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1. Introduction

Inflation is the leading candidate for explaining how causal physics in the early universe

produced the large scale structure we observe today. One of its most successful predictions

is the existence of an approximately scale-invariant spectrum of anisotropies in the cosmic

microwave background radiation [1]–[9]. These anisotropies are now being observed in

impressive detail [10], yielding a precise picture of the slight deviations from scale-invariance

in the CMBR.

While inflation is a phenomenologically succesful paradigm, it is highly unsatisfying

theoretically. The inflationary potential must be chosen to have a minimum extremely

close to zero, or else superluminal expansion would not end. Additionally, the potential

driving the expansion must be chosen exceptionally flat, in order to inflate for sufficiently

long. These requirements amount to the introduction of exceedingly small dimensionless

parameters in the effective lagrangian describing the inflationary epoch [11, 12]. This

undermines the separation of scales that we expect in effective field theory. Thus inflation

suggests that, when gravity is taken into account, the standard interpretation of effective

quantum field theory needs some modification. The puzzles posed by dark energy similarly

indicate that quantum gravity holds secrets already at low energy.

The purpose of this paper is to present some computations which seem relevant to

these issues. The technical question we solve is to isolate the infrared divergences of clas-

sical fields in inflationary spacetimes. We consider spectator scalars, as well as the full

gravity-scalar system. In both cases we compute a renormalized effective action, with in-

frared divergences removed. The remaining anomalous scaling behavior governs departures

from scale invariance in the power spectrum of the primordial density perturbations. We

find results that agree with the standard inflationary predictions, but our computation is

organized very differently.

As we know from standard quantum field theory, without gravity, scaling solutions are

fixed points in the space of theories. As such, they exhibit many universal features. Our

framework could therefore be helpful in identifying the correct theory of inflation. More

importantly, fine-tuning issues should clearly be understood in terms of scaling behavior,

so our considerations seem relevant for these notorious problems. We are certainly not yet

able to address the fine-tuning problems. Our point is simply to stress the central lesson

from quantum field theory that divergences matter, technically and conceptually. This

makes a systematic treatment of infrared divergences in inflation worthwhile, perhaps even

essential.

In our computations we consider the spacetime action at some late time τ as a func-

tional of the scalar field ϕ(~x) that time. A practical way to do that is to employ the

Hamilton-Jacobi formalism and identify the spacetime action with the Hamilton-Jacobi

functional S(ϕ, τ). It is this quantity, which we can also interpret as the phase of the semi-

classical wave function of the Universe, which suffers infra-red divergences. After removing

all local divergences we are left with certain logarithmic terms which control the scaling

properties of the CMBR. Applications of the Hamilton-Jacobi formalism to inflation have

been studied extensively in the literature [13]–[16].
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Our approach is heavily motivated by considerations of holography. Some interpreta-

tions of holography suggest that a gravitational theory in four dimensions can be ‘dual’ to

a local, non-gravitational theory in three dimensions. This approach to holography implies

a correspondence between infrared physics in one theory and ultraviolet physics in the dual

theory. In this sense, the infrared divergences we study in the gravitational theory would

correspond to ultraviolet divergences in the dual three dimensional theory. Violations of

scale invariance in the four dimensional theory are then tied to the usual structures one

employs to study departures from scale invariance in a local, non-gravitational theory, such

as β-functions and anomalous dimensions [17]. Although we are very sympathetic to the

ideas surrounding a holographic interpretation, we will not emphasize holography through-

out most of this paper. We will instead adopt a more conservative point of view: that we

are simply discussing infrared divergences of gravity, in the belief that they play a central

role in theories of inflation. Of course, we cannot fully resist discussing some aspects of

the holographic dictionary alluded to above; we do so in section 6.

It is worth noting that our approach differs technically from that of the conjectured

dS/CFT correspondence [18]–[21]. We do not consider global de Sitter space, rather we

restrict our attention to the “late time” Poincare patch. The boundary conditions at early

times are determined by our insistence that the analytically continued theory is regular.

This is reminiscent of AdS/CFT (as opposed to dS/CFT) and amounts to having no in-

coming radiation at early times, as is customary and physically appropriate in cosmology.

In this sense our calculations are similar to the variation of dS/CFT proposed by Malda-

cena [22].

We should also comment on the relation to the holographic renormalization group [23]–

[28]. This term usually refers to scenarios where our 4D universe is embedded in a higher

dimensional curved space time, with one of the extra dimensions admitting an alternate

interpretation as a renormalization group scale in the 4D theory. In contrast, to the extent

we interpret our results holographically, we consider cosmological evolution a flow in the

space of 3D theories. Despite this difference in perspective, we find much technical overlap

with several works on the holographic renormalization group, particularly [23]. One notable

difference is that we consider bulk gravity in an even dimensional spacetime. This is in

contrast to the standard examples in the holography literature, involving odd dimensional

spacetimes such as (A)dS5 or (A)dS3.

The paper is organized as follows. In section 2 we briefly review Hamilton-Jacobi

theory, particularly the introduction of the classical action, the Hamilton-Jacobi functional.

In section 3 we compute the Hamilton-Jacobi functional for a spectator scalar and discuss

the interpretation of its infra-red divergences. Section 4 contains the explicit computation

of the spectrum of fluctuations of a massive scalar field in a fixed de Sitter background.

This allow us to give an example of the formalism in a setting which is relatively simple

because it neglects the technical complications due to gravitational backreaction. The more

complete case, including gravitational backreaction, is considered in section 5. In section 6

we discuss the implications for the interpretation of inflation as broken scale invariance, in

the spirit of holography. The appendices contain conventions as well as the details of some

of the calculations contained in section 5.
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2. Hamilton-Jacobi theory

The Hamilton-Jacobi formalism provides a powerful framework for solving problems in

classical mechanics. It also provides a natural intermediate step between classical and

quantum mechanics, because it governs the phase of the wave function in the semi-classical

approximation. The H-J formalism will be of central importance in our considerations so

we begin with a short review.

2.1 Mechanics

Consider a classical system with a single dynamical variable q. The action is written in

terms of the lagrangian as:

S =

∫ tf

ti

dt L(q, q̇, t) . (2.1)

The Hamilton-Jacobi function is defined as the classical action S, interpreted as a function

of the time tf and the value of the dynamical variable at that time, q(tf ). Here “classical”

means that the action should be evaluated with the initial value q(ti) fixed and q(tf ) “on-

shell”, i.e. satisfying its equation of motion. We write the H-J function as S = S(q, t) with

the understanding that t = tf and q = q(tf ).

The variation of the H-J function (2.1) with respect to q is:

δqS(q, t) =
∂L

∂q̇
δq

∣

∣

∣

∣

tf

ti

+

∫ tf

ti

dt

(

∂L

∂q
− d

dt

∂L

∂q̇

)

δq (2.2)

after integration by parts. The integrand is proportional to the equation of motion, which

vanishes when q(t) is on-shell. Since the initial value of q(ti) is fixed δq(ti) = 0, and δS

depends only on δq(tf ). Thus, as anticipated, S is an ordinary function of q = q(tf ), rather

than a functional of q(t). Its derivative is simply:

∂S

∂q
=
∂L

∂q̇
= p , (2.3)

where p is the canonical momentum.

The H-J function depends on time explicitly, as well as through q(t). We can infer this

dependence by taking the total derivative of (2.1) and expanding as:

dS

dt
= L =

∂S

∂t
+
∂S

∂q
q̇ . (2.4)

Reorganizing this equation using (2.3) we find the hamiltonian:

H = pq̇ − L = −∂S
∂t

. (2.5)

The hamiltonian is defined as a function of coordinates and momenta H = H(q, p) but we

can use the expression (2.3) for the momentum and so:

∂S

∂t
+H

(

q,
∂S

∂q

)

= 0 . (2.6)
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For a given dynamical system the hamiltonian is a specific function and (2.6) becomes a

powerful first order differential equation for the H-J function S(q, t). It is known as the

Hamilton-Jacobi equation.

The connection with the semiclassical approximation to quantum mechanics appears

when we consider the Schrödinger equation for the wave function ψ(q):

i~
∂

∂ t
ψ(q) = H

(

q,−i~ ∂

∂q

)

ψ(q) . (2.7)

Taking the saddle-point approximation:

ψ(q) ∼ exp

(

i

~
S(q, t)

)

(2.8)

the Schrödinger equation (2.7) reduces to the Hamilton-Jacobi equation (2.6). Thus the

H-J function can be interpreted as the phase of the wave-function in the semi-classical

approximation.

2.2 Field theory

The generalization of these considerations to fields is straightforward. The H-J function is

now a function of the time τ and a functional of the field configuration ϕ(~x, τ) evaluated

at that time. We will often refer to ϕ(~x, τ) as the ‘boundary data’ for the field ϕ.

Our main interest is when fields are coupled to gravity. To keep things simple we defer

the discussion of the general gravity-scalar system to section 5. For now we consider the

case of a scalar field on a fixed background spacetime. The metric takes the cosmological

form:

ds2 = a(τ)2
(

−dτ 2 + γij(~x)dx
idxj

)

. (2.9)

Note that we use the conformal time τ , related to the more conventional time t through

dt = a(τ)dτ . In this background the lagrangian for a scalar field takes the form:

L =
1

2

(

ϕ′

a

)2

− 1

2
~Dϕ · ~Dϕ− V (ϕ) , (2.10)

where the prime denotes derivative with respect to the conformal time τ and spatial indices

are contracted using the full spatial metric g̃ij = a(τ)2γij (or more precisely its inverse).

Let us also record the corresponding hamiltonian density:

H =
1

2
π2 +

1

2
~Dϕ · ~Dϕ+ V (ϕ) , (2.11)

where the momentum is:

π =
ϕ′

a
. (2.12)

Now, as in simple mechanics, the linchpin of the Hamilton-Jacobi formalism is the

action:

S =

∫ τf

τi

d3xdτ
√−gL

(

ϕ,ϕ′, ~Dϕ, τ
)

(2.13)
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governing the evolution between times τi and τf . The explicit time dependence in the

action enters through factors of the metric, which appear in the covariant volume element

and terms with contracted derivatives. Computing the variation of the action, subject to

equations of motion and a fixed boundary condition at τi, we find, as in (2.2):

1√
g̃

δS

δϕ
=

∂L

∂ (ϕ′/a)
= π (~x, τ) , (2.14)

where functional derivatives are introduced with respect to coordinate volumes as in:

δS =

∫

d3x
δS

δφ
δφ . (2.15)

Computing the total time derivative of (2.13) we find the field theory version of the

Hamilton-Jacobi equation

H

(

ϕ,
1√
g̃

δS

δϕ
, τ

)

+
1

a(τ)

∂S (ϕ, τ)

∂τ
= 0 . (2.16)

This is a first order differential equation for the classical action as a functional of the

boundary data for ϕ. It is convenient for our purposes to introduce the densities:

S(φ, τ) =

∫

d3x
√

g̃ S(φ, τ) (2.17)

and:

H(φ, π, τ) =

∫

d3x
√

g̃ H (ϕ, π, τ) =

∫

d3x
√

g̃ (πϕ̇−L ) . (2.18)

Then the H-J equation becomes:

√
gH

(

ϕ,
1√
g̃

δS

δϕ
, τ

)

+
∂

∂τ

(

√

g̃ S (ϕ, τ)
)

= 0 . (2.19)

In this form the equation is understood to hold up to total spatial derivatives.

3. Infrared divergences and their interpretation

In this section we consider some simple examples of the infra-red divergences in inflationary

spacetimes and discuss their interpretation.

3.1 The free scalar field in de Sitter space

It is instructive to begin the discussion with the simplest possible example: a free scalar

field evolving homogeneously in a fixed de Sitter background. In this case a straightforward

way to compute the H-J functional explicitly is to integrate the action by parts:

S =

∫ τf

τi

dτ d3x a4 1

2

(

(

ϕ ′

a

)2

−m2ϕ2

)

(3.1)

=

∫

d3x
1

2
a2ϕϕ′

∣

∣

∣

∣

τf

τi

−
∫ τf

τi

dτ d3x
1

2
ϕ
[

∂τ (a
2∂τϕ) + a4m2ϕ

]

=

∫

d3x
1

2
a2ϕϕ′

∣

∣

∣

∣

τf

τi

. (3.2)
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The bulk term appearing in the intermediate step vanished because it is proportional to

the equation of motion, which is enforced when computing the H-J functional.

The H-J functional is supposed to depend on the field, but not on its time derivative.

The final expression in (3.1) is therefore still not what we want. To proceed we need the

time dependence of the field. The metric of de Sitter space is:1

ds2 = a(τ)2(−dτ 2 + d~x · d~x) . (3.3)

The de Sitter scale factor is a(τ) = −1/Hτ , with H the (constant) Hubble parameter. The

Klein-Gordon equation then becomes:

ϕ ′′ − 2

τ
ϕ ′ +

m2

H2τ2
ϕ = 0 . (3.4)

This has the general solution:

ϕ(τ) = c− τ
λ− + c+ τ

λ+ (3.5)

λ± =
3

2
± 3

2

√

1−
(

2m

3H

)2

. (3.6)

In this paper we only consider the case of a light field with m2 < 9H2/4 so that the square

root is real.

Using the explicit solutions for ϕ we can now write the on-shell action (3.2) as:

S =
1

2H2

∫

d3x τ−3 (c−τ
λ− + c+τ

λ+)(c−λ−τ
λ− + c+λ+τ

λ+)

∣

∣

∣

∣

τf

τi

. (3.7)

To understand this expression, recall that the H-J functional is defined with fixed boundary

conditions at some early time τi. We have not yet specified these precisely. In the present

context the natural choice is to take τi → −∞ and impose regularity there. Physically

this puts the field in its ground state. Since λ+ > 3/2 the terms in the action coming

from the λ+-solution diverge in the limit τi → −∞. Our boundary condition therefore

amount to taking c2 = 0 and concentrating on the λ−-branch. The limit τi → −∞ gives

no contribution for λ−. The final result for the H-J functional becomes simply:

S(φ, τ) =
1

2H2

∫

d3x τ−3c2−λ−τ
2λ− = −1

2
H

∫

d3x a3(τ) λ−ϕ
2 . (3.8)

At this point we have computed the H-J functional in the simplest case. This allows

us to exhibit our first example of infra-red divergences, as follows. The integrand of the

H-J functional (3.8) scales as:

a3ϕ2 ∼ τ−3+2λ− = τ−2ν , (3.9)

1The exponentially expanding coordinate system often used in cosmology is recovered by the substitution

τ = −e−Ht. Note that the conformal time τ ∈ (−∞, 0) is negative. Also recall that these coordinate systems

cover only half of de Sitter space; τ → −∞ corresponds to the past horizon.

– 7 –
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where:

ν =
3

2

√

1−
(

2m

3H

)2

(3.10)

is positive. Since late times correspond to τ → 0 the expression (3.9) diverges as the system

evolves to the asymptotic future. It is this type of divergence that we are interested in.

3.2 Local divergences and the Hamilton-Jacobi functional

Before discussing the interpretation of divergences, let us determine their form in a more

general setting, using the Hamilton-Jacobi equation:

1

2

(

1√
g̃

δS

δϕ

)2

+
1

2
~Dϕ · ~Dϕ+ V (ϕ) +

1√
g
∂ τ

(

√

g̃ S
)

= 0 . (3.11)

A large class of solutions to this equation are well approximated the ansatz :

S =

∫

d3x
√

g̃ S =

∫

d3x
√

g̃
[

U(ϕ) +M(ϕ) ~Dϕ · ~Dϕ+ · · ·
]

. (3.12)

The effective expansion parameter in the derivative expansion is the inverse metric. Since

the inverse metric for de Sitter space is gij = (Hτ)2δij we expect this type of expansion to

be accurate at late times when τ is small. The same sort of ansatz has been used in studying

holographic RG flows in the AdS/CFT correspondence [23], and a similar approach based

on an expansion in spatial gradients was applied to inflationary spacetimes in [13]–[16].

The ansatz (3.12) gives the momentum density:

π =
1√
g̃

δS

δϕ
= ∂ϕU − ∂ϕM ~Dϕ · ~Dϕ− 2M ~D2ϕ+ · · · . (3.13)

In computing this expression we have discarded total spatial derivatives that arise in the

functional derivative of (3.12). Inserting the momentum in the H-J equation (3.11) we

find:

1

2
(∂ϕU)2 − ∂ϕU

(

∂ϕM ~Dϕ · ~Dϕ+ 2M ~D2ϕ
)

+
1

2
~Dϕ · ~Dϕ+

+V (ϕ) +H
(

3U(ϕ) +M(ϕ) ~Dϕ · ~Dϕ
)

+ · · · = 0 , (3.14)

where the dots . . . again denote terms with more than two derivatives. The last term

in (3.14) comes from the partial time derivative in the H-J equation (3.11). The partial

derivative only applies to the explicit time dependence due to factors of the metric, and

not the implicit time dependence of ϕ. Recalling that the H-J equation is valid only up to

total spatial derivatives we solve (3.14) order by order and find:

1

2
(∂ϕU)2 + V (ϕ) + 3H U(ϕ) = 0 (3.15)

1

2
+HM + 2M∂ 2

ϕ U + ∂ϕM ∂ϕU = 0 . (3.16)

For a given theory, with a specific potential V (ϕ), the first equation determines U(ϕ),

and then the second equation yields M(ϕ). Since the first equation is nonlinear it may in

– 8 –
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general be difficult to find a simple expression for U(ϕ). However, we can always expand a

regular potential V (ϕ) as a series in ϕ and then use (3.15) to determine recursion relations

for the coefficients in a corresponding expansion for U(ϕ).

Rather than pursuing this strategy generally, it is instructive to compute just the first

few terms of such an expansion. We therefore consider a potential with the leading term:

V (ϕ) =
1

2
m2ϕ2 + · · · . (3.17)

We have omitted a linear term, which can be cancelled by a redefinition of the field by an

appropriate additive constant. In addition, we have ignored the possibility of a constant

term in the potential, which would not enter the scalar equation of motion. Solving (3.15)

now gives:

U(ϕ) = −1

2
Hλ−ϕ

2 + · · · . (3.18)

More precisely, (3.15) allows for solutions with either of the λ± defined in (3.6); but we

know from the discussion in the previous subsection that imposing regularity at early times

corresponds to the λ− solution. The expression (3.18) agrees precisely with the result (3.8)

found by explicit computation. However, the present computation is much more general

because it shows that (3.18) is also the correct leading term when considering spatially

varying fields, or potentials with interactions. The important point here is that, instead of

finding the action as a function of τ as determined by some particular solution, we have

obtained the functional dependence on the field ϕ.

Using the solution for U(ϕ) we can now solve (3.16), which gives:

M(ϕ) = − 1

2H (1− 2λ−)
+ · · · . (3.19)

Since (3.16) is a linear differential equation for M we can freely add a multiple of the

homogeneous solution

Mhom(ϕ) = ϕ
1
λ−
−2

(3.20)

to the particular solution (3.19). In inflationary scenarios we are generally interested in

a “slowly rolling” scalar field whose kinetic energy is negligible compared to its potential

energy. This implies a very small mass m2 ¿ H2, which in turn implies that λ− ¿ 1.

In this case, the homogenous solution Mhom(ϕ) is of higher order than the terms we have

retained in the ϕ-expansion, and so it is negligible. However, the homogenous solution

might play an important role in applications for which the slow roll condition does not

apply.

Under the slow roll condition λ− ¿ 1 the field ϕ ∼ τλ− depends only weakly on

conformal time τ . The scaling with τ of the terms in the derivative expansion (3.12) is

therefore dominated by factors of the metric. It follows that the approximate scalings are:

√

g̃ U(ϕ) ∼ τ−3

√

g̃ M(ϕ)gij ∼ τ−1 . (3.21)

– 9 –
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The subleading terms in the expansion, denoted by dots . . . in (3.12), all scale with pos-

itive powers2 of τ . This means that U(ϕ) and M(ϕ), as determined by equations (3.15)

and (3.16), characterize all divergences of the classical action.3

3.3 Interpretation of divergences

In the previous section we demonstrated, through a simple example, that the H-J functional

is divergent at late times. Because the H-J functional is an on-shell action, we can try to

interpret it as we would an effective action in quantum field theory. In that context we are

very familiar with the appearance of ultra-violet divergences and their treatment through

regularization and renormalization.

In the present problem the divergences appear at small conformal time τ . However, in

de Sitter space, spatially inhomogenous waves depend on the dimensionless quantity kτ , so

small τ is equivalent to small wave number k. The divergences we have found are therefore

large distance, or infra-red, divergences. Another way of seeing this is to consider how

proper distances change under a constant rescaling of the conformal time: τ → λτ . The

de Sitter line element is:

ds2 =

(

1

Hτ

)2
(

−dτ 2 + d~x · d~x
)

. (3.22)

Under the constant rescaling of τ this becomes:

ds2 →
(

1

Hτ

)2 (

−dτ 2 +
1

λ2
d~x · d~x

)

. (3.23)

From the point of view of the metric, the same effect could be achieved by restricting oneself

to a hypersurface at a fixed τ and rescaling all of the spatial coordinates by ~x → λ−1~x.

Under such a rescaling the wave number k scales as k → λk. Therefore, a rescaling of the

conformal time by a factor λ can alternately be thought of as a rescaling of wave numbers

by the same factor λ, keeping τ fixed. Thus, small τ divergences are indeed infra-red

divergences.

According to some interpretations of de Sitter holography [18, 22] there exists a dual

description of the system considered here in which the infrared divergences are in fact

ultraviolet divergences of a conventional quantum field theory. We will not need to assume

that a holographic interpretation of this sort exists because it seems clear that, even if

it does not, it is natural to deal with infrared divergences they way we normally treat

ultraviolet divergences. That is, we adopt a regularization scheme, introduce counterterms,

and then renormalize.

The most straightforward way of regulating the divergences we have encountered is by

simply ‘cutting spacetime off’ near the boundary. In de Sitter space we cut the space off

at τ = τ0, with τ0 a small negative number.4 Actions are then written as integrals over the

2Relaxing the slow roll condition to allow λ− ∼ 1 gives faster convergence. A negative m2 could give a

more interesting divergence structure; indeed, since this case is unstable it is expected that terms of higher

order in the field play an important role.
3More precisely they compute all local divergences. These are power law divergences. We will consider

logarithmic, or non-local, divergences in due course.
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regulated spacetime, which we denoteM0:

S = −
∫

M0

d4x
√
g

(

1

2
∇µϕ∇µϕ+ V (ϕ)

)

. (3.24)

When we refer to ‘the boundary’ in calculations we mean ∂M0, though it is implied that

at the end of a calculation the cutoff should be removed by taking τ0 → 0.

In the previous section we showed that all local infra-red divergences take the form

indicated by the two terms in (3.12). We can therefore cancel the divergences by adding

the counter-terms:

Sct = −
∫

∂M0

d3x
√

g̃
(

U(ϕ) +M(ϕ) ~Dϕ · ~Dϕ
)

(3.25)

to the action for the scalar field. The U(ϕ) and M(ϕ) take the functional form determined

by (3.15) and (3.16). To the leading order they were given in (5.18) and (5.23). The

renormalized action is the total action:

Stot = S + Sct . (3.26)

It is in this expression that the cutoff can be removed by taking τ0 → 0.

The introduction of counterterms changes the action and it must be justified why this

is acceptable. One observation is that the counterterms only involve quantities intrinsic

to the boundary. Adding such terms to the action does not change the bulk equations of

motion. It therefore leaves bulk physics invariant, while making the action well-defined,

even on a noncompact spacetime. The counterterms we have added are analogous the

boundary counterterms that often appear in the AdS/CFT literature [29]–[31].

Although sound, this reasoning does not fit with our interpretation of the action as a

H-J functional. In this context the dependence on the boundary values obviously matters,

it is all there is. The point here is that the infrared divergences are universal, they take the

same functional form for many different backgrounds. After subtracting the divergences,

the renormalized action Stot(ϕ) still depends on ϕ, and this dependence is meaningful. The

strategy is similar to that pursued in Pauli-Villars regularization of UV-divergences: simply

subtract the action of a very massive field; then that field will cancel the divergences, but

leave a meaningful dependence on the low-energy parameters. In the present construction

the counterterms cancel the divergences by subtracting the action computed on a definite

background action. This will render finite and physically meaningful the effective action

of fluctuations around this background. We will compute this action in the next section.

In the present discussion of divergences we have assumed for simplicity that the back-

ground spacetime is de Sitter. However, the approach is not limited to de Sitter space,

or even spacetimes that are asymptotically de Sitter. The discussion applies in situations

where de Sitter space constitutes a legitimate infra-red completion, i.e. the late time behav-

ior can be chosen as de Sitter. The actual late time behavior does not have to be de Sitter

space, anymore than a specific ultraviolet completion of a low energy, renormalizable field

theory has to be taken seriously at arbitrarily high energies.

4In our conventions τ is a negative number. The cut-off τ0 is a small negative number, and it is

understood that limits such as τ0 → 0 are from below.
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4. Fluctuations and the power spectrum

In this section we compute the Hamilton-Jacobi functional in a perturbation series away

from the homogenous solution. We find logarithmic divergences and interpret them in

terms of the power spectrum of the density fluctuations.

4.1 Introduction

We are interested in scalar fields in de Sitter space because their quantum fluctuations

generate density perturbations which may have seeded the observed structure in the uni-

verse. Such fluctuations evidently have nontrivial spatial dependence, in contrast to the

homogenous solutions considered in the previous section. The strategy for computing the

H-J functional in this more general case is to treat fluctuations as perturbations around a

background homogeneous solution. Thus we expand the action as:

Stot[δϕ] = S
(0)
tot + S

(1)
tot +

1

2
S

(2)
tot + · · · , (4.1)

where S
(n)
tot represents the nth order variation of Stot, i.e. it consists of terms with n fac-

tors of the fluctuation δϕ. At each order there are contributions from the action (3.24),

evaluated on-shell and with appropriate boundary conditions imposed, and there are also

contributions from the counterterms (3.25). Thus we write:

S
(n)
tot = δnS

∣

∣

ϕ
+ δnSct

∣

∣

ϕ
, (4.2)

where ϕ denotes the homogeneous background solution.

The zeroth order term in this expansion vanishes:

S
(0)
tot = S(ϕ)−

∫

∂M0

d3x
√

g̃
(

U(ϕ) +M(ϕ) ~Dϕ · ~Dϕ
)

= 0. (4.3)

Indeed we computed each of these terms in section 3: in 3.1 we computed the on-shell action

for the explicit homogeneous solution, and in 3.2 we solved the H-J equation to find the

local part of the H-J functional. The two results agreed. Since the zeroth order term (4.3)

is the difference between these, it vanishes. Of course, counter-terms were chosen to make

this happen.

Varying S in (3.25) to obtain the first order terms we find:

S(1) =

∫

M0

d4x
√
g δϕ

(

∇2ϕ− ∂ϕV
)

+

∫

∂M0

d3x
√

g̃ δϕ
ϕ ′

a
(4.4)

after integration by parts. The bulk term vanishes because we impose the equation of

motion. This leaves only the boundary term in (4.4). Similarly varying the counter-term

(3.25) gives:

S
(1)
ct = −

∫

∂M0

d3x
√

g̃
(

δϕ ∂ϕU + δϕ ∂ϕM ~Dϕ · ~Dϕ+ 2M ~Dδϕ · ~Dϕ
)

= −
∫

∂M0

d3x
√

g̃
(

∂ϕU − ∂ϕM ~Dϕ · ~Dϕ− 2M ~D2ϕ
)

δϕ . (4.5)
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Adding the two equations, and referring back to the two expressions for the momentum

given in equations (2.12) and (3.13), we see that the first order term in the action vanishes

on-shell:

S
(1)
tot = 0 . (4.6)

The equality verified here is of course nothing but the general relation (2.14).

The vanishing of the first order variation around a solution of the equations of motion is

precisely the condition that the solution extremizes the action. The result (4.6) is therefore

hardly surprising. It should be noted, however, that the computation here is distinct from

the usual result in classical field theory. The standard variational principle involves fixing ϕ

on the boundary so that δϕ = 0 automatically on the boundary. Here we are considering a

finite portion of de Sitter space, with arbitrary Dirichlet boundary conditions on the scalar

field at the boundary τ = τ0. In other words, the first order variation of the total action

vanishes on-shell, despite the fact that δϕ 6= 0 on the boundary. The contributions from

the boundary counterterms precisely cancel the terms that we would normally discard by

requiring δϕ = 0 on the boundary.

4.2 Quadractic fluctuations

The zeroth and first order terms in our expansion of the action both vanish. The first non-

zero contribution to the action comes from terms quadratic in δϕ, which lead to density

perturbations.

There is a trick to compute the variation of the action to the second order: note

that the first order variation (4.4) is valid for all ϕ, whether they satisfy the background

equation of motion or not. We can therefore determine the second variation by varying ϕ

in (4.4). This immidiately gives:

S(2) =

∫

d4x
√
g δϕ

(

∇2 − ∂ 2
ϕ V
)

δϕ+

∫

∂M0

d3x
√

g̃
1

a
δϕ δϕ ′ . (4.7)

The condition for the bulk piece to vanish is the equation of motion for δϕ:

δϕ ′′ + 2H δϕ ′ − a2 ~D2 δϕ + a2 ∂ 2
ϕ V δϕ = 0 . (4.8)

Here H = a′/a is related to the Hubble expansion factor by H = H/a.
After imposing the equations of motion, the quadratic action reduces to the boundary

integral in (4.7). This integral must be treated with care because of the interplay between

the time derivative and our choice of regularization procedure. The precise meaning of the

integral is:

S(2) =

∫

∂M0

d3x a(τ0)
2 δϕ(~x, τ0) lim

τ→τ0

∂ δϕ(~x, τ)

∂τ
. (4.9)

It is convenient to work with the Fourier transform of the fluctuation δϕ and so write:

S(2) =

∫

d3k d3p δ(3)(~k + ~p) δϕ~p(τ0) δϕ~k(τ0)F~k(τ0) , (4.10)

where:

F~k(τ0) = a(τ0)
2 lim
τ→τ0

∂

∂τ

(

δϕ~k(τ)

δϕ~k(τ0)

)

. (4.11)
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Re-expressing the normal derivative of a field in terms of its boundary data at the cut-

off is a familiar procedure in AdS/CFT calculations, which are technically similar to the

approach we take here. An excellent discussion of this procedure and its physical meaning

can be found in [27].

As in section 3.1, the evaluation of the boundary term ultimately requires the solution

of the bulk equation of motion. The equation of motion (4.8) for δϕ~k(τ) is:

δϕ~k
′′ + 2H δϕ~k

′ +
(

k2 + a(τ)2m2
)

δϕ~k = 0 . (4.12)

In de Sitter space where a(τ) = −1/Hτ this is essentially the Bessel equation. Solutions

are of the form:

δϕ~k(τ) = |τ |
3/2 (c1 J−ν(|kτ |) + c2 Jν(|kτ |)) , (4.13)

where ν was given in (3.10). The regularity condition that the solution contains only a

positive frequency component at τ → −∞ determines the constants c1 and c2 up to a

common factor. The classical solution then becomes:

δϕ~k(τ) = |τ |
3/2H

√

π

4

(

J−ν(|kτ |)− eπiν Jν(|kτ |)
)

. (4.14)

The overall normalization is not needed in our approach but, for definiteness, is determined

up to an overall phase using:

c1 c
∗
2 − c2 c∗1 =

iπ

2 sin (πν)
H2 (4.15)

which follows from the Klein-Gordon normalization condition on the modes δϕ~k.

Using these modes we can now evaluate the function F~k from (4.11) and then the H-J

functional from (4.10). Due to the Bessel functions the general result is quite messy and not

illuminating. Expanding the result in the small parameter τ0 gives the more manageable

expression:

F~k(τ0) =
λ−
H2 τ3

0

+
k2

H2(1− 2λ−) τ0
+
ik3

H2
(kτ0)

−2λ− +O
(

(kτ0)
2−2λ− , (kτ0)

3−4λ−
)

, (4.16)

where, as in earlier computations, λ− = 3
2−ν. The scaling of the leading correction is one of

the terms indicated, depending on the value of λ−. For small or modest λ− either correction

vanishes when the cutoff is removed by taking τ0 → 0. We are primarily interested in the

slow-roll case where η = m2

3H2 ¿ 1 so, indeed, λ− ¿ 1. In fact, we have already used the

slow roll condition to simplify the otherwise complicated coefficient of (kτ0)
−2λ− in (4.16).

At this point we have computed the full H-J functional to quadratic order, using the

explicit solutions to the equation of motion. Let us now consider the counterterms. The

simplest way to compute the second variation of the counterterm (3.25) is to note, again,

that first variations such as (4.5) are valid for all ϕ, whether they satisfy the equations of

motion or not. Thus we can simply vary again and find:

S
(2)
ct = −

∫

∂M0

d3x
√

g̃

(

δϕ2 ∂ 2
ϕ U + δϕ2 ∂ 2

ϕM
~Dϕ · ~Dϕ+ 4 δϕ ∂ϕM ~Dδϕ · ~Dϕ+

+ 2M ~Dδϕ · ~Dδϕ
)

. (4.17)
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This is the general result. The expression simplifies in the present context because we are

considering a spatially homogeneous background field ϕ and so ~Dϕ = 0.

In the case where the potential is dominated by a simple mass term we computed

the functions U(ϕ) and M(ϕ) explicitly in section 3.2, with the results given in (3.18)

and (3.19). Inserting these expressions in (4.17) and decomposing the fluctuations into

Fourier modes δϕ~k gives:

S
(2)
ct =

∫

d3k d3p δ(3)(~k + ~p ) a(τ0)
3

(

H λ− −
~k · ~p

H (1− 2λ−)a(τ0)2

)

δϕ~p δϕ~k . (4.18)

The total quadratic action is the sum of the “bare” H-J functional (4.10), using the

function F~p given in (4.16), and the counterterm (4.18). We find the total action

Stot[δϕ~k ] =

∫

d3k d3p δ(3)(~k + ~p )
ik3

2H2
(kτ0)

−2λ− δϕ~k δϕ~p . (4.19)

The contributions from the counterterms have completely removed the divergences appear-

ing in the first two terms of (4.16). Referring to the computation of F~k, it is clear that those

terms are due to the first part of the mode (4.13), which is proportional to τ 3/2J−ν(kτ).

This part of the mode, which is small at early times, is dominant near the boundary

τ = τ0. It is therefore reasonable that the counterterms obtained from the H-J equation

completely cancel the power-law divergences. The third term in F~k depends crucially on

the second part of the mode (4.13), proportional to τ 3/2Jν(kτ). This function plays a role

in the regularity of the solution at early times but is small near the boundary. Because it

is subleading compared to the first term in (4.13), this part of the mode is not captured

by the local arguments that determine the counterterms, and its contribution to the total

action survives unmodified. In this sense the quadratic action (4.19) is truly nonlocal.5

We now extract the power spectrum from the effective action (4.19), following [22].

The semiclassical wavefunction is:

Ψ[δϕ] ∼ exp (iStot[δϕ]) (4.20)

and the two-point correlation function for the fluctuations δϕ~k is given by:

〈

δϕ~k δϕ~p
〉

=

∫

Dδϕ δϕ~k δϕ~p |Ψ[δϕ]|2 . (4.21)

After performing the gaussian integral we find:

〈

δϕ~k δϕ−~k

〉

=
H2

2k3
(kτ0)

2η . (4.22)

The power spectrum is related to the two-point correlator by:

Pδϕ(~k) =
k3

2π2

〈

δϕ~k δϕ−~k

〉

. (4.23)

5A precise statemens of the qualitative remarks in this paragraph is that the first two terms in (4.16)

are independent of our choice of c1 and c2, while the third term depends on the ratio c2/c1.
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This gives the power spectrum:

Pδϕ(~k) =

(

H

2π

)2

(kτ0)
2η . (4.24)

For the massless scalar this reduces to the standard scale-invariant result. A small mass

gives rise to logarithmic corrections leading to mildly broken scale invariance. Note that,

in these last few equations, we use the notation η = m2/3H2 ' λ− which is conventional

in cosmology.

4.3 Comments on logarithmic divergences

As it stands, our final result (4.24) for the power spectrum depends on the cut-off τ0.

Although this dependence is just logarithmic, rather than a power-law, it is clearly not

acceptable to have divergences, however mild, in physical quantities.

The interpretation of these divergences can be understood by inspecting the total

action (4.19). We have introduced Stot as a renormalized action but it appears to depend

explicitly on τ0. However, from (4.14) we see that classical modes scale as δϕ~k ∼ τλ
−

0 as

τ0 → 0 so, in fact, the dependence on τ0 disappears as the cut-off is removed τ0 → 0. The

action is therefore truly renormalized.

It is clear from this example that the τ0-dependence of the correlator (4.22) simply

reflects τ0-dependence of the fields. The cut-off τ0 acts like the renormalization scale

that is well-known from UV renormalization theory. The total, renormalized, action does

not depend on the scale, but several of the objects it is written in terms of do. The

scale dependence can be removed from physical observables but it appears in many of the

quantites we define at intermediate steps of the computation.

The discussion so far mimics the standard, somewhat formal, renormalization theory.

A more direct way to get at the physics may be to simply interpret τ0 as a physical cut-off,

along the lines of Wilson’s approach to renormalization. Since we are considering infra-red

divergences this amounts to choosing the cut-off τ0 as the lowest scale appearing in the

problem. A reasonable choice in de Sitter space would then be the de Sitter scale H. Since

the physical momentum is related to the coordinate momentum used in computations as

kphys = k/a this identification amounts to τ0 ∼ 1/aH.6

The main lesson of our computation is thus that the initial, apparently severe powerlaw

divergences are in fact benign: a subtraction procedure can be devised that decouples

physical quantities from the problems in the far infra-red. The theory might not have

behaved this way; it could have been that detailed assumptions about the infrared would

feed into physical quantities.

The notorious fine-tuning problems of inflation, usually thought of as arising in the

UV, have some similarities with the issues addressed here. Since the IR and UV behaviors

are in fact related in gravitating theories our considerations may have some bearing on

these problems. This holds for dark energy as well, whose fine-tuning problems seem even

more severe than those of inflation.

6It is amusing to contemplate the holographic interpretation of this prescription: we are led to introduce

an effective holographic screen at the time of horizon crossing.
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Before concluding this section, let us point out an additional, conceptual, reason that

we must introduce a cut-off: the asymptotic future I+ of de Sitter space has the prop-

erty that any two points are spacelike separated. Correlation functions therefore do not

represent quantities that are measurable in the conventional sense although, perhaps, they

could be afforded some sort of reality as “meta-observables” [32, 33]. In the presence of a

cut-off the asymptotic future does not have to be de Sitter, so we can introduce a more

conventional inflationary spacetime where the correlators reenter the horizon and become

observable as the structure of the universe.

5. The gravity-scalar system

In previous sections we considered a scalar field propagating on a fixed background. In this

section we incorporate the back reaction on the spacetime and so consider the combined

scalar-gravity system. We construct counterterms using the H-J formalism and show that

they cancel all power-law divergences. We identify the logarithmic divergences of quadratic

fluctuations in slow-roll inflation and recover the scalar spectral index ns.

5.1 Introduction

The action for a scalar field coupled to gravity is:

S =

∫

M0

d4x
√
g

(

1

16πG
R− 1

2
∇µϕ∇µϕ− V (ϕ)

)

− 1

8πG

∫

∂M0

d3x
√

g̃ K . (5.1)

The Gibbons-Hawking boundary term, proportional to the trace of the extrinsic curvature,

ensures that the action represents a well defined variational problem [34]. It should not be

confused with the boundary terms we add as counterterms. The latter are formed from

the intrinsic geometry of the boundary and have no bearing on the variational principle.

Although the validity of our methods is more general than the examples given here,

we will for the most part consider spatially flat FRW cosmologies as backgrounds. We will

then study general fluctuations around this background to quadratic order. The equations

of motion for the background are thus the FRW equations:

ϕ ′′ + 2Hϕ ′ + a2∂ϕV = 0

3

8πG

( H
a

)2

=
1

2

(

ϕ ′

a

)2

+ V . (5.2)

As before primes denote derivatives with respect to conformal time, and H = a ′/a.

As in previous sections it is essential that spacetime is effectively de Sitter. For exam-

ple, this is needed for the H-J equation to determine the structure of divergences. Although

some of our results will be more general, we will mostly ensure this by specializing the back-

ground to “slow roll inflation”, i.e. configurations with slowly evolving scalar fields. The

energy density of the scalar field is then dominated by its potential energy, which changes

very slowly due to the small time derivatives of the field. In effect, the potential energy of
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the scalar field acts like a cosmological constant. As is customary, we define the slow-roll

parameters ε and η:

ε =
1

16πG

(

∂ϕV

V

)2

η =
1

8πG

∂ 2
ϕV

V
. (5.3)

Slow-roll inflation corresponds to ε¿ 1 and η ¿ 1. We will frequently work at linear order

in the slow-roll parameters, making no assumptions about their relative magnitudes.

When we are in the slow-roll regime the parameters ε and η can be treated as constant

with respect to the conformal time. This can be seen by taking the derivative of ε or η

and using the equations of motion to show that the resulting expression is quadratic in the

slow-roll parameters and therefore negligible. In our computations we will also need the

following alternate expressions for ε and η:

ε = 4πG

(

ϕ ′

H

)2

= 1− H
′

H2

η − ε = 1− ϕ ′′

Hϕ ′ . (5.4)

These expressions follow from the equations of motion and are valid up to terms quadratic

in the slow-roll parameters.

5.2 The local counterterms

We now compute the local counterterms for the combined scalar-gravity system. We will

consider a general spacetime:

ds2 = gµνdx
µdxν (5.5)

but it will be convenient to specialize the metric slightly from the outset, by choosing a

gauge with vanishing time-space component gτi = 0. This is not mandatory but it simplifies

the time+space split that is integral to the H-J formalism and natural in cosmological

applications.

With our choice of gauge we can write the action as:

S =

∫

M0

d4x
√
g

(

1

16πG

(

R+K ijKij −K2
)

− 1

2
∇µϕ∇µϕ− V (ϕ)

)

, (5.6)

where R is the curvature of the three dimensional slice, and Kij is the extrinsic curvature.

The computation leading to this result involves rewriting the four-dimensional curvature

using the Gauss-Codazzi equations (see (A.12) in appendix A) and integrating by parts.

Note that the Gibbons-Hawking boundary term cancelled.

Taking the scalar ϕ and the spatial part of the metric gij as the fundamental fields,

the canonical momenta derived from (5.6) are:

πϕ =
ϕ′√−g00

πij =
1

16πG

(

Kij − gijK
)

. (5.7)
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The hamiltonian density for the gravity-scalar system is then:

H = 16πG

(

πijπij −
1

2
πii π

j
j

)

+
1

2
π 2
ϕ +

1

2
~Dϕ · ~Dϕ+ V (ϕ)− 1

16πG
R . (5.8)

As in the case of a fixed background, the H-J functional is the on-shell action, written in

terms of the fields evaluated at some late time. The Hamilton-Jacobi equation is derived,

again, by differentiating with respect to the time. This simply gives the hamiltonian

constraint H = 0 which, in terms of the H-J functional S(ϕ, gij), reads:

16πG

[

1

2

(

1√
g̃
gij

δS

δgij

)2

−
(

1√
g̃

δS

δgij

)(

1√
g̃

δS

δgij

)

]

− 1

2

(

1√
g̃

δS

δϕ

)2

=

= V − 1

16πG
R+

1

2
~Dϕ · ~Dϕ . (5.9)

Note that, in contrast to the H-J equation in section 2, there is no term ∂tS that takes ex-

plicit time dependence into account. This is because time translations are diffeomorphisms,

and including the metric as a dynamical field removes any explicit time dependence from

the action.7

Our interest in the H-J equation is, as in previous sections, that it allow us to isolate

the local part of the H-J functional. Since the power-law divergences are contained entirely

in the local part of the H-J functional it will essentially be our counterterm. An appropriate

local ansatz for the lagrangian, expanded up to terms with two derivatives (one factor of

the inverse metric), is now:

S =
1

8πG

∫

∂M
d3x
√

g̃
(

U(ϕ) +M(ϕ) ~Dϕ · ~Dϕ+Φ(ϕ)R+ · · ·
)

. (5.10)

The corresponding canonical momenta are:

πϕ =
1√
g̃

δS

δϕ
(5.11)

=
1

8πG

(

∂ϕU − ∂ϕM ~Dϕ · ~Dϕ− 2M ~D2ϕ+R ∂ϕΦ
)

πij =
1√
g̃

δS

δgij
(5.12)

=
1

8πG

(

1

2
gij
(

U +M ~Dϕ · ~Dϕ
)

−M DiϕDjϕ− ΦGij +DiDjΦ− gij ~D2Φ

)

.

In the last expression we used Gij to denote the Einstein tensor of the induced metric:

Gij = Rij −
1

2
gijR . (5.13)

7Recall that, in the previous example of a scalar field on a fixed background spacetime, the explicit time

dependence in the action was entirely due to factors of the metric.
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We now evaluate the Hamilton-Jacobi equation (5.9) using these expressions. Collecting

functionally independent terms we obtain three equations:

V +
1

2

(

1

8πG
∂ϕU

)2

− 3

32πG
U2 = 0 (5.14)

1

2
(1 + U Φ)− 1

8πG
∂ϕU ∂ϕΦ = 0 (5.15)

1

2
− 1

16πG
U M − 1

4πG
∂ϕU ∂ϕΦ+

(

1

8πG

)2
(

∂ϕU ∂ϕM + 2M∂ 2
ϕU
)

= 0 . (5.16)

These equations determine the functions U(ϕ), M(ϕ), and Φ(ϕ) in the H-J functional

(5.10). When evaluated on a quasi-de Sitter background these will be the only terms that

diverge as the cut-off τ0 is taken to the asymptotic future.

The first equation (5.14) is a non-linear differential equation for U(ϕ) which, in general,

is difficult to solve. For a specific potential V (ϕ), if we can solve for U(ϕ) it is then

straightforward to integrate the linear (albeit inhomogenous) equations (5.15) and (5.16)

to obtain Φ(ϕ) and M(ϕ). As we saw in the case of a scalar field on a fixed background,

one is free to supplement the resulting expressions for Φ(ϕ) and M(ϕ) with solutions of

the corresponding homogenous equations.

Luckily, there is a nice trick for finding U(ϕ). Consider temporarily a flat FRW

cosmology with scale factor a(τ) and a spatially homogeneous scalar field ϕ(τ). For such

a configuration the two equations (5.7) and (5.12) both give simple expressions for πij.

Comparing the results we find:

U(ϕ) = −2 H
a

(5.17)

in units where 8πG = 1. The function U(ϕ) is therefore essentially the standard Hubble

parameter H = ȧ/a = H/a, expressed in terms of the scalar field. H(ϕ) is often considered

in cosmology,8 but its interpretation as the counterterm U(ϕ) seems new. It is important

to emphasize that the assumption of an FRW cosmology only plays an auxiliary role in

obtaining this result. Once we have determined the functional U(ϕ) we can use it for

general backgrounds and scalar field configurations that may be spatially dependent. The

universality of the local terms in the H-J functional is precisely what makes them suitable

as counterterms.

Let us carry out this procedure in the slow-roll case. Combining the FRW equa-

tion (5.2) and the expression (5.4) for the slow roll parameter we compute H/a and

then (5.17) gives:

U(ϕ) = −2
√

V (ϕ)

3− ε ' −2
√

V

3

[

1 +
1

12

(

∂ϕV

V

)2
]

. (5.18)

This is U(ϕ) for a general potential satisfying the slow roll conditions.

8Indeed, in the literature the use of H(ϕ) is often referred to as the H-J formalism. The development of

the subject was initiated in [13]
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Next, we solve (5.15) to find Φ(ϕ). The ansatz :

Φ(ϕ) =
f(ϕ)

U(ϕ)
(5.19)

gives:

1 + f + 2f

(

∂ϕU

U

)2

− 2
∂ϕU

U
∂ϕf = 0 . (5.20)

As noted in section 5.1, the slow roll parameters are constants of motion in the slow roll

approximation up to terms of second order in slow roll. Differentiating (5.18) and using

the definition of ε we therefore find:

2

(

∂ϕU

U

)2

= ε (5.21)

to the leading order. It is then clear that (5.20) expresses f in terms of ε only, and so it

is consistent to assume f is a constant of motion as well. The remaining equation is then

algebraic. The final result is:

Φ(ϕ) =
ε− 1

U(ϕ)
'
√

3

4V

[

1− 7

12

(

∂ϕV

V

)2
]

. (5.22)

A similar computation solves (5.16) to give M(ϕ) as :

M(ϕ) =
1 + 2η − 5ε

U(ϕ)
' −

√

3

4V

[

1 + 2
∂2
ϕV

V
− 31

12

(

∂ϕV

V

)2
]

(5.23)

to first order in slow-roll. Equations (5.18),(5.22), and (5.23) are the final results for the

counterterms, to leading order in slow-roll parameters.

5.3 The power spectrum of slow-roll inflation

The renormalized action for the gravity-scalar system is Stot = S + Sct, where S is the

standard action (5.6) and the counterterms are the negative of (5.10):

Sct = −
1

8πG

∫

∂M
d3x
√

g̃
(

U(ϕ) +M(ϕ) ~Dϕ · ~Dϕ+Φ(ϕ)R+ · · ·
)

, (5.24)

where U(ϕ), M(ϕ), and Φ(ϕ) were discussed above. We now want to use this action to

analyze fluctuations around the background of slow-roll inflation:

gµν(τ) → gµν(τ) + hµν(τ, ~x)

ϕ(τ) → ϕ(τ) + χ(τ, ~x) . (5.25)

In other words, gµν and ϕ comprise the background solution, and hµν and χ are the

fluctuations around that solution. Note the change in notation, where we use χ instead of

δϕ to refer to the fluctuation in the scalar field.
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The fluctuations of the metric hµν can be decomposed into scalar, vector, and ten-

sor modes. We will consider only the scalar content of these fluctuations, which can be

represented as:

hµν = a2(τ)







2ζ DiB

DiB 2(ψ δij −DiDjE)






. (5.26)

When evaluating specific terms in the action we work in longitudinal gauge (B = E = 0).

Thus, we are left with three scalar fields: ζ, ψ, and χ. As we evaluate the action we will

find that these variables are related by two constraints, leaving only one physical degree of

freedom in the scalar sector.

We expand the action as a series in χ and hµν . For convenience we work in units with

8πG = 1, but we will restore dimensional factors in the final answer. Indices are always

raised and lowered with respect to the background metric gµν . A number of results useful

in this expansion are summarized in appendix B.

At zeroth order in χ and hµν the total action vanishes on-shell because of our definition

of the counterterm action. The terms in the total action linear in χ and hµν are given by:

S
(1)
tot =

∫

M0

d4x
√
g

(

1

2
(Tµν −Gµν) h

µν +
(

∇2ϕ− ∂ϕV
)

χ

)

−

−
∫

∂M0

d~x
√

g̃
(

(Pϕ − πφ) χ+ (Pij − πij) hij
)

. (5.27)

In the first term Tµν is the energy-momentum tensor and Gµν is the Einstein tensor. The

condition for this term to vanish on-shell is Einstein’s equation:

Gµν = 8πGTµν . (5.28)

The second term represents the equation of motion for ϕ which also vanishes on-shell. This

leaves the boundary terms, which we have written using a compact notation:

Pϕ = ∂ϕU − ∂ϕM ~Dϕ · ~Dϕ− 2M ~D2ϕ+R ∂ϕΦ

Pij =
1

2
gij

(

U +M ~Dϕ · ~Dϕ
)

−MDiϕDjϕ− ΦGij +DiDjΦ− gij ~D2Φ . (5.29)

These expressions are simply equations (5.12) and (5.11) renamed, and are equal to the

canonical momenta πij and πφ evaluated at the boundary ∂M0. As a result the boundary

terms cancel on-shell, and the first order term in the action vanishes.

The first non-zero contributions to the action appear at quadratic order. They are com-

puted by varying the first order action (5.27) first, and only then imposing the background

equation of motion. The bulk terms are given by:

S
(2)
bulk =

∫

M0

d4x
√
g

(

1

2
Hµν h

µν + δ
(

∇2ϕ− ∂ϕV
)

χ

)

, (5.30)

where Hµν is:

Hµν = δTµν − δGµν . (5.31)

The explicit expressions for Hµν are given in appendix B.
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The bulk equations of motion of the full system are Einstein’s equation (5.28) and the

Klein-Gordon equation. They are satisfied by the background and by the total configuration

separately, and therefore also by the fluctuations. The bulk equations of motion for the

fluctuations are therefore Hµν = 0. We will not analyze the corresponding equation for the

scalar field δ
(

∇2ϕ− ∂ϕV
)

= 0 here since it is redundant.

In the longitudinal gauge E = B = 0. The corresponding equations of motion Hτi = 0

and Hij − 1
3δijH

k
k = 0 are therefore constraints. These constraints will each remove one

degree of freedom, leaving just one physical scalar. The E-constraint Hij − 1
3δijH

k
k = 0

implies:

ζ = ψ . (5.32)

We will enforce this constraint and keep only ζ in the rest of the calculation. The B-

constraint Hτi = 0 expresses χ as:

ζ ′ +H ζ + 1

2
ϕ ′ χ = 0 . (5.33)

We will take ζ to represent the single scalar degree of freedom in the problem and eventually

express the total action as a function of ζ only. However, the rest of the calculation is

simplified by keeping both χ and ζ with the understanding that (5.33) can be imposed

when needed.

The remaining bulk equations Hττ = 0 and Hk
k = 0 constitute a coupled set of equa-

tions of motion for ζ and χ. Using the constraint (5.33) they can be disentagled to give

just one equation of motion for ζ:

ζ ′′ + 2

(

H− ϕ ′′

ϕ ′

)

ζ ′ − ~∂2ζ + 2

(

H ′ −H ϕ ′′

ϕ ′

)

ζ = 0 . (5.34)

This equation is valid for arbitrary FRW spacetimes. For inflationary space-times satisfying

the slow-roll conditions it becomes:

ζ ′′ − 2
(η − ε)
τ

ζ ′ − ~∂2ζ + 2
(η − 2ε)

τ2
ζ = 0 . (5.35)

So far we have considered the second variation of the bulk terms only. These give the

equations of motion, but do not contribute to the H-J functional since (5.30) vanishes on-

shell, by definition. The second variation of the boundary terms, found by varying (5.27),

are given by:

S
(2)
bndy =

∫

∂M0

d3x
√

g̃
(

(δPϕ − δπϕ) χ+ (δPij − δπij) hij
)

. (5.36)

We have computed these variations for arbitrary backgrounds and present the result in
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appendix (B.3). For a background which is a flat FRW space they are:

δPϕ = ∂ 2
ϕU χ− 2M ~D2χ− 4∂ϕΦ ~D2ζ (5.37)

δπϕ = −ϕ
′

a
ζ − 1

a
χ ′ (5.38)

δPij =
1

2
gij∂ϕU χ+ ∂ϕΦ

(

DiDjχ− gij ~D2χ
)

+ 3Uζ +
1

2
Φ
(

DiDjζ − gij ~D2ζ
)

(5.39)

δπij =
1

4
h kj Kik −

1

2
hijK +

1

4
gij h

λρKλρ +

+
1

4
nλ

(

∇jh
λ
i −∇λhij

)

− 1

4
gijnλ

(

∇ρh
λρ −∇λhρρ

)

. (5.40)

Using these expressions to evaluate the action (5.36) gives Stot to quadratic order in ζ

and χ:

Stot =
1

2

∫

∂M0

d3x
√

g̃

(

−6

a
ζζ ′ − 6

(

U + 3
H
a

)

ζ2 + 4Φ ζ ~D2ζ +
1

a
χχ ′ + 2M χ~D2χ−

− ∂ 2
ϕU χ

2 +

(

ϕ ′

a
− 3 ∂ϕU

)

ζχ+ 4 ∂ϕΦ
(

χ~D2ζ + ζ ~D2χ
)

)

. (5.41)

Using the constraint (5.33), the equation of motion for ζ, and the expression (5.17) for

U(ϕ) this simplifies to:

Stot =
1

2

∫

∂M0

d3x
√

g̃

(

− 2a

ϕ ′
χ~D 2ζ + 2M χ~D 2χ+ 4Φ ζ ~D 2ζ + 8 ∂ϕΦχ~D

2ζ

)

. (5.42)

This equation is valid for general FRW backgrounds.

We now specialize to slow-roll inflation, use (5.22) and (5.23) for Φ(ϕ) and M(ϕ), and

eliminate χ using the constraint (5.33). Writing the result in Fourier space, we obtain:

Stot =

∫

d3k d3p δ(3)(~k + ~p)
2~k 2

(ϕ ′)2
× (5.43)

×
(

a2

H (1 + 2η − 5ε)ζ~k
′ζ~p
′ + a2 (1 + 4(η − 2ε)) ζ~k

′ ζ~p + 2 a2H (η − 2ε) ζ~k ζ~p

)

.

This is the H-J functional in terms of the physical field ζ and its time derivative. We must

now use the bulk equations of motion to eliminate the time derivative as we did previously,

e.g. in rewriting (3.2). The equations of motion (5.35) and the regularity condition at

τ → −∞ gives the solution:

ζ = |τ | 12+η−ε
(

J−ν(|kτ |) − eiπνJν(|kτ |)
)

, (5.44)

where ν = 1
2−η+3ε. Note that this expression for ν, and the exponent of τ in the prefactor

of (5.44), are approximately 1/2 in the present case, where gravity is taken into account.

In the corresponding expression (4.14) for a fixed background both were approximately

3/2. The overall normalization of (5.44) is not relevant for our purposes.
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The explicit solution for ζ allows us to rewrite the terms involving time derivatives,

following the steps leading to (4.16). Inserting the result in (5.43) we find the quadratic

action for the fluctuations:

Stot = −2
∫

d3k

( H
ϕ ′

)2 ik3

H2
(kτ0)

6ε−2η ζ~k ζ−~k . (5.45)

There are no power-law divergences in this result. They appear in intermediate steps

but they cancel between the bare terms δπϕ, δπij and the counterterms δPϕ, δPij . These

cancellations provide a detailed check of our procedure and out computations.

The semiclassical wave function:

Ψ[ζ] = exp (iStot[ζ]) (5.46)

gives the two-point correlation function:

〈ζ~k ζ−~k〉 =
∫

Dζ ζ~k ζ−~k |Ψ[ζ]|2 = ε
H2

4k3
(kτ0)

2η−6ε . (5.47)

The corresponding power spectrum for ζ is then given by:

Pζ(~k) =
ε

2

(

H

2π

)2

(kτ0)
2η−6ε . (5.48)

The overall factor of ε in the correlator comes from the factor of (H/ϕ′)2 in (5.45). This

factor can be understood by noting that the limit ε → 0 corresponds to ∂ϕV → 0, a

constant potential. In this limit the spacetime is (asymptotically) de Sitter space, and the

scalar flucutations in the metric are pure gauge. The factor of ε ensures that the power

spectrum for ζ vanishes in the ε→ 0 limit as expected.

The standard result presented in the inflation literature is the power spectrum for

perturbations in the spatial curvature R. This quantity is useful because it stays con-

stant while on superhorizon scales and later transfers rather directly into the observable

perturbations in matter and radiation. The comoving curvature perturbations are given by:

R = − H
ϕ ′

χ =
1

ε
ζ (5.49)

for small ε. The slow roll parameter in the denominator translates to a crucial enhancement

of the density perturbations. Combining (5.49) with the power spectrum for ζ and (5.3)

for the slow roll parameter we find:

PR(~k) =

(

H

ϕ̇

)2 (

H

2π

)2

(kτ0)
2η−6ε . (5.50)

The scaling is usually characterized by the spectral index ns which is 1 for scale invariant

perturbations. Our result is

ns − 1 = 2η − 6ε . (5.51)

This agrees with more conventional computations (see e.g. [35]–[37]).
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We have written our results for the renormalized action, and for the correlators of ζ

and R, with the explicit cut-off retained. As we discussed in section 4.3, the cutoff can

in fact be removed, if one should wish to do so. In the present case the FRW equations

allow us to estimate the scalings H ∼ τ ε0 , ε ∼ τ 2η−4ε
0 and (5.44) gives ζ ∼ τ 2η−4ε

0 . These

show that (5.45) and (5.50) are independent of τ0 and that (5.47) scales like two ζ’s. This

serves as a check on our computations. However, again, it is physically more appropriate

to simply take the physical cutoff τ0 = 1/aH.

6. The power spectrum from the renormalization group

In this section we discuss some aspects of the holographic renormalization group, i.e.

we explore the relation between inflationary physics and a conjectured three-dimensional

quantum field theory near its renormalization group fixed point. Alternatively, the con-

siderations can be interpreted conservatively, as comments on abstract properties of the

IR-divergences.

6.1 The RG equation

There have been many attempts to formulate a holographic duality between a three di-

mensional quantum field theory and gravitational physics in de Sitter space, or inflationary

spacetimes, including [32, 22], [17]–[19] and [38]–[41]. Interpretations vary in part because,

unlike AdS/CFT, there is no candidate microscopic description. For the purposes of this

section we will simply assume that such a duality exists and discuss a few of its properties.

The H-J functional depends on the fields at some late time τ0, which we have inter-

preted as the infrared cut-off. Holography reinterprets the H-J functional as the effective

action of a three dimensional quantum field theory with the bulk field now playing the

role of couplings. The unperturbed theory is thought to be conformal so ϕ deforms the

theory as:

LCFT → LCFT + ϕO . (6.1)

The time τ0 becomes the scale in the boundary theory via µ ∝ a(τ0), which famously relates

UV and IR physics. The β-function associated with the coupling in the deformation (6.1) is:

β =
∂ ϕ

∂ log a
. (6.2)

Since the background field ϕ, which we are now interpreting as a coupling, may have spatial

dependence we are really considering a β-functional here.

Our goal here is to derive a simple differential equation satisfied by the renormalized

action Stot:

Stot = S − Sct . (6.3)

The ingredient we wish to exploit is, once again, the H-J equation. The H-J equation (5.9)

is satisfied by the full H-J functional S but, by construction, it is also satisfied by the

counter-term lagrangian Sct, at least as an expansion valid for small values of the cut-off

– 26 –



J
H
E
P
0
7
(
2
0
0
3
)
0
5
1

τ0. To exploit this, we decompose the canonical momenta of S into two terms, one due to

Stot and one due to Sct:

πϕ = Pϕ + Pϕ , (6.4)

where:

Pϕ =
1√
g̃

δSct

δϕ
Pϕ =

1√
g̃

δStot

δϕ
. (6.5)

We make a similar decomposition for πij. Substituting these expressions in the H-J

eqn (5.9) we find:

4

(

Pij Pij −
1

2
Pii Pjj

)

+ Pϕ Pϕ + 2

(

Pij Pij −
1

2
Pii Pjj

)

+
1

2
P 2
ϕ = 0 . (6.6)

We are interested in the leading terms in Stot and so assume that the terms quadratic in

Pϕ and Pij are negligible compared to the linear terms. This leaves the equation:

4

(

Pij − 1

2
Pkk g

ij

)

δStot

δgij
+ Pϕ

δStot

δϕ
= 0 . (6.7)

This constitutes a linear differential equation for Stot whose coefficients, given by functional

derivatives of Sct, for general backgrounds depend on the functions U , Φ, and M .

If the background is a spatially flat FRW cosmology the equations (5.11) and (5.12)

for the functional derivatives of Sct specify the coefficients in (6.7) which becomes:

gij
δStot

δgij
− ∂ϕU

U

δStot

δϕ
= 0 . (6.8)

The variations with respect to the metric amount to overall changes in the scale factor a(τ):

gij
δ

δgij
=

1

2
a
δ

δa
. (6.9)

Additionally, the definition of the β-function (6.2) gives:

β =
1

H
πϕ =

1

H
∂ϕU = −2 ∂ϕU

U
. (6.10)

using (3.13) and (5.17); so the coefficient of the second term is the β-function. Substituting

in (6.8) we find:
(

∂

∂ log a
+ β

δ

δϕ

)

Stot = 0 . (6.11)

This we can view as an RG equation for the renormalized action. In section 5 we calculated

the action Stot. The fact that our expression (5.45) for the action satisfies (6.11) is a non-

trivial consistency check of our approach.
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6.2 The Callan-Symanzik equation

In the introduction we alluded to the fact that the holographic interpretation of our ap-

proach is conceptually different than the standard approach to holographic RG flows in

AdS/CFT. The idea is that we would think of the evolution of an inflationary spacetime

as a flow in the space of three-dimensional theories. We can use the RG equation (6.11)

to make a more precise version of this statement by relating measuarable quantities in

inflation to the quantities characterizing the RG flow in the dual theory.

Following [22], we treat the exponential of the on-shell action Stot as the generating

function of correlators in the dual theory:

Z[ϕ] ∼ exp (iStot) . (6.12)

The boundary data for the bulk field is interpreted as a source for operators that we

schematically denote O(~x), so that we can obtain correlators of the O(~x) by taking func-

tional derivatives:

〈O(~x)O(~y)〉 = δ2Stot

δϕ(~x)δϕ(~y)
. (6.13)

Applying functional derivatives to the RG equation (6.11) and integrating the result over

the three-dimensional space, we arrive at a Callan-Symanzik equation satisfied by the

correlators of operators at distinct points:

(

a
∂

∂a
+ β(ϕ)

∂

∂ϕ
+ nγ(ϕ)

)

〈O(~x1) · · · O(~xn)〉 = 0 . (6.14)

The third term in the equation contains the anomalous dimension γ, which is defined9 as:

γ = ∂ϕβ . (6.15)

The construction of the Callan-Symanzik equation is technically similar to examples in

AdS/CFT [23, 24].

We can now use the Callan-Symanzik equation (6.14) to derive an expression for the

spectral index of inflation in terms of the functions describing the RG flow. The important

point is that the generating function defined in equation (6.12) is essentially the semi-

classical wave function of the Universe. If we take the action Stot to be quadratic then the

two-point correlator of O is related to the two-point function of the bulk mode ζ~k by:

〈O~k O−~k〉 ∼
ε

〈ζ~k ζ−~k〉
. (6.16)

The factor of ε in the numerator comes from equation (5.49), which tells us that ζ ∼ √ε χ.
The spectral index is defined as:

ns − 1 = k
d

dk
log
(

k3〈ζ~k ζ−~k〉
)

. (6.17)

9Note that this is not the standard definition of the anomalous dimension of O, which is usually defined

as γ = ∂ logϕ

∂ log a
= β/ϕ.
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Using equation (6.16) and the expression (5.47) for the two-point function of ζ~k we can

rewrite the definition of the spectral index as:

ns − 1 = a
d

da
log 〈O~k O−~k〉 . (6.18)

This gives us the first term in the C-S equation. We can evaluate the second term in the

same way, which gives:

β
∂

∂ϕ
〈O~k O−~k〉 = β 2 〈O~kO−~k〉 . (6.19)

Using these results, the Callan-Symanzik equation reduces to an expression for the spectral

index in terms of β and γ:

ns = 1− β 2 − 2γ . (6.20)

Using the slow-roll result for U(ϕ), equation (5.18), and the definition for β, one can verify

that:

β 2 = 2ε

γ = 2ε− η . (6.21)

Evaluating equation (6.20) using these expressions reproduces the standard slow-roll result:

ns = 1 + 2η − 6ε . (6.22)

It is very interesting that this expression, possibly the one explaining the observable cosmic

density perturbations, can be derived fairly straightforwardly from holographic ideas. We

anticipate that more general expressions, valid to all orders in slow-roll (see e.g. [42, 43])

allow a similar holographic interpretation. Of course such expressions also allow the more

conservative interpretations as the renormalization groups controlling the infrared behavior

of gravity.

Let us conclude with a philosophical comment: the framework advocated here repre-

sents a step towards formulating inflation in terms that emphasize symmetries, particularly

scaling symmetries, rather than the customary focus on specific inflationary potentials. We

interpret inflation as a phase of quantum gravity with a special symmetry, the scaling in-

variance of pure de Sitter space. This symmetry is broken of course, since inflationary

spacetimes are only approximately de Sitter, but the broken symmetry can be treated in

perturbation theory around the scaling solution. Thus inflation is interpreted as broken

scale invariance.
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A. Some general formulae

We consider four dimensional spacetimesM with a spacelike boundary ∂M and metric gµν .

The spacetime is foliated by a family of spacelike hypersurfaces orthogonal to a timelike

unit normal vector nµ. Specifically, the spacelike hypersurfaces are taken to be surfaces

of constant time, although we have not specified any particular system of coordinates. In

that case one can think of nµ as the four velocity of an observer moving orthogonally to

the constant time hypersurfaces. There is also a four-acceleration given by:

aµ = nν∇ν n
µ . (A.1)

Four dimensional tensors are projected onto the spatial hypersurfaces using the projection

tensor:

P ν
µ = δ νµ + nµn

ν . (A.2)

The projection of an arbitrary tensor T µ...
ν... is given by:

P T µ...
ν... = P µ

λ P
ρ
ν . . . T

λ...
ρ... . (A.3)

The resulting tensor is completely spacelike and orthogonal to nµ in all its indices. The

induced metric on one of the constant time hypersurfaces is denoted g̃µν and is given by

the projection of the metric gµν :

g̃µν = gµν + nµnν . (A.4)

The induced metric inherits a covariant derivative Dµ from the four dimensional covariant

derivative ∇µ, defined by the relation:

DµT
...
... = P ∇µT

...
... . (A.5)

Similarly, there is an an intrinsic Riemann tensor associated with the induced metric that

is defined by the commutator of covariant derivatives on an arbitrary spacelike vector Aµ:

[Dµ , Dν ]Aλ = Rρ
λ νµAρ . (A.6)

The corresponding Ricci tensor and scalar are:

Rµν = δλρRρ
µλν

R = gµν Rµν . (A.7)

In addition to the intrinsic curvature tensors defined above, there is an extrinisic curvature

that characterizes how each spacelike hypersurface is embedded inM. It is given by:

Kµν = −P ∇(µnν)

= −1

2
(∇µnν +∇νnµ + nµaν + nνaµ) . (A.8)

Applying the projection tensor to various contractions of the four dimensional Rie-

mann tensor allows us to derive a number of useful identities. Collectively referred to as
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the Gauss-Codazzi equations, they allow us to rewrite projections of four dimensional cur-

vature tensors in terms of the intrinsic and extrinsic curvatures defined above. The main

equations are:

P Rµνλρ = Rµνλρ +Kρν Kλµ −KρµKλν

P (nµRµνλρ) = DρKλν −DλKρν . (A.9)

From these equations we can obtain the following useful identities:

nµnνRµν = K2 −KµνKµν +∇µ (a
µ + nµK) (A.10)

P Rµνn
µ = DµK

µ
ν −DνK (A.11)

R = R+KµνKµν −K2 − 2∇µ (a
µ + nµK) . (A.12)

A.1 Explicit computations

The calculations in section 5 require us to evaluate many of these tensors for a metric of

the form:

ds2 = a(τ)2
(

−dτ 2 + γij(~x)dx
idxj

)

. (A.13)

Given the explicit 3+1 split of the metric in these coordinates we use greek letters µ, ν, . . .

for four dimensional (spacetime) indices, and roman letters i, j, . . . for spatial indices. The

time τ is the conformal time, and we use primes to denote derivatives with respect to it.

We will also use the abbreviation H = a′/a.

The timelike normal is given by nµ = a(τ)δµτ ,
10 and the metric induced on constant

τ hypersurfaces is just the spatial part of the metric:

g̃µν = gij δµi δνj . (A.14)

The non-zero components of the Ricci tensor are:

Rττ = −3H ′

Rij = Rij + 2

( H
a

)2

gij +
H ′
a2

gij . (A.15)

And the Ricci scalar is:

R = R+ 6

( H
a

)2

+ 6
H ′
a2

. (A.16)

Note that the spatial curvature of the spatial slice is defined with respect to the full metric

so that

R =
1

a2
R(γij) . (A.17)

The extrinsic curvature is given by:

Kij =
H
a
gij . (A.18)

10This is a non-standard choice of nµ, as it corresponds to a past-directed timelike unit normal vector.

The consequences consist entirely of an occasional difference in sign compared to the standard convention.
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B. Variations and functional derivatives

In section 5 we consider small fluctuations around background fields gµν and ϕ:

gµν → gµν + hµν

ϕ → ϕ+ χ . (B.1)

Schematically, we expand functions of the fields as a Taylor-series:

F(ϕ+ χ) = F(ϕ) + δF(ϕ)χ +
1

2
δ2F(ϕ)χ2 + · · · . (B.2)

In this expression δ is an operator that ‘linearizes’ the function it acts on. For example:

δgµν = hµν

δϕ = χ

δϕ 2 = 2ϕχ . (B.3)

Applying δ to gµν or ϕ more than once gives zero:

δ2gµν = 0

δ2ϕ = 0 . (B.4)

B.1 Variations of tensors

Evaluating variations and functional derivatives with respect to ϕ is straightforward. On

the other hand, expanding tensors which are functions of the metric can be non-trivial.

The following expressions are useful:

δgµν = −hµν (B.5)

δ
√
g =

1

2

√
g hµνgµν (B.6)

δΓλµν =
1

2

(

∇µh
λ
ν +∇νh

λ
µ −∇λhµν

)

(B.7)

δRµν =
1

2

(

∇λ∇µh
λ
ν +∇λ∇νh

λ
µ −∇µ∇νh

λ
λ −∇λ∇λhµν

)

(B.8)

δR = −hµν Rµν +∇µ (∇νh
µν −∇µhνν) . (B.9)

In section 5.2 we express the H-J functional for the gravity-scalar system in terms

of quantities defined on constant τ hypersurfaces, like the intrinsic curvature R and the

extrinsic curvatureKµν . We need to vary these quantities in order to calculate the momenta

conjugate to ϕ and gij .

δnµ =
1

2
h ν
µ nν

δKµν =
1

4

(

h λ
ν Kµλ + h λ

µ Kνλ

)

+
1

4
nλ

(

∇νh
λ
µ +∇µh

λ
ν − 2∇λhµν

)

δK = −1

2
hµνKµν +

1

2
nµ (∇νh

µν −∇µhνν) . (B.10)
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The metric induced on the hypersurfaces, g̃µν = gµν + nµnν, is just the spatial part of the

metric, gij . Using the expression for δnµ we can verify that δg̃µν is also purely spatial:

δg̃µν = hµν δµi δνj . (B.11)

The variation of the intrinsic curvature tensors can be read off from (B.8) and (B.9) by

replacing all four dimensional indices µ, ν, . . . with spatial indices i, j, . . ., and replacing the

covariant derivatives ∇µ with the covariant derivatives for the spatial metric, Di.

B.2 Varying Einstein’s equation

In section 5.3 we need the first order variation of Einstein’s equation:

Hµν = δGµν − 8πGδTµν . (B.12)

Recall that:

Gµν = Rµν −
1

2
gµν R

Tµν = ∇µϕ∇νϕ− gµν
(

1

2
∇λϕ∇λϕ+ V (ϕ)

)

. (B.13)

We can then use the results of the previous section to write out the first order variation of

these expressions:

δGµν =
1

2

(

∇λ∇µh
λ
ν +∇λ∇νh

λ
µ −∇µ∇νh

λ
λ −∇λ∇λhµν

)

− 1

2
hµν R+

+
1

2
gµν h

λρRλρ −
1

2
gµν∇λ

(

∇ρh
λρ −∇λhρρ

)

(B.14)

δTµν = ∇µϕ∇νδϕ +∇µδϕ∇νϕ− gµν
(

∇λϕ∇λδϕ+ ∂ϕV δϕ
)

−

−hµν
(

1

2
∇λϕ∇λϕ+ V

)

+
1

2
gµν h

λρ∇λϕ∇ρϕ . (B.15)

In section 5.3 we keep only the scalar degrees of freedom and choose the longitudinal gauge,

i.e. we write the metric as (5.26) with E = B = 0. Then the variations take the explicit

form:

Hττ = −2a2 ~D 2 ψ + 6Hψ ′ − 8πGa2 χ∂ϕV

Hij = −δij
(

2ψ ′′ + a2 ~D 2(ζ − ψ) + 2 (H2 +H ′)(ζ + ψ) + 2H (ζ ′ + 2ψ ′)
)

+

+8πGδij
(

a2χ∂ϕV − ϕ ′χ ′ − (ϕ ′)2 (ζ + ψ)
)

− ∂i ∂j (ζ − ψ) (B.16)

Hτi = −2∂i
(

ψ ′ +H ζ + 4πGϕ ′χ
)

. (B.17)

The equations of motion are

Hµν = 0 (B.18)

for all these components. In longitudinal gauge two of these equations are constraints.

Hτi = 0 relates ζ and χ as (5.33) and Hij = 0 with i 6= j:

∂i ∂j (ζ − ψ) = 0 (B.19)

clearly gives ζ = ψ.
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B.3 Variations of the momenta

The H-J functional to quadratic order in the fluctuations is computed in section (5.3) from

the variation of different expressions for the canonical momenta. We need the variation of

the usual expressions for canonical momenta:

πϕ = −nµ∇µϕ

πij =
1

2
(Kij − gijK) . (B.20)

They are:

δπϕ = −nµ∇µχ+
1

2
hµνnµ∇νϕ

δπij =
1

8

(

h k
j Kik + h k

i Kjk

)

− 1

2
hijK +

1

4
gij h

λρKλρ +

+
1

8
nλ

(

∇jh
λ
i +∇ih

λ
j − 2∇λhij

)

− 1

4
gijnλ

(

∇ρh
λρ −∇λhρρ

)

. (B.21)

We also need the variations of the momenta derived from the local form of the H-J func-

tional:

Pϕ = ∂ϕU − ∂ϕM ~Dϕ · ~Dϕ− 2M ~D 2ϕ+ ∂ϕΦR

Pij =
1

2
gij

(

U +M ~Dϕ · ~Dϕ
)

−MDiϕDjϕ− ΦGij +DiDjΦ− gij ~D 2Φ . (B.22)

They are:

δPϕ =
(

∂ 2
ϕU − ∂ 2

ϕM
~Dϕ · ~Dϕ− 2∂ϕM ~D 2ϕ+ ∂ 2

ϕΦR
)

χ− 2∂ϕM ~Dϕ · ~Dχ−

− 2M ~D 2χ+ ∂ϕM hijDiϕDjϕ+ 2MhijDiDjϕ+ 2MDih
ijDjϕ−

−M ~Dϕ · ~Dhjj − ∂ϕΦhijRij + ∂ϕΦDi

(

Djh
ij −Dihjj

)

δPij =
1

2
hij

(

U +M ~Dϕ · ~Dϕ
)

− 1

2
M hklDkϕDlϕ− hij ~D 2Φ+ gij h

klDkDlΦ−

− 1

2

(

DkDih
k
j +DkDjh

k
i −DiDjh

k
k − ~D 2hijgijDkDlh

kl − gij ~D 2hkk − hijR+

+ gij h
kl −Rkl

)

− 1

2
DkΦ

(

Dih
k
j +Djh

k
i −Dkhij

)

+

+
1

2
gijDkΦ

(

Dlh
kl −Dkhll

)

. (B.23)

The results stated here are completely general. In (5.37) to (5.40) they are specialized to

spatially flat FRW backgrounds.
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