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1. Introduction

Plane waves have received increased attention recently as an important background space-

time in string theory. These backgrounds are interesting for two reasons. On one hand, the

theory on the world sheet admits a simple realization, making many explicit computations

possible [1] even in the presence of a Ramond-Ramond background flux [2]. On the other

hand, certain plane wave backgrounds [3] admit dual interpretation as a scaling limit of

certain field theories [4]. This provides an exciting opportunity to explore gravitational

physics, in an asymptotically plane wave background geometry, strictly in the framework

of quantum field theory.

The most immediate application of this duality in addressing problems of gravity

that comes to one’s mind is the physics of Schwarzschild black holes. Consideration of

Schwarzschild black holes in an asymptotically anti de-Sitter space-time played a significant

role in clarifying the nature of holography in the context of AdS/CFT correspondence [5],

and it is natural to expect that Schwarzschild black holes in an asymptotically plane wave

space-time would equally clarify the nature of the correspondence of [4]. The first step

in such a line of investigation is to construct an explicit black hole solution. Immediately

following the proposal of [4], there have been numerous attempts to construct solutions of

this type, with precisely this goal in mind.

Constructing Schwarzschild black hole solutions in an asymptotically plane wave space-

time has proven to be extremely challenging. The difficulty stems from the fact that the
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symmetries of a background with a horizon and an asymptotically null background fluxes

are not transparent. A review of the structure of horizons and plane waves can be found

in [6].

The first explicit solution of Schwarzschild black strings in an asymptotically plane

wave solution was written down very recently in a series of papers [7, 8]. (An explicit solu-

tion of a BPS black string in an asymptotically plane wave geometry was identified earlier

in an inspiring paper [9].) Unfortunately, these black strings are embedded in a wrong

asymptotic plane wave for the correspondence of [4] to be applicable. This correspondence

relates a limit of N = 4 SYM to type-IIB string theory on a plane wave supported by the

Ramond-Ramond five-form flux [3]. The solutions constructed in [7, 8] are that of black

strings embedded in a plane wave supported either by the NSNS or the RR three-form

fluxes [10, 11]. We are therefore unable to explore the properties of these black holes by

studying the N = 4 SYM and using the correspondence of [4].

Despite this shortcoming, plane waves supported by three-form fluxes are still special

in that the world sheet theory is simple. Of course, the application of full interacting

string theory as a means to study the microscopic properties of Schwarzschild black holes

is an important outstanding challenge, even if the world sheet theory is extremely simple

(such as in the case of Minkowski space). There does exist, however, a scheme to semi-

quantitatively compare the properties of free strings and black holes, sometimes referred

to as the correspondence principle [12, 13]. The goal of this article is to explore the black

string solutions of [7, 8] in this context.

Correspondence principle in plane wave space-time was also considered in [14], but its

content appears to have very little overlap with what is presented in this paper.

The organization of this paper is as follows. We begin in section 2 by reviewing the

construction of black string solutions [7, 8]. In section 3, we review the correspondence

principle and how it applies to black strings in plane waves supported by the NSNS 3-form

field strength. In section 4, we describe the string theory computation relevant for the

application of the correspondence principle. In section 5, we examine the status of the

correspondence principle for the plane waves supported by the RR 3-form field strengths.

We will conclude in section 6.

It should be emphasized that the construction of a black hole/black string solution

in an asymptotically plane wave space-time supported by the RR five-form remains an

important outstanding problem. We hope that this problem will be solved in due course

and will pave a path toward a quantitative study of black hole physics in terms of the

N = 4 SYM theory.

2. Black strings in asymptotically plane wave space-time

In this section, we will review the construction of black string solutions first reported

in [7, 8]. The main ingredient behind this construction is a set of manipulations which

was originally formulated in [15] which we refer to as Null Melvin Twist following [8]. The

reader should refer to [8] for the details of this manipulation. Here, we summarize the steps

using a slightly different notation.
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1. Consider a ten dimensional Minkowski space-time for a type-IIB supergravity theory,

written in terms of coordinates t, y, ρi, φi:

ds2 = −dt2 + dy2 +
4
∑

i=1

(dρ2 + ρ2dφ2i ) . (2.1)

2. Boost to a new frame
(

t

y

)

=

(

cosh γ − sinhγ

− sinh γ cosh γ

)(

t′

y′

)

. (2.2)

3. Compactify y′ so that it has radius R and T-dualize along y ′ so that the new coor-

dinate ỹ′ has radius α′/R.

4. “Twist,” by replacing dφi by dφi + ωi dỹ
′ in the line elements.

5. T-dualize from ỹ′ to y′.

6. Boost back to the original frame
(

t′

y′

)

=

(

cosh γ sinhγ

sinhγ cosh γ

)(

t

y

)

. (2.3)

At this stage, one arrives at a seemingly complicated space-time depending on parameters

R, γ and ωi for i = 1 . . . 4. All of these space-times, however, are related to Minkowski

space by dualities, boosts, and twists, and belong to the class of exactly solvable string

theories considered [16, 17]. For example, setting γ = 0 gives rise to the general NSNS

Melvin solution. If instead we set all ωi = ω and

7. Scale γ to infinity, keeping

η =
1

2
ωeγ = fixed . (2.4)

Then, the end result is a plane wave geometry

ds2 = −dt2 + dy2 − η2r2(dt+ dy)2 +
4
∑

i=1

(dρ2i + ρ2i dφ
2
i )

eϕ = 1

B = η(dt+ dy) ∧ (

4
∑

i=1

ρ2i dφi) (2.5)

where r2 =
∑

i ρ
2
i .

Although we have so far only described Null Melvin Twists applied to Minkowski space-

time, these manipulations can easily be applied to any space-time with a translational

isometry for T-dualizing and a rotational isometry for twisting. One can, for example,

apply the Null Melvin Twist to the Schwarzschild black string solution

ds2 = −f(r)dt2 + dy2 +
1

f(r)
dr2 + r2dΩ2

7 . (2.6)

f(r) = 1− M

r6
. (2.7)
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To apply the Null Melvin Twist, it may be more convenient to rewrite

1

f(r)
dr2 + r2dΩ2

7 as
1− f(r)
f(r)

dr2 +
∑

i

(dρ2i + ρ2i dφ
2
i ) . (2.8)

In the end, one obtains the space-time

ds2str = −f(r)
(

1 + η2 r2
)

k(r)
dt2 − 2 η2 r2 f(r)

k(r)
dt dy +

(

1− η2 r2

k(r)

)

dy2 +

+
dr2

f(r)
+ r2 dΩ2

7 −
η2 r4 (1− f(r))

4 k(r)
σ2

eϕ =
1

√

k(r)

B =
η r2

2k(r)
(f(r) dt+ dy) ∧ σ (2.9)

where

k(r) = 1 +
η2M

r4
, and r2σ =

1

2

4
∑

i=1

ρ2i dφi . (2.10)

This is the supergravity solution for a Schwarzschild black string in an asymptotically plane

wave space-time supported by an NSNS three form flux, whose magnitude is parameterized

by η. A similar solution supported by the RR three from flux can be constructed imme-

diately by S-dualizing the supergravity solution. These are the solutions that we will be

considering in this paper.

Let us comment about the physical properties of these black strings. Among the most

basic physical characteristics of black strings are its horizon area and its surface gravity.

The horizon for the space-time (2.9) is located at r6H = M . Its area in Einstein frame is

readily computed to be

A = 2πRM 7/6Ω7 , (2.11)

where we have assumed that the y coordinate is compactified1 on a circle of radius R,

and Ω7 is the area of the unit 7-sphere. This area is independent of the background field

strength parameterized by η.

Computing the surface gravity is a bit more subtle. It is defined as

κ2 = −1

2
(∇aξb)(∇aξb) (2.12)

in Einstein frame, where ξa is the time-like Killing vector normal to the horizon (See

e.g. [19]). In the case of solution (2.9), the vector

ξa =

(

∂

∂t

)a

(2.13)

1Such a compactification gives rise to closed time-like curves and may lead to additional subtleties of

the type considered in [18]. We will not be addressing this point in this paper.
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turns out to be the one normal to the horizon. For this choice of the time-like Killing

vector, the surface gravity

κ2 =
36

M1/3
(2.14)

also comes out to be independent of the parameter η. Of course, the precise value of

the surface gravity and temperature depends on the normalization of the Killing vector

ξa. We will choose to normalize ξa precisely as (2.13) in the coordinate where the metric

asymptote to a geometry of the form given in (2.9). This means that in order to make a

sensible comparison between black hole thermodynamics and the statistical mechanics of

a microscopic system, one must evaluate the Boltzmann trace of the specific hamiltonian

operator conjugate to the Killing vector (2.13).

3. Review of the correspondence principle

The correspondence principle states that in a weakly coupled string theory, an object of

mass m has the physical properties of a classical black hole to a good approximation as

long as the curvature of the metric in string frame near the horizon is smaller than the

scale set by the string scale, and has the physical properties of an excited string if the

Schwarzschild radius is smaller [12]. As a consequence of this principle, at the critical mass

m where the Schwarzschild radius is of the order of the string scale, the entropy of the

excited string in a flat background and the entropy of the black hole must also be of same

order of magnitude [13].

This principle can easily be verified for black holes and black strings in asymptotically

flat space-time. Let us consider, for the sake of concreteness, a neutral black string in ten

space-time dimensions (2.6) wrapping a compact circle of radius R, which is equivalent to

a black hole in nine space-time dimensions. The square of the Riemann curvature tensor

RµνλσR
µνλσ scales as 1/r4H , indicating that the expected cross-over scale is when rH is of

the order of ls.
2

The entropy of such a black hole is easily computed to be

SBH =
1

G9
(G9E)7/6 (3.1)

where E is the energy associated with the black string

E =
M

G9
(3.2)

and is derived using the standard relation dE = TdS. G9 is the nine dimensional Newton

constant

G9 =
G10

R
=
g2s l

8
s

R
. (3.3)

2To be more precise, the square of the Riemann tensor does have a mild dependence on η, behaving like

f(η)/r4H where f(η) is a function which smoothly interpolates between numbers of order one as η is varied

from zero to infinity.
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The entropy of a string is dictated by the Hagedorn density of states

Ss = lsE . (3.4)

We have ignored the numerical factor of order one in this estimate as they are irrelevant

in the context of the correspondence principle. The Schwarzschild radius is

r6H = G9E . (3.5)

One can immediately verify that the entropies

SBH = Ss =
l7s
G9

(3.6)

match when

l6s = r6H = G9E . (3.7)

This relation holds for any value of gs provided that its value is of order one or less. This

is the essence of the statement of the correspondence principle for black strings in an

asymptotically flat space-time.

One additional technical comment is in order regarding the Gregory-Laflamme instabil-

ity of the black string solution. Black strings are unstable to decay when the Schwarzschild

radius rH is of the order of the compactification radius R. This means that the black string

is unstable at energies below E = R6/G9. In order for this instability to be hidden below

the cross-over scale, R must be of the order or smaller than ls. Of course, if R is smaller

than ls, one must worry about the Gregory-Laflamme instability of the T-dual picture.

We are therefore forced to consider the case where the compactification radius R is of the

order of the string scale ls in order to apply the correspondence principle to the black string

solution.

In the case of the black strings in an asymptotically plane wave background (2.9),

we found in the previous section that the area of the horizon and the surface gravity are

unaffected by the three form field strength parameter η. This implies that the entropy and

the temperature are also unaffected by η. In order for the critical mass at the cross-over

point to correspond to a black string whose Schwarzschild radius is the string scale, the

entropy of the strings in the plane wave background should also be unaffected by η. This

is what we will examine in the following section.

4. Thermal partition functions for strings in plane wave geometry

In this section we will describe the computation of the thermal partition function of strings

in asymptotically plane wave background from which one can derive the formula for the

entropy which enters in the consideration of the correspondence principle. Our goal is

to compute the Boltzmann trace over for the spectrum of generator (2.13) for the set of

string states in these backgrounds. Our task is drastically simplified in light of the fact

that quantization of the strings and the computation of closely related one loop partition

functions have been done already by many people [1, 16, 17],[20]–[32]. For the purpose of
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illustration, let us work with the bosonic theory and follow the notation of [16]. This paper

considered string theory in a background defined by the sigma-model of the form

I =
1

πα′τ2

∫

d2σ

[

F−1(x)CC̄ + C̄(∂u′ +A1)− C(∂̄v′ +A2) +
∑

i

∂x′i∂̄x
′∗
i

]

(4.1)

where

A1 = ∂y∗ −
i

2

∑

i

αi(x
′
i∂x
′∗
i − x′∗i ∂x′i)

A2 = ∂̄y∗ +
i

2

∑

i

βi(x
′
i∂̄x
′∗
i − x′∗i ∂̄x′i)

F−1(x) = 1 +
∑

i

αiβix
′
ix
′∗
i

x′i = ei(q+iy+q−it)xi . (4.2)

We have slightly generalized the model of [16] to allow non-vanishing values of αi, βi, q+i,

and q−i for each of the 12 transverse planes of the bosonic string theory. Setting

αi = 2η , βi = 0 , q+i = η , q−i = −η . (4.3)

gives rise to precisely the 26 dimensional version of the plane wave geometry (2.5).

The vacuum partition function in this background is

Z0 =

∫

F

d2τ

τ2

∑

m,w

∫

dε

2π
Tr
(

e2πi(τL0−τ̄ L̄0)
)

(4.4)

where

ε = −iE (4.5)

is the imaginary extension of the zero mode along the time coordinate and sum over m and

w corresponds to the momentum and the winding number along the compact y coordinates.

The τ integral is done over the fundamental domain F .
To compute the thermal partition function, on the other hand, we must evaluate

ZT =
1

T

∫

E

d2τ

τ2

∑

m,w

∫

dε

2π
eik

′ε/T Tr
(

e2πi(τL0−τ̄ L̄0)
)

∣

∣

∣

∣

∣

k′=−1

(4.6)

where E refers to the semi-infinite strip 0 < τ1 < 1, 0 < τ2 < ∞. To see that this is the

thermal partition function, write

2πi(τL0 − τ̄ L̄0) = −2πτ2(L0 + L̄0) + 2πiτ1(L0 − L̄0) (4.7)

where the term proportional to τ2 can be rewritten

L0 + L̄0 =
α′

2
(−E2 +AE +B) (4.8)
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where A and B are simultaneously diagonalizable operator acting on the space of oscillating

strings. Integrating out ε, τ1, and τ2 gives rise to

ZT = Tr

(

exp

(

− 1

T

(
√

B +
A2

4
+
A

2

))

δL0−L̄0

)

(4.9)

which can readily be interpreted as the Boltzmann sum over the ensemble of excited single

string states. This form of writing the thermal partition function can be related to the

formulation in terms of light-cone hamiltonian as it appears for example in [25] by starting

from (4.6) and following the sequence of steps

1. Decompactify the y coordinate by replacing m by Rpy, setting w = 0, and sending

R to zero.

2. Change variables by setting py = p+ −E.

3. Set E = iε and integrate out ε and τ2.

Decompactification however will give rise to a diverging volume factor. While overall

normalization of the partition function is not particularly important for computing the

density of states, we will make the point of compactifying y the coordinate on finite spatial

circle, at least near r = 0.

Details of the computation of the thermal partition function will be presented in the

appendix. Here, let us simply quote the result that for the general model, the thermal

partition function takes the form

ZT =
RV22

(2π)23α′12T

∫

F

d2τ

τ22

∞
∑

w,w′=∞

(

4τ−12

∫

dλdλ̄

)(

e4πτ2

τ122
|f(e2πiτ )|−48

)

×

×
12
∏

i=1

(

1

(2π)2
exp

[

−π(χi − χ̃i)
2

2τ2

]

τ2|θ′1(0, τ)|2
θ1(χi|τ)θ1(χ̃i|τ̄ )

)

×

× exp

(

− 4πτ−12

(

λλ̄−
(

1

2
r(w′ − τw) + i(k′ − τk)

4π
√
α′T

)

λ̄+

+

(

1

2
r(w′ − τ̄w)− i(k′ − τ̄k)

4π
√
α′T

)

λ

))

(4.10)

where

χi = −
√
α′[2βiλ+ q+ir(w

′ − τw)] + iq−i(k
′ − τk)

2πT

χ̃i = −
√
α′[2αiλ̄+ q+ir(w

′ − τ̄w)] + iq−i(k
′ − τ̄k)

2πT
. (4.11)

The Hagedorn temperature associated with this thermal partition function can be

extracted by studying the large τ2 asymptotics of the integrand of the τ integral [33]. In

this limit,

f(e2πiτ )→ 1 ,
θ′1(0, τ)

θ1(χi, τ)
→ π

sin(πχi)
, exp

[

−π(χi − χ̃i)
2

2τ2

]

→ 1 , (4.12)
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so that the λ integral becomes gaussian. After doing this integral, The Hagedorn temper-

ature can be extracted by comparing the growth of e4πτ2 and the decay of

exp

(

−4πτ−12

(τk)(τ̄ k)

16π2α′T 2

)

∼ exp

(

−τ2
k2

4πα′T 2

)

. (4.13)

The critical temperature Tcrit comes out to

Tcrit =
k

4π
√
α′
, (4.14)

which takes the smallest value

TH =
1

4π
√
α′

(4.15)

for k = 1. This result is independent of η which only enters the partition function through

the values of αi, βi, q+i, and q−i. So we find that the Hagedorn temperature for the plane

wave is the same as the Hagedorn temperature of bosonic strings in Minkowski space. This

was in fact pointed out first for the case of backgrounds compactified along a light-like

direction in [27]. We therefore conclude that the entropy of strings in (2.5) is also given

by (3.4). Since neither the black string entropy nor the string entropy were modified by

the presence of η, the two will be of the same order of magnitude precisely when the

Schwarzschild radius is of the order of the string length. In short, the correspondence

principle is working.

5. Correspondence principle for black strings in a plane wave with

Ramond-Ramond flux

So far, we have considered the cross-over in the physical properties of excited strings and

a black string in the background of plane wave supported by the NSNS three form flux.

Let us now consider the same issue for the case of plane wave background supported by

the RR three form flux.

On the black string side, the supergravity solution corresponding to a black string in

an asymptotically plane wave background with RR three form flux with strength µ can

be constructed straightforwardly by S-dualizing the solution (2.9). As far as the physical

properties such as the horizon area and the surface gravity is concerned, one should work

with these space-time in the Einstein frame. The Einstein metric, however is invariant

under the S-duality transformation, leading to the conclusion that the entropy and the

temperature is independent of the strength of the background Ramond-Ramond three

form µ.

On the perturbative string side, the generalization of (4.10) for type-IIB theory with

RR-background can also be computed and takes the form

ZT =
R

(2π)2α′T

∫

F

d2τ

τ22

∑

εi=0,1

∑

k∈2Z+ε1
k′∈2Z+ε2

∑

w,w′∈Z
e
− 1

4πα′τ2T
2−

πR2

τ2α
′ (w

′+τw)(w′+τ̄w)
Ztrε1,ε2(τ, τ̄ ;m) ,

(5.1)
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where3

m2 = µ2
(

1

(2π)2τ22T
2
(k′ − τk)(k′ − τ̄k)− iR

2πτ 22T

(

2kwτ τ̄−(τ + τ̄)(k′w + kw′) + 2k′w′
)

−

− R2

τ22
(w′ − τw)(w′ − τ̄w)

)

, (5.2)

and

Ztra,b(τ, τ̄ ;m) =
Θ(a,b)(τ, τ̄ ;m)4

Θ(0,0)(τ, τ̄ ;m)4
, (5.3)

as was defined in [24, 27]. This partition function corresponds to space-like compactifi-

cation of the y coordinate near r = 0 so as to provide a natural normalization to the

partition function. It is related to the light-cone compactified case of [27] by infinite boost

accompanied by a scaling of R and µ. To take the flat space limit, one should replace the

divergent factor

Z0 =
1

(2π)2τ22m
2
=

1

(2π)2τ22m
2
, (5.4)

which comes from the trace over the bosonic zero-mode oscillator

ZT = Z0Z
′
T , (5.5)

by the standard zero-mode factor

Z0 =
V2

(2π)2τ2α′
. (5.6)

The Hagedorn temperature can be computed by analyzing the large τ2 behavior of the

τ integral as before. This time, however, one finds that the Hagedorn temperature, given

implicitly by the relation

1

8π2α′T 2
H

− 8

(

∆

(

µ

2πTH
;
1

2

)

−∆

(

µ

2πTH
; 0

))

= 0 , (5.7)

does depend on the strength of the background RR flux µ, as was found earlier in similar

models [25]–[28]. We have used the notation of [27] where

∆(m; a) = − 1

2π2

∞
∑

n=1

∫ ∞

0
ds e−sn

2−π2m2

s cos(2πna) . (5.8)

For small µls, the Hagedorn temperature TH is of the order of the string scale 1/ls. For

large µls, TH grows like

TH(µ) ∼
µ

2 log(µls)

(

1 +O
(

1

log(µls)

))

. (5.9)

To test the correspondence principle, first note that the entropy of the black hole

S =
1

G9
(G9E)7/6 (5.10)

3Note that we are using µ which differ in normalization with what was used in [27] by a factor of
√
2.
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and the entropy of the excited strings

S =
E

TH(µ)
(5.11)

are in agreement precisely when

rH = (G9E)1/6 =
1

TH(µ)
. (5.12)

The correspondence principle requires that this is precisely the point where the curvature

of the black-hole solution gets large in the unit set by the dynamics which gives rise to

fluctuation in the background. In a sufficiently weakly coupled string theory, this fluctu-

ation is associated with the stringy halo. The scale of this halo is set by the scale of the

exponential growth in the density of stringy excitations. So if the correspondence principle

is working, one expects the curvature near the horizon of the black hole to be of the order of

magnitude set by TH(µ) when the radius of the horizon is of the same order rH = 1/TH(µ).

By explicit calculation, one finds that the curvature of the black string solution in the

Ramond-Ramond plane wave background scales like

R2(rH , µ) = RµνλσR
µνλσ =















1

r4H
µrH ¿ 1

1

µ2r6H
µrH À 1

. (5.13)

One then confirms that the dimensionless quantity

R2(rH , µ)TH(µ)
4 , (5.14)

at expected cross-over radius rH = 1/TH(µ), is always of order one regardless of the value

of µls as long as one also treats log(µls) as a quantity of order one. It appears therefore that

the correspondence principle is indeed working even though both the Hagedorn density and

the curvature depend non-trivially on µ.

One additional condition, which was assumed implicitly in this discussion, requires

that the string coupling be sufficiently weak, in order to ensure that the entropy of excited

strings at the cross-over scale

E

TH
=

r6H
G9TH

=
1

g2l7sT
7
H

À 1 (5.15)

is macroscopic.

6. Discussion

In this article, we computed the entropy as a function of energy for black strings in an

asymptotically plane wave background and for string theory in the same plane-wave back-

ground. In fact, the thermal partition function can be computed for any of the “exactly

solvable” backgrounds (4.1) in string theory considered in [16, 17], by substituting ap-
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propriate values to the general expression for the thermal partition function derived in

section 4. For example, plane wave metric written in the form

ds2 = −dt2 + dy2 +
∑

i

(dρ2i + 2η ρ2i dφi(dt+ dy)) +
4
∑

i=1

(dρ2i + ρ2i dφ
2
i ) (6.1)

which is useful for relating plane waves to Gödel universes, corresponds to setting

αi = 2η , βi = 0 , q+i = 0 , q−i = 0 . (6.2)

Other related backgrounds, such as the Melvin universe, can also be considered. Indeed, a

large class of black string solution in various asymptotic geometries can be constructed using

a generalization of the Null Melvin Twist, and for each of these solutions, the corresponding

thermal partition function for the free strings can be computed and compared.

A rigorous of mass and energy in a non-asymptotically flat space-time, however, can be

rather subtle. In this paper, we used the notion of energy implied by the thermodynamic

relation dE = TdS, and found that the correspondence principle is working well with

this definition. This however should not be considered as an acceptable substitute for a

careful definition of mass and energy in these spaces, and we hope that a more satisfying

formulation of these quantities would appear in the literature in a due course (and hopefully

in agreement with our expectations).
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A. Detailed computation of the thermal partition function

In this appendix, we describe the computation of thermal partition function. We follow

much of the notations of [16] to which readers are referred for additional information.

Thermal partition function can be computed in the path integral formalism with only

a minor modifications of the vacuum 1-loop partition function. Let us consider the case

where only one set of α, β, q+, and q− are non-zero for the sake of illustration. One loop

partition function was computed in [16] and is given by

Z0 =
rV0V22

(2π)23α′23/2

∫

F

d2τ

τ22

∞
∑

w,w′=−∞

(

4τ−12

∫

dλdλ̄

)(

e4πτ2

τ122
|f(e2πiτ )|−48

)

×

× 1

(2π)2
exp[−π(χ− χ̃)

2

2τ2
]
τ2|θ′1(0, τ)|2

θ1(χ|τ)θ1(χ̃|τ̄)
×

× exp

(

−4πτ−12

(

λλ̄− 1

2
r(w′ − τw)λ̄+

1

2
r(w′ − τ̄w)λ

))

. (A.1)
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where χ is

χ = −
√
α′[2βλ+ q+r(w

′ − τw)]
χ̃ = −

√
α′[2αλ̄ + q+r(w

′ − τ̄w)] , (A.2)

r = R/
√
α′ is the radius of the compact y direction in string units, and V0 is the infi-

nite volume factor associated with the time direction. To compute the thermal partition

function, evaluate the path integral around the background with boundary condition

t(σ1 + n, σ2 +m) = t(σ1, σ2) +
1

T
m (A.3)

and integrate the modular parameter over the half-strip E instead of the fundamental

domain F . This makes the partition function take the form

ZT =
rV22

(2π)23α′23/2T

∫

E

d2τ

τ22

∞
∑

w,w′=−∞

(

4τ−12

∫

dλdλ̄

)(

e4πτ2

τ122
|f(e2πiτ )|−48

)

×

× 1

(2π)2
exp

[

−π(χ− χ̃)
2

2τ2

]

τ2|θ′1(0, τ)|2
θ1(χ|τ)θ1(χ̃|τ̄)

×

exp

(

− 4πτ−12

(

λλ̄−
(

1

2
r(w′ − τw)− i

4π
√
α′T

)

λ̄+

+

(

1

2
r(w′ − τ̄w) + i

4π
√
α′T

)

λ

))

. (A.4)

where now

χ = −
√
α′[2βλ+ q+r(w

′ − τw)] + iq−
2πT

χ̃ = −
√
α′[2αλ̄+ q+r(w

′ − τ̄w)] + iq−
2πT

. (A.5)

Using the trick of [34], this partition function can be recast in a manifestly modular invari-

ant form

ZT =
rV22

(2π)23α′23/2T

∫

F

d2τ

τ22

∞
∑

w,w′=−∞

(

4τ−12

∫

dλdλ̄

)(

e4πτ2

τ122
|f(e2πiτ )|−48

)

×

× 1

(2π)2
exp

[

−π(χ− χ̃)
2

2τ2

]

τ2|θ′1(0, τ)|2
θ1(χ|τ)θ1(χ̃|τ̄)

×

× exp

(

− 4πτ−12

(

λλ̄−
(

1

2
r(w′ − τw) + i(k′ − τk)

4π
√
α′T

)

λ̄+

+

(

1

2
r(w′ − τ̄w)− i(k′ − τ̄k)

4π
√
α′T

)

λ

))

χ = −
√
α′[2βλ+ q+r(w

′ − τw)] + iq−(k
′ − τk)

2πT

χ̃ = −
√
α′[2αλ̄ + q+r(w

′ − τ̄w)] + iq−(k
′ − τ̄k)

2πT
.
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This expression is modular invariant. To see this, act with transformation

τ → −1

τ
, λ→ λ

τ
, λ̄→ λ̄

τ̄
, (A.6)

(k, k′) → (k′,−k) , (w,w′)→ (w′,−w) . (A.7)

which also causes χ and χ̃ to transform according to

χ→ χ

τ
, χ̃→ χ̃

τ̄
. (A.8)

Of course, everything other than the τ is just an integration variable, so this implies that

the integrand of the τ integral, when all of the other integrals are done, is a modular

invariant function of τ . In the most general case where αi, βi, q+i, and q−i for all 12 planes

are non-vanishing, one finds

ZT =
r

(2π)α′1/2T

∫

F

d2τ

τ22

∞
∑

w,w′=−∞

(

4τ−12

∫

dλdλ̄

)(

e4πτ2

τ122
|f(e2πiτ )|−48

)

×

×
12
∏

i=1

(

1

(2π)2
exp

[

−π(χi − χ̃i)
2

2τ2

]

τ2|θ′1(0, τ)|2
θ1(χi|τ)θ1(χ̃i|τ̄)

)

×

× exp

(

− 4πτ−12

(

λλ̄−
(

1

2
r(w′ − τw) + i(k′ − τk)

4π
√
α′T

)

λ̄+

+

(

1

2
r(w′ − τ̄w)− i(k′ − τ̄k)

4π
√
α′T

)

λ

))

χi = −
√
α′[2βiλ+ q+ir(w

′ − τw)] + iq−i(k
′ − τk)

2πT

χ̃i = −
√
α′[2αiλ̄+ q+ir(w

′ − τ̄w)] + iq−i(k
′ − τ̄k)

2πT
. (A.9)

As a check, note that in the limit where all of the αi, βi, q+i, and q−i goes to zero, there will

be a diverging factor of 1/(2π)2(χiχ̃i) for each of the 12 transverse planes coming from the

contribution of the zero-mode to the path integral. Replacing this factor with the standard

factor of V2/(2π)
2α′τ2, we recover the thermal partition function of bosonic strings in the

conventional normalization.

Thermal partition function for similar exactly solvable type-II backgrounds can also

be computed along these lines.

B. Oscillator computation of the thermal partition function

In this appendix, we describe the computation of the thermal partition function using the

oscillator approach. The goal is to explicitly evaluate

ZT =
1

T

∫

E

d2τ

τ2

∑

m,w

∫

dε

2π
eik

′ε/T Tr
(

e2πi(τL0−τ̄ L̄0)
)

∣

∣

∣

∣

∣

k′=−1

(B.1)

for the background (4.1). Similar computation for the vacuum partition function was

originally done by [16]. We therefore refer the reader to [16] for more information regarding
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conventions and notations. In actually evaluating the partition function, we first trace over

the oscillators and then integrate over the zero modes. This is opposite of the order in which

the computation was done in [16]. Doing the trace first actually clarifies certain technical

aspect of this computation.

Let describe the case where only one set of αi, βi, q+i, and q−i is non-vanishing only

for i = 1. One must then include the zero mode integral over pa’s

ZT =
V22
T

∫

E

d2τ

τ2

∑

m,w

∫

dε

2π

d22p

(2π)22
eik

′ε/T Tr
(

e2πi(τL0−τ̄ L̄0)
)

∣

∣

∣

∣

∣

k′=−1

. (B.2)

The L̂0 and the ˆ̄L0 operators are given by

L̂0 =
pu−p

v
−

4α′
+
α′p2a
4

+N − 1

2
γ′
(

ĴR +
1

2

)

− c0

ˆ̄L0 =
pu+p

v
+

4α′
+
α′p2a
4

+ N̄ +
1

2
γ′
(

ĴL −
1

2

)

− c0 . (B.3)

where

c0 = 1− 1

4
γ′ +

1

8
γ′2

N̂ =
∞
∑

n=1

n(b†n+bn+ + b†n−bn− + a†naana)

ˆ̄N =

∞
∑

n=1

n(b̃†n+b̃n+ + b̃†n−b̃n− + ã†naãna)

ĴR = −b†0b0 −
1

2
+

∞
∑

n=1

(b†n+bn+ − b†n−bn−)

ĴL = b̃†0b̃0 +
1

2
+
∞
∑

n=1

(b̃†n+b̃n+ − b̃†n−b̃n−)

pu−p
v
−

4α′
+
pu+p

v
+

4α′
=

α′

2

(

−
(

E − (a− + c−)Ĵ

2

)2

+

(

py −
(a+ + c+)Ĵ

2

)2

+

+

(

wR

α′
− (a+ + c+)Ĵ

2

)2

− (a− − c−)2Ĵ2

4

)

pu−p
v
−

4α′
− pu+p

v
+

4α′
= −mw +

γĴ

2
, (B.4)

and

γ = (c+ + a+)wR +
1

2
(α+ β)s+

1

2
(α− β)p

γ′ = 2

(

1

2
γ −

[

1

2
γ

])

. (B.5)

The fact that the L̂0 operators depend on γ ′ which not a continuous function of γ may

seem to suggest that the evaluation of the partition function cumbersome. One can however
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show that this expression is invariant under shift of γ ′ by 2, by computing the trace over

oscillators first. To address this issue, let us introduce auxiliary variables JL and JR and

write

ZT =
V22
T

∫

dJL
∫

dJR
∫

d2τ

τ2

∫ ∞

−∞

dε

2π

d22p

(2π)22

∞
∑

m,w=−∞

eik
′ε/T Tr δ(ĴL − JL)δ(ĴR − JR) exp[2πi(τL0 − τ̄ L̄0)]

∣

∣

∣

k′=−1
, (B.6)

introduce an integral expression for the delta function

δ(ĴR − JR) =
∫

dχ exp[−2πiχ(JR − JR)] , δ(ĴL − JL) =
∫

dχ̃ exp[−2πiχ̃(JL − JL)] ,
(B.7)

and write γ in terms of JL,R as

γ = (a++c+)wR+α′[(c+−a+)py+(a−−c−)E]+
1

2
α′(a2+−a2−−c2++c2−)(JL+JR) . (B.8)

Using the trick of writing

exp
(πτ2

2
γ2
)

=

√

τ2
2

∫

dν exp

(

−1

2
πτ2ν2 − πτ 2νγ′

)

(B.9)

introducing shift of variables

JL = J ′L −
1

2
ν , JR = J ′R +

1

2
ν , (B.10)

and integrating out ν, one can show that

ZT =
V22
T

∫

dτ2

τ2

∫

dχ

∫

dχ̃

∫

dJ ′L
∫

dJ ′R
∫ ∞

−∞

dε

2π

dap

(2π)a

∞
∑

m,w=−∞

eik
′ε/T ×

× exp

(

−π(χ− χ̃)
2

2τ2

)

(

Tr exp
[

2πi(τ(N − 1)− χĴR)
])

×

×
(

Tr exp
[

−2πi(τ̄(N̄ − 1) + χ̃ĴL)
])

×

× exp

[

2πiχJ ′R + 2πiχ̃J ′L − πiτγ ′J ′R − πiτ̄γ′J ′L +

+ 2πiτ

(

pu−p
v
−

4α′
+
α′p2a
4

)

− 2πiτ̄

(

pu+p
v
+

4α′
+
α′p2a
4

)]
∣

∣

∣

∣

k′=−1

. (B.11)

The trace can be computed

Tr

{

exp
[

2πi(τ(N − 1)− χĴ ′R)− 2πi(τ̄ (N̄ − 1) + χ̃Ĵ ′L)
]

}

=

=
1

(2π)2
e4πτ2 |f(e2πiτ )|−48eiπ(χ−χ̃)ν |θ′1(0, τ)|2

θ1(χ, τ)θ1(χ̃, τ̄)
, (B.12)
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giving

ZT =
V22
T

∫

dτ2

τ2

∫

dχ

∫

dχ̃

∫

dJ ′L
∫

dJ ′R
∫ ∞

−∞

dε

2π

dap

(2π)a

∞
∑

m,w=−∞

eik
′ε/t ×

×
(

1

(2π)2
e4πτ2 |f(e2πiτ )|−48 exp

(

−π(χ− χ̃)
2

2τ2

) |θ′1(0, τ)|2
θ1(χ, τ)θ1(χ̃, τ̄ )

)

×

× exp

[

2πiχJ ′R + 2πiχ̃J ′L − πiτγ ′J ′R − πiτ̄γ′J ′L +

+ 2πiτ

(

pu−p
v
−

4α′
+
α′p2a
4

)

− 2πiτ̄

(

pu+p
v
+

4α′
+
α′p2a
4

)]∣

∣

∣

∣

k′=−1

. (B.13)

In this form, it can be readily verified that a shift γ ′ → γ′ + 2 can be canceled by a shift

of integration variables

χ→ χ+ τ , χ̃→ χ̄+ τ̄ . (B.14)

Now that we see that γ ′ can freely be replaced by γ, let us integrate out the zero modes

ε and pa, which is a gaussian integral, and Poisson resum m. To evaluate the integrals

further, it is convenient to introduce an auxiliary variable by multiplying the integrand by

1 = 4τ−12

∫

dλdλ̄× (B.15)

× exp

(

−4πτ−12 [λ− 1

2
r(w′ − τw) + iτ2

√
α′αJ ′L][λ̄+

1

2
r(w′ − τ̄w)− iτ2

√
α′βJ ′R]

)

.

Then, J ′L and J ′R integrals give rise to a delta function which constrain χ and χ̃. As a

result of these integrations, one finally arrives at

ZT =
rV22

(2π)23α′23/2T

∫

E

d2τ

τ22

∞
∑

w,w′=−∞

(

4τ−12

∫

dλdλ̄

)(

e4πτ2

τ122
|f(e2πiτ )|−48

)

×

× 1

(2π)2
exp[−π(χ− χ̃)

2

2τ2
]
τ2|θ′1(0, τ)|2
θ1(χ|τ)θ1(χ̃|τ̄)

×

exp

(

−4πτ−12

(

k′2

16π2α′T 2
+ λλ̄− 1

2
r(w′ − τw)λ̄+

1

2
r(w′ − τ̄w)λ

))
∣

∣

∣

∣

k′=−1

.(B.16)

where

χ = −
√
α′[2βλ+ q+r(w

′ − τw)] + ic−k
′

2πT

χ̃ = −
√
α′[2αλ̄+ q+r(w

′ − τ̄w)] + ia−k
′

2πT
. (B.17)

Up to a shift in λ and λ̄, this is identical to (A.4) and (A.5) that was presented in the

previous section.
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