can be small.

The case cosα = 0 can never be satisfied since we always assume non-vanishing integral charge n

for D3-branes.
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have sin θ → 1. We therefore requires cosα→ 1 for NCOS in the S-dual description.
So, cases (1) and (2) will certainly not give NCOS in the S-dual theory. case (3)

corresponds to the situation where the electric field times the closed string coupling is

much smaller than the magnetic field in the original theory (version A), i.e. |b1|gs �
|b2|. So it is clear now that except when one of the field is much weaker than the
other (or for purely electric or magnetic case) the NCYM is not related to NCOS by

S-duality. Let us find out for each case above what is the S-dual theory of NCYM.

Case (1). We exclude the special case cosα = 1 which has been studied in [17].

We have the following scalings in the dual theory,

Ĝ1 = Ĝ2 ∼ 1
α′
, Θ̂1 ∼ α′2 , Θ̂2 ∼ α′ ,

Ĝs ∼ 1

α′2
, b̂1 ∼ 1

α′2
, b̂2 ∼ 1

α′
. (4.12)

From the above we see that we have a field theory (since α′Ĝ−11 = α
′Ĝ−12 ∼ α′2 → 0)

according to (2.12) but defined in a commuting geometry.12 But this theory is bad

since it has an infinitely large open string coupling even though the singular metric

can be brought to a non-singular one as we discussed in footnote 9. Both the electric

field b̂1 ∼ 1/α′2 (but ˜̂E = cosα fixed) and magnetic field b̂2 = 1/α′ (the ˜̂B = 1/α′
still large) are infinitely large.

Case (2). In this case we have the following scalings:

Ĝ1 = Ĝ2 ∼ α′−1+δ/2 , Θ̂1 ∼ α′2−δ , Θ̂2 ∼ α′ , (4.13)

with b̂1, b̂2 and Ĝs remain the same as in case (1). Recall that we have δ < 0, so this

case is not much different from case (1) as expected.

Case (3). This is the case where we expect to have NCOS. Let us list the relevant

parameters,

α′ → 0 , b̂1 =
b̃

2πGsα′2

[
1− 1
2

(
α′

b̃

)2]
, b̂2 =

1

2πGsb̃′

(
α′

b̃′

)β−1
,

˜̂
E = 1− 1

2

(
α′

b̃

)2 1 +
(
b̃

b̃′

)2(
α′

b̃′

)2(β−1) ,

Ĝ1 = Ĝ2 =
α′

Gsb̃


1 +

(
b̃

b̃′

)2(
α′

b̃′

)2(β−1) ,
12Since we assume x̃µ to be fixed, < x̃x̃ >∼ 0 just as in a ordinary Yang-Mills case in the
decoupling limit. The coupling still blows up. We do not know how to make sense of such a theory.
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Θ̂1 =
2πGsb̃[

1 + (b̃/b̃′)2(α′/b̃′)2(β−1)
] , Θ̂2 =

2πGsb̃[
1 + (b̃/b̃′)2(α′/b̃′)2(β−1)

] b̃
b̃′

(
α′

b̃′

)β−1
,

Ĝs =

[
1 + (b̃/b̃′)2(α′/b̃′)2(β−1)

]
Gs

. (4.14)

From above, we have basically three sub cases depending on the range of the pa-

rameter β. Remember that we always have
˜̂
E → 1 as α′ → 0. For β ≥ 1, we have

α′Ĝ−11 = α
′Ĝ−12 = fixed, and the open string coupling Ĝs and at least one of the

non-commutative parameters are also fixed. Therefore we end up with a NCOS.

However, the β > 1 case differs from β = 1 case in that the former has only non-

commutativity along space-time directions and the open string coupling is inversely

related to its S-dual, while the latter has noncommutativity not only in space-time

directions but also in space-space directions and the relation between the open string

couplings related by S-duality has been modified. We would like to stress that for

β > 1, the parameters such as the metric, non-commutative parameters and the

open string coupling which define the NCOS theory are independent of the parame-

ter β > 1. The same is true for the gravity dual description which will be discussed

in the following section. This indicates that many of the scaling limits corresponding

to different β > 1 are actually equivalent. This b > 1 case corresponds to the δ′ > 0
case discussed in the previous subsection. The precise relation between this β and

the δ and δ′ discussed in the previous subsection will be given in section 6. For
β = 1, corresponding to δ′ = 0 discussed in the previous subsection, from the above
equation (4.14), once again we have ĜsGs = 1 + (b̃/b̃

′)2 > 1. This implies that in
the present case a weakly coupled theory cannot be obtained from a strongly cou-

pled theory by S-duality unless the strongly coupled theory has a coupling greater

than 1 + (b̃/b̃′)2. For 0 < β < 1, we end up with an ill-behaved field theory as in
cases (1) and (2) discussed above with the open string coupling blowing up even

though we now have reached the critical electric field limit.13 Unlike in cases (1) and

(2), the singular metric here cannot be brought to a non-singular one following the

description given in footnote 9.

13We would like to stress that the present discussion, i.e. NCYM and its S-duality or case II,

is independent of what we have discussed in case I. In particular, many parameters used here are

different, in definition, from those used in case I even though we often use the same symbols. For

example, the parameters b̃ and b̃′ here are different from those used in case I. Even the string
constant α′ may be different. But we expect that the conclusions drawn under the same conditions
should be the same, for example, we always have ĜsGs > 1 in the presence of both electric and

magnetic fields. Another example is that in case I, the limit b̃′ → b̃ gives pure electric case while
here the corresponding limit is b̃/b̃′ → zero where we should take b̃′ → ∞ while keeping b̃ fixed.
These two cases can be identified if we exchange cos θ ↔ cosα which can be recognized through
the respective decoupling limits and the S-duality. Some relations between the parameters in the

two cases will be further clarified in section 6.
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The decoupling of NCOS for β ≥ 1 from the closed strings can be discussed
similarly as we did in the previous subsection and we will not repeat it here.

The above discussion indicates that the effect of one of the fields on the other

really drops out if β > 1. This effect becomes important for β = 1, a sort of critical

value. As β < 1, the open string theory flows to an ill-defined strongly-coupled field

theory. Thus β plays the role of some kind of an order parameter.

With this understanding of the relationship between NCYM and NCOS, we will

present the gravity dual descriptions for each case discussed here in the following

section.

5. The gravity dual descriptions

Here we present the gravity dual of the NCOS discussed first (case I) in the previous

section. The decoupling limit can be collectively given as,

α′ −→ 0 , u =
r√
b̃′
√
α′
= fixed , g1 =

(
α′

b̃′

)δ
, g2 =

α′

b̃
,

cosα =

(
α′

b̃′

)(1−δ)/2
, cos θ =

b̃

b̃′
,

R4 = fixed = 4πgsn
cosα

cos θ
= 4πGsn , (5.1)

where the parameter δ < 1. The closed string coupling can be obtained from the

last expression in (5.1) as,

gs =
Gsb̃

b̃′

(
b̃′

α′

) 1−δ
2

. (5.2)

Under this decoupling limit the harmonic functions in (3.9) take the following form:

H =
R4

u4b̃′2

(
b̃′

α′

)1−δ
, H ′ = 1 +

R4b̃2

u4b̃′4
, H ′′ = 1 +

R4

u4b̃′2
. (5.3)

So the metric, dilaton, axion, B-field and the RR 2-form now reduce to

ds2 = α′h̄−1/2
{
u2

R2
[−(dx̃0)2 + (dx̃1)2 + h̄′ ((dx̃2)2 + (dx̃3)2)]+R2[du2

u2
+ dΩ25

]}
,

e2φ = G2s
b̃2

b̃′2
h̄′

h̄2
, χ =

√
b̃′2 − b̃2
b̃Gs

h̄ ,

2πα′B = α′
u4b̃′

R4
dx̃0 ∧ dx̃1 − α′

√
b̃′2 − b̃2
b̃

u4b̃′

R4
h̄′dx̃2 ∧ dx̃3 ,

A2 = α
′2 u4

g1GsR4

√
b̃′2 − b̃2
b̃

dx̃0 ∧ dx̃1 + α′
(
b̃′

b̃

)3
b̃u4

R4Gs
h̄′dx̃2 ∧ dx̃3 , (5.4)
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where we have defined h̄ = 1
1+a4u4

, h̄′ = 1
b̃2

b̃′2+a
4u4
with a4 = b̃′2

R4
. As one can see that

g1 appears only in the 01-component of the RR two-form A2, indicating that the

scaling behaviour of this component is dependent on the parameter δ. However, this

component measured in terms of α′ is proportional to α′1−δ which vanishes as α′ → 0
since 1− δ > 0. So the gravity dual description is independent of the δ < 1.
Note from the form of the metric in (5.4) that as u → 0, the metric reduces to

AdS5 × S5 form as expected and it starts deviating from this form at u ∼ R

√
b̃

b̃′ . We

also notice from (5.4) that as u → 0, e2φ → G2s and so the open string coupling
is the same as the closed string coupling at the IR. This occurs always as noticed

in [28, 15]. Also the axion χ at the IR does not vanish but reaches a constant value

(b̃′2 − b̃2)1/2/(Gsb̃). The S-dual dilaton is related to the original one through the
relation eφ̂ = eφ(χ2 + e−2φ). At the IR, we have eφ̂ = b̃′2/(Gsb̃2). But the closed
string coupling eφ̂ at the IR gives the open string coupling Ĝs. So we provide an

explanation for the S-dual coupling relation, derived in the previous section, using

the S-duality of type-IIB string theory. This is another way to understand why in

the presence of both electric and magnetic fields, a strongly coupled theory does not

necessarily give a weakly coupled S-dual theory. It is easy to check that if b̃ = b̃′,
i.e. one of the field vanishes, then χ = 0 at the IR and we recover the simple inverse

relation for the couplings. Note, however, that at UV the closed string coupling

blows up.

Now we move on to give the S-dual of the above gravity dual description of

NCOS, i.e. the gravity dual of NCYM. Using (3.11), (3.12), (5.1) and (5.3), we have

dŝ2 = α′
b̃′

Gsb̃

{
u2

R2
[−(dx̃0)2 + (dx̃1)2 + h̄′ ((dx̃2)2 + (dx̃3)2)]+R2 [du2

u2
+ dΩ25

]}
,

eφ̂ =
b̃′

Gsb̃
h̄′1/2 , χ̂ = −Gsb̃

b̃′

√
b̃′2 − b̃2
b̃′

, (5.5)

where h̄′ is the same as that defined for NCOS. We also have 2πα′B̂ = A2 and
Â2 = −2πα′B2 with B2 and A2 given in (5.4). At the IR, i.e. for u→ 0, the metric
describes AdS5 × S5 as expected. The closed string coupling is now the same as the
open string coupling Ĝs. The axion χ̂ for the present case is independent of the u.

In this case eφ̂ → 0 in UV limit.
In the previous section, we concluded for case I that the S-dual of NCOS always

corresponds to NCYM, from the open string viewpoint. In the above, we have shown

that this is also true from the gravity (or closed string) viewpoint of D-branes. In

terms of the effective description of the closed strings discussed in footnote 9, the

above metric keeps the same form except for replacing the α′ by the effective α′eff .
This can be checked easily as follows. Effectively, the new closed string metric is

related to the old one given in (5.5) as dŝ2eff = dŝ
2/(α′/b̃′)(1+δ)/2. In other words,

the α′ in metric dŝ2 is replaced by b̃′(α′/b̃′)(1−δ)/2 which is just the α′eff defined in
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footnote 9. In the previous section, we also showed that the story for NCYM is

different. The S-dual of NCYM is not necessarily an NCOS theory. We will show

that the same conclusion can be drawn from the gravity consideration as well in

the following.

Let us present first the gravity dual description of the NCYM for case II discussed

in the previous section. We list the decoupling limit collectively as

α′ → 0 , u =
r

α′
= fixed , g2 =

(
α′

b̃

)2
, cos θ =

α′

b̃
,

g1 cos
2 α = 1 , R4 = fixed = 4πgsn

cosα

cos θ
= 4πGsn . (5.6)

As is understood, the parameters b̃ and b̃′ (introduced later in the discussion of the
S-duality of the NCYM) here are different, in definition, from those in the previous

case. The closed string coupling gs is related to the fixed open string coupling Gs as

given in (5.6). The harmonic functions take the form;

H =
g1R

4

u4α′2
, H ′ = 1 +

R4

b̃2u4
, H ′′ =

R4

α′2u4
. (5.7)

So the metric, dilaton, axion, 2-form B-field and the RR 2-form A2 in eqs. (3.8)

reduce to,

ds2 = α′
{
u2

R2

[−(dx̃0)2 + (dx̃1)2 + h̄ ((dx̃2)2 + (dx̃3)2)]+R2 [du2
u2
+ dΩ25

]}
,

e2φ = G2sh̄ , χ =
b̃

α′
G−1s sinα ,

2πα′B = α′2
u4 sinα

R4
dx̃0 ∧ dx̃1 − α′ b̃u

4

R4
h̄dx̃2 ∧ dx̃3 ,

A2 = α
′ b̃u

4

g1GsR4
dx̃0 ∧ dx̃1 + b̃

2u4 sinα

GsR4
h̄dx̃2 ∧ dx̃3 , (5.8)

where we have defined h̄ = 1
1+a4u4

with a4 = b̃2

R4
and g1 is related to sinα as g1 =

1/(1− sin2 α).
Again we note that the metric in (5.8) has AdS5×S5 form as u→ 0 as expected

and its form starts deviating from AdS5 × S5 at u ∼ R/
√
b. From (5.8) we find

that as u → 0, e2φ = G2s and so, the open string coupling is again the same as the
closed string coupling at the IR. As u → ∞, e2φ → 0. Notice that the metric and
dilaton are independent of the scaling factor g1 but all the other fields do depend

on g1. As we can see from the above, the 01-component of B-field depends, i.e. the

electric field depends on g1. But this field plays no role for the decoupling limit since

its ratio to the magentic field is like ∼ α′, vanishing in the decoupling limit. Notice
that the axion is constant, independent of u. However, it blows up in the decoupling

limit unless sinα/α′ → 0 or fixed value. The behavior of axion is very important
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in determining whether we have good or bad S-dual theory. This is because under

S-duality, the closed string coupling in the dual theory is determined by the dilaton

and the axion in the original theory as eφ̂ = eφ(χ2 + e−2φ). So if χ blows up with
a fixed eφ this will imply that the S-dual closed string coupling eφ̂ always blows up

in the decoupling limit. This in turn implies that the open string coupling blows up

since it is the same as the closed string coupling at the IR. If this happens, we have

neither a good field theory nor a good gravity dual description. We have shown the

former in the previous section. We will show the case for the gravity description in

the following. So the behavior of the axion in the original theory determines precisely

whether we have a good S-dual theory or not even though the original theory is nicely

behaved (which is NCYM here). The behavior of the RR 2-form potential is also

consistent with this even though it is not directly relevant to the perturbative open

string dynamics, i.e. NCYM, in the decoupling limit.

Keeping this in mind we will now discuss the S-duality of the gravity dual de-

scription of the NCYM discussed above. As in the previous section (case II), we have

three cases here also depending on the angle α or the scaling factor g1:

(1) g1 = fixed 6= 1,

(2) cosα→ 0 as α′ → 0,

(3) sinα→ 0 as α′ → 0.

Case (3) can also be divided into three subcases which are determined by the

order parameter β defined as sinα = (α′/b̃′)β. As studied in the previous section,
cases (1), (2) and 0 < β < 1 in case (3) all give ill behaved but ordinary YM theories.

The gravity description for these cases can be given in a unified way as

dŝ2 =
b̃ sinα

Gs

{
u2

R2

[−(dx̃0)2 + (dx̃1)2 + h̄ ((dx̃2)2 + (dx̃3)2)]+R2 [du2
u2
+ dΩ25

]}
,

eφ̂ =
sin2 α

Gs

(
b̃

α′

)2
h̄1/2 , χ̂ = − Gs

sinα

α′

b̃
, (5.9)

where all the quantities are defined as in (3.11) and again 2πα′B̂ = A2 and Â2 =
−2πα′B with B and A2 given in (5.8). For each of these three cases, we can check that
the closed string coupling always blows up as α′ → 0 precisely because sinα/α′ →∞
as α′ → 0 as discussed above. So the gravity description breaks down. At the IR,
the closed string coupling eφ̂ is just the open string coupling given in the previous

section which also blows up. So the underlying theory is not good even though the

original NCYM theory appears fine.
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For other two sub-cases in case (3), i.e. for β ≥ 1, we have good gravity descrip-
tions as expected. They can also be given in a unified way as

dŝ2 = α′
(
Ĝs
Gs

)1/2
h̄′−1/2

{
u2

R2

[−dx̃20 + dx̃21 + h̄ (dx̃22 + dx̃23)]+R2
[
du2

u2
+ dΩ25

]}
,

eφ̂ = Ĝs
h̄1/2

h̄′
, χ̂ = −Ĝ−1s

b̃

b̃′

(
α′

b̃′

)β−1
h̄′ , (5.10)

where we have defined h̄′ = 1/(1 + a′4u4) with a′4 = b̃2/(R4ĜsGs) and h̄ is the same
as that given for NCYM. We have ĜsGs = [1 + (b̃/b̃

′)2], for β = 1 and ĜsGs = 1,
for β > 1. Again the metric reduces to AdS5 × S5 as expected and its form starts
deviating from AdS5×S5 at u ∼ R/

√
b̃. The open string coupling Ĝs is the same as

the closed string coupling at the IR. Unlike in the original gravity description, the

closed string coupling blows up at the UV.

6. A few remarks

In the previous sections, we have studied the relationship between NCOS and NCYM

using the BPS ((F, D1), D3) bound state configuration in two versions related by

S-duality. For concreteness, we choose the asymptotic string-frame metric in version

A as ηMN = (−,+, . . . ,+), where M,N = 0, 1, . . . , 9 with respect to the unscaled
coordinates. Because of this choice, the string-frame metric in the S-dual version (i.e.

version B) is not ηMN asymptotically but to g
−1
s ηMN with respect to the unscaled

coordinates.

In the previous section, we have given the gravity dual descriptions of NCOS (or

NCYM) and its S-dual in case I (or case II). In case I, we always have r ∼ √α′u while
in case II we have r = α′u. The scalings for r are different in the two cases.14 How
can we understand this difference? Another puzzle is: when we discuss the condition

in version B for NCOS in case II as the S-dual of NCYM in version A, we have (see

eq. (4.14))

b̂1

b̂2
∼ 1

α′1+β
, (6.1)

with β ≥ 1. While in case I for NCOS in version A, we have
b1
b2
∼ g1 sinα
g2 tan θ

∼ 1

α′1−δ+δ′
, (6.2)

where the last equality is obtained using eqs. (4.2)–(4.4) and we also use sin θ ∼ α′δ′
with δ′ ≥ 0. These two criteria should be the same but from their appearances, it
does not seem to be the case. Let us understand these two puzzles at the same time.
14We do not have this difference if we study the NCYM in version B (rather than in version A) in

case II. However, the above choice helps us to understand things better and that is why we prefer

to present in this way.
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For convenience, let us collect some scalings here: for case I, we have

r ∼ √α′u , g1 ∼ α′δ , g2 ∼ α′ , sin θ ∼ α′δ′ , g−1s ∼ α′(1−δ)/2 , (6.3)

where δ < 1 and δ′ ≥ 0. While for case II, we have

r = α′u , g1 ∼ 1 , g2 ∼ α′2 , gs ∼ α′ , sinα ∼ α′β , (6.4)

where β ≥ 1.
The string constant α′ is a property of the string, independent of the background

in which it moves. However, the scaling behavior for the radial coordinate r in a

gravity dual description in terms of α′ does depend on the asymptotic metric. We
also know that if α′ is the string constant defined through 1/(4πα′)

∫
∂XM∂XNηMN

and r is one of the coordinates XM , then for NCYM, we should have r = α′u while
for NCOS, we should have r =

√
α′ u [28, 17]. So for the NCOS in case I (in version

A) and for NCYM in case II (also in version A), we do have the correct scaling

behavior. They can be further understood in the following way. For the NCOS, the

string lies along x1-direction and the α′ is defined with respect to the unscaled x1.
With respect to the scaled x̃1, we have 1/(4πα′)

∫
∂x1∂x1 = 1/(4πα′)

∫
∂x̃1∂x̃1g1. So

the effective string constant α′ is α′eff = α
′g−11 . In order to have the same effective α

′
eff

for the radial coordinate r, we must rescale r =
√
g1r̃. We expect that r̃ ∼

√
α′eff u.

It is easy to check, using the above relations, that this is indeed true. For the NCYM,

g1 ∼ 1 and we always have r ∼ α′ u. So for either the NCOS or the NCYM, the
scaling behavior remains the same whether we use α′ or α′eff . With the above in
mind, we now try to understand r ∼ √α′ u for NCYM in case I and r = α′ u for
NCOS in case II, both of them in version B.

The asymptotic metric for g11 with respect to the scaled coordinate in version

B is g−1s g1. So we have 1/(4πα
′)
∫
∂x1∂x1g−1s = g−1s g1/(4πα

′)
∫
∂x̃1∂x̃1. So the

effective string constant α′eff = α
′gs/g1. In order to have the same effective constant

for coordinate r, we must again rescale the r as r̃ = r/
√
g1.

For the NCYM in case I, we apply the above two relations and we have α′eff ∼
α′(1−δ)/2 where eq. (6.3) has been used, which is also consistent with that given
in footnote 9. This gives the rescaled r̃ ∼ √α′u/√g1 ∼ α′(1−δ)/2u ∼ α′effu, the
expected relation. While for the NCOS in case II, we have α′eff ∼ α′2. This gives
r̃ = α′u ∼√α′eff u, again the correct relation.
Even though we discuss the scaling of r for both case I and case II at the same

time, so far we have not brought any connection between them yet. Even then we

expect that the conclusions drawn in each case should be the same. But the ratio

between the electric and magnetic fields, determining NCOS, looks different in the

two cases. How can we resolve this puzzle? Note that α′ used in defining the ratio
in case I can be taken as the effective string constant with respect to the unscaled

coordinates for the NCOS in this case while the α′ used in defining the same ratio
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in case II can be taken as the effective string constant with respect to the unscaled

coordinates for the NCYM in that case. In other words, the α′ is taken as the
effective string constant for different theories in the two cases. This is the source

of difference. We expect that if the same α′ is used as an effective string coupling
for either NCYM or NCOS in both case I and case II, the ratio should scale the

same way. This suggests that if expressed in terms of the effective string constant

α′eff ∼ α′(1−δ)/2 for the NCYM in case I, the ratio should scale in the same way as
that in case II. Let us check if this is true. With α′eff ∼ α′(1−δ)/2, we have the ratio
in case I, from (6.2), as

b1
b2
∼ 1

α
′ 2+2δ′/(1−δ)
eff

, (6.5)

with δ < 1, δ′ ≥ 0. Since δ < 1, so α′eff → 0 as α′ → 0. This ratio has the same
behavior as that in case II if we identify the α′ there as our present effective α′eff and
β there as β = 1+2δ′/(1−δ). Note that β ≥ 1 is consistent with 1+2δ′/(1−δ) ≥ 1,
since δ′ ≥ 0 and δ < 1. In particular, β = 1 corresponds to δ′ = 0, both of which
give their respective NCOS’s with noncommutativity in both space-space and space-

time directions.

To identify the two cases completely, we need to set g1 ∼ 1 for NCYM in version
A of case II the same as gsg1 ∼ α′(1+δ)/2 for NCYM in version B of case I. This
implies that δ = −1. Now α′eff = α′ as expected. This is consistent with the fact
that the NCYM in version A of case II has fixed metric while the NCYM in version

B of case I has fixed metric only for δ = −1. One can check that the scalings of
the relevant quantities for NCOS in version A of case I are the same as those for the

NCOS in version B of case II (similarly for the NCYM’s in both cases). For example,

g2 ∼ α′ for the NCOS in version A of case I while the equivalent one for the NCOS
in version B of case II is g−1s g2 ∼ α′−1α′2 ∼ α′ as expected.
Finally in this section, we discuss the possible quantization for the open string

coupling constant Gs and Ĝs in the decoupling limit. One can use the definitions for

cos θ and cosα in (3.10) to express the open string coupling Gs as

Gs = gs
cosα

cos θ
= gs

q2 + n2

n
√
(pgs)2 + q2 + n2

, (6.6)

and the S-dual Ĝs in (4.8) as

Ĝs = g
−1
s

(
1− sin2 θ cos2 α)1/2(1 + tan2 α

cos2 θ

)1/2

= g−1s

√
(pgs)2 + n2√

(pgs)2 + q2 + n2

(
1 +
(pgs)

2

n2

)1/2
. (6.7)
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The integral charge n for D3-branes is always fixed. In the case pgs �
√
q2 + n2,

we have

Gs =
q2 + n2

np
, Ĝs =

p

n
. (6.8)

In other words, both Gs and Ĝs are independent of the closed string coupling and

quantized in the above limit. The question is now: can both Gs and Ĝs be finite and

be related to the decoupling limits discussed in the previous sections?

Let us discuss the case I first. To the NCOS, the integer p is related to the

electric field and the integer q is related to the magnetic field while to its S-dual,

i.e. NCYM, these relations are exchanged, i.e. q to the electric field and p to the

magnetic field. The decoupling limit for this case says that cosα→ 0, cos θ ∼ 1 and
gs →∞. They imply that q ∼ n = fixed and pgs �

√
n2 + q2, the right condition to

validate the quantizations of both Gs and Ĝs while at the same time, p can be finite.

So the decoupling limit in case I for NCOS/NCYM gives finite and quantized open

string coupling Gs and its S-dual Ĝs. Also if q = 0, i.e. one of the field vanishes, we

have ĜsGs = 1, the expected relation.

When NCYM and NCOS are S-dual to each other in case II, we have cos θ →
0, cosα ∼ 1 and gs → 0. This decoupling limit does not give the condition needed
for Gs and Ĝs to be independent of the closed string coupling. Therefore both Gs
and Ĝs cannot be expressed purely in terms of the charges p, q and n. However, for

the subcase 2 in case II for which the S-dual of the NCYM is a singular ordinary

Yang-Mills, we have cos θ → 0, cosα → 0 which implies that pgs �
√
q2 + n2 and

q � n. In this case, we also have both Gs and Ĝs to be independent of the closed
string coupling gs and they are given as

Gs =
q2

pn
, Ĝs =

p

n
, (6.9)

which gives GsĜs = q
2/n2 � 1, as expected.

Let us now try to understand when NCOS and NCYM are S-dual to each other,

why in case I the open string couplings are independent of the closed string coupling

while in case II they are not? Our possible explanation is as follows: in case I, we

choose the fundamental string-frame in version A and we end up with NCOS as a

fundamental open string because of the critical electric field. In other words, the

tension for the D3-branes in the decoupling limit for NCOS must be independent

of the closed string coupling. Therefore, the corresponding gauge coupling is also

independent of the closed string coupling, which in turn implies that the open string

coupling is independent of the closed string coupling. This can also be understood

for its S-dual, i.e. NCYM, in version B of case I. Given that the version A is expressed

in the fundamental string frame, version B is therefore expressed actually in D-string

frame. So for a D-string in version B, its tension is independent of the closed string
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coupling.15 Since the S-dual of NCOS is NCYM with a rank 2 B-field, this NCYM

is equivalent to an ordinary Yang-Mills in 1 + 1 dimensions with U(∞) gauge group
whose gauge coupling is determined by the D-string tension [15]. But this D-string

tension in version B is independent of the closed string coupling. So the open string

coupling must be also independent of the closed string coupling.

With the above, it is not difficult to understand why in case II, the open string

couplings are dependent on the closed string coupling since now the NCOS as a fun-

damental string moves in a D-string frame while NCYM is defined in a fundamental

string frame.

Note added. After the submission of this paper, there were two related papers

which appeared in the net [32, 33].
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