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’t Hooft coupling. The tool we use is the non-extremal deformation of the supergravity

solution of Pilch and Warner (PW) [13], dual to N = 4, SU(N) gauge theory softly

broken to N = 2. We construct the exact non-extremal solution in five-dimensional gauged

supergravity and further uplift it to ten dimensions. Turning to the thermodynamics,

we analytically compute the leading correction in m/T to the free energy of the non-

extremal D3 branes due to the PW mass deformation, and find that it is positive. We also

demonstrate that the mass deformation of the non-extremal D3 brane geometry induces

a temperature dependent gaugino condensate. We find that the standard procedure of

extracting the N = 2∗ gauge theory thermodynamic quantities from the dual supergravity

leads to a violation of the first law of thermodynamics. We speculate on a possible resolution

of this paradox.
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1. Introduction

Over the last few years, gauge theory/string theory duality [1] (see [2] for a review) has

proven to be a very useful tool to address nonperturbative questions in gauge theories.

Essentially, this duality states that, say, four dimensional gauge theories at large ’t Hooft

coupling, g2YMN À 1, can be described by dual string theories in weakly curved super-

gravity backgrounds. In the large N but fixed ’t Hooft coupling limit, the string coupling

vanishes, and one can consistently restrict the string theory side of the correspondence to

the massless sector of type-IIB supergravity. Thus the computations on the supergrav-

ity side shed light on the nonperturbative gauge theory dynamics. On the other hand,

nonperturbative effects in the gauge theory potentially could tell us something new about

the dual supergravity. This is indeed the case with finite temperature phase transitions

in gauge theories [3]–[7]. Specifically, in [3], it was demonstrated how the (kinematic)

confinement-deconfinement phase transition of N = 4, SU(N) supersymmetric Yang-Mills

theory on R× S3 was mapped by the duality correspondence to the previously discovered

Hawking-Page phase transition in an anti-de Sitter background [8].
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With a field theory intuition in mind, a new prediction for the higher dimensional black

holes (and a phase transition in an infinite volume) was obtained in [4]. Namely, using the

fact that the chirally symmetric phase of the Klebanov-Strassler (KS) cascading gauge the-

ories [9, 10] exists only above a certain critical temperature, it was proposed in [4] that the

dual supergravity backgrounds also would have a regular Schwarzschild horizon only above

certain horizon temperatures. While there is a good understanding of the high temperature

thermodynamics of the system (in a chirally symmetric phase) [5], the low temperature

phase (and the phase transition) requires substantial numerical work and is not yet under-

stood. Thus, strictly speaking, the prediction for the new type of black holes of [4] has not

yet been verified in the KS model. Nevertheless, black holes that exhibit a phase transition

predicted in [4] were shown to exist [6, 7] in a different (but closely related) model — the

supergravity dual to pure N = 1, SU(N) SYM theory [11]. Unfortunately, the latter black

holes were shown to be thermodynamically unstable [12, 7],1 and thus it is not clear whether

the phase transition, while mathematically allowed, is actually physically occurring.

In this paper we discuss yet another system which we argue undergoes a finite temper-

ature phase transition, namely the N = 2∗ theory, or in other words N = 4, SU(N) SYM

softly broken by a hypermultiplet mass term to N = 2 gauge theory. The supergravity dual

to this gauge theory was constructed by Pilch and Warner (PW) in [13], and the precise du-

ality map between the gauge theory and the supergravity was explained in [14, 15]. Here we

consider the N = 2∗ gauge theory at finite temperature, realized as a non extremal defor-

mation of the PW flow. The argument for the existence of a phase transition in this system

is quite simple. For the high temperature phase, the mass deformation is irrelevant and we

expect the standard near-extremal D3 brane thermodynamics. In this phase (which we refer

to as the “black hole phase”, BH) all the thermodynamics quantities scale as N 2; for exam-

ple, the entropy goes as SBH ∝ N2V T 3. On the other hand, the low temperature phase is

rather different. Imagine first completely turning off the temperature. In this case the N =

2∗ gauge theory is exactly soluble [16]. Its low energy effective description (valid well below

the hypermultiplet mass scale) is given in terms of N = 2, U(1)N−1 gauge theory. This

gauge theory has on the order of N free degrees of freedom. We expect that this low energy

effective description is still valid for temperatures much lower than the hypermultiplet mass.

Thus in the low temperature phase (which we denote the “finite temperature Coulomb

phase” or the Pilch-Warner phase, PW ) the thermodynamic quantities of theN = 2∗ gauge

theory would scale as the first power of N , so that, e.g., for the entropy, SPW ∝ NV T 3.

This N2 versus N scaling of degrees of freedom suggests the presence of a phase transition2

between the BH and PW phases, each of which in principle exists at all temperatures.

The physical picture we have in mind for the phase transition is as follows. Start

with a high temperature BH phase. In this phase the free energy will start negative at

very high temperatures (as for the black D3 branes), and would gradually increase as the

temperature is lowered. We expect that at some T = Tc the free energy would become

zero, FBH(Tc) = 0, and for T < Tc it would become positive. In the large-N limit, the

1These black holes have a negative specific heat.
2We expect a phase transition in the strict N →∞ limit. It is likely that at finite N the phase transition

is replaced by a crossover regime. We thank Arkady Vainshtein for a useful discussion on this point.
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free energy of the PW phase is down by O(1/N), and may be taken to be zero. Thus

the PW phase should be thermodynamically favorable for low temperatures, T < Tc. We

expect that both the PW and the BH phases are thermodynamically stable. Moreover,

there should be a well defined high temperature expansion of the BH phase.3

In the next section we summarize our results. In section 3 we recall the salient fea-

tures of the N = 2∗ gauge theory, and discuss the expectation for its finite temperature

deformation. We then review the PW N = 2∗ renormalization group (RG) flow in five

dimensions and discuss its non-extremal deformation. The exact ten dimensional lift of the

“temperature deformed” five dimensional PW flow is constructed in section 4. In section 5

we analytically determine the leading in m/T correction to the near-extremal D3 brane

geometry induced by the N = 2 hypermultiplet massm. Finally, in section 6 we discuss the

thermodynamics and the signature of the phase transition. First, we explain the computa-

tion of the free energy and the energy (mass) of the deformed supergravity backgrounds,

and compute the difference of the free energies of the BH and the PW phases. This com-

putation is valid for arbitrary values of m/T , and thus can be used to study the phase

transition. Then, using the results of section 5, we compute the leading correction (in the

high temperature phase) to the black D3 brane thermodynamics. We find that the first

law of thermodynamics applied to the high temperature phase is violated. We speculate

on the relevance of the (induced) chemical potential for the resolution of this paradox. We

end with some comments on the numerical verification of the phase transition.

Before proceeding, we would like to comment on the study of the thermodynamics of

the closely related N = 1∗, SU(N) gauge theory [18]. As its name suggests, the N = 1∗

gauge theory is N = 4, SU(N) SYM softly broken by a chiral multiplet mass term to

N = 1. Unlike the N = 2∗ theory, however, the dual supergravity background to this

model [19] (PS) is known only in the probe approximation. The study of thermodynamics

in [18] was also done in the probe approximation. Only the entropy was computed in the

high temperature regime of the non-extremal PS background; while the free energy and the

energy were not computed independently, they were obtained by enforcing the first law of

thermodynamics. As we will see from the thermodynamics of the N = 2∗ model discussed

here, the computation of the entropy alone does not allow us to reproduce the free energy

— it appears one needs to compute the induced chemical potential as well. It would be of

interest to repeat the N = 2∗ analysis presented here to the N = 1∗ model. But first, the

exact extremal geometry of the N = 1∗ theory has to be understood.

2. Summary of results and outlook

As the bulk of the paper is rather technical, we highlight our main results in this section.

• We first observe that the five dimensional gauged supergravity flow ofN = 2∗ PW [13]

can be deformed to yield a non-extremal black hole geometry with regular horizon.

The consistency of the D = 5, N = 8 gauged supergravity truncation then implies

3The high temperature expansion of the KS model developed in [5] is ill defined in the ultraviolet. This

is related to the unusual UV properties of the cascading gauge theories; for a review see [17].
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that this black hole solution can be uplifted to the full ten dimensional solution of

type-IIB supergravity. We explicitly verify that this is indeed so. This non-extremal

deformation is interpreted as the supergravity dual to the finite temperature N = 2∗

SU(N) gauge theory in the deconfined phase, which we refer to as the BH phase.

• We show that there is a three parameter family of five dimensional black holes ad-

mitting regular horizons. These three parameters are the temperature T and the

(generically different) masses of the bosonic mb and fermionic mf components of

the N = 2 hypermultiplet. All regular horizon non-extremal solutions asymptote to

AdS5, which is consistent with the gauge theory expectation that both the temper-

ature and the mass deformations should be irrelevant in the ultraviolet of the gauge

theory. Asymptotic N = 2 supersymmetry of the extremal PW geometry imposes a

constraint on the leading nontrivial asymptotics of the two five dimensional super-

gravity scalars in the non-extremal deformation. The latter reduces the number of

independent parameters of the regular horizon solution to two: one related to the

temperature, and the other to the N = 2 hypermultiplet mass m = mb = mf .

• In the high temperature limit, α1 ≡ (mb/T )
2 ¿ 1, α2 ≡ mf/T ¿ 1, the five

dimensional black hole solution is a small deformation of the finite temperature AdS5

geometry, representing the S5 reduction of the throat region of the near extremal D3

branes. We analytically determine the leading correction in αi of the near extremal

AdS5 geometry. As expected from gauge theory arguments, asymptotic N = 2

supersymmetry sets α1 ∼ (α2)
2.

• After constructing the black hole solution, we turn to the study of thermodynamics.

We discuss the computation of the free energy F , the entropy S, and the energy E of

the non-extremal deformation of the PW flow. The entropy is just the Bekenstein-

Hawking entropy of the horizon, and is determined from the infrared data of the

geometry. The free energy, or more precisely FT , is the euclidean gravitational

action, and the energy E is the conserved ADM mass of the geometry. Note that

computing both E and F requires the knowledge of the IR and the UV data of the

solution. Furthermore, we verify that F = E − TS is identically satisfied in the

supergravity.

• While the computation of the entropy is straightforward, both the free energy and

the energy diverges, and requires regularization. Following [20], we compute F and

E with respect to a reference geometry which we take to be the supersymmetric PW

flow with periodically identified (euclidean) time direction with periodicity equal to

the inverse horizon temperature. We call this geometry the “PW phase”. The pre-

scription of [20] requires the introduction of a boundary cutoff and the matching of

induced geometries (and matter fields) for the background at hand and the reference

one “up to sufficiently high order” [20]. We apply the “minimal subtraction” pre-

scription for matching, where only the leading asymptotics of the induced geometries

and the matter fields are matched. This prescription gives the correct answers for
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simple black hole geometries such as the Schwarzschild-anti-de Sitter solution. It also

works in more complicated cases such as the nonabelian black hole solutions of [7].

• Using this minimal subtraction prescription for the free energy and the energy, we

find an explicit analytical expression for FBH−FPW (or EBH −EPW ) is terms of the

coefficients of the subleading ultraviolet asymptotics of the five dimensional scalars

inducing the Pilch-Warner flow [13]. An added bonus of using the PW background

(with appropriately compactified euclidean time direction) as the reference one in

F and E regularization is the fact that the purported phase transition between the

high temperature BH phase and the low temperature PW phase arises when ∆BH
PW ≡

FBH − FPW changes sign.

• Using the high temperature expansion (corresponding to deformations from the non-

extremal AdS5 geometry), and working to leading order in m/T , we analytically

compute the corresponding deformations of the thermodynamic quantities. While

F = E − TS continues to be satisfied after regulation, we however find that TdS 6=
dE. We have verified our prediction for the leading correction to the free energy

numerically. This indirectly confirms the violation of the first law of thermodynamics.

• Though we have been unable to find a satisfactory explanation for this apparent

contradiction with the first law of thermodynamics for the high temperature phase

of the N = 2∗ flow, we point out that this paradox could be resolved once we

include a certain chemical potential induced by the fermionic mass term of the N = 2

hypermultiplet.

Perhaps the most intriguing conclusion we have reached is the fact that the proper

interpretation of a finite temperature deformation of the Pilch-Warner geometry appears

to require the introduction of a nonvanishing chemical potential dual to the sources that

are turned on in the UV. This induced chemical potential follows from the conjecture that

the string theory partition function in the gauge/string theory correspondence is dual to

the gauge theory grand canonical partition function. In section 6.3 we outline the general

arguments leading to such a statement. It would be interesting to verify this in a more

general setting, e.g., by studying the finite temperature deformations of generic holographic

renormalization group flows as in [21, 22].

The original motivation for the study of the N = 2∗ thermodynamics presented here

was to study and confirm the phase transition between the BH and the PW phases. How-

ever, our analysis for this question is as yet inconclusive. While the high temperature

expansion is suggestive that such a phase transition occurs, additional analytical or nu-

merical work is required to extrapolate to the region m ∼ T where solid evidence of the

transition would be obtained. We hope to report on these results in a separate publication.

Finally, it is interesting to understand the “hydrodynamic description” of the BH phase

of the N = 2∗ gauge theory along the lines of [23].

– 5 –
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3. N = 2∗ RG flow and its non-extremal deformation in five dimensions

3.1 The gauge theory picture

In the language of four-dimensional N = 1 supersymmetry, the mass deformed N = 4

SU(N) Yang-Mills theory (N = 2∗) in R3,1 consists of a vector multiplet V , an adjoint

chiral superfield Φ related by N = 2 supersymmetry to the gauge field, and two additional

adjoint chiral multiplets Q and Q̃ which form an N = 2 hypermultiplet. In addition to the

usual gauge-invariant kinetic terms for these fields,4 the theory has additional interactions

and a hypermultiplet mass term given by the superpotential

W =
2
√
2

g2YM
tr([Q, Q̃]Φ) +

m

g2YM
(trQ2 + tr Q̃2) . (3.1)

When m = 0 the gauge theory is superconformal with gYM characterizing an exactly

marginal deformation. The theory has a classical 3(N − 1) complex dimensional moduli

space, which is protected by supersymmetry against (non)-perturbative quantum correc-

tions.

When m 6= 0, the N = 4 supersymmetry is softly broken to N = 2. This mass

deformation lifts the {Q, Q̃} hypermultiplet moduli directions, leaving the (N−1) complex

dimensional Coulomb branch of the N = 2, SU(N) Yang-Mills theory, parameterized by

expectation values of the adjoint scalar

Φ = diag(a1, a2, · · · , aN ) ,
∑

i

ai = 0 , (3.2)

in the Cartan subalgebra of the gauge group. For generic values of the moduli ai, the gauge

symmetry is broken to that of the Cartan subalgebra U(1)N−1, up to the permutation of

individual U(1) factors. Additionally, the superpotential (3.1) induces the RG flow of the

gauge coupling. While from the gauge theory perspective it is straightforward to study this

N = 2∗ theory at any point on the Coulomb branch [16], the PW supergravity flow [13]

corresponds to a particular Coulomb branch vacuum. More specifically, matching the

probe computation in gauge theory and the dual PW supergravity flow, it was argued

in [14] that the appropriate Coulomb branch vacuum corresponds to a linear distribution

of the vevs (3.2) as

ai ∈ [−a0, a0] , a20 =
m2g2YMN

π
, (3.3)

with (continuous in the large-N limit) linear number density

ρ(a) =
2

m2g2YM

√

a20 − a2 ,
∫ a0

−a0

da ρ(a) = N . (3.4)

Unfortunately, the extension of the N = 2∗ gauge/gravity correspondence of [13, 14, 15]

for vacua other than (3.4) is not known.

In [14, 15] the dynamics of the gauge theory on the D3 brane probe in the PW back-

ground was studied in detail. It was shown in [14] that the probe has a one complex

4The classical Kähler potential is normalized according to (2/g2Y M ) tr[Φ̄Φ + Q̄Q+ ¯̃QQ̃].
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dimensional moduli space, with bulk induced metric precisely equal to the metric on the

appropriate one complex dimensional submanifold of theN = 2∗, SU(N+1) Donagi-Witten

theory Coulomb branch. This one dimensional submanifold is parameterized by the ex-

pectation value u of the U(1) complex scalar on the Coulomb branch of the theory where

SU(N+1)→ U(1)×SU(N)PW . Here the PW subscript denotes that the SU(N) factor is in

the Pilch-Warner vacuum (3.4). Whenever u coincides with any of the ai of the PW vacuum,

the moduli space metric diverges, signaling the appearance of additional massless states.

An identical divergence is observed [14, 15] for the probe D3-brane at the enhançon singu-

larity of the PW background. Away from the singularity locus, u = a ∈ [−a0, a0], the gauge
theory computation of the probe moduli space metric is 1-loop exact. This is due to the

suppression of instanton corrections in the large-N limit [14, 24] of N = 2 gauge theories.

Consider now N = 2∗ gauge theory at finite temperature T . Turning on a mass m for

the hypermultiplet sets a strong coupling scale Λ ∝ m. We expect to find two different

phases of this gauge theory, depending on whether T À Λ or T ¿ Λ. In the former

case the effect of the mass deformation is negligible, and we expect to recover the N = 4

thermodynamics. In particular, conformal invariance dictates that the free energy scales

like T 4, with a prefactor of N 2 indicative of the scaling of the number of degrees of freedom.

At weak ’t Hooft coupling the familiar result reads [25]

FSYM = −π
2

6
N2V T 4 . (3.5)

By symmetry arguments, we expect the corrections to the free energy (3.5) due to the

mass deformation (3.1) to be of order O
(

m2/T 2
)

. The N2 scaling of the thermodynamic

quantities naturally occurs in the ten-dimensional black holes describing the non-extremal

deformation of the dual supergravity backgrounds. For this reason we will call the high

temperature phase of N = 2∗ SYM the BH or black hole phase.

In the other limit, we expect qualitatively different physics in the low temperature

phase of N = 2∗ SYM. Ignoring T in the first approximation, the low energy effective

description of the N = 2∗ theory is given by free U(1)N−1 SYM as explained above. This

effective description breaks down at scales of order the strong coupling scale, i.e. m, but is

appropriate as we turn on the temperature provided T ¿ m. The number of (free) degrees

of freedom of this effective low energy description scales like N , which must be reflected in

the scaling of the thermodynamics quantities such as the entropy, S ∝ NV T 3. We denote

this phase the “finite temperature Coulomb phase”, or the PW phase. Notice that

FPW
FBH

∼ 1

N
, (3.6)

and thus vanishes in the large-N limit. Qualitatively, we expect the free energy of the

N = 2∗ SYM to behave as in figure 1.

Given two possible phases, BH and PW , the most favorable one is that with lowest

free energy. Thus the signature of a phase transition in the N = 2∗ theory would be

a change in sign in the difference ∆BH
PW ≡ FBH − FPW . This suggests that, in order to

have a phase transition, the sign of the O(m2/T 2) correction to (3.5) must be positive so

– 7 –
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0

/
F

N
2

/ mT
/ mTc

Figure 1: The expected behavior of free energies of the BH (red curves) and the PW (blue curve)

phases (FBH and FPW ) as a function of T/m in the large-N limit. The dotted line for the BH

phase would imply a second order phase transition, while the solid line would imply a first order

phase transition.

that, when the temperature is lowered from an initial high temperature phase, FBH will

be driven above FPW at a finite temperature Tc. While we have not performed this com-

putation perturbatively in the ’t Hooft coupling, we have instead analytically determined

the O(m2/T 2) correction for strong ’t Hooft coupling in the dual supergravity computa-

tion. We find that this correction indeed has a positive coefficient (6.48) at strong ’t Hooft

coupling. This provides evidence for a phase transition, although further investigation is

necessary beyond leading order to substantiate this claim.

3.2 The PW renormalization group flow

The gauge theory RG flow induced by the superpotential (3.1) corresponds to a five di-

mensional gauged supergravity flow induced by a pair of scalars, α ≡
√
3 ln ρ and χ. The

effective five-dimensional action is

S =
1

4πG5

∫

M5

dξ5
√−g

(

1

4
R− (∂α)2 − (∂χ)2 −P

)

, (3.7)

where the potential P is5

P =
1

16

[

(

∂W

∂α

)2

+

(

∂W

∂χ

)2
]

− 1

3
W 2 , (3.8)

with the superpotential

W = − 1

ρ2
− 1

2
ρ4 cosh(2χ) . (3.9)

Note that we have chosen identical normalizations for α and χ to highlight the general

D = 5, N = 2 features of the flow. The PW geometry [13] has the flow metric

ds25 = e2A
(

−dt2 + d~x 2
)

+ dr2 . (3.10)

5We set the 5d gauged supergravity coupling to one. This corresponds to setting the S5 radius L = 2.
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Solving the Killing spinor equations for a supersymmetric flow then yields the first order

equations
dA

dr
= −1

3
W ,

dα

dr
=

1

4

∂W

∂α
,

dχ

dr
=

1

4

∂W

∂χ
. (3.11)

It is straightforward to verify that solutions to these flow equations will automatically

satisfy the scalar and Einstein equations of motion.

3.2.1 Asymptotics of the PW flow

This system was solved in [13] by rewriting the equations in terms of χ as an independent

variable. Given this explicit solution of the flow equations, it is easy to extract the UV/IR

asymptotics. In the ultraviolet, r → +∞, we find

UV : ρ→ 1− , χ→ 0+ , A→ 1

2
r . (3.12)

This corresponds to the scalars approaching the maximally symmetric AdS5×S5 UV fixed

point of the potential P. In the infrared, r → 0, we find instead

IR : ρ→ 0+ , χ→ +∞ , A→ −8

3
χ . (3.13)

As will be apparent later, this flow to the IR will be cut off at finite temperature.

3.3 The non-extremal PW flow

We now consider deforming the PW flow by turning on non-extremality in the metric.

Since the deformed flow breaks supersymmetry, we can no longer appeal to first order

equations, but must consider the second order equations of motion. The action (3.7) yields

the Einstein equation
1

4
Rµν = ∂µα∂να+ ∂µχ∂νχ+

1

3
gµνP , (3.14)

and the scalar equations

¤α =
1

2

∂P
∂α

, ¤χ =
1

2

∂P
∂χ

. (3.15)

For a finite temperature deformation of the flow metric (3.10), we take

ds25 = e2A
(

−e2B dt2 + d~x 2
)

+ dr2 , (3.16)

where e2B represents a blackening function. Note that we choose to retain grr = 1 since

any non-trivial factor can be absorbed into a redefinition of r.

Substituting this metric ansatz into the equations of motion, (3.14) and (3.15), we find

0 = α′′ +
(

4A′ +B′
)

α′ − 1

2

∂P
∂α

,

0 = χ′′ +
(

4A′ +B′
)

χ′ − 1

2

∂P
∂χ

,

0 = B′′ +
(

4A′ +B′
)

B′ ,

1

4
A′′ +

1

4
B′′ +

(

A′
)2

+
1

4

(

B′
)2

+
5

4
A′B′ = −1

3
P ,

−A′′ − 1

4
B′′ −

(

A′
)2 − 1

4

(

B′
)2 − 1

2
A′B′ =

(

α′
)2

+
(

χ′
)2

+
1

3
P . (3.17)
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Note that, by defining Ā ≡ A + 1
4B and B̄ ≡

√
3B/4 and taking appropriate linear

combinations, the above equations may be written in the equivalent form

0 = α′′ + 4Ā′α′ − 1

2

∂P
∂α

,

0 = χ′′ + 4Ā′χ′ − 1

2

∂P
∂χ

,

0 = B̄′′ + 4Ā′B̄′ − 1

2

∂P
∂B̄

,

3(Ā′)2 = (α′)2 + (χ′)2 + (B̄′)2 −P ,
3Ā′′ = −4

(

(α′)2 + (χ′)2 + (B̄′)2
)

, (3.18)

where we have formally introduced ∂P/∂B̄ ≡ 0. When written in this form, it is easy to see

that the last equation is redundant, and may be obtained by differentiating the penultimate

equation and substituting back in the scalar equations of motion. Since these equations are

consistent, we can use the same scalars as in the PW case, even when considering deformed

flows.

At this point, a few comments are in order. Firstly, the last equation of (3.18) provides

a non-extremal generalization of the holographic c-theorem, namely Ā′′ ≤ 0 where e4Ā =√−g. Secondly, scalars in AdS5 may be labeled by the representations D(E0, 0, 0) where

E0 is the lowest energy state, and may be related to the conformal dimension, ∆, of the

dual field theory operators. Expansion of P about the UV fixed point indicates that α (or

ρ) has E0 = 2, while χ has E0 = 3. The blackening factor B̄ may be thought of as a scalar

mode with E0 = 4. Finally, we see that the equation for B in (3.17) can be integrated once

to obtain

lnB′ + 4A+B = const , (3.19)

or equivalently lnB ′ + 4Ā = const. This relation will prove useful below.

3.3.1 Asymptotics of the finite temperature deformation

The thermal solutions we are interested in have regular black hole horizons. As a result,

we may examine the solution to the system of equations (3.17) near the horizon. In this

case, the behavior of (3.13) is cut off, and the scalars run to fixed values, ρ0 and χ0, on

the horizon. Including the horizon value of A, we see that the nonsingular in the IR flows

are given by a three parameter family {α, ρ0 > 0, χ0}, specifying the near horizon (r → 0)

Taylor series expansions

eA = eα

[

1 +

(

∞
∑

i=1

air
2i

)]

,

eB = δr

(

1 +

∞
∑

i=1

bir
2i

)

,

ρ = ρ0 +

(

∞
∑

i=1

ρir
2i

)

,
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χ = χ0 +

(

∞
∑

i=1

χir
2i

)

. (3.20)

Here, δ = δ(ρ0, χ0) should be adjusted so that eB → 1− as r → +∞. The first non-trivial

terms in the series expansions (3.20) are

δ−2a1 =
1

12
ρ−40 +

1

6
ρ20 cosh(2χ0)−

1

48
ρ80 sinh

2(2χ0) ,

δ−2b1 = −1

9
ρ−40 −

2

9
ρ20 cosh(2χ0) +

1

36
ρ80 sinh

2(2χ0) ,

δ−2ρ1 =
1

24
ρ−30 −

1

24
ρ30 cosh(2χ0) +

1

48
ρ90 sinh

2(2χ0) ,

δ−2χ1 = −1

8
ρ20 sinh(2χ0) +

1

64
ρ80 sinh(4χ0) . (3.21)

4. The ten-dimensional solutions

In this section, we lift the deformed PW flow to ten dimensions. However before doing

so we establish our conventions and review some of the pertinent aspects of the lifting

procedure.

4.1 Type-IIB supergravity equations of motion

We use a mostly positive convention for the signature (− + · · ·+) and take ε1···10 = +1.

The type bosonic IIB equations consist of the following [26]:

• The Einstein equations:

RMN = T
(1)
MN + T

(3)
MN + T

(5)
MN , (4.1)

where the energy momentum tensors of the dilaton/axion field, B, the three index

antisymmetric tensor field, F(3), and the self-dual five-index tensor field, F(5), are

given by

T
(1)
MN = PMPN

∗ + PNPM
∗ , (4.2)

T
(3)
MN =

1

8

(

GPQ
MG

∗
PQN +G∗PQMGPQN −

1

6
gMNG

PQRG∗PQR

)

, (4.3)

and

T
(5)
MN =

1

6
FPQRS

MFPQRSN . (4.4)

In the unitary gauge, B is a complex scalar field, and

PM = f2∂MB , QM = f2 Im (B∂MB∗) , (4.5)

where

f =
1

(1− BB∗)1/2 , (4.6)

while the antisymmetric tensor field G(3) is given by

G(3) = f(F(3) − BF ∗(3)) . (4.7)

– 11 –



J
H
E
P
1
1
(
2
0
0
3
)
0
3
1

• The Maxwell equations:

(∇P − iQP )GMNP = PPG∗MNP −
2

3
i FMNPQRG

PQR . (4.8)

• The dilaton equation:

(∇M − 2iQM )PM = − 1

24
GPQRGPQR . (4.9)

• The self-dual equation:

F(5) = ?F(5) . (4.10)

In addition, F(3) and F(5) satisfy Bianchi identities which follow from the definition of the

field strengths in terms of their potentials:

F(3) = dA(2) ,

F(5) = dA(4) −
1

8
Im(A(2) ∧ F ∗(3)) . (4.11)

For the ten-dimensional uplift of the RG flows in the five-dimensional gauged super-

gravity, the metric ansatz and the dilaton is basically determined by group theoretical

properties of the D = 5, N = 8 scalars. Thus they must be the same for both the de-

formed and original PW flows. Specifically, we assume [13] that the D = 10 Einstein frame

metric is

ds210 = Ω2ds25 +4
(cX1X2)

1/4

ρ3

(

c−1dθ2 + ρ6 cos2 θ

(

σ21
cX2

+
σ22 + σ23
X1

)

+sin2 θ
dφ2

X2

)

, (4.12)

where ds25 is either the original PW flow metric (3.10) or its deformations (3.16), and

c ≡ cosh(2χ). The warp factor is given by

Ω2 =
(cX1X2)

1/4

ρ
, (4.13)

and the two functions Xi are defined by

X1(r, θ) = cos2 θ + ρ(r)6 cosh(2χ(r)) sin2 θ ,

X2(r, θ) = cosh(2χ(r)) cos2 θ + ρ(r)6 sin2 θ . (4.14)

As usual, σi are the SU(2) left-invariant forms normalized so that dσi = 2σj ∧ σk. Note

that we perform all computations in the natural orthonormal frame given by

e1 ∝ dt , e2 ∝ dr , e3 ∝ dx1 , e4 ∝ dx2 , e5 ∝ dx3 ,

e6 ∝ dθ , e7 ∝ σ1 , e8 ∝ σ2 , e9 ∝ σ3 , e10 ∝ dφ , (4.15)

Turning now to the matter fields, for the dilaton/axion we have

f =
1

2

(

(

cX1

X2

)1/4

+

(

cX1

X2

)−1/4
)

, fB =
1

2

(

(

cX1

X2

)1/4

−
(

cX1

X2

)−1/4
)

e2iφ.

(4.16)
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The consistent truncation ansatz does not specify the 3-form nor 5-form fluxes. As in [13],

for the 2-form potential we assume the most general ansatz allowed by the global symme-

tries of the background

A(2) = eiφ(a1(r, θ)dθ ∧ σ1 + a2(r, θ)σ2 ∧ σ3 + a3(r, θ)σ1 ∧ dφ+ a4(r, θ)dθ ∧ dφ) , (4.17)

where ai(r, θ) are arbitrary complex functions. For the 5-form flux we assume

F5 = F + ?F , F = dt ∧ volR3 ∧ dω , (4.18)

where ω(r, θ) is an arbitrary function. As in the PW case, examination of the Einstein

equations reveals that 2-form potential functions ai have the following properties: a4 ≡ 0;

a1, a2 are pure imaginary, and a3 is real.

4.2 Lift of the near extremal deformation

The verification of the uplifted solution proceeds exactly as for the N = 2∗ flow deforma-

tions discussed in [27]. Thus we present only the results. We find

a1 = −i4 tanh(2χ) cos θ ,

a2 = i4
ρ6 sinh(2χ)

X1
sin θ cos2 θ ,

a3 = −4sinh(2χ)
X2

sin θ cos2 θ , (4.19)

and

∂ω

∂θ
= −3

2
e4A+B (ln ρ)′ sin 2θ ,

∂ω

∂r
=

1

8
e4A+B

1

ρ4

(

−ρ12 sinh2(2χ) sin2 θ + 2ρ6 cosh(2χ)(1 + sin2 θ) + 2 cos2 θ

)

. (4.20)

We have explicitly verified that by supplementing the metric and the dilaton/axion ansatz

of the previous section with (4.19), (4.20) and the five-dimensional flow equations (3.17),

all the equations of ten-dimensional type-IIB supergravity are satisfied.

5. High temperature expansion

Having examined the system of equations governing the non-extremal flow, (3.17), we now

turn to the construction of solutions. At finite temperatures, we find it convenient to

parametrize the flow not in terms of the radial coordinate r, but rather in terms of the

blackening function eB. To do so, we introduce a new coordinate

y ≡ eB , y ∈ [0, 1] , (5.1)

with y = 0 being the horizon and y → 1− the UV asymptotic limit. The standard near-

extremal D3 brane solution is realized when the bosonic and fermionic masses of the N = 2
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χ

Figure 2: Finite temperature PW flows away from the UV stable fixed point (α, χ) = (0, 0). The

endpoints of the flows correspond to the fixed values of the scalars at the horizon. The dashed line

gives the supersymmetric zero-temperature flow.

hypermultiplet components are turned off, corresponding to the supergravity scalars ρ and

χ sitting at the UV fixed point. The near-extremal D3 brane solution has the form

A(y) = α̂− 1

4
ln(1− y2) ,

ρ(y) = 1 ,

χ(y) = 0 , (5.2)

where α̂ is an integration constant which determines the BH temperature according to

T =
1

2π
eα̂ . (5.3)

We recall that at zero temperature the PW flow involves the scalars ρ and χ running

away from the UV fixed point as one flows to the IR. At a regular horizon, the scalars attain

fixed values ρ0 and χ0. Hence we now seek a solution to (3.17) satisfying the conditions

(ρ, χ)→ (1, 0) as y → 1− , (ρ, χ)→ (ρ0, χ0) as y → 0 . (5.4)

Several flows satisfying these boundary conditions are displayed in figure 2. It is clear

from the figure that the flows proceed further into the IR as the temperature is lowered.

While we have been unable to find an exact analytical solution, it is nevertheless possible

to develop a consistent (uniformly convergent) perturbative approximation in the high

temperature phase. On the gauge theory side, this corresponds to a power series expansion

in α1 ∝ (mb)
2 ¿ 1 and α2 ∝ mf ¿ 1, where mb and mf are masses of the bosonic and

fermionic components of the N = 2 hypermultiplet measured with respect to the string
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scale. In what follows, we solve for the leading order deformation in α1 and α2. Specifically,

we seek a solution of (3.17) in the form

A(y) = α̂− 1

4
ln(1− y2) + α2

1A1(y) + α2
2A2(y) ,

ρ(y) = 1 + α1ρ1(y) ,

χ(y) = α2χ2(y) . (5.5)

Substituting this ansatz into (3.17), and working to first non-trivial order in αi, we find

the linearized scalar equations

0 = (1− y2)2
(

y ρ′1
)′
+ y ρ1 ,

0 = (1− y2)2
(

y χ′2
)′
+

3

4
y χ2 , (5.6)

as well as the equations governing the back-reaction on the metric

0 = y(1− y2)A′′1 − (1 + 3y2)A′1 + 4y(1 − y2)(ρ′1)2,
0 = y(1− y2)A′′2 − (1 + 3y2)A′2 +

4

3
y(1− y2)(χ′2)2. (5.7)

The scalar equations, (5.6), may equally well be obtained from the linearization

of (3.15). Note that for an arbitrary scalar Φ(y) of mass m, its equation of motion,

¤Φ = m2Φ, in the background (5.2) has the form

Φ′′ +
1

y
Φ′ =

(mL)2

4(1 − y2)2Φ . (5.8)

This may be readily solved in terms of hypergeometric functions. Although there are

generally two linearly independent solutions, only one combination is regular at the horizon,

y → 0. Defining E0 = 2±
√

4 + (mL)2, the regular solution has the form

Φ = (1− y2)E0/42F1

(

1

4
E0,

1

4
E0, 1; y

2

)

. (5.9)

As a result, for the ρ and χ scalars, we obtain

ρ1 = (1− y2)1/2 2F1

(

1

2
,
1

2
, 1; y2

)

,

χ2 = (1− y2)3/4 2F1

(

3

4
,
3

4
, 1; y2

)

, (5.10)

where, without loss of generality, we assumed the horizon boundary conditions

ρ1

∣

∣

∣

∣

y=0

= 1 , χ2

∣

∣

∣

∣

y=0

= 1 . (5.11)

Note that as y → 1−, the perturbations ρ1, χ2 vanish. This is readily seen by rewriting

the solution, (5.9), as

Φ =
Γ(1− 1

2E0)

Γ(1− 1
4E0)

(1− y2)E0/42F1

(

1

4
E0,

1

4
E0,

1

2
E0; 1− y2

)

+

+
Γ(12E0 − 1)

Γ(14E0)
(1− y2)(4−E0)/42F1

(

1− 1

4
E0, 1−

1

4
E0, 2−

1

2
E0; 1− y2

)

, (5.12)
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which is valid provided6 E0 6= 2. Expanding for y → 1− yields the expected boundary

behavior, Φ ∼ (1−y)∆+/4 and (1−y)∆−/4, where the conformal dimensions ∆± correspond

to E0 and 4 − E0. In this case, however, instead of being independent, the ∆+ and ∆−
modes are related by the condition of horizon regularity.

Turning to the leading order gravitational back-reaction, we see that (5.7) can be

solved by quadratures

A1 = ξ1 − 4

∫ y

0

z dz

(1− z2)2
(

γ1 +

∫ z

0
dx

(

∂ρ1
∂x

)2 (1− x2)2
x

)

,

A2 = ξ2 −
4

3

∫ y

0

z dz

(1− z2)2
(

γ2 +

∫ z

0
dx

(

∂χ2
∂x

)2 (1− x2)2
x

)

, (5.13)

where γi, ξi are four integration constants. For a generic choice of γi, we find Ai|y→1− ∝
(1 − y)−1; thus to recover the proper asymptotics in the UV AdS5 × S5 geometry, these

constants must be fine tuned:

γ1 =
8− π2
2π2

, γ2 =
8− 3π

8π
. (5.14)

The other two integration constants, ξi, can be absorbed in a redefinition of α̂. In fact, we

show below that the physical quantities are ξi independent. Note that at the horizon we

have the behavior
(

∂y

∂r

)2 ∣
∣

∣

∣

y→0+

= δ2 ∼ 1 + 4α2
1 (1 + 2γ1) + α2

2

(

1 +
8

3
γ2

)

. (5.15)

This allows us to compute the BH temperature

T =
1

2π
eA
(

∂y

∂r

)
∣

∣

∣

∣

y→0+

=
1

2π
eα δ ∼ 1

2π
eα̂
(

1 + α2
1 (2 + ξ1 + 4γ1) +

1

6
α2
2 (3 + 6ξ2 + 8γ2)

)

.

(5.16)

While the first relation is valid for arbitrary temperature and masses, in the second one we

have kept only the leading terms in αi.

Using the explicit lifting of the metric, (4.12), we may compute the area of the BH

horizon

Ahorizon = V3 e
3A

∣

∣

∣

∣

y→0+

= V3 e
3α

∼ V3 e
3α̂ 25volS5

(

1 + 3ξ1α
2
1 + 3ξ2α

2
2

)

, (5.17)

where V3 is the 3-dimensional volume and volS5 is the volume of the unit S5. Again,

the first relation in (5.17) is exact for all temperatures/masses. The Bekenstein-Hawking

entropy density is7

SBH =
Ahorizon

4GN
=

1

2
π2N2

(

1

2π
eα
)3

∼ 1

2
π2N2

(

1

2π
eα̂
)3
(

1 + 3ξ1α
2
1 + 3ξ2α

2
2

)

. (5.18)

6For ρ1, which has E0 = 2, the behavior as y → 1− picks up a log, namely ρ1 ∼ (1 − y)1/2 and

(1 − y)1/2 ln(1− y).
7We have used the standard relations 16πGN = (2π)7g2s l

8
s , 4πgsNl4s = L4, and the fact that we set

L = 2.
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6. Thermodynamics and the signature of the phase transition

In this section we discuss the thermodynamic properties of the N = 2∗ theory. As we

have explained above, physically we expect a phase transition between the deconfining

phase (at high temperature) and the finite temperature Coulomb phase (at low temper-

ature). The high temperature phase is realized by the BH geometry, represented by the

solution to (3.17) with boundary conditions (3.20). The low temperature phase is the

γ = 0 (euclidean) PW geometry [13] with periodically identified (euclidean) time direction

tE ∼ tE + 1/T .

We begin by considering the standard definition (and regularization) of the free en-

ergy and the energy of the finite temperature deformed PW background. Specifically, we

identify the Helmholtz free energy F with the combination T I renomE , where IrenomE is the

renormalized euclidean gravitational action, and the dual gauge theory energy E with the

ADM mass of the finite temperature deformed PW geometry. Also, we identify the gauge

theory entropy with the Bekenstein-Hawking entropy of the deformed PW background.

We show that, with such identifications, we identically satisfy the thermodynamic relation

F = E − TS. This extraction of the thermodynamic quantities are valid for arbitrary

values of mass and temperature.

To proceed, we note that supersymmetry of the PW background relates the α1 and

α2 coefficients of the leading nontrivial asymptotic behavior of the five-dimensional scalars

ρ and χ. This allows us to parametrize the thermal phase of PW by the single quantity

m/T . In the high temperature phase, we analytically compute the leading correction to

the near extremal D3 brane thermodynamics due to the PW mass deformation. The sign

of this correction to the black D3 branes is consistent with our claim for a phase transition.

We find that, in the high temperature phase, our extracted free energy no longer sat-

isfies dF = −SdT , thus apparently violating the first law of thermodynamics. We provide

a possible resolution to this puzzle in terms of a generalized chemical potential induced by

the PW mass deformation. However a full understanding of the thermodynamics requires

additional investigation.

6.1 The regularized free energy and the energy

We recall that the free energy F , the energy E, and the entropy S of the a system is related

by the well known expression

F = E − TS . (6.1)

Here, F , E and S are well defined quantities in a weakly coupled gauge theory, and physi-

cally should remain well defined (finite) at large ’t Hooft coupling. It is known, however,

that in the dual supergravity both the free energy and energy densities are divergent, and

thus need to be properly renormalized before they can yield a finite answer. A standard

regulating procedure is to compute such quantities by comparison with a ’reference’ su-

pergravity background having the same asymptotics. This comparison is often ad hoc;

in particular, the matching of the two geometries at hand at the regularization boundary
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remains slightly ambiguous. In our case, however, we have a physically well motivated

reference geometry, namely the PW background with periodic euclidean time direction of

appropriate size.

Using the PW background as reference, strictly speaking we will not be computing

FBH , EBH and SBH directly [where the subscript BH relates to the non extremal defor-

mation (3.16)–(3.20)], but rather the differences

∆F ≡ FBH − FPW , ∆E ≡ EBH −EPW , ∆S ≡ SBH − SPW . (6.2)

In practice, we expect these quantities to be dominated by their BH values, ∆F = FBH ,

∆E = EBH , ∆S = SBH . This is clearly the case at weak ’t Hooft coupling since the ther-

modynamic quantities in the finite temperature Coulomb phase are 1/N down compared

to the corresponding quantities in the deconfined phase, and thus the former are essentially

zero in the large-N limit. Experience with other examples of the gauge/gravity correspon-

dence suggests that going to strong ’t Hooft coupling would typically modify the prefactor,

but not the large-N scaling of the free energy, the energy and the entropy. Note that the

choice of PW background as a reference one is particularly convenient when exploring the

phase transition, as a phase transition implies going through a zero in ∆F in (6.2) as one

changes the temperature.

Before proceeding to the BH solution, we recall the asymptotics of the reference PW

geometry. In [13] the solution of the supersymmetric γ = 0 flow equations is given in terms

of χ as the flow coordinate:

eA =
kρ2

sinh(2χ)
,

ρ6 = cosh(2χ) + sinh2(2χ) ln
sinh(χ)

cosh(χ)
. (6.3)

The single integration constant k in (6.3) is related to the hypermultiplet mass m in (3.1)

by [14]

k = mL = 2m. (6.4)

As indicated in (3.12) and (3.13), the scalars (ρ, χ) start at their UV fixed point (1−, 0+),

and flow toward (0+,+∞) in the IR. Using the the flow equations, (3.11), we find the IR

asymptotics

ln ρ ∼ −1

3
χ+

1

6
ln

4

3
,

eA ∼ 2k (4/3)1/3 e−8χ/3 ,

dA

dr
∼ (4/3)2/3 e2χ/3 . (6.5)

For matching, we are more interested in the UV behavior. To develop the asymptotics at

the boundary, we introduce

x̂ ≡ e−r/2 . (6.6)
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We find in the UV

χ ∼ kx̂

[

1 + k2x̂2
(

1

3
+

4

3
ln(kx̂)

)

+ k4x̂4
(

− 7

90
+

10

3
ln(kx̂) +

20

9
ln2(kx̂)

)]

,

ρ ∼ 1 + k2x̂2
(

1

3
+

2

3
ln(kx̂)

)

+ k4x̂4
(

1

18
+ 2 ln(kx̂) +

2

3
ln2(kx̂)

)

,

A ∼ − ln(2x̂)− 1

3
k2x̂2 − k4x̂4

(

2

9
+

10

9
ln(kx̂) +

4

9
ln2(kx̂)

)

,

dA

dr
∼ 1

2
+

1

3
k2x̂2 + k4x̂4

(

1 +
8

3
ln(kx̂) +

8

9
ln2(kx̂)

)

. (6.7)

Note that, as will be evident later, we need to keep terms up to O(x̂4) in the expansion.

Turning now to the BW geometry, the general solution of (3.17) which is smooth in the

IR (eB → 0) has three integration constants, {α, χ0, ρ0}, which are related to temperature

and masses of the N = 2 hypermultiplet components, (3.20), (3.21). The most general

solution of (3.17) in the UV (χ→ 0+) has altogether five parameters, {ξ, ρ̂10, ρ̂11, χ̂0, χ̂10}.
Three of them are related to the temperature and the masses, while the other two are

uniquely determined from the requirement of having a regular horizon, (3.21). In any case,

we have a three parameter BH solution

B ∼ −βx4
[

1 +
8

9
x2χ̂20 + x4

(

5

16
ρ̂211 −

1

2
ρ̂11ρ̂10 +

1

18
χ̂40 + 2ρ̂210 + χ̂20χ̂10 +

+ lnx

(

−1

2
ρ̂211 +

4

3
χ̂40 + 4ρ̂11ρ̂10

)

+ 2ρ̂211 ln
2 x

)]

,

χ ∼ χ̂0x

[

1 + x2
(

χ̂10 +
4

3
χ̂20 lnx

)

+

+ x4
(

31

8
ρ̂211 −

13

2
ρ̂11ρ̂10 −

56

45
χ̂40 −

3

2
χ̂20ρ̂11 + 2χ̂20ρ̂10 + 5ρ̂210 + 2χ̂20χ̂10 +

+ lnx

(

−13

2
ρ̂211 + 10ρ̂11ρ̂10 +

8

3
χ̂40 + 2χ̂20ρ̂11

)

+ 5ρ̂211 ln
2 x

)]

,

ρ ∼ 1 + x2
(

ρ̂10 + ρ̂11 lnx

)

+ x4
(

−2ρ̂11ρ̂10 +
3

2
ρ̂211 +

3

2
ρ̂210 +

10

3
χ̂20ρ̂10 −

8

3
χ̂20ρ̂11 +

1

3
χ̂40 +

+ lnx

(

3ρ̂11ρ̂10 +
10

3
χ̂20ρ̂11 − 2ρ̂211

)

+
3

2
ρ̂211 ln

2 x

)

,

A ∼ ξ − lnx− 1

3
χ̂20x

2 + x4
(

1

4
β +

1

9
χ̂40 −

1

2
χ̂20χ̂10 −

1

8
ρ̂211 − ρ̂210

− lnx

(

2

3
χ̂40 + 2ρ̂11ρ̂10

)

− ρ̂211 ln2 x
)

. (6.8)

Here we have introduced an additional integration constant β which, however, can be

absorbed at the expense of shifting the position of the horizon in the radial coordinate r

(or alternatively by rescaling x). For this reason, β should not be considered an independent

parameter of the solution. Also, we find

dA

dr
∼ 1

2
+

1

3
χ̂20x

2 + x4
(

−1

2
β + 2ρ̂210 + ρ̂11ρ̂10 +

1

4
ρ̂211 + χ̂20χ̂10 +

1

9
χ̂40 +
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+ lnx

(

ρ̂211 +
4

3
χ̂40 + 4ρ̂11ρ̂10

)

+ 2ρ̂211 ln
2 x

)

. (6.9)

In (6.8) and (6.9), x = x0e
−r/2 with x0 an arbitrary constant.

The free energy, F , of the gravitational action can be obtained from the (euclidean)

action IE according to

F = T IE =
1

2π
eα δ IE [α, χ0, ρ0] , (6.10)

where T is the temperature. As usual, IE is divergent and should be properly regularized.

As explained above, our approach is to regulate the free energy by subtraction, ∆F =

T∆IE , where

∆IE[α, χ0, ρ0] = lim
r→∞

{IrBH [α, χ0, ρ0]− IrPW [T, k]} . (6.11)

The regularized action IrE consists of both volume and surface terms

IrE = Irbulk + Irsurf

=
1

4πG5

∫ r

dr

∫

∂M5

d4ξ
√

gE
(

−1

4
RE + (∂α)2 + (∂χ)2 + P

)

−

− 1

8πG5

∫

∂M5

d4ξ
√
hE∇µnµ , (6.12)

where G5 is the five dimensional Newton’s constant

G5 ≡
GN

25 volS5
=

4π

N2
, (6.13)

gE is the euclidean version of the metric (3.16), nµ is a unit vector orthogonal to the

four-dimensional boundary ∂M5, and h
E
µν is the induced metric on ∂M5

hEµν = gEµν + nµnν . (6.14)

In (6.11) we have assumed that the boundary ∂M5 is defined at fixed r [in the coordi-

nates (3.16)], which we will take to infinity at the end of the calculations. In this case, the

unit normal vector is nµ = δµr .

Consider first the bulk contribution in (6.12). Because of local diffeomorphism invari-

ance, the on-shell value of the action must reduce to a surface integral. This is indeed what

we find:8

Irbulk =
1

4πG5

∫ r

dr
√

gE
(

−2

3
P
)

=
1

4πG5

∫ r

dr

(

1

2
e3A

(

eA+B
)′
+ υ e4A

(

eB
)′
)′

, (6.15)

where υ is an arbitrary constant parameterizing the constraint (3.19). In what follows, we

find it convenient to set

υ = 0 . (6.16)

8We omit the volume integral over the boundary ∂M5:
∫

∂M5
d4ξ = V3/T .
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In this case

Irbulk =
1

8πG5
e3A

(

eA+B
)′
∣

∣

∣

∣

r

horizon

, (6.17)

where horizon refers to either the standard black hole horizon location for the “deconfining

phase” (BH) analytically continued to euclidean signature or the IR (χ → +∞) of the

euclidean PW solution with periodically identified time direction (PW). Notice that at the

black hole horizon

1

8πG5
e3A

(

eA+B
)′
∣

∣

∣

∣

horizon, BH

=
1

8πG5
e4A

∂y

∂r

∣

∣

∣

∣

horizon, BH

= SBHT , (6.18)

where SBH is exactly the black hole entropy (5.18), and T is the corresponding black hole

temperature (5.16). On the other hand, using the IR asymptotics of the PW solution, (6.5),

we find instead
1

8πG5
e3A

(

eA
)′
∣

∣

∣

∣

horizon, PW

= 0 = SPWT , (6.19)

which is simply interpreted in terms of the vanishing entropy of the PW phase.

It should be noted that the black hole horizon is a regular point of the euclidean

geometry. Thus it is unusual to find a horizon surface term contribution to the euclidean

bulk action (6.15). In fact, this contribution is somewhat artificial, and arises because of

our particular choice of υ, (6.16). Indeed, for generic υ, we find
[

1

8πG5
e3A

(

eA+B
)′
+

υ

4πG5
e4A+BB′

] ∣

∣

∣

∣

horizon

=
1 + 2υ

8πG5
e4A+BB′

∣

∣

∣

∣

horizon

, (6.20)

where we have used the fact that e3A+B(eA)′|horizon = 0 for both the BH and the PW

phases. From (6.20) we see that for υ = −1/2, the full contribution to I rbulk, (6.15), would

come from the asymptotic region. Although, strictly speaking, this is the only proper value

for υ, since the full value of the euclidean action (6.15) is independent of υ, we nevertheless

find it convenient to retain υ = 0, as indicated in (6.16).

For the surface term in (6.12), we find

Irsurf = − 1

8πG5

(

e4A+B
)′
∣

∣

∣

∣

r

. (6.21)

Adding the bulk (6.17) and the surface (6.21) terms together, we find

IrE = − 1

8πG5
e3A

(

eA+B
)′
∣

∣

∣

∣

horizon

− 3

8πG5
e4A+B A′

∣

∣

∣

∣

r

. (6.22)

We have shown above that the first term in (6.22) is simply the combination −ST where S

is the entropy density. If the standard relation (6.1) is realized in the supergravity (and it

must be so), then the other term in (6.22) must be the regularized energy density. Indeed

this is so, provided we define the (regularized) ADM energy density of the background as9

E V3 = lim
r→∞

{Er V3} = lim
r→∞

{

− 1

8πG5

∫

v3(r)

√−gtt 2Kv3 dv3(r)

}

, (6.23)

9As usual, the reference background has to be subtracted before the r→∞ limit is taken.
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where the 3-boundary v3(r) is the spacelike foliation of ∂M5 and 2Kv3 is its extrinsic

curvature. Explicit evaluation of (6.23) yields

Er = − 3

8πG5
e4A+B A′

∣

∣

∣

∣

r

, (6.24)

which is indeed the second term of (6.22).

Having derived the general asymptotic expansions for the black hole and the PW

geometry in (6.7) and (6.8), we are now ready to evaluate ∆F :

FBH − FPW = − (SBH − SPW ) T + (EBH −EPW )

=
1

8πG5

{

−e4A ∂y
∂r

∣

∣

∣

∣

horizon, BH

− 3 lim
r→∞

[

e4A+BA′
∣

∣

∣

∣

BH

− e4A+BA′
∣

∣

∣

∣

PW

]}

=
1

8πG5

{

−e4α δ − 3 ∆BH
PW

}

, (6.25)

where in the last line we have used (3.20). The evaluation of the limit in (6.25) is rather

simple. We choose a direct matching condition of the BH and PW boundaries, parame-

terized by x [see (6.8) and (6.9)] and x̂ [see (6.7)] respectively:

x̂ = δ0 x . (6.26)

Additionally we have to set

B

∣

∣

∣

∣

PW

= 0 . (6.27)

Matching the boundary values of the scalars ρ and χ for the black hole and reference

geometries yields

ρ̂11 =
2

3
k2δ20 , χ̂0 = kδ0 . (6.28)

Furthermore, matching the asymptotic volumes of the BH and PW phases determines

δ0 =
1

2
e−ξ . (6.29)

The final result is

∆BH
PW = e4ξ

(

−β
2
+

1

6
η2ρ̂10 −

1

72
η4 ln

(

1

4
e η2

))

, (6.30)

where we have introduced

η ≡ ke−ξ . (6.31)

The difference of free energies thus has the form

FBH − FPW = − e4α

8πG5

(

δ + 3 e−4α∆BH
PW

)

= −π
2N2

2

(

1

2π
eα
)4(

δ + 3e−4α∆BH
PW

)

. (6.32)
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This can be further simplified by using the integral of motion, (3.19). Indeed, evaluating

the constant in (3.19) in the IR and the UV, and equating them, we find

lnβ + ln 2 + 4ξ = 4α + ln δ . (6.33)

Thus we can rewrite (6.32) as

FBH − FPW = − π2N2

4(2π)4
e4ξ
(

β + η2ρ̂10 −
1

12
η4 ln

(

1

4
e η2

))

. (6.34)

Notice that from (6.8) the residual reparametrization invariance x → λx can be absorbed

by the following transformation on the quantities {ξ, ρ̂10, ρ̂11, χ̂0, χ̂10, β}:

ξ → ξ − lnλ ,

ρ̂10 → λ2ρ̂10 + λ2ρ̂11 lnλ , ρ̂11 → λ2ρ̂11 ,

χ̂0 → λχ̂0 , χ̂10 → λ2χ̂10 +
4

3
λ2χ̂20 lnλ ,

β → λ4β . (6.35)

This leaves (6.34) invariant.

From the gauge theory arguments, we expect that the free energy of the PW phase

scales as N 1. On the other hand, the N -scaling in (6.34) suggests that in the large-N -

limit, FPW is essentially zero compared to FBH . Thus, in the high temperature phase,

we identify the N = 2∗ gauge theory Helmholtz free energy density F at large ’t Hooft

coupling with (6.34)

F ≡ FBH − FPW ≡ T IrenomE

= − π2N2

4(2π)4
e4ξ
(

β + η2ρ̂10 −
1

12
η4 ln

(

1

4
e η2

))

. (6.36)

Also, from (5.18) and (6.33), the N = 2∗ gauge theory entropy density S is

S ≡ SBH =
N2

8(2π)
e3α =

N2

8(2π)

(

2β

δ

)3/4

e3ξ . (6.37)

Finally, the gauge theory energy density E is that of the (renormalized) ADM energy

density [from (6.25)]

E ≡ EBH −EPW = T IrenomE + T SBH . (6.38)

The gauge theory temperature T is identified with that of the horizon in the BH

phase, (5.16).

6.2 The high temperature thermodynamics of the N = 2∗

Given the analytical expression for the high temperature expansion, (5.5)–(5.14), it is

straightforward to determine the leading correction to the non-extremal D3 brane thermo-

dynamics due to the PW mass flow. As we will note, the sign of this correction suggests the

possibility of the “deconfinement → finite temperature Coulomb phase” phase transition.
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We begin by matching the {α̂, α1, α2} parameters in (5.5) with {ξ, χ̂, ρ̂} of the asymp-

totic expansion, (6.8). Recall that the y coordinate in (5.10) is just eB . Thus the x

coordinate of (6.8) and y are related according to

y ∼ 1− 2x4 . (6.39)

This corresponds to setting β = 2 in (6.8). Now, to linear order in αi, by matching the

scalars ρ, χ in (5.10) and (6.8), we find

ρ̂10 =
4 ln 2

π
α1 , ρ̂11 = − 8

π
α1 ,

χ̂0 =

√
2π

[Γ
(

3
4

)

]2
α2 , χ̂10 = −2 [Γ

(

3
4

)

]4

π2
. (6.40)

Notice that χ̂10 is independent of α2. Furthermore, matching to the asymptotic PW

solution, (6.28) and (6.29), determines

α1 = − π

48
k2 e−2ξ , α2 =

[Γ
(

3
4

)

]2

23/2
√
π
k e−ξ . (6.41)

Notice that, to leading order, α1 ∝ α2
2. This is consistent with the gauge theory expectation

that, to leading order in the N = 2 hypermultiplet mass, it is enough to turn on only

the mass for the fermionic components. Thus the consistency of the high temperature

expansion (conditional to the asymptotic N = 2 supersymmetry) requires setting α1 to

zero.

Now, matching A, we find

0 = α̂− 1

2
ln 2 + α2

2 ξ̂2 − ξ , α = α̂+ α2
2 ξ2 . (6.42)

where [using (5.13)]

ξ̂2 = A2

∣

∣

∣

∣

y→1−

= ξ2 +
4

3

∫ 1

0

z dz

(1− z2)2
(
∫ 1

z
dx

(

∂χ2
∂x

)2 (1− x2)2
x

)

. (6.43)

with χ2 given by (5.10). There is a nontrivial check on the computation. With (6.42)

and (5.15), we find from (6.33)

(ln 2) + ln 2 + 4

(

α̂− 1

2
ln 2 + α2

2 ξ̂2

)

= 4
(

α̂+ α2
2 ξ2

)

+ α2
2

(

1

2
+

8

6
γ2

)

, (6.44)

or

4
(

ξ̂2 − ξ2
)

=
1

2
+

8

3
γ2 = 4

1

3π
. (6.45)

Given expression (6.43), we have numerically verified that (6.45) is indeed correct.

Using (5.16), (6.36) and (6.37), we can now express the gauge theory thermodynamic

quantities in the high temperature regime in terms of {ξ, η ≡ ke−ξ ¿ 1}:

T =
1

21/2π
eξ
(

1 +
Γ(3/4)4

8π2
η2
)

,

S =
N2

25/2π
e3ξ

(

1− Γ(3/4)4

8π2
η2
)

,

F = E − ST = − N2

32π2
e4ξ . (6.46)
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Recalling (6.4), and inverting the T ↔ ξ relation above

eξ = 21/2πT

(

1− Γ(3/4)4

4π4
m2

T 2

)

, (6.47)

we finally obtain the thermodynamic quantities

S =
1

2
π2N2T 3

(

1− Γ(3/4)4

π4
m2

T 2

)

,

E =
3

8
π2N2T 4

(

1− Γ(3/4)4

π4
m2

T 2

)

,

F = −1

8
π2N2T 4

(

1− Γ(3/4)4

π4
m2

T 2

)

. (6.48)

For the thermodynamic process (6.48) we find10

T dS 6= dE . (6.49)

In the next subsection we discuss a possible resolution of this puzzle, (6.49).

6.3 The chemical potential of the N = 2∗ flow?

We suggest here11 that the apparent violation of the first law of thermodynamics for the

leading in m/T ¿ 1 correction to the high temperature thermodynamics of the N = 2∗

gauge theory, (6.49), could be explained as due to the neglection of the induced chemi-

cal potential for the temperature deformed N = 2∗ flow. We stress that, while a certain

chemical potential appears to resolve the paradox, we do not have an understanding of

what exactly is its corresponding conjugate operator. Additionally, it is conceivable that

a different subtraction procedure for the computation of the supergravity effective action

and the ADM mass would resolve the problem with the first law of thermodynamics alto-

gether [28]. Having said this, however, here we restrict our attention to the possibility of

having an induced chemical potential for the temperature deformed PW flow.

One of the basic statements of the gauge/string theory correspondence [2] is the iden-

tification of the type-IIB string theory partition function with the N = 4 gauge theory

partition function, where the boundary values of the string fields Φ are the sources of the

gauge theory operators OΦ

Zstring[Φ]

∣

∣

∣

∣

Φ(r→∞)=Φ0

≡ Zgauge[Φ0] = e−Wgauge[Φ0] , (6.50)

where Wgauge is the generating functional for the connected Green’s function in the gauge

theory

Wgauge[Φ0] = − ln

〈

e
∫

d4x Φ0OΦ
〉

gauge

. (6.51)

10We have confirmed the leading correction to the free energy in (6.48), and thus the violation of the first

law of thermodynamics, numerically. For details see section 6.4.
11We would like to thank Chris Herzog, David Lowe and Andrei Starinets for very useful discussions.
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It is not known how to precisely define the string theory partition function. But, ignoring

all the stringy α′ corrections,12 and also all the string loop corrections (which basically

amounts to taking the N → ∞ limit with the large but finite ’t Hooft coupling), it is

reasonable to assume that Zstring is dominated by its saddle point13 — the extremum of the

(euclidean) supergravity action IE with the prescribed boundary values of the sources Φ0:

− ln

(

Zstring[Φ]

∣

∣

∣

∣

Φ(r→∞)=Φ0

)

' extremum IE [Φ]

∣

∣

∣

∣

Φ(r→∞)=Φ0

. (6.52)

We restrict to the N = 4 gauge theory deformations which are irrelevant in the UV

(the finite temperature N = 2∗ flow discussed in previous sections is precisely of this type).

This implies that the asymptotic geometry that extremizes IE is necessarily AdS5 × S5

ds210

∣

∣

∣

∣

r→∞

' e−2r/Ldx24 + dr2 + L2dΩ2
5 . (6.53)

Generically, the supergravity mode Φ that extremizes IE behaves as

Φ

∣

∣

∣

∣

r→∞

∼ Φ0 e
(∆−4)r/L +F0 e−∆r/L , (6.54)

where ∆ is the mass dimension of the gauge theory operator OΦ, and F0 should be inter-

preted as its vacuum expectation value:

〈0H |OΦ|0H〉 = F0 , (6.55)

where |0H〉 is a vacuum state of the deformed N = 4 hamiltonian H

H = HN=4 +Φ0OΦ . (6.56)

As was emphasized in [19], in a theory with a unique (or at least isolated) vacuum, the

dynamics should determine the vev (6.55) once the hamiltonian (6.56) is specified. Gener-

ically we expect an isolated vacuum whenever the N = 4 supersymmetry is completely

broken. This will always be the case whenever arbitrary deformations of the type (6.56)

are supplemented by the finite temperature deformation. Consider now such a deforma-

tion, namely gauge theory with hamiltonian (6.56) at finite temperature. From the gauge

theory perspective we can definite two different partition functions: a canonical partition

function14

Zgauge[T ] = e−
1
T
F [T ] = tr e−

1
T
H , (6.57)

where the tr is taken over the eigenstates of the full hamiltonian, or the grand canonical

partition function

Ξgauge[T, µΦ] = e−
1
T
Ω[T,µΦ] = tr e−

1
T
H+µΦQΦ . (6.58)

12Neglecting α′ corrections implies that the string fields Φ must actually be type-IIB supergravity modes.
13The subtleties of multiple saddle points will not arise in the present situation, namely the high tem-

perature phase of the string theory dual to N = 2∗ gauge theory.
14We assume that the gauge theory volume is constant.
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There the trace is taken over the eigenstates of both the hamiltonian H and the (conserved)

“charge” operator QΦ, conjugate to the chemical potential

µΦ = −Φ0

T
. (6.59)

When we neglect the fluctuations in QΦ, we obtain

Ω[T, µΦ] = −T ln Ξgauge[T, µΦ]

' F [T ]− µΦ〈QΦ〉V3 , (6.60)

where V3 is the spatial volume of the gauge theory coming from the integration over the

zero momentum modes. If we identify the string theory partition function (6.52) with the

canonical partition function of the gauge theory (6.57), or equivalently

F [T ] = T ln

〈

e
1
T

∫

d3x Φ0O

〉

gauge

' T extremum IE[Φ]

∣

∣

∣

∣

Φ(r→∞)=Φ0

, (6.61)

in the case of the finite temperatureN = 2∗ gauge/string duality we will face the breakdown

of the first law of thermodynamics, (6.49). Rather, we propose that one should identify

the string theory partition function (6.52) with the grand canonical partition function of

the gauge theory (6.60), or equivalently,

Ω[T, µΦ] = T ln

〈

e
1
T

∫

d3x Φ0O

〉

gauge

= T ln

〈

e−
1
T

∫

d3x µΦQΦ

〉

gauge

' F [T ]− µΦ〈QΦ〉V3
' T extremum IE[Φ]

∣

∣

∣

∣

Φ(r→∞)=Φ0

≡ T IE [Φ0] , (6.62)

where the last equivalence defines IE [Φ0]. Notice that the one-point correlation function

〈QΦ〉 can be computed by differentiating with respect to µΦ the correspondence (6.62):

∂Ω[T, µΦ]

∂µΦ
= T

(−1
T

∫

d3x〈QΦ〉
)

= −V3〈QΦ〉. (6.63)

From (6.62) and (6.63) we find

F [T ] = Ω[T, µΦ]− µΦ
∂Ω[T, µΦ]

∂µΦ
. (6.64)

Finally, the first law of thermodynamics (for dV3=0) takes the form

dF = −S dT + µΦ d (〈QΦ〉) , (6.65)

where the independent variables are µΦ and T .

In the rest of this subsection we demonstrate that with interpretation (6.62), there is no

conflict with the high temperature thermodynamics of the N = 2∗ flow. First of all, notice

that though the N = 2∗ flow necessarily has moduli, its finite temperature deformation

should not. Thus we expect that turning on the mass term for the fermions (supergravity
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dual to the five-dimensional scalar χ) should uniquely fix their condensate. In the language

of the asymptotic behavior of the scalar χ in (6.8), this implies that specifying χ̂0 should

uniquely determine the coefficient of its normalizable mode ∝ χ̂0χ̂10. This is precisely

what we find in (6.40). If in our case we take Φ0 ≡ m, we would obtain µ ≡ −m/T .
Following (6.62),15

Ω[T, µ] = TIE[m] = −π
2N2T 4

8
+
κ

8
m2T 2 = −π

2N2T 4

8
+
κ

8
µ2T 4 , (6.66)

where in the second equality we have substituted the Helmholtz free energy from (6.48),

which by computation equals T IE[m]. Additionally, to avoid cluttering the formulas we set

κ ≡ N2

π2
Γ

(

3

4

)4

. (6.67)

Notice that the entropy is (6.48)

S =
π2N2T 3

2
− κ

2
µ2T 3 . (6.68)

From (6.63) and (6.64), we find

〈Qµ〉 = −
κ

4
µT 4 ,

F = −π
2N2T 4

8
− κ

8
µ2T 4 . (6.69)

It is easy to see that the first law of thermodynamics, (6.65), is now satisfied:

dF =

(

−π
2N2T 3

2
− κµ2T 3

2

)

dT − κµT 4

4
dµ

= −
(

π2N2T 3

2
− κ

2
µ2T 3

)

dT + µd

(

−κµT
4

4

)

≡ −SdT + µd (〈Qµ〉) . (6.70)

Thus we have shown that if we assume that the finite temperature deformation of

the PW flow has an induced chemical potential µ ≡ −m/T , the interpretation of the

supergravity computation in terms of the grand canonical ensemble appears to resolve the

puzzle with the first law, (6.49). What is not clear, however, is what is exactly the charge

operator Qµ conjugate to µ. Though it appears that the expectation value of Qµ, (6.69),

is related to the gaugino condensate, Qµ cannot be the fermion mass operator; the latter

does not commute with the gauge theory hamiltonian and thus cannot be conserved.

6.4 The phase transition

Independent of the high temperature expansion, the general expression for the generalized

free energy density difference between the BH and the PW phases is given by (6.34):

δΩ[T, µ] ≡ ΩBH − ΩPW = − π2N2

4(2π)4
e4ξ
(

β + η2ρ̂10 −
1

12
η4 ln

(

1

4
eη2
))

. (6.71)

15As before we talk about densities of the thermodynamic quantities.
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Following the discussion of the previous subsection, we have reinterpreted the Helmholtz

free energy F as the generalized free energy Ω[T, µ]. This expression is valid for arbitrary

temperature T and chemical potential µ = −m/T , which in turn are implicitly related to

the parameters of the supergravity solution, ξ, β, η and ρ̂10, which show up on the right

hand side of (6.71).

To proceed beyond the high temperature expansion, we may examine the behavior of

δΩ numerically. To do so, we extract the appropriate coefficients governing the behavior of

δΩ by matching the UV behavior of the numerical solution with (6.8) and the IR behavior

with (3.20). In particular, we first work in the UV and fix the x-coordinate of (6.8) through

the functional dependence of the scalar B (recalling that β may be scaled away). Then,

after matching the coefficients of the leading nontrivial asymptotics {ρ̂11, χ̂0} with the

asymptotic PW geometry according to (6.28) and (6.29), we may unambiguously extract

the subleading terms {ρ̂10, χ̂10}. We finally obtain ξ through the relation (6.33), where α

and δ are determined from the behavior of A and B at the horizon.

Of course, {ξ, ρ̂10, χ̂10} are functions of the data at the horizon {α, ρ0, χ0}, (3.20). Ac-

tually ρ0 and χ0 cannot be independent since the coefficients of the leading UV asymptotics

of ρ and χ, {ρ̂11, χ̂0}, must satisfy (6.28)

ρ̂11
χ̂20

=
2

3
, (6.72)

which is just the statement of asymptoticN = 2 supersymmetry. This results in a reduction

to two parameters, T and µ (or equivalently T and m). Finally, since any scale in the

N = 2∗ theory may be related to m, we note that, for the numerical work, we only need

to examine a one parameter set of solutions.

For a thermodynamic process at a fixed volume, the physical phase is realized from

the minimization of the generalized free energy

Ω[T, µ]physical = min {ΩBH ,ΩPW} . (6.73)

Thus the signature of a phase transition would be the vanishing of δΩ at a certain critical

temperature Tc

δΩ [T, µ = −m/T ]
∣

∣

∣

∣

T=Tc

= 0 . (6.74)

In the high temperature phase, m/T ¿ 1, we have found [compare with (6.66)]

δΩ
[

T,−m
T

]

m4N2
≡ 1

m4N2

(

δΩ0 + δΩ1

)

+ o

(

T 2

m2

)

= −π
2

8

(

T

m

)4

+
Γ(3/4)4

8π2

(

T

m

)2

+ o

(

T 2

m2

)

; (6.75)

that is, δΩ < 0. On the other hand, we have argued that in the low temperature phase,

m/T À 1, we would instead expect δΩ > 0; see figure 1.
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Figure 3: Numerical determination of the generalized free energy δΩ (6.71) with the leading

behavior δΩ0 = −π2N2T 4/8 subtracted. The numerical values are given by the data points, while

the leading high-temperature correction, δΩ1 ≡ Γ(3/4)4N2m2T 2/8π2, is indicated by the dashed

line.

The result of the numerical work is shown in figure 3. While the numerics appear

to be in good agreement16 with our analytical prediction (6.75), we have been unable

to confirm the phase transition. One possibility is that the critical temperature of the

conjectured phase transition is at Tc = m%, where % is a small number. This would

make numerical study of the transition rather challenging, as the ultra-low temperature

supergravity flows (see figure 2) approach the supersymmetric (singular) PW flow, and

are plagued by numerical instabilities. Another possibility is that in the large-N limit

this phase transition is actually at Tc = 0. This issue clearly deserves further investiga-

tion.
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