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1. Introduction and summary

Since the experimental observation of stringy behavior in hadronic physics, it has been

hoped that these aspects of the strong interactions could be predicted from an as-yet-

unknown string theory. The recent discovery of a precise duality of gauge theory and string

theory has allowed some progress. The string theoretic descriptions of several confining

gauge theories with a large number of colors have now been found. More precisely, the

backgrounds on which the dual type-IIB strings propagate are now known. However, the

string theory on these backgrounds is not soluble. This is unfortunate: while the masses of

low-lying low-spin hadrons can be computed from supergravity (SUGRA), the full hadron

spectrum requires string theory. SUGRA cannot describe states of high spin and cannot

see the Regge trajectories that we would expect gauge theory to exhibit.

Initially most information gained from gauge/string duality was obtained through anal-

ysis of the SUGRA backgrounds, or of semiclassical branes and/or strings in these back-

grounds. However, this has begun to change [1, 2, 3]. The remarkable work of Berenstein,

Maldacena and Nastase (BMN) [2] has provided a link between an exactly solvable world-

sheet string theory [4] and a sector of the conformal N = 4 supersymmetric Yang-Mills

(SYM) theory. This work was extended to other conformal theories in [5, 6, 7]. Attempts

to apply the Penrose limit [8, 9, 10] to non-conformal backgrounds [7, 11, 12] have resulted

in string theories with world-sheet time-dependent mass terms. The geodesics chosen in

these cases are appropriate to the study of the properties of the renormalization-group

(RG) flow. The corresponding world-line problem in the Pilch-Warner background solu-

tion is exactly solvable [11], giving the “branching” of a given operator in the ultraviolet

(UV) N = 4 SYM into operators of the infrared (IR) N = 1 theory (the conformal theory

with two adjoint chiral multiplets.)

In this paper we study theories that exhibit confinement and a discrete spectrum of

hadrons in the IR. Our interest is not in operators but in hadronic states of fixed mass

in Minkowski space; consequently we choose a different type of geodesic as a basis for our

Penrose limit. By focusing on geodesics that are frozen at the minimal AdS radius in the

IR, and that spiral inside the cylinder formed by the Minkowski time direction and a circle

in the compact part of the ten dimensional space, we can obtain an exactly solvable time-

independent string theory background in the Penrose limit which captures the dynamics

of hadrons with a large global charge.

The specific confining gauge theories we consider consist of N = 1 SYM plus massive

particles in the adjoint representation and carrying a global abelian charge. The string

hamiltonian describes hadrons which are bound states of these massive particles, in the

limit that the global charge and the number of colors both go to infinity. Roughly speaking,

the string sigma model takes the form of a ten-dimensional string, which in light-cone gauge

is “compactified” by world-sheet mass terms down to the three massless spatial dimensions

– 2 –



J
H
E
P
0
5
(
2
0
0
3
)
0
3
9

of Minkowski space. The vacuum of the string theory is a stationary hadron of large mass

and charge. Our string hamiltonian describes its non-relativistic motion (and that of its

fermionic superpartners) in three spatial dimensions, and its low-lying stringy excitations in

those directions, as well as excitations which add a small number of other globally-charged

constituents. We argue that these hadrons take the physical form of non-relativistic strings.

In backgrounds corresponding to confining gauge theories, there is a minimum AdS ra-

dius r0, where gtt generally goes to a non-zero minimum. In section 2 we use this, along with

mild constraints on the space perpendicular to the branes, to find null geodesics fixed at r0
(other “frozen” geodesics appear in [17]). We explicitly discuss the two trademark SUGRA

solutions dual to N = 1 SYM in the IR: the Maldacena-Núñez (MN) background [13], in

section 3, and the Klebanov-Strassler (KS) [14, 15] background (with a nonstandard but

convenient parameterization), in section 4. section 5 describes the light-cone quantization

and spectrum of the corresponding string theories, with comments about the unbroken

supersymmetries. In section 6 we find a hadronic interpretation of the string spectrum for

the KS case. (The MN case is similar but less well understood.) In particular, we show

that a very simple toy model (a string moving on a compact circle) captures some of the

terms of the string hamiltonian, thereby emphasizing its universality.

In section 7 we obtain, under very general assumptions, an expression for the Wilson

loop with global charge. We arrive at the same formula for the Wilson loop using heuristic

field theory arguments, the above-mentioned toy model, and a semi-classical string analysis.

We close with a few comments and include three appendices. Appendix A contains an

explicit derivation of the new parameterization of the deformed conifold and its relation to

the standard coordinates. In appendix B we present the main steps in the derivation of the

string hamiltonian. Appendix C contains some technical arguments about the reliability

of the Wilson loop ansatz used in section 6.

2. Null geodesics in the IR of confining theories

Let us first clarify why we choose to study null geodesics at the minimal AdS radius. The

essential feature of a confining theory is that it has stable electric flux tubes and a spectrum

of hadrons of definite (four-dimensional) mass. A hadron of definite four-dimensional mass

is a supergravity eigenstate of the ten-dimensional laplacian which is also an eigenstate of

the four-dimensional Minkowski laplacian. (This is in contrast to an operator of definite

dimension, which is an eigenstate of the five-dimensional AdS laplacian.) These states are

plane waves in the Minkowski directions and have nontrivial wave functions ψ(r,Ω) on the

remaining six directions; here r is the AdS radius (which extends from the boundary at

r → ∞ to a finite minimum at r = r0 > 0.) A hadron’s wave function falls off as r−∆,
where ∆ is the dimension of the lowest-dimension operator which can create the hadron. A

hadron of large charge J — which is typically heavy, m ∼ J , since it has many constituents

of charge 1 — can be created only by an operator of large charge, which, since it contains

of order J fields, has ∆ ∼ J . Consequently hadrons of high charge correspond to modes

which are concentrated close to r = r0.
1

1This is one of many examples which caution that one must avoid naive application of the dictum that
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Since these phenomena are localized at r = r0, we should expect they are sensitive

mainly to the IR physics of the gauge theory, and should not depend much on the UV

completion of the low-energy theory. For this reason, we expect only mild differences

between the MN and KS examples, which are both N = 1 SYM in the IR; although their

geometries differ greatly in the UV, they are similar in the IR and we would expect the

plane wave string theories are also similar. In either background, it is natural to look for

geodesics with r = r0 and ṙ = 0, ṫ = 1, where a dot represents a derivative with respect

to the affine parameter of the geodesic. With this choice, the pp-wave hamiltonian will

measure not dimensions of operators (alternatively, energies of states on a spatial S 3) but

rather energies of states in Minkowski space (with a flat spatial R3.)

In order for a geodesic at a fixed radius to be null (the key ingredient for a consistent

Penrose limit), it must move both in time and in a bulk spatial direction. Requiring

isotropy in the three spatial dimensions of the gauge theory, along with ṙ = 0, forces us to

choose the geodesic to move on a curve inside the other bulk dimensions, typically a closed

circle generated by a Killing vector. Consequently the states in the dual gauge theory will

carry large charge under the corresponding global symmetry. Their spins, by contrast, will

be of order one.

The conditions for a null geodesic of this type are easily found. The time t and the

radial direction r are effectively described by the following lagrangian

L = −gtt ṫ2 + grrṙ
2 + gφφφ̇

2 , (2.1)

where dot means differentiation with respect to the affine parameter u. Assuming for

simplicity that the metric depends only on the radial coordinate (which is approximately

true in some neighborhood of interest), the equations of motions are

ṫ =
E

gtt
, φ̇ =

µ

gφφ
,

2
d

du
(grrṙ) = ṙ2∂r grr − ṫ2∂r gtt + φ̇2∂r gφφ . (2.2)

There is also a constraint, L = 0, which we re-write using the equations of motion for t

and φ

grr ṙ
2 =

E2

gtt
− µ2

gφφ
. (2.3)

Since we are interested in geodesics at a fixed radius r = r0 we impose the condition

ṙ|r0 = 0. Thus (2.3) tells us that in the neighborhood of r0 we have

E2

gtt
=

µ2

gφφ
. (2.4)

In the case of confining theories we have gtt(r0) > 0, so we can satisfy this equation for any

finite gφφ(r0) by adjusting µ.

AdS radius is the same as energy; baryons represent another.
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Since the geodesic equation is second order, the acceleration, r̈, must also vanish for

our geodesic to remain at a fixed value of r. Looking at the equations of motion (2.2) we

see that such a condition implies

∂r (gtt) =
E2

µ2
∂r gφφ . (2.5)

For confining theories, there is a minimum r = r0 for which ∂rgtt(r0) = 0. If we assume

that gφφ depends smoothly on r, and only through the magnitude |r − r0|, then eq. (2.5)

is also easily satisfied.

It is interesting to note that the conditions (2.4) and (2.5) derived here look very similar

to the ones that appear to describe confining theories in [16] (derived from considering

Wilson loops) except that the metric component gφφ now plays an important role. This

role comes from looking at charged Wilson loops, as we shall see in section 7.

To summarize, we are interested in looking at objects of large charge in confining

theories. We know of several such confining theories which have dual SUGRA descriptions

when embedded in useful UV theories. It becomes easy to characterize the objects we

want, regardless of the vagaries of their UV completion, if we look at the states localized

near a null geodesic at the minimum radius (confinement scale). As we have shown, such

null geodesics exist under very generic conditions for confining backgrounds.

3. The Maldacena-Núñez background

We begin by finding an appropriate null geodesic at r = r0 in the MN case.2 This case is

technically easier to carry out, although it turns out to be more difficult to connect with

the dual field theory, due to a number of complicating features. It should be viewed, then,

as a technical warm-up exercise; we do not have a full understanding of its properties.

The MN background whose IR regime is associated with N = 1 SYM theory is that

of a large number of D5 branes wrapping an S2. To be more precise: (i) the dual field

theory to this SUGRA background is the N = 1 SYM contaminated with KK modes which

cannot be de-coupled from the IR dynamics, (ii) the IR regime is described by the SUGRA

in the vicinity of the origin where the S2 shrinks to zero size.

The full MN SUGRA background includes the metric, the dilaton and the RR three-

form. In [13] an explicit expression of the background was written down based on S-

dualizing the background of large N wrapped NS5 branes. The latter solution was con-

structed by uplifting to ten dimensions an SU(2) seven dimensional gauged SUGRA for

which the spin connection of the S2 is identified with the U(1) ∈ SU(2) gauge connec-

tion [20].

The background takes the following form

ds2str = eφD

[

dxµdx
µ+α′gsN

(

dρ2+e2g(ρ)
(

dθ21 + sin2 θ1dφ
2
1

)

+
1

4

∑

a

(wa −Aa)2
)]

(3.1)

2A certain Penrose limit of the MN solution was discussed in [6].
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e2φD = e2φD,0
sinh 2ρ

2eg(ρ)
(3.2)

HRR = gsN

[

−1

4

(

w1 −A1
)

∧
(

w2 −A2
)

∧
(

w3 −A3
)

+
1

4

∑

a

F a ∧ (wa −Aa)
]

(3.3)

where µ = 0, 1, 2, 3, we set the integration constant eφD0 =
√
gsN . The expression e2g(ρ)

and the gauge field A are given by

e2g = ρ coth 2ρ− ρ2

sinh2 2ρ
− 1

4
(3.4)

A =
1

2

[

σ1a(ρ)dθ1 + σ2a(ρ) sin θ1dφ1 + σ3 cos θ1dφ1
]

(3.5)

a(ρ) =
2ρ

sinh 2ρ
(3.6)

and the one-forms wa are given by:

i

2
waσa = dgg−1 (3.7)

w1 + iw2 = e−iψ(dθ2 + i sin θ2dφ2) , w3 = dψ + cos θ2dφ2 (3.8)

g = e
iψσ3

2 e
iθ2σ

1

2 e
iφ2σ

3

2 . (3.9)

Note that we use notation where x0, xi have dimension of length whereas ρ and the an-

gles θ1, φ1, θ2, φ2, ψ are dimensionless and hence the appearance of the α′ in front of the

transverse part of the metric. Moreover, following the notation of [21] a factor of gsN is

multiplying the α′ instead of N that appears in [13].

There are several scales associated with the N = 1 SYM dual of the MN background.

the string tension, the glueball masses, the KK masses and the domain wall tension. These

masses are all expressed in terms of the only scale of the background, α′, and they take

the explicit form [13, 21]

M2
gb ∼M2

KK ∼
1

gsNα′
, Ts ∝M2

gb (gsN)
3
2 (3.10)

3.1 The Penrose limit

We would like to take a Penrose limit for this background following the general construction

of section 2, namely, based on a null geodesic with ρ = ρ0. In the metric (3.1) we can clearly

see that gtt has a minimum at ρ = 0. Here, the internal space in (3.1) is an S3; this suggests

that motion at ρ = 0 along an S3 equator gives a candidate for a null geodesic. We would

like to solve for this null geodesic using a simplified metric of the form (2.1). In order

to do this, we must switch to a coordinate system where motion along the S3 equator

is parameterized by a single angle, φ+, and such that the description of the geodesic’s

neighborhood is particularly simple. Specifically we will ensure that any dependence of the

metric on the distance away from the chosen S3 equator has to be at least quadratic. This

will guarantee that we can set the first and second derivatives of any deviation to zero in

the equation of motion and solve for the null geodesic in terms of just the variables t, ρ

and φ+.
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The coordinate system above is hard to find if we start from the explicit form of the

metric in (3.1). There exists, however, a simpler approach using the fact that at the origin

the gauge field (3.4) is pure gauge, namely,

iA = dhh−1 +O
(

ρ2
)

with h = eiσ
1θ1/2eiσ

3φ1/2 . (3.11)

Performing a gauge transformation A→ h−1Ah+ ih−1dh sets the gauge field at the origin

to zero up to O(ρ2) corrections:

A =
(

− 1

3
ρ2 +O

(

ρ4
)

)[

σ1(cosφ1 dθ1 − cos θ1 sin θ1 sinφ1 dφ1) + (3.12)

+ σ2(sinφ1 dθ1 + cos θ1 sin θ1 cosφ1 dφ1) + σ3(sin2 θ1 dφ1)
]

.

Note that this is just

A = −1

3

[(

r22 dα2
)

σ1 +
(

r21 dα1
)

σ2 +
(

r23 dα3
)

σ3
]

(3.13)

where (ra, αa) are the polar coordinates for the plane inside R3 ∼ R×S2 which is perpen-

dicular to the xa axis. It is straightforward to see that if we boost along a direction ωa

on the S3, the Aa component of (3.13) will give the only correction to the Penrose limit,

proportional to r2a dαa dx
+. For example, if we choose to boost along the great circle on S3

defined by θ2 = 0 and φ2 = ψ (hence boosting along ω3) and make the following change of

variables

dt = dx0 , xi → 1

L
xi , ρ =

m0
L
r ,

θ2 =
2m0
L

v , φ+ =
1

2
(ψ + φ2) , (3.14)

where L2 =
√
gsN and m0 =

1√
gsNα′

is the glueball mass, we get a limit for the metric (3.1)

of the form:

ds2 = −L2dt2 + dxidx
i + dr2 + r2

(

dθ21 + sin θ21dφ
2
1

)

+ (3.15)

+
(

dv2 + v2 dφ22
)

+
L2

m20
dφ2+ − 2v2 dφ2 dφ+ +

2

3
r2 sin θ21 dφ1dφ+ +O

(

L−2
)

where the new variables r, v have dimension of length. It is easy to see that boosting along

ω1 and ω2 for θ2 =
π
2 and ψ = 0 or π

2 will give the same type of result. Since this form of

the metric is invariant under x → −x, x = 0 is a solution of the equation of motion. To

eliminate some of the “magnetic” terms we now introduce a shift in the angles φ1 and φ2

φ̂1 = φ1 +
1

3
φ+ φ̂2 = φ2 − φ+ . (3.16)

Expressed in terms of the these shifted angles the metric takes the form

ds2 = L2
[

−dt2 + 1

m20
dφ2+

]

+ dxidx
i + dr2 + r2

(

dθ21 + sin θ21dφ̂
2
1

)

+

+
(

dv2 + v2 dφ̂22

)

−
(

v2 +
r2

9
sin2 θ1

)

dφ2+ +O(L−2) . (3.17)
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Finally we let

x+ = t , x− =
L2

2

(

t− 1

m0
φ+

)

, (3.18)

and denote the cartesian coordinates of the R3 associated with dr2 + r2(dθ21 + sin θ21dφ̂
2
1)

as du21 + du22 + dz2 (and similarly for the v plane dv2 + v2dφ̂22 = dv21 + dv22). Then we take

the Penrose limit L→∞ while keeping m0 fixed, obtaining

ds2 = −2dx+dx−−m20
(

1

9
u21 +

1

9
u22 + v2

)

(dx+)2+d~x 2+d~z 2+du21+du
2
2+dv

2
1+dv

2
2 . (3.19)

We thus obtain a plane wave metric with 4 massless direction (three x’s and z), two

directions (v) with mass m0 and two directions (u) with mass 13 m0.

Next we would like to consider the Penrose limit of the three form field strength HRR.

According to the procedure of Güven [9] since HRR is the field strength of the 2-form A2,

the L → ∞ limit takes the form HRR = L2H̃RR. The only terms that survive this limit

are w1 ∧ w2 ∧ w3 and F 3 ∧ w3. All the other terms are suppressed by factors of 1/L. The

final expression is

HRR = −2m0 dx+ ∧
[

dv1 ∧ dv2 +
1

3
dz1 ∧ dz2

]

. (3.20)

As expected the only non-trivial components are of the form H+ij. As a consistency check

we examine the equation of motion

R++ =
1

4

(

H+ijH
ij
+ −

1

12
g++HijkH

ijk

)

. (3.21)

The component R++ of the Ricci tensor associated with the metric (3.19) is R++ =
∑

im
2
i = (20/9)m20. It is easy to see that by substituting (3.20) into the equation of

motion we get exactly the same expression also in the right hand side of the equation.

Notice that the second term in this side of the equation vanishes since the terms of the

3-form have a structure of H+ij and g
++ = 0.

The hamiltonian is:

H = −p+ = i∂+ = E −m0
(

−1

3
J1 + J2 + Jψ

)

≡ E −m0 J , (3.22)

and the momentum P+ is

P+ = −1

2
p− =

i

2
∂− =

m0
L2

(

−1

3
J1 + J2 + Jψ

)

= m0
J√
gsN

. (3.23)

where J1, J2 and Jψ denote −i∂φ1
, −i∂φ2

and −i∂ψ respectively.

Here we see something non-trivial, and slightly distressing, about this plane-wave limit.

The metric (3.1) with the new gauge field (3.12) contains only two global U(1) isometries,

U(1)L = J2 and U(1)R = Jψ − J1 (modulo SU(2) rotations). Therefore the symmetry

current − 13J1 + J2 + Jψ does not represent an isometry of the full MN solution; it is an

accidental symmetry arising only in the Penrose limit. It therefore governs the hadrons of
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the gauge theory only in the large-charge limit. Moreover, since this accidental symmetry

does not commute with supersymmetry, the corresponding string theory will exhibit the

supersymmetry of the gauge theory in a slightly unexpected fashion.

We could choose to define φ̂1 = φ1 + φ+ so that J would now be in the diagonal of

U(1)L and U(1)R. Unfortunately, this leaves us with a so-called “magnetic” term of the

form dφ1dφ+ in the metric. Solving the string theory in this background is slightly more

complicated, but at the end boils down to shifting the whole spectrum of energies derived

from the original background by 2
3m0 J1.

Perhaps one way to understand this strange appearance of a magnetic term for what

should be the natural choice of symmetry current is to look at the dual field theory of

the D5-brane. If we look at the Kaluza-Klein spectrum for this D5-brane, we can quickly

see that it contains massive scalar and vector multiplets. The key feature here is that

the scalar multiplets transform under both of the global SU(2)’s, while the vectors only

transform under SU(2)R! Capturing the full dynamics of the Penrose limit requires us to

look at objects with scalar components from both the lowest mass scalar multiplet and

the lowest mass vector multiplet. The L ↔ R asymmetry of the vector scalars hints at a

genesis for a magnetic term.

Fortunately, the corresponding plane-wave limit of the KS solution is not plagued with

an unnatural choice of boost symmetry. Although technically more challenging to obtain,

it turns out to be much more elegant and much easier to interpret.

4. The Klebanov-Strassler background

We begin by reviewing the KS background, which is obtained by considering a collection of

N regular and M fractional D3-branes in the geometry of the deformed conifold [14] (see

also [15]). The 10-d metric is of the form:

ds210 = h−1/2(τ)dxµdx
µ + h1/2(τ)ds26 , (4.1)

where ds26 is the metric of the deformed conifold [22, 23]:

ds26 =
1

2
ε4/3K(τ)× (4.2)

×
[

1

3K3(τ)

(

dτ2+
(

g5
)2
)

+cosh2
(τ

2

)[

(

g3
)2

+
(

g4
)2
]

+ sinh2
(τ

2

)[

(

g1
)2

+
(

g2
)2
]

]

.

where

K(τ) =
(sinh(2τ)− 2τ)1/3

21/3 sinh τ
, (4.3)

and

g1 =
1√
2
[− sin θ1dφ1 − cosψ sin θ2dφ2 + sinψdθ2] ,

g2 =
1√
2
[dθ1 − sinψ sin θ2dφ2 − cosψdθ2] ,

g3 =
1√
2
[− sin θ1dφ1 + cosψ sin θ2dφ2 − sinψdθ2] ,
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g4 =
1√
2
[dθ1 + sinψ sin θ2dφ2 + cosψdθ2] ,

g5 = dψ + cos θ1dφ1 + cos θ2dφ2 . (4.4)

The 3-form fields are:

F3 =
Mα′

2

{

g5 ∧ g3 ∧ g4 + d
[

F (τ)
(

g1 ∧ g3 + g2 ∧ g4
)]}

=
Mα′

2

{

g5 ∧ g3 ∧ g4(1− F ) + g5 ∧ g1 ∧ g2F + F ′dτ ∧
(

g1 ∧ g3 + g2 ∧ g4
)

}

, (4.5)

and

B2 =
gsMα′

2

[

f(τ)g1 ∧ g2 + k(τ)g3 ∧ g4
]

, (4.6)

H3 = dB2 =
gsMα′

2

[

dτ ∧
(

f ′g1∧ g2+ k′g3∧ g4
)

+
1

2
(k − f)g5 ∧

(

g1∧ g3 + g2∧ g4
)

]

. (4.7)

The self-dual 5-form field strength is decomposed as F̃5 = F5 + ?F5, with

F5 = B2 ∧ F3 =
gsM

2(α′)2

4
`(τ)g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 , (4.8)

where

` = f(1− F ) + kF , (4.9)

and

?F5 = 4gsM
2(α′)2ε−8/3dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dτ `(τ)

K2h2 sinh2(τ)
. (4.10)

The functions introduced in defining the form fields are:

F (τ) =
sinh τ − τ
2 sinh τ

,

f(τ) =
τ coth τ − 1

2 sinh τ
(cosh τ − 1) ,

k(τ) =
τ coth τ − 1

2 sinh τ
(cosh τ + 1) . (4.11)

The equation for the warp factor is

h′ = −αf(1− F ) + kF

K2(τ) sinh2 τ
, (4.12)

where

α = 4(gsMα′)2ε−8/3 . (4.13)

For large τ we impose the boundary condition that h vanishes. The resulting integral

expression for h is

h(τ) = α
22/3

4
I(τ) = (gsMα′)222/3ε−8/3I(τ) , (4.14)

where

I(τ) ≡
∫ ∞

τ
dx
x coth x− 1

sinh2 x
(sinh(2x)− 2x)1/3 . (4.15)
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The above integral has the following expansion in the IR:

I(τ → 0)→ a0 − a1τ2 +O
(

τ4
)

, (4.16)

where a0 ≈ 0.71805 and a1 = 22/3 32/3/18. The absence of a linear term in τ reassures us

that we are really expanding around the end of space, where the Wilson loop will find it

more favorable to arrange itself.

4.1 A convenient parameterization of the KS background

As it turns out, the above parameterization of the metric will not be quite suitable for our

purposes since the 1-forms dψ, dθi and dφi mix the 1-forms of the S3 at the origin, g3, g4

and g5, with those from the S2, g1 and g2. In these coordinates it would be problematic

to try and get a Penrose limit by boosting along g5. For example, boosting along g5 by

shifting ψ does not work as this coordinate is Hopf-fibered over the S2 which shrinks to

zero size at the origin.

Instead, we pick explicitly separate coordinates 3 for the S3 and the S2 (see the ap-

pendix for more detail): for the S3 an SU(2) matrix

T = e
i
2
φ′ σ3 e

i
2
θ′ σ1 e

i
2
ψ′ σ3 , (4.17)

and for the S2 a matrix

S = e
i
2
φσ3 e−

i
2
θ σ1 . (4.18)

We can now work with the 1-forms

T † dT = −dT † T =
i

2
ωa σa , (4.19)

and

dθ , sin θ dφ . (4.20)

We now re-write the metric for the deformed conifold in terms of these 1-forms as

ε−
4
3 ds26 =

1

4
K(τ) cosh(τ)

(

dτ2 + (ωa)2
)

+

+K(τ) sinh2
(τ

2

)

[

(

dθ2 + sin2 θ dφ2
)

−
(

sinφω1 + cosφω2
)

(dθ)−

−
(

cos θ cosφω1 − cos θ sinφω2 − sin θ ω3
)

(sin θ dφ)

]

+

+
1

4
K ′(τ) sinh(τ)

[

dτ2 +
(

sin θ cosφω1 + sin θ sinφω2 + cos θ ω3
)2
]

. (4.21)

3This is very similar in spirit to the gauge transformation we used in the last section.
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4.2 Plane wave limit

Due to the behavior of the warp factor in the IR (h → constant), it is clear that in the

deep IR there are null geodesics that lie at τ = 0. Hence, we will consider a Penrose limit

where we expand around τ = 0, in a manner similar to the BMN expansion near the center

of AdS in global coordinates. (The analogy here is purely formal, however, as the physical

meaning of the time variable in global versus Poincaré coordinates is very different in the

field theory dual.) An important guide in taking the limit that we want is that we should

keep finite the mass of the glueball

Mgb ∝
ε

2
3

gsM α′
. (4.22)

Note that now the dynamics in KS are such that the flux tube tension is

Ts ∝M2
gb(gsM) . (4.23)

We start the machinery for the Penrose limit by expanding the KS metric up to quadratic

terms in τ/L, and eventually taking L→∞. We also want to take a Penrose limit near an

equator on the S3 at the origin. Without loss of generality, we can choose coordinates θ ′, φ′

and ψ′ such that this equator sits at θ′ = 0 and is generated by φ′+ψ′ (to first order this is

ω3). To take the limit, we will need also need to re-scale the coordinate θ ′ → θ′/L, i.e., the
1-forms ω1, ω2 will go like 1/L. This scaling simplifies the deformed conifold metric (4.21):

L2ds26 =
ε

4
3

2
5
3 3

1
3

[

dτ2 + (dθ′)2 + (θ′)2(dφ′2) + L2(ω3)2 +
2

5
τ2 (ω3)2 +

+ τ2dΩ22 + (τ2 sin2 θ)dφω3 − 1

5
τ2 cos2 θ(ω3)2

]

. (4.24)

If we expand ω23 as

ω23 = 4 (dφ+)
2 − 2

(

θ′

L

)2

dφ′ dφ+ , (4.25)

we can write the full 10-dimensional metric in the limit as:

ds210 = − c
2
0

L2

[

L2 +
a1
2a0

τ2
]

dt2 + c20δijdx
idxj +

+
c21
L2

[

4L2dφ2+ + dτ2 + τ2 (dθ2 + sin2 θ dφ2) + (dθ′)2 + (θ′)2(dφ′)2 +

+ 2τ2 sin2 θ dφ dφ+ − 2θ2 dφ′ dφ+

+ 4τ2 sin2 θ

(

2

5
− a1

2a0

)

(dφ+)
2 + 4 τ2 cos2 θ

(

1

5
− a1

2a0

)

(dφ+)
2

]

, (4.26)

with

c20 =
ε4/3

21/3 gs Mα′ a1/20
, c21 =

gs M α′ a1/20
24/3 31/3

. (4.27)
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As a next step, we know that the Penrose limit calls for the overall metric to be re-scaled

by L2. We can accomplish this by taking

c0 →∞ , c1 →∞ , (4.28)

while keeping constant

c0
L

= 1 ,
c0
c1

=
ε

2
3

gsMα′

(

24

a30

)
1
6

= 2m0 . (4.29)

With these scalings in mind, we make the following further changes in coordinates in order

to take the Penrose limit:

φ+ =
1

2
(φ′ + ψ′) , x+ = t , x− =

c20
2

(

t− 2c1
c0
φ+

)

, (4.30)

with

xi → xi

L
, ϕ =

1

2
(φ′ − ψ′) , v =

c1
c0
θ′ eiϕ ,

z =
c1
c0
τ cos θ φ̃ = φ+ φ+ , u =

c1
c0
τ sin θ eiφ̃ . (4.31)

After we take L→∞ the resulting metric is

ds2 = −4dx+dx− −m20
[(

4a1
a0
− 4

5

)

z2 +

(

4a1
a0
− 3

5

)

uū+ vv̄

]

(dx+)2 +

+dxidxi + dz2 + dudū+ dvdv̄ . (4.32)

4.3 The various forms in the plane wave limit

We now turn to the constructions of the forms in the new coordinates. A convenient

relation we will use in what follows is:

gsMα′

L2
m20 = a

− 1
2

0 2
4
3 3

1
3
c21
c20
m20 = a

− 1
2

0 2−
2
3 3

1
3 =

(

a1
a0

)
1
2 3√

2
. (4.33)

The earlier expressions for the gi’s (4.4) allow us to write down the Ramond-Ramond

3-form:

F3 =
Mα′

2

{

g5 ∧ g3 ∧ g4 + d
[

F (τ)
(

g1 ∧ g3 + g2 ∧ g4
)]}

→ 3im0√
2 gs

(

a1
a0

)
1
2

dx+ ∧
(

1

3
du ∧ dū+ dv ∧ dv̄

)

. (4.34)

Similarly we write down the NS-NS 2-form as:

B2 =
gsMα′

2
[f(τ)g1 ∧ g2 + k(τ)g3 ∧ g4]

→ m0√
2

(

a1
a0

)
1
2

dx+ ∧ (−i)[u dv̄ − ū dv] . (4.35)
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The complex 3-form field strength obtained by combining the above forms is:

G3 = H3 + igsF3

=
m0√
2

(

a1
a0

)
1
2

dx+ ∧ [( du ∧ dū+ 3 dv ∧ dv̄) + i(du ∧ dv̄ − dū ∧ dv)] , (4.36)

which has as a norm

(G3)+ij
(

G3
) ij

+
= 48

a1
a0
m20 . (4.37)

As an extra check we verify that the only nontrivial equation of motion

R++ =
1

4
(G3)+ij

(

G3
) ij

+
(4.38)

is satisfied. Indeed from (4.32) we obtain

R++ = m20

[(

4a1
a0
− 4

5

)

+ 2

(

4a1
a0
− 3

5

)

+ 2

]

= 12
a1
a0
m20 , (4.39)

which matches perfectly with the 3-form.

4.4 Operators and symmetries

The hamiltonian now takes the form

H = −p+ = i∂+ = i[∂t +m0 (∂φ′ + ∂ψ′ − ∂φ)]
= E −m0J , (4.40)

with

P+ =
i

2
∂− = − i

c20
m0 (∂φ′ + ∂ψ′ − ∂φ)

= m0

(

J

c20

)

. (4.41)

The geodesic used in our Penrose limit is generated by a symmetry which we will call

U(1)D. Its action on the matrices T and S is

eiα J : T → ei
α
2
σ3 T ei

α
2
σ3

S → e−i
α
2
σ3 S (4.42)

which means its action on our general complex coordinate matrix for the conifold is W =

T SWε σ3 S
†σ3, is:

eiα J : W → ei
α
2
σ3Wei

α
2
σ3 . (4.43)

The geodesic is left invariant by an orthogonal abelian symmetry acting on W , which we

will term U(1)A, with

eiα JA :W → ei
α
2
σ3We−i

α
2
σ3 . (4.44)

In this case,

JA = −i(∂φ′ − ∂ψ′ + ∂φ) . (4.45)

One may check that both u and v carry charge 1 under JA, while x
+ and z are neutral,

and that the metric and 3-forms are also neutral.
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Thus, in contrast to our results in the MN case, the symmetry current corresponding

to the charge J is conserved by the full gauge theory, and corresponds to an isometry of

the full KS metric. Moreover, it commutes with the supersymmetry of the full theory. This

makes the corresponding string theory, and its interpretation, reasonably straightforward.

5. The plane wave string and its hamiltonian

In this section we work out the string hamiltonian for the KS and MN plane waves, keep-

ing an eye out for common distinguishing features as well as differences. We will treat the

bosonic sector first, and then discuss the fermionic oscillators and the effects of supersym-

metry.

5.1 Bosonic sector

The form of the KS metric (4.32) directly implies that the bosonic sector of the sys-

tem is described by three massless fields with frequencies wn = n, and five massive (no

zero-frequency mode) fields. Due to the presence of a B-field, four of the latter organize

themselves as two sets of coupled fields (see appendix B). The frequencies for the five

massive fields are

wzn =
√

n2 + m̂2z

(ω±n )
2 =

1

2

[

2n2 + m̂2v + m̂2u ±
√

(m̂2v − m̂2u)2 + 4n2 m̂2B

]

, (5.1)

where

m̂z = (m0p
+α′)

(

4a1
a0
− 4

5

)
1
2

, m̂u = (m0p
+α′)

(

4a1
a0
− 3

5

)
1
2

,

m̂v = m0p
+α′ , m̂B =

√
2m0p

+α′
(

a1
a0

)1/2

. (5.2)

Glancing at the form of the frequencies for the coupled fields we notice that the presence

of the B-field (parameterized by m̂B above) only affects the frequencies for n > 0. At

zero-level the coupled fields have frequencies ω+0 = m̂v and ω−0 = m̂u which can naturally

be identified with excitations of v and u.

We can obtain the structure for the lowest-lying excitations of the MN plane wave case

in a similar fashion to the case above. Due to the absence of a B-field in the MN plane-wave

the directions u and v no-longer mix, so we can recycle formula in eq. (5.1) with

m̂z = 0 , m̂u =
1

3

(

m0p
+α′
)

, m̂v = m0p
+α′ , m̂B = 0 . (5.3)

and rename

ω+n = ωvn , ω−n = ωun . (5.4)

What do the MN and KS spectrum have in common? First, they have an identical

stringy sector for the three directions which correspond to the three spatial directions in

the dual gauge theory. Second, they have the same massive level-zero modes in two of the
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internal directions (v and v̄). These come from a natural S3 structure in both the MN and

KS cases; they represent the direction this sphere normal to the reference geodesic. Even

though this common feature is ruined by the B-field for more excited states, we will refer

to oscillation in v as the “universal sector.” The remaining oscillation directions are less

universal and come from the combination of the radial direction and the S 2-like structure.

In particular, what is striking here is that m̂z is zero in the MN case, while all the m̂’s are

positive in the KS case. In either case, it is interesting to note that all the quantities in this

“non-universal sector” are smaller than m̂v since
√

4a1
a0
− 4
5 ≈ .47 and

√

4a1
a0
− 3
5 ≈ .65.

The whole bosonic hamiltonian can be written explicitly following standard manipu-

lations. Here we provide the needed notation to understand its form; the details are given

in appendix B. We define number operators

NR =
∞
∑

n=1

n
(

ai†n a
i
n

)

, NL =
∞
∑

n=1

n
(

ãi†n ã
i
n

)

,

NR =

∞
∑

n=1

n
(

as†n a
s
n

)

, NL =

∞
∑

n=1

n
(

ãs†n ã
s
n

)

, (5.5)

and sub-hamiltonians

H0 = ws0

(

as†0 a
s
0

)

,

HR =

∞
∑

n=1

wsn

(

as†n a
s
n

)

, HL =

∞
∑

n=1

wsn

(

ãs†n ã
s
n

)

. (5.6)

The subindex i = 1, 2, 3 refers to the three flat directions in the plane wave (spatial direc-

tions in the gauge theory), while the index s = 4, 5, 6, 7, 8 runs over the internal directions.

There is implied summation over the indices i and s. The full bosonic light-cone hamilto-

nian is

H = −P− = H‖ +H⊥

=

[

P 2i
2P+

+
1

2α′P+
(NR +NL)

]

+

[

1

2α′P+
(H0 +HR +HL)

]

. (5.7)

The hamiltonian is thus constructed of a contribution from the momentum and stringy

excitations in the spatial directions of the field theory (index i), H‖, and a contribution

from the massive “zero” modes and excitations of the internal directions (index s), H⊥.
From this we may observe two important features which both the bosonic MN and KS

hamiltonians share. First, both theories have the same H‖. Second, they have the same

m̂v = p+α′m0. More precisely, note from (3.22) and (4.40) that we have defined m0 in

each case so that the energy E of the string theory vacuum state is Jm0. The two theories

then share the fact that the lowest-lying mode of v shifts E by exactly m0. We will see in

a moment why these features are universal.

5.2 The fermionic sector

Before we describe the fermionic contribution to the string spectrum in our plane waves,

let us consider first what happens to the target space supersymmetries of the original solu-

tions. Both the MN and KS background are dual to N = 1 supersymmetric field theories;
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their supersymmetry algebra contains exactly four supercharges. These supercharges com-

mute with the original Hamltonian, ∂t, and with the SU(2)L × SU(2)R global symmetry

generators. In the Penrose limit, these supercharges are re-scaled as

Q→ L ·Q (5.8)

since their Killing spinors mix with the coordinates xi. This implies a contraction of the

supersymmetry algebra

{Q,Q} ∝ ΓµPµ
→ {Q,Q} ∝ 1

L2
(

Γ0(i∂+ + L2 i∂−) + LΓii∂i
)

= Γ0P+ +O
(

L−1
)

, (5.9)

which tells us that the original supercharges have now become part of the 16 “kinematic”

supercharges ubiquitous to pp-wave solutions ([25, 27]). This means (see [28]) that they

will be non-linearly realized on the string worldsheet.

Let us now specialize to the KS case. The hamiltonian for the KS plane-wave is shifted

from the original KS hamiltonian by a charge J which generates U(1)D in the global sym-

metry group. This means that it still commutes with the four supercharges above! After

fixing lightcone gauge and kappa symmetry, the (non-linear) action of the kinematic super-

symmetries takes the form of multiplication by the Green-Schwarz fermionic fields Sα and

S̃α. Commutation of four of the sixteen supersymmetries with the hamiltonian then implies

that two each of the eight left-moving and right-moving spinors on the worldsheet should

have a zero-frequency mode. These act on the vacuum to generate a four-dimensional

Hilbert space of degenerate states (two fermionic and two bosonic).

An explicit computation (see appendix B) of the fermionic spectrum confirms this

prediction. The spectrum of the string in the KS plane wave contains four fermionic fields

(each of which has a left-moving and a right-moving part) with frequencies

ωαn |α=1...4 =
√

n2 + m̂2f , (5.10)

two fermionic fields with frequencies

ωαn |α=5,6 =
√

n2 +
1

2
m̂2f +

1

2
m̂f

√

m̂2f + 4n2 , (5.11)

and two fermionic fields with frequencies

ωαn |α=7,8 =
√

n2 +
1

2
m̂2f −

1

2
m̂f

√

m̂2f + 4n2 . (5.12)

The mass scale is m̂f = m0(2a1/a0)
1
2 p+α′. For n = 0 we have six modes with frequency

m̂f and then we get the two zero-modes we expected.

Let us now look at the MN case. For this background, the spectrum of fermionic

oscillators is much easier to compute. These oscillators come in two sets of four with

frequencies

ω++βn = ω−−βn =

√

n2 +
4

9
(m0p+α′)2 ,

ω−+βn = ω+−βn =

√

n2 +
1

9
(m0p+α′)2 . (5.13)
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where β = 1 or 2 and the signs (±±) represent eigenvalues ± 12 under rotations in the

u and v planes respectively. We have chosen to label the fermionic oscillations via these

eigenvalues to illustrate a subtle yet simple point about the action of the original susy’s

from the MN solutions.

As we noted at the end of section 3, the current J = − 13J1 + J2 + Jψ used in the MN

plane-wave limit is not in the global symmetry group SU(2) × SU(2) of the full theory.

Correspondingly the hamiltonian for the corresponding plane wave does not commute with

the original four N = 1 supercharges. On the other hand, the operator J ′ = J − 2
3J1 =

J − 23Ju is an element of the original global symmetry group, so if we shift the hamiltonian

by − 23Ju we should get two zero frequency modes. Taking a careful look at (5.13) we see

that this shift takes

ω+−βn →
√

n2 +
1

9
(m0p+α′)2 −

1

3
(m0p

+α′) (5.14)

giving the two required zero-modes for n = 0. Thus, our string theory does exhibit the

supersymmetry of the field theory, but it makes it somewhat hard to see.

Now that we described the spectrum of the fermionic hamiltonian for MN and KS, we

should make clear a few important connections with the bosonic hamiltonian. First, if we

define fermionic number operators

Nf
L =

∞
∑

n=1

n
(

Sα†n S
α
n

)

, N f
R =

∞
∑

n=1

n
(

S̃α†n S̃αn

)

, (5.15)

the contribution of the bosonic and fermionic modes is constrained by the equality of

the overall occupation numbers [26] which have to satisfy the level-matching condition

NR + NR + N f
R = NL + NL + Nf

L. Second, we note that in both cases the sum of the

squares of the fermionic frequencies above exactly matches the sum of the squares of the

frequencies of the bosonic fields in (5.1) order by order in n. This allows the corresponding

string-theory to remain finite. Finally, neither the MN case nor the KS case has any

linearly-realized worldsheet supersymmetries. This implies that there will be a zero-point

energy for the overall hamiltonian. Since at each level the sum of the fermionic frequencies

is bigger than the sum of the bosonic frequencies, we will get a positive zero-point energy;

there is no tachyon.

To conclude, the fermionic contribution to the hamiltonian incorporates quite well

our knowledge of the supersymmetries, especially for KS. The MN and KS pp-wave string

theories are solvable, finite, and built on a positive-energy vacuum.

6. A string theory of hadrons

In order to interpret the hamiltonian above in terms of the field theory dual to the “parent”

background we must keep in mind the following facts. Local inertial momenta Pi, as

measured in the string frame near r = r0, are related to momenta in the field theory, Pi,
via the relation

Pi = gii(r0)Pi . (6.1)
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We can also write the confined theory string tension, Ts, in terms of the string length as

Ts = (gtt(r0) gxx(r0))
1
2
1

α′
= gtt(r0)

1

α′
. (6.2)

Now eq. (5.7) can be written purely in terms of field theory variables as:

H =

[ P2i
2m0J

+
Ts

2m0J
(NR +NL)

]

+

[

Ts
2m0J

(H0 +HR +HL)

]

. (6.3)

6.1 The toy model of a string on a compact circle

Before discussing the interpretation of these hadrons in the KS and MN theories, we begin

by noting that there is a simple toy model4 — a string moving on a compact circle —

which shares some parts of this hamiltonian. As such, it helps to orient us toward a

clear interpretation of the physics, although it does not capture all of the features of the

hamiltonian in (6.3). We simply consider a closed unwound string on flat M9 × S1, the
circle having radius R0.

First consider an excited string at rest. Its energy is

√

1

α′
(NL +NR) (6.4)

where (ignoring worldsheet fermions)

NR =

∞
∑

n=1

n
(

ai†n a
i
n

)

, NL =

∞
∑

n=1

n
(

ãi†n ã
i
n

)

(6.5)

except that we sum over all 8 noncompact directions x1, . . . , x8 transverse to a light cone

(which we place in the directions x0, x9).

Now let us boost the string, giving it small momentum ~P in three spatial Minkowski

directions and enormous momentum P9 ≡ J/R in the x9 direction. Its energy is now

√

P 29 + ~P2 +
1

α′
(NL +NR) (6.6)

and so

E − P9 =
~P2

2J/R0
+

1

2J/R0

1

α′
(NL +NR) (6.7)

which looks similar to the formula (6.3) above if we identify R0 as 1/m0, and Ts as
1
α′ .

How should we interpret this? From the ten-dimensional point of view, this is merely

lorentzian physics. But from the nine-dimensional point of view, we are adding not mo-

mentum but KK charge to the string, whereby it remains static but becomes heavy. Any

additional motion of the string in the noncompact directions looks like nonrelativistic mo-

tion from the point of view of nine dimensions. Excitations of the boosted string, which

look perfectly ordinary from the ten-dimensional point of view, take the above squared form

4M.J.S. thanks Minxin Huang, Thomas Levi, and Asad Naqvi for discussions concerning this toy model

prior to the present work.
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from the nine-dimensional point of view. From this we learn that the first terms in (5.7)

and (6.3) simply reflect how large and heavy nonrelativistic strings move and oscillate.5

Thus we are led to guess that the hadrons described in our string theory take the phys-

ical shape of nonrelativistic strings propagating in four dimensions.6 Since these hadrons

have never been studied before, they need a name: we will call them “annulons” from the

Latin word “anulus” for “ring.” The vacuum of the string theory is the lowest-lying, stable

annulon with charge J , and our string theory describes its motion and its small oscillations

(as well as some other annulons to be discussed below.)

We will leave the toy model at this point, and return to gauge theory; but clearly this

toy model will be a useful tool for obtaining additional physical insights into interactions,

solitons, scaling laws, decay rates, etc. Some simple examples are given in our concluding

section.

6.2 The hadrons in the KS case

The hamiltonian (5.7) has a natural interpretation as describing a sector of the hadronic

spectrum of the gauge theory. We will first discuss this in the context of the KS theory,

which is easiest to interpret.

6.2.1 The constituents in the KS theory

To understand the hadrons in question, we need to understand the various objects that

carry charge in the gauge theory. The massless fields of the gauge theory are those of

pure N = 1 SU(M) Yang-Mills; these are neutral under all anomaly-free U(1) symmetries.

However, as discussed in the appendix of [14], there are massive fields left over from the

duality cascade. There are four chiral supermultiplets in the adjoint representation of

SU(M), charged as (2,2) under SU(2)` × SU(2)r.

These emerge in the following way. The second to last stage of the cascade involves

the gauge group SU(2M)×SU(M), with fields A1, A2 in the (2M,M) representation, and

fields B1, B2 in the conjugate representation; these fields are doublets under SU(2)` and

SU(2)r respectively. The gauge group SU(2M) has 2M flavors, so it confines [24]; in this

process SU(M) is mainly a spectator to the SU(2M) dynamics. Among the resulting bound

states are the four fields

(Nij)
α
β = (Ai)

α
a (Bj)

a
β −

1

M
δαβ tr(AiBj) (6.8)

5Other related toy models can easily be found; for example, one might consider lifting the toy model to

M-theory, and through an 11-9 flip relating the oscillations on a boosted string to strings on a bound state

of D0 branes. Indeed the hamiltonian for excitations of such a bound state will look very similar to the

first terms in our hamiltonian. In all cases, it is the effect of tacking on a small oscillation to a large mass

by addition in quadrature. Indeed hamiltonians of this type have appeared many times in the contexts of

DLCQ and strings with large winding number.
6More precisely, highly excited hadrons in our string theory actually “look” like strings. Low-lying states

are small, essentially point particles, in the same way that gravitons in ordinary string theory do not look

like strings but instead have well-localized wave functions. The wave functions for our low-lying hadrons

can be guessed from those of ordinary strings, using the toy model.
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which are in the adjoint representation of the spectator SU(M) group, with indices α, β;

indices a are in the confining SU(2M) group. The superpotential

W ∝ tr (AiBjAkB`) ε
ikεj` (6.9)

generates, after confinement, a mass term

W ∝ tr(N11N22 −N21N12) (6.10)

for the Nij; the physical mass of the Nij , as we will see, is of order m0. We can then

make hadrons out of these heavy fields. (Note that there are also fields tr(AiBj) which are

singlets of SU(M); these ordinary mesons will play no role in the hadrons we are about

to discuss.) Since the mass term marries N11 and N22, we cannot distinguish between N11
and N †22. (In the same way, and for the same reason, we cannot distinguish right-handed

bottom quarks from left-handed ones by their gauge and global quantum numbers.7

The vacuum described by the KS solution has the property that only the Z2M chiral

symmetry is broken, so the SU(2)` × SU(2)r is still realized. However, the geodesic that

we choose is generated by the U(1) = T 3` + T 3r in the diagonal SU(2) subgroup, which we

have called U(1)D. The field N11 carries charge 1 under the U(1)D; N22 carries charge

−1, and N12 carries charge 0. Under the other symmetry left unbroken by the choice of

geodesic, namely U(1)A = T 3` − T 3r , N11 and N22 carry charge 0, N12 carries charge 1 and

N21 charge −1.

6.2.2 The lowest-lying annulon of charge J

Consider the lowest-lying hadron of large charge J built from J of the constituents N11,

i.e. the state of lowest energy created by applying the operator tr([N11]
J) to the true J = 0

vacuum |Ω〉 of the gauge theory

tr[(N11)
J ]|Ω〉 . (6.11)

This is the natural candidate for the vacuum |0〉 of our string theory hamiltonian (5.7). As

we have seen, −P− = H = E −m0J = 0 in the vacuum, where E is the eigenvalue of i∂t,

the usual Minkowski hamiltonian. Our vacuum state does therefore represent a state in the

gauge theory with energy M0 ≡ m0J , and as it has no other quantum numbers or degrees

of freedom, it is natural to interpret it as the lowest-lying spin-zero hadron of charge J . As

such it will contain a minimal number of constituents, namely J of the heavy scalar N11
particles and nothing else (except some ambient superglue, formed from the masless fields

of the N = 1 SU(M) SYM theory.)

We identify the mass of each N11, in the mean field of all the others, as m0. Because

of collective effects among the particles, m0 need not be the same as the mass appearing

in the superpotential (which is holomorphic) or even the physical nonholomorphic mass

7Of course, the Nij are not the only bound states from the SU(2M) process, or indeed from the multiple

steps of the duality cascade of KS. However, they are likely to be the only light stable multiplets, as would

pions be in the absence of the electroweak interactions. The other bound states are also in the adjoint and

in other representations neutral under the center of SU(M); as such they have a marginal impact on the

annulons.

– 21 –



J
H
E
P
0
5
(
2
0
0
3
)
0
3
9

given by canonically normalizing Nij in the effective lagrangian for the gauge theory. Only

from string theory do we learn that the average mass per N11 is of the same order as

glueball masses in the gauge theory, namely m0. From the gauge theory this is a highly

nonperturbative result. We know of no way to derive it, and indeed it may not be true at

small ’t Hooft coupling.

6.2.3 The annulon in linear nonrelativistic motion

Of course this hadron can move, and we should be able to write its kinetic energy. The

first term in the hamiltonian represents its nonrelativistic motion

P2i
2m0J

=
|~P|2
2M0

. (6.12)

We should not be surprised that we obtain only the nonrelativistic kinetic energy; we

will only be considering energies which are parametricaly smaller than J , so the kinetic

energy will generally be much less than the mass M0. We see the three worldsheet fields

xi are required to be massless so that the spatial momenta of the hadron can be correctly

represented. This feature is presumably generic; it shows the above string theory represents

a compactification of string theory down to three non-compact spatial dimensions.

6.2.4 Ripples on the annulon

That this is really a four-dimensional string (or, more precisely, a five-dimensional string

compactified and viewed under dimensional reduction to four dimensions) is indicated by

the NR+NL term in the hamiltonian. Since there are three noncompact spatial directions,

the hadron will have stringy excitations in these directions which should be controlled by

the oscillator modes on the worldsheet in the usual way. This is clearly the nature of this

term.

Note that the spacing between the modes is not equal to the square root of the tension

Ts of the confining flux tube of the gauge theory,
√
Ts ∼

√
gMm0, times the square root

of the oscillator level N . Instead we find gMm0N/J . From the form of the term in the

hamiltonian, it is natural to interpret this as tension Ts ∼ gMm20 divided by the mass of

the hadron M0 = m0J . This form is precisely what emerges in the above toy model and

justifies our interpreting these hadrons as annulons, taking not only the mathematical form

but also the physical shape of a heavy string.

6.2.5 Insertion of constituents controlled by symmetries

We can guess one more of the terms in the bosonic hamiltonian on simple grounds. We

know there is a hadron in the gauge theory which is the lowest lying state created by

applying

tr
(

[N11]
J+1
)

|Ω〉 (6.13)

where again |Ω〉 is the vacuum of the gauge theory (not our ground-state annulon!) This

differs from the lowest-lying annulon of charge J only through the replacement J → J +1,

up to possible 1/J corrections which are small at large J . In particular, we know this

hadron has mass m0(J + 1) for large J .
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Now, an SU(2)` rotation of this state can convert it to a hadron of equal mass created

by applying

tr([N11]
JN21)|Ω〉 (6.14)

to the vacuum. This state, which carries U(1)D charge J and U(1)A charge −1, and differs

in mass from our ground-state annulon by exactly m0, should appear in our string theory.

Of course this is also true for SU(2)r, which gives us an annulon with an inserted N12.

Can we insert an N22 particle by acting first with SU(2)` and next with SU(2)r? We can

see the answer is no from two points of view. First, suppose we do act with the two SU(2)

symmetries in succession. Starting with an annulon with J+2 N11 constituents, the action

of SU(2)` gives us an annulon with one N21 constituent, as in (6.14) above. The action of

SU(2)r then gives us a hadron of the form

1√
J

[

J−1
∑

k=1

tr
(

[N11]
kN12N

J−k
11 N21

)

|Ω〉+ tr
(

NJ+1
11 N22

)

|Ω〉
]

. (6.15)

Thus we obtain a state which predominantly has two new constituents, one each of N12
and N21. We see that the symmetries which relate the individual Nij to one another act

rather differently on hadrons that already contain large numbers of N11 particles.

Alternatively, suppose we add an N22 particle into an annulon by hand; what happens

to

tr(NJ+1
11 N22)|Ω〉 ? (6.16)

We claim there is no stable hadron which has a large overlap with this vector in the

Hilbert space. The reason is dynamical. Although an individual N22 particle is stable,

in the presence of many N11 particles it can easily convert via N11N22 → N12N21. The

underlying process involves the term |∂W/∂A1|2 = |B1A2B2|2 term in the lagrangian,

which allows B1A2B2 → B2A2B1 with A1 as a spectator. (Alternatively this process can

occur as N22N11 → N12N21, using the |A2B2A1|2 interaction.) Once this conversion takes

place, the N12 and N21 can separate from one another within the annulon, and the chance

of them recombining into an N22 is phase-space suppressed – clearly of order 1/J .

Similarly, if we act multiple times with SU(2)` and/or SU(2)r (adding N11 particles

so that their number, and the U(1)D charge, remain equal to J ,) we obtain hadrons with

arbitrary numbers of N12 and N21 particles inserted, but no N22 particles, as long as the

number of inserted constituents is small compared to J . From the symmetry arguments we

know the masses of these hadrons differ from our vacuum annulon by integer units of m0,

that they carry integer charges under U(1)A, and that they have no string oscillation modes

excited (as they are related by symmetry to a vacuum annulon.) Therefore we predict the

existence of two worldsheet operators with U(1)A charge ±1 which can insert an N12 or

N21 particle into the annulon; these should be related by a symmetry, and should change

the mass of the hadron by exactly m0. This expectation is borne out, as discussed after

eq. (5.7). The v, v̄ world-sheet fields, which descend from the part of the S 3 transverse

to the geodesic, have precisely the right charges. The non-oscillatory mode associated to

v, v̄, applied on the string theory vacuum, leaves the U(1)D charge unchanged but gives

H = −P− = m0, or E = m0(J + 1), with U(1)A charge ±1, as predicted.
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We notice, from this structure, that the nondiagonal SU(2)` and SU(2)r generators

are not operators in our string theory, because they carry nonzero P + — they are charged

under U(1)D. Rather, they are operators which connect the Hilbert space of the string

theory of charge P+ = J to that with charge P+ = J ± 1. In this way these symmetries

can remain exact in the full theory but be absent within any one charge sector.

6.2.6 Supersymmetry

Since the gauge theory is N = 1 supersymmetric, we expect that the ground-state annulon

(and indeed every state in the Hilbert space of the bosonic hamiltonian) has a fermionic

superpartner, a massive fermion, with the same mass and charge (and thus the same

P−.) Indeed, as the annulon is massive and charged, its multiplet structure is that of a

complex multiplet, in particular the combination of a chiral multiplet of charge J and a

chiral multiplet of charge −J . This implies two complex scalar fields and a Dirac fermion

(the same as the electron-selectron supermultiplet in SQED.) In a dual string picture, the

charge J components of the complex multiplet can be generated using the zero modes of two

massless worldsheet fermions on a state of fixed p+. Taking into account the left-moving

and right-moving contributions to the closed string Hilbert space, these zero-modes form

two raising and two lowering operators generating a four-dimensional Hilbert space: two

bosonic states and two fermionic. (Note our vacuum annulon is a complex boson.) As

noted in section 5.2, two is precisely the number that we have. The action of one raising

zero mode converts an N11 constituent to its ψα11 fermionic partner (α a spin index), and

thus

tr
[

NJ
11

]

|Ω〉 ⇒ tr
[

NJ−1
11 ψα11

]

|Ω〉 . (6.17)

Since we have the massless zero modes corresponding to the insertion of ψ11, and since

we have bosonic modes of mass m0 corresponding to the insertion of N12, why do we not

have a fermionic mode of mass m0 associated to ψ12? The absence of this operator follows

from the same logic (6.14)–(6.16) that explains the absence of a mode for N22. We might

expect that the combination of supersymmetry and SU(2)r would turn N11 → ψ12, but

in a hadron with J constituents the action of these two symmetries instead preferentially

inserts one N12 constituent and one ψ11 constituent. Similarly, the transition ψ12N11 →
N12ψ11 can be mediated by SU(2M)-gluino exchange among the Ai, Bj particles and their

fermionic partners; as before, once this transition occurs the ψ12 particle is unlikely to be

reconstituted.

The same logic applies to the action of two supersymmetries; rather than generating the

highest component of the N11 chiral supermultiplet, the double action of supersymmetry

inserts two ψ11 constituents into the annulon.

6.2.7 The non-universal directions

The remaining structure of the hamiltonian — the z and u, ū zero modes and the excited

states in the five internal directions — cannot be predicted by any symmetry arguments.

The only additional feature determined by symmetry is that in KS the transformation

SU(2)` ↔ SU(2)r which exchanges v and v̄ should be accompanied by u↔ −ū and z ↔ −z;
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but this symmetry is absent in MN. For this reason we expect the remaining features of the

string theory to differ from model to model, and indeed the MN and KS cases are different.

We have made a number of attempts to interpret the non-universal directions in the

KS theory. There are multiple possibilities, motivated by a variety of different arguments.

However, we have been unable to determine which of these possible interpretations is

correct, if any. We leave this issue for further research.

One important additional comment is that we have been a bit cavalier in specifying our

hadrons. While it is true that our ground state hadron is the lowest-lying hadron created

by tr(NJ
11) acting on the vacuum, it is not true that the hadron contains only N11 particles.

It may also contain N †22 particles, and its wave function involves some mixture of possible

states. (In a similar way, a proton may be created by uLuLdL or by uRuRdR; the true proton

has a wave function rather different from that suggested by either of these operators.) We

have not determined the wave function of the ground state hadron unambiguously, and

an understanding of the non-universal directions may require further investigation of this

issue. Certainly there need not be any simple relation between the operators associated

with the conformal conifold-derived pp-wave and the states associated with our pp-wave

for the confining KS theory.

6.2.8 Summary

We now largely understand what our string theory is describing. The vacuum is a long,

stable annulon of massive N11 (and N †22) particles. This heavy object can move in recti-

linear non-relativistic motion, and it can wriggle as a non-relativistic string. We can also

insert into the chain of these particles any number of N12 and N21 particles. The origi-

nal and inserted objects have a probability amplitude for their locations on the annulon,

described by a wave function. The various energy eigenstates for this wave function give

various hadronic states which correspond to strings with various excitations in the massive

directions. The zero modes of the massive directions correspond to inserting the fields

Nij , and their conjugates, with constant amplitude around the string. This is of course

consistent with BMN, but differs from it just as one would expect a description of states

to differ from a description of operators.8

6.3 More on the MN case

Now let us turn to the MN case. We have already seen that the KS case has a geodesic

direction, two v directions, two u directions, a z direction and three xi directions. The

xi directions are massless, from translational symmetry in real space, and the v’s have

mass m0, from the SU(2) symmetries which rotate the geodesic into the rest of the S 3.

Also, there are two massless fermionic zero modes, by supersymmetry. The MN theory

must share all of these features, which follow simply from symmetries, and as discussed in

section 5, it does, though the supersymmetry is somewhat obscured.

8The structure of (5.7) also hints at a possible analogue of the non-relativistic quark model. In such a

model, the stringy excitations in the massless directions could be interpreted as the insertion of “constituent”

gluons into the ground-state annulon. For the massive directions, the excitations would simply involve

insertions of N12, N21, etc. We leave this idea for future investigation.
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The MN case involves the dimensional reduction of the six-dimensional N = 2 Yang-

Mills theory on a two-sphere, with the appropriate twisting to maintain N = 1 super-

symmetry in four dimensions. The massless six-dimensional N = 2 vector multiplet can

be split into a six-dimensional N = 1 vector multiplet and a six-dimensional N = 1 hy-

permultiplet; the supercharge which survives the two-sphere reduction is in this N = 1

sub-algebra. After reduction, the massless six-dimensional N = 1 vector multiplet gives a

massless four-dimensional N = 1 vector multiplet, along with a tower of massive Kaluza-

Klein N = 1 vector multiplets in the adjoint representation. The lowest of these are three

massive N = 1 vector multiplets in a triplet of SU(2)r.

The other part of the six-dimensional N = 2 vector multiplet, the six-dimensional

N = 1 hypermultiplet, gives only massive Kaluza-Klein modes after reduction on the

two-sphere. These are all in four-dimensional complex N = 1 chiral multiplets and will

transform under both SU(2) symmetries. The lightest of these modes form two massive

complex N = 1 chiral multiplets (eight real scalars) which transform in the bi-fundamental

of SU(2)`×SU(2)r. Thus both the KS and MN gauge theories have scalars corresponding to

motion on the three-sphere at the minimum AdS radius. In the MN case these motions are

generated by the (now twisted) R-symmetry of the six-dimensional theory, while in KS they

are the angular modes which rotate the N11 particles into N12 and N21. The symmetries

of the three-sphere are enough to predict that the properties of the v, v̄ world-sheet fields

in the MN case are the same as they are in the KS example.

For those phenomena not controlled by symmetries, the theories may, and do, differ.

In particular, they differ on the masses m̂z and m̂u, even when we account for the shift in

mode frequencies discussed in section 5.2, which is needed to see the fermionic zero modes

and supersymmetry. As discussed at the end of section 3, the MN case lacks the left-right

symmetry of the KS case. Meanwhile the KS case has a surviving nonzero NS-NS 2-form,

which the MN case lacks. All of these effects contribute to the differences between the two

string theories.

The MN case does pose an additional problem: the z direction is massless. Note,

however, that this does not necessarily mean that it corresponds to a massless constituent,

nor do we need to treat it as we treat the massless xi directions. Rather, it simply means

that there is an excitation internal to an MN annulon which costs energy minus charge

(both of which could be nonzero) much less than m0 as J → ∞. At the very least we

expect this apparent flat direction, which clearly is not present in the full MN metric, to be

lifted at finite J ; this is in contrast to the xi directions which are massless by translational

symmetry. This issue deserves further investigation however.

With the exception of this issue, the KS and MN theories are qualitatively similar in

most respects and quantitatively equal where they ought to be. It would be interesting to

compare these theories to the N = 1* case, if the latter is tractable.

7. Wilson loops with charge

In this section we return to the question of confinement and states of large J . We should

be able to see that the theory is confining by examining Wilson loops. In the dual ten-
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dimensional supergravity, a straight tube of electric flux appears as a fundamental string

extended in one of the Minkowski spatial directions and placed at a definite AdS radius r

(and at a definite point in the other coordinates as well.) Such a string will fall to smaller

r unless dynamically prevented from doing so. In a conformal theory it can fall to r = 0,

where its tension, proportional to
√
gttgxx, goes to zero [18]. In a confining gauge theory

there is a minimum value of
√
gttgxx, at some radius r0. The string plummets to this

radius but can go no further; its tension is bounded from below [19, 21]. A heavy quark-

antiquark pair at ~x = (0, 0, 0) and ~y = (`, 0, 0) in the gauge theory, and the chromoelectric

flux between them, correspond to a single string which ends on the boundary r → ∞ of

the gravity background at the points ~x and ~y [18]. The energy V (`) of the configuration

in the gauge theory is proportional to the total energy of the string (note it is formally

infinite because the quark masses are infinite, but dV/d` is finite.) If dV/d` contains an

`-independent additive constant T , then V contains a term equal to T`, and the theory has

linear confinement, with a flux tube of constant tension T . This happens precisely when

the string with its ends fixed at ~x and ~y falls down to r0 but can fall no further, and lies

there like a rope resting in a flat-bottomed lake. Since the string lies entirely at r0, we

might expect to detect its tension by looking at geodesics near r0.

But flux tubes of this sort know nothing about global charges, whereas we know that

plane wave backgrounds involve considerations of highly-charged systems. How should

we connect the two? One might think that one should consider quarks carrying global

charge, but this is not correct. Instead, one should consider a quark-flux-antiquark system

carrying large global charge. Such systems are not familiar from QCD, for a variety of

reasons. However, in our theory, they are easy to construct, because we have massive

adjoint fermions ψ and scalars φ carrying a global U(1) charge, with mass m0. To such

a gauge theory, we may add very heavy quarks q (mq À m0) as probes of the system.

We can then form heavy hadrons of the form q̄q, q̄φq, q̄φφq, etc., of charge 0,1,2, etc.

Starting with a hadron q̄(φ)Jq, we can form a string labelled by J , its total charge — not

its charge density! — by pulling the q and q̄ in the hadron until they are a distance `

apart. Our system is then made from a q, a q̄, some gluons, (n + J) φ particles and n

φ̄ particles, where n may be fluctuating but J is constant. The lowest energy eigenstate

of this system has energy V (`; J), a function one might attempt to calculate. For ` very

large and J held finite, the effect of the J widely-scattered φ particles will be negligible,

and one will find V (`, J) ≈ 2mq + T`. Conversely, for finite ` but with J taken very large,

one will find V (`; J) of order 2mq + Jm0. Certainly, then, by looking at null geodesics at

r = r0, and looking at large J but even larger `, we can detect whether there are confining

flux tubes in the theory. But we will not have to work so hard. Instead, working at

large J and looking at the leading `/J correction to V (`, J), we will show the tension T is

nonzero.

In our theory, we can identify the φ particles with N11. If J is very large, so that the

N11 particles are very densely distributed on the flux tube, then we would expect these

globally-charged flux tubes to be made from annulonic material. We would naturally guess,

from our string theory, that just as excited states of the lowest-lying annulon have energy

quadratic in the string tension, so V (`; J) will be quadratic in T for very large J .
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In fact, a semiclassical field theory analysis can already suggest for us the form that

we should find. Let T be the tension of a confining string with J = 0. If the mass of the

adjoint particles is m0, we might guess the mass of a string of length ` would be T`+Jm0.

But this is not correct; it does not account for the binding of the particles to the string.

Instead, we must treat the the global charge that the string can carry in much the way one

treats the electric charge of dyons — using collective coordinates.

We may get insight by taking a partly S-dual version of this problem, in which we bind

heavy particles of mass m0 with a conserved global charge to a magnetic flux tube. A still

easier version is given by compactifying such a problem on a circle, so that the magnetic flux

tubes themselves become particles (vortices in 2+1 dimensions) and the binding problem

becomes familiar. The vortices are solitons and the global charge they carry should be

treated as in any collective coordinate problem, leading semiclassically to a formula for a

soliton of vortex charge p and global charge q:

Mp,q =
√

p2m2vortex + q2m20 (7.1)

just as with dyons in four dimensions. Lifting the problem back to four dimensions we

replace mvortex, with TR (where R is the radius of the compact dimension.) Indeed this

can be seen in string theory, where one could consider various string-brane semiclassical

bound state formulas, which are always governed by quadratic Born-Infeld formulas.

Following this logic, one is led to suspect that a similar formula governs the binding

of heavy particles to an electric flux tube

V (`; J) =
√

T 2`2 + J2m20 . (7.2)

This of course matches our naive expectations in the large ` and large J limits. And for

large J , we have

V (`; J) ≈ Jm0 +
1

2

T 2`2

Jm0
, (7.3)

another “non-relativistic” formula. From this we learn that we can detect confinement in

the gauge theory by looking at the order-`2 term — not at an order-` term! — in V (`; J).

In general this formula might be subject to nonlinear corrections, but since we are in a limit

where strings behave classically, we would not be surprised if such corrections were absent.

Of course this is also what is obtained in our toy model. Suppose we take a string on

M8×S1×S1, where the radii of the circles are R1 and R2, and we wrap the string on one

circle while boosting it in the other. Before boosting, the string has mass R1/α
′. When

boosted by J units of KK momentum (not momentum per unit length) the string appears,

from the nine-dimensional point of view, to be a static string of mass

√

(

R1
α′

)2

+

(

J

R2

)2

(7.4)

which matches the formula above, if we identify 1/R2 = m0, 1/α
′ = T and R1 = `. Again,

at large J , we see the first correction to J/R2 is quadratic in R1.
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L

Figure 1: In the string dual of a confining theory, the quark and antiquark sources are given by

the r-dependent segments near the ends of the string, while the flux tube between them is given by

the region of the string lying at r = r0.

Finally, we now calculate this in the supergravity dual to the gauge theory, by general-

izing the results of [18]. In a confining theory, the energy of a system consisting of a heavy

quark and a heavy antiquark at a distance ` from one another, and with no global charges,

is given in supergravity by the total energy of a semiclassical string whose endpoints con-

tact the boundary at spatial positions ~x = (0, 0, 0) and ~y = (`, 0, 0). When ` is very large,

and the theory is confining, the string becomes very simple, as shown in figure 1. At the

two ends, the string descends rapidly from the AdS boundary to the radius r0 where the

tension of the string is minimized. This behavior is `-independent and the energy of these

two regions correspond to the constant masses of the heavy quark and antiquark. The

majority of the string lies along a line from ~x = (0, 0, 0) to ~y = (`, 0, 0) but lying at r = r0.

The tension of the string in this region is constant, so the energy of this part of the string

grows linearly with `; the constant of proportionality gives the tension of a confining string

in the gauge theory.

Our claim is that the addition of global charge to this system is as simple as taking

the above configuration and giving it a definite momentum along one of the S 1 directions

in the compact five-dimensional space. We will now show that we reproduce the above

expectations for V (`; J).

We start by considering the Nambu-Goto action:

S =
1

2πα′

∫

dτdσ
√

−detGMN∂αXM∂βXN . (7.5)

The general form of the classical configuration we are interested in involves an open string

with its ends at two points on the boundary of the bulk space. Its radial position varies

with σ, and it has in general nontrivial motion along an angle φ. In short, the string has

a worldsheet of the form

t = t(τ) , x = x(σ) , φ = φ(τ) , r = r(σ) . (7.6)

The relevant part of the metric is therefore,

ds2 = −gttdt2 + gxxdx
2 + grrdr

2 + gφφdφ
2 + · · · . (7.7)
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Evaluating the Nambu-Goto action on this background we obtain

S =
1

2πα′

∫

dτdσ

√

(gtt ṫ2 − gφφφ̇2)(gxx + grr(∂σr)2) . (7.8)

The energy and angular momentum (global charge), as conjugate variables to t and φ, are

E =
1

2πα′

∫

dσ gtt ṫ

(

gxx(∂σx)
2 + grr(∂σr)

2)

gtt ṫ2 − gφφφ̇2

)1/2

,

J =
1

2πα′

∫

dσ gφφ φ̇

(

gxx(∂σx)
2 + grr(∂σr)

2)

gtt ṫ2 − gφφφ̇2

)1/2

. (7.9)

The precise minimization of the energy subject to fixed charge J would be quite in-

volved in the backgrounds we consider. For example, for the KS background the warp factor

is not known analytically for all values of the radius. However, using a natural ansatz, we

can obtain an excellent estimate for the relationship between the energy and the angular

momentum, and later justify how any contribution left unaccounted for is appropriately

suppressed.

We naturally fix the static gauge t = τ and x = ` σ2π , where ` is the total length of the

string (as measured in the gauge theory, using the Minkowski metric!) Most of the string

lies along the “minimal” radius r0

r[x(σ)] = r0, δ < x < `− δ (7.10)

and r[x] → ∞ as x → 0 and as x → `. We assume that δ is independent of ` for large

`, which corresponds to the physical expectation that the quark and antiquark sources do

not grow as ` increases. We also choose that the endpoints do not rotate, so that the quark

and antiquark sources do not themselves carry any global charge. This means that φ̇→ 0

at the ends of the string at σ = 0, 2π. Finally — and this is the least obvious part of the

ansatz — we assume that the majority of the angular momentum is spread uniformly in

the region far from the ends, by taking the majority of the string to move uniformly on a

circle parameterized by φ:

φ ≈ ωτ, δ < x < `− δ . (7.11)

Altogether this implies

J ≈ ω

2πα′

√

√

√

√

g2φφgxx(`/2π)
2

gtt − gφφω2

∣

∣

∣

∣

∣

r=r0

∫ 2π(1−δ/`)

2πδ/`
dσ ≈ ω`

2πα′

√

√

√

√

g2φφgxx

gtt − gφφω2

∣

∣

∣

∣

∣

r=r0

. (7.12)

With this gauge and ansatz we have

E ≈ 1

2πα′

∫ 2πδ/`

0
dσ gtt

(

gxx(`/2π)
2 + grr(∂σr)

2)

gtt − gφφφ̇2

)1/2

+

+
1

2πα′

∫ 2π

2π(1−δ/`)
dσ gtt

(

gxx(`/2π)
2 + grr(∂σr)

2)

gtt − gφφφ̇2

)1/2

+
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+
1

2πα′

(

gttgxx(`/2π)
2

gtt − gφφω2

∣

∣

∣

∣

∣

r=r0

)1/2
∫ 2π(1−δ/`)

2πδ/`
dσ

≈ 2mq +
gtt
gφφ

∣

∣

∣

∣

∣

r=r0

J

ω
(7.13)

where

mq ≡
1

2πα′

∫ 2πδ/`

0
dσ gtt

(

gxx(`/2π)
2 + grr(∂σr)

2)

gtt − gφφφ̇2

)1/2

≈ 1

2πα′

∫ 2πδ/`

0
dσ
√
gttgrr(∂σr) .

(7.14)

This last expression is divergent, representing the infinite mass of the heavy quark, but

more importantly for our purposes it is essentially `-independent, and gives a physically

inconsequential additive shift to the energy V (`; J).

More succinctly, defining

m0 ≡ lim
r→r0

√

gtt/gφφ (7.15)

as we did both for KS and MN, we have

J ≈ gtt`

2πα′
ω/m20

√

1− ω2/m20
, E ≈ 2mq +

gtt`

2πα′
1

√

1− ω2/m20
. (7.16)

whence

V (`; J) = E ≈ 2mq +

√

g2tt `
2

(2π α′)2
+m20 J

2 . (7.17)

Recalling that the tension is T =
√

|gttgxx|/(2πα′) = gtt/2πα
′, we reproduce the for-

mula (7.2) obtained by the field theory analysis:

V (`; J) ≈
√

T 2 `2 +m20 J
2 + constant . (7.18)

In an appendix, we show that our ansatz is stable and that all corrections are of order 1/`

or 1/J relative to the terms that we have kept.

8. Closing comments

We have found a sector of a gauge theory whose hadrons are described by an exactly

soluble string theory. We obtained them through a Penrose limit around a geodesic sitting

at the minimum AdS radius, moving in Minkowski time, and winding around a circle on

the compact part of the bulk space. We obtained a description of hadrons of charge J with

mass of order J , which we argued were of the form of nonrelativistic strings. The string

theory describes their motion, their ripples, their superpartners and their global symmetry

partners.

It is important to emphasize a mathematically essential point that makes our construc-

tion possible. One of the key characteristics of the Einstein equations is their nonlinearity,

which implies that the expansion in the metric around a neighborhood of a particular point
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is not a well-defined procedure. For example, in the context of the KS background, the

Ricci flatness of the six-dimensional space perpendicular to the Minkowski directions is

required in order to satisfy the equations of motion. The deformed conifold is, of course,

Ricci flat. However, truncating the metric near the apex of the deformed conifold to second

order results in a space metrically equivalent to R3 × S3 which is no longer Ricci flat and

thus ceases to satisfy the equations of motion. The use of such approximations is equivalent

to neglecting back-reaction in many situations, and although one might extract sensible

results it is not a consistent procedure in general.

In the context of the Penrose limit [8, 9, 10] however, there is a well-defined expansion

around a null geodesic. Properly interpreted, this amounts to having to consider the

expansion up to second order around the null geodesic. In particular, in the KS solution,

expanding the metric around the end of the conifold at τ = 0 (here r ∝ cosh τ), keeping up

to quadratic terms in τ , is a well-defined truncation in the Penrose limit. This particular

property of the limit makes our analysis exact.

It is interesting, and at first glance slightly puzzling, that we have recovered particles

moving in three spatial dimensions by taking a Penrose limit. It was argued in [30] that

the boundary of the pp-wave corresponding to conformal field theories is a null line — null

in the bulk but timelike from the coordinates of the field theory. In short, the theory is

purely quantum mechanical, with no spatial dimensions. Why, then, do we seem to have

spatial directions in our limit? In fact, we do not have them. Although we have three

spatial momenta, which can take any finite values, we are working in a limit where the

annulon masses are infinite, and thus the spatial velocities are all zero. Thus the annulons

never actually move anywhere (at infinite J), and the theory remains quantum mechanical

despite the presence of continuous momenta.

This feature, and many others, is captured by our toy model of a string boosted along a

compact circle. This model can further be used to guess other dynamical features of these

particles. For example, the stability of the annulons to decay can easily be estimated.

An annulon of charge J can decay to two annulons of charge J1 and J2. The rate for

this process is the same as that for a one-to-two string decay in flat space, but greatly

slowed down in the lab frame by the time dilation associated with the boost. Similarly,

the rate for two-to-two scattering is simply given by the Virasoro-Shapiro amplitude and

its generalizations. For example, if annulons of charge J1 and J2 scatter elastically, the

amplitude is given by a sum over s-channel annulon poles of charge J1+J2, or equivalently

by a sum over ordinary strings of charge J = 0 in the t-channel. Regge physics and other

characteristic features of string amplitudes will also be reproduced.

Another initially puzzling observation is that the original BMN string theory describes

operators with J2 ¿ N , and has an effective coupling constant gN/J 2. But where BMN

finds this latter combination, we find gM/J , or, more accurately, (gM)2/J2. This phe-

nomenon is a reflection of an important property of the KS metric: the number of colors in

the far infrared, as measured by the integral of the 3-form through the S3, is M , but the

far-infrared metric has each factor of M enhanced by an extra factor of (gM). Essentially,

the dual to N = 4 SYM (or to the far UV of KS) is controlled mainly by a relation between

the metric and the 5-form, but in the far infrared this converts to a relation between the
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metric and the 3-form. In the process the extra factor of gM appears.

Thus, in our string theory, the effective coupling constant is g[gM ]M/J 2, and the

subleading effects which are being neglected are of order J 2/[gM ]M . This latter point is

very important, because it shows that our analysis is only good when J ¿ √gM ¿ M .

Consequently our strings, despite having J scaling like M , are still far from being baryon-

like giant gravitons (with J ∼M .)

A related question involves the properties of annulons at small ’t Hooft coupling. In

this regime some aspects of the annulons are presumably described using field theoretic

perturbation theory, and those of the charged Wilson loops via a semiperturbative treat-

ment. At present we do not know which aspects of our results continue to this regime, and

how the remainder are modified. There are many interesting issues to be considered here,

not the least of which is identifying the difference between annulons and giant-gravitonic

hadrons — the latter being well-described using Hartree-Fock mean-field techniques, as in

Witten’s description of large-N baryons.

Finally, we would hope that this set of hadrons, which do not appear in QCD, are not

the only ones which can be treated in this fashion. States of high spin and small charge,

which are long semiclassical strings far along Regge trajectories, do appear in Yang-Mills

theory, and to some degree in physical QCD. It is these states which appear in the original

Chew-Frautschi plots of the so-called Regge trajectories of QCD. Any improvement in our

ability to study these states would be of substantial physical interest.
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A. Deformed conifold: metric and symmetries

A.1 New coordinates for the deformed conifold

To find a convenient set of coordinates, we go back to the basics [22]. The deformed conifold

is defined in terms of a complex two-by-two matrices W satisfying:

detW = −ε
2

2
. (A.1)

We define the variable τ by setting:

tr(W † W ) = ε2 cosh τ . (A.2)
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A simple solution to this equation is

Wε =
ε√
2

(

e
τ
2 0

0 −e−τ2

)

=
ε√
2
e
τ
2
σ3 σ3 , (A.3)

and we can generate the whole set by acting on the left and right with SU(2) matrices L

and R:

W = LWεR
† . (A.4)

For reasons which will soon be obvious, we choose to re-write the two SU(2) matrices

L and R as:

L = T S , R = σ3 S σ3 . (A.5)

Now for τ 6= 0 we see that if we take

S → S eiθ σ3 , (A.6)

thenW remains invariant. This means that S represents coordinates for SU(2)/U(1) = S 2.

Also, when τ = 0, W takes the form

W = T SW0 σ3 S
† σ3 = T W0 = T σ3 , (A.7)

which means that T ∈ SU(2) = S3 is a good coordinate for the S3 at the origin and gives

a coordinate independent of S for τ 6= 0.

We will now compute the deformed conifold metric in these new coordinates, starting

from [22, 23]:

ds26 = ε−
2
3K(τ)tr(dW † dW ) + ε−

8
3 sinh−1(τ)K ′(τ)|tr(W † dW )|2 . (A.8)

We first write

T † dT = −dT † T =
i

2
ωa σa , S = e

i
2
φσ3 e−

i
2
θ σ2 , (A.9)

and then

tr(dW † dW ) =
ε2

4
cosh(τ)

(

dτ2 + (ωa)2
)

+ (A.10)

+ε2 sinh2
(τ

2

)

[

(

dθ2 + sin2 θ dφ2
)

−
(

sinφω1 + cosφω2
)

(dθ)−

− (cos θ cosφω1 − cos θ sinφω2 − sin θ ω3)(sin θ dφ)

]

and

|tr(W † dW )|2 = ε4

4
sinh2(τ)

[

dτ2 +
(

sin θ cosφω1 + sin θ sinφω2 + cos θ ω3
)2
]

. (A.11)
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A.2 Connection to other coordinates

We would like to connect our coordinates above with the ones used in [14] (inherited from

Minasian and Tsimpis [23]). These coordinates can be written in the following manner:

W = L1Wε σ3 σ1 L
†
2 ,

L1 = e
iφ1
2
σ3 e

−iθ1
2

σ2 e
iψ
4
σ3 ,

L2 = e
iφ2
2
σ3 e

−iθ2
2

σ2 e
iψ
4
σ3 . (A.12)

We can now rewrite the 1-forms gi derived from these coordinates in terms of the 1-forms

which come from T †dT and S†dS. One first writes a change of basis for the 1-forms ω i,

√
2 g̃3 σ1 −

√
2 g̃4 σ2 + g̃5 σ3 = S† ωa σa S, (A.13)

which gives

g̃5 = sin θ cosφω1 − sin θ sinφω2 + cos θ ω3 ,

−g̃4 =
1√
2

(

sinφω1 + cosφω2
)

,

g̃3 =
1√
2

(

cos θ cosφω1 − cos θ sinφω2 − sin θ ω3
)

. (A.14)

After a little algebraic work one finds

e−
i
2
ψ
(

g3 + i g4
)

= g̃3 + i g̃4

g5 = g̃5

e−
i
2
ψ
(

g1 + i g2
)

=
(

g̃3 −
√
2 sin θ dφ

)

+ i
(

g̃4 +
√
2 dθ

)

. (A.15)

Now we can rewrite the expression (A.10) and (A.11) as

tr(dW † dW ) =
ε2

4
cosh(τ)

[

dτ2 +
(

g̃5
)2

+ 2
(

(

g̃3
)2

+
(

g̃4
)2
)]

+

+
ε2

2
sinh2

(τ

2

) [(

(

g̃1
)2

+
(

g̃2
)2
)

−
(

(

g̃3
)2

+
(

g̃4
)2
)]

(A.16)

|tr(W † dW )|2 =
ε4

4
sinh2(τ)

[

dτ2 +
(

g̃5
)2
]

. (A.17)

If we now use the fact that

1

3K2(τ)
=

1

2
cosh(τ)K(τ) +

1

2
sinh(τ)K ′(τ) (A.18)

and plug back into (A.8), we recover the metric (4.2)

ds26 =
1

2
ε4/3K(τ)× (A.19)

×
[

1

3K3(τ)

(

dτ2 +
(

g5
)2
)

+cosh2
(τ

2

) [

(

g3
)2

+
(

g4
)2
]

+sinh2
(τ

2

)[

(

g1
)2

+
(

g2
)2
]

]

.
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B. String theory hamiltonian

The equations of motion following from the worldsheet lagrangian of section 5 are

ηαβ∂α∂βx
i = 0 ,

ηαβ∂α∂βz − (m0φ
+α′)2

(

4a1
a0
− 4

5

)

z = 0 ,

ηαβ∂α∂βu1 − (m0φ
+α′)2

(

4a1
a0
− 3

5

)

u1 −
√
2m0p

+α′
(

a1
a0

)1/2

∂σv2 = 0 ,

ηαβ∂α∂βv2 − (m0φ
+α′)2v2 +

√
2m0p

+α′
(

a1
a0

)1/2

∂σu1 = 0 ,

ηαβ∂α∂βu2 − (m0φ
+α′)2

(

4a1
a0
− 3

5

)

u2 −
√
2m0p

+α′
(

a1
a0

)1/2

∂σv1 = 0 ,

ηαβ∂α∂βv1 − (m0φ
+α′)2v1 +

√
2m0p

+α′
(

a1
a0

)1/2

∂σu2 = 0 . (B.1)

The Fourier expansion for generic closed-string classical solutions z can be written as

z(σ, τ) = i

√

α′

2

[

1√
m̂z

(

az0e
−2im̂zτ − ai†0 e2im̂zτ

)

+ (B.2)

+
∞
∑

n=1

1√
wzn

[

e−2iw
z
nτ (aine

2inσ+ãine
−2inσ)−e2iwznτ

(

ai†n e
−2inσ+ãi†n e

2inσ
)

]

]

,

where wzn =
√

n2 + m̂2z. We have conveniently normalized the a’s such that their Poisson

bracket is not proportional to the frequency. For the massless coordinates we have the

standard expansion. To determined the frequencies of the coupled system we introduce the

standard mode expansion

u1 =
∑

n

A1ne
i(ωnτ+nσ) , v1 =

∑

n

B1ne
i(ωnτ+nσ) , (B.3)

and a similar ansatz for u2 and v2. Substituting the ansatze in the equations of motions

give

(ω±n )
2 =

1

2

[

2n2 + m̂2v + m̂2u ±
√

(m̂2v − m̂2u)2 + 4n2 m̂2B

]

, (B.4)

where

m̂v = m0p
+α′ , m̂2u = (m0p

+α′)2
(

4a1
a0
− 3

5

)

, m̂B =
√
2m0p

+α′
(

a1
a0

)1/2

. (B.5)

Note that the frequency of the zero modes are ω+0 = m̂v and ω
−
0 = m̂u and they correspond

at the zero-mode level to excitations associated with v’s and u’s respectively. We therefore

have three massless oscillators, one massive with mass m̂z, two massive with m̂v and the

final two with m̂u. As expected the effect of the B-field (m̂B) appears only for the nonzero

modes (n 6= 0).
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For the fermionic sector (for more detail, see for example [26, 12]) we have two coupled

Majorana-Weyl spinors θ1 and θ2 which satisfy a the lightcone gauge condition, Γ+θ
1,2 = 0,

and obey the following equation of motion:

(∂τ + ∂σ)θ
1 = −1

8
(p+α′)Γij(F3)+ij θ

2 − 1

8
(p+α′)Γij(H3)+ij θ

1

(∂τ − ∂σ)θ2 = −1

8
(p+α′)Γij(F3)+ij θ

1 +
1

8
(p+α′)Γij(H3)+ij θ

2. (B.6)

In order to solve these equations, we combine the two spinors into one complex spinor ε,

fourier transform ε in the variable σ and combine the two first order equations into one

second-order equation. For the MN plane-wave we get

ε̈n = −
[

n2 +
m20
18

(5− 3Γu1u2v1v2)

]

ε . (B.7)

which gives four fermionic oscillators each with Γu1u2v1v2 = ±1 and frequencies

ω+n =

√

n2 +
m̂20
9
, and ω−n =

√

n2 +
4 m̂20
9

(B.8)

with m̂0 = p+α′m0. For the KS plane-wave we get the a slightly more complicated

equation:

ε̈n = −
[

n2 + m̂2f +

{

−1

4
m̂2f − n

m̂f

2
(iΓu1v2)−

m̂2f
2

(iΓu2v2)

}

(1 + Γu1u2v1v2)

]

ε (B.9)

with m̂f = (2a1/a0)
1
2 m0p

+α′. If we expand our spinors in a ±1 eigenbasis of (iΓu1u2) and

(iΓu1u2) we can write down four pairs of fermionic oscillators. The frequencies for the first

two pairs have the simple form

ω++n = ω−−n =
√

n2 + m̂2f . (B.10)

while the spinors with eigenvalues (+−) and (−+) mix. To get their eigen-frequencies we

diagonalize the matrix
[

(n2 + 1
2m̂

2
f ) −(in m̂f +

1
2m̂

2
f )

(in m̂f − 1
2m̂

2
f ) (n2 + 1

2m̂
2
f )

]

(B.11)

which yields the frequencies

ω“±”n =

√

n2 +
1

2
m̂2f ±

1

2
m̂f

√

m̂2f + 4n2 . (B.12)

Note that ω“−”0 is a zero-frequency mode.

C. Stability of the Wilson loop ansatz

Let us now turn to the question of the reliability of the results on the properties of the

Wilson loop as a function of L and J . The first important issue we clarify is the stability
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of the classical configuration. This is most easily done in the Polyakov formulation of the

string. We thus consider the nonlinear sigma model

S =
1

4πα′

∫

d2σGij∂aX
i∂aXj . (C.1)

In the conformal gauge, the equation of motion for Xa being t, φ or x has the same form:

∂α

(

gaa η
αβ ∂βX

a
)

= 0 . (C.2)

They are all trivially satisfied. To understand the stability of the solution we consider the

linear fluctuations from the equations of motion. Since ∂rgaa| − r0 = 0 we see that there

is no mixing between the radial fluctuation and the fluctuations along φ and x. Next we

note that the resulting equation for the fluctuations (φ = φ0 + eiντ δφ(σ)) is simply

(

∂2σ + ν2
)

δφ(σ) = 0 . (C.3)

We should now assume some boundary conditions for δφ(σ). The natural ones would be

Dirichlet at the ends of the interval where our solution is reliable, i.e. in σ = [δ/`, 2π−δ/`].
This implies that the spatial structure of the fluctuation is

δφ(σ) = δφn sin

[

n

1− δ
π`

(

σ − δ

`

)]

. (C.4)

Returning to (C.3) we see that all the frequencies are positive and therefore the solution

is stable. The last important point is understanding the contribution of the edges, that

is, the regions in which it is not appropriate to consider ∂σr ≈ 0 since precisely in these

regions the strings goes between the boundary and the “minimal” radius. The effects of

these edges have been considered in a similar setting in, for example, [31]. The estimate

of [31] applied to our situation gives d/L ∼ O(L−1), where d is the region along which ∂σr

cannot be approximated as zero. This means that in the large L limit the contribution of

these regions is correspondingly suppressed. Similarly we expect suppression of the order

of 1/J .
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