
J
H
E
P
0
5
(
2
0
0
4
)
0
6
9

Published by Institute of Physics Publishing for SISSA/ISAS

Received: August 27, 2003

Revised: May 20, 2004

Accepted: May 26, 2004

Instanton effects and linear-chiral duality

Joel Giedt

Department of Physics, University of Toronto

60 Saint George Street, Toronto, ON M5S 1A7 Canada

E-mail: giedt@physics.utoronto.ca

Brent D. Nelson

Michigan Center for Theoretical Physics, University of Michigan

3444A Randall Laboratory, Ann Arbor, MI 48109 U.S.A.

E-mail: bdnelson@umich.edu

Abstract: We discuss duality between the linear and chiral dilaton formulations, in the

presence of super-Yang-Mills instanton corrections to the effective action. In contrast to

previous work on the subject, our approach appeals directly to explicit instanton cal-

culations and does not rely on the introduction of an auxiliary Veneziano-Yankielowicz

superfield. We discuss duality in the case of an axion that has a periodic scalar potential,

and find that the bosonic fields of the dual linear multiplet have a modified interpretation.

We note that symmetries of the axion potential manifest themselves as symmetries of the

equations of motion for the linear multiplet. We also make some brief remarks regarding

dilaton stabilization. We point out that corrections recently studied by Dijkgraaf and Vafa

can be used to stabilize the axion in the case of a single super-Yang-Mills condensate.

Keywords: Solitons Monopoles and Instantons, Supersymmetric Effective Theories.

c© SISSA/ISAS 2004 http://jhep.sissa.it/archive/papers/jhep052004069/jhep052004069.pdf

mailto:giedt@physics.utoronto.ca
mailto:bdnelson@umich.edu
http://jhep.sissa.it/stdsearch?keywords=Solitons_Monopoles_and_Instantons+Supersymmetric_Effective_Theories


J
H
E
P
0
5
(
2
0
0
4
)
0
6
9

Contents

1. Introduction 1

2. Effective theory and motivations 2

3. Linear-chiral duality 6

4. Component fields 8

5. A brief remark 9

6. Dual description for the axion 9

6.1 Massive axion dual 10

6.2 Axion with periodic potential 10

7. Single condensate stabilization 11

8. Outlook 13

1. Introduction

Quite impressive and reliable results have been obtained for the instanton generated non-

perturbative superpotential in super-Yang-Mills (SYM) and super-QCD [1]. These results

have been further refined by computations of corrections due to decoupled matter, sparked

by recent work [2, 3] that is currently the subject of intense interest and activity.

Here we discuss the duality between the dilaton described by a linear multiplet [4]

L and the dilaton described by a chiral multiplet S, in rigid N = 1 4d supersymmetry.

While this has been discussed at length with regard to anomaly cancellation [5], in the

present article we aim to describe instanton effects in the dual formalism. Such effects play

a crucial role in string-inspired models of moduli stabilization; for example, [6]. In contrast

to previous work, such as in [5, 6], we discuss this duality without introducing a Veneziano-

Yankielowicz (VY) superfield [7]. This is an auxiliary superfield that produces the known

instanton superpotential when it is integrated out.1 We avoid the VY superfield because

we would prefer to understand the duality without ever “integrating in” this superfluous

field in the first place.2

1The VY superfield can also be regarded as a background field of the 2PI effective action [8].
2In section 7, we will make some remarks in regard to the superpotential corrections computed by

Dijkgraaf and Vafa. At that juncture it will be convenient to make use of the VY superfield in order to

make contact with their notation.

– 1 –
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We now summarize the content of our paper and our key results:

• In section 2 we briefly describe the motivations for studying nonperturbative correc-

tions to the dilaton potential: first because they are certainly present, as a conse-

quence of instanton configurations, and second because these corrections can play an

important role in stabilizing the vacuum.

• Using straightforward manipulations in the superfield formalism, we find in section 3

that when the linearity of the multiplet L is sufficiently modified, this formalism is

exactly equivalent to the one involving the chiral multiplet S.

• We have verified our results by also performing the duality transformation at the com-

ponent field level. In section 4 we discuss the translation between the two formalisms

in terms of component fields.

• In section 5, we address an apparent inconsistency between the two formalisms which

has appeared in the literature [6]. We point out a simple calculus error that was made,

which when corrected, resolves the apparent difficulty for exact duality.

• In section 6 we study the equations of motion for the bosonic fields in the modified

linear multiplet. We find that the traditional interpretation of the 1-form that is

contained in the linear multiplet — as the Hodge dual of a field strength for a 2-form

— is modified if the axion has a potential.

• We find that symmetries of the axion potential are re-expressed in the dual formalism

as symmetries of the equations of motion for the 1-form. This is also discussed in

section 6.

• We point out that the corrections computed by Dijkgraaf and Vafa [2] may be used

to stabilize the axion using a single SYM condensate. Details on this matter may be

found in section 7.

• In section 8 we give our concluding remarks and comment on issues for further re-

search.

2. Effective theory and motivations

In this section we review certain well-known facts regarding instanton corrections in pure

SYM. Here, the pure SYM theory must be understood as resulting from a more fundamental

theory with Nf = Nc − 1 flavors of fundamental matter, where Nc is the number of

colors; i.e., SU(Nc) super-QCD. As is well-known, instantons generate a nonperturbative

superpotential in the Nf = Nc− 1 theory [1]. One can then obtain an effective pure SYM,

together with a nonperturbative superpotential, valid below a scale µ, by studying the

theory along a flat direction where all of the flavors obtain masses of order µ. For a review

and citations to the original literature, we refer the reader to [9, 10].

– 2 –
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We will work in the chiral dilaton formulation, where these results are most familiar.

The scalar component s of the chiral dilaton field S determines the effective gauge coupling

and the effective theta angle at a scale µ through its vacuum expectation value (vev):

〈s〉 =
1

g2
− i

θ

8π2
. (2.1)

In the case of pure SYM the effective superpotential for S is expressed in terms of a

superfield extension of the ordinary dynamical YM scale:

Λ = µ exp

(

−
8π2S

b

)

, W (S) = c̃Λ3 , (2.2)

where for example b = 3Nc for pure SU(Nc). Generally we write the Kähler potential as

K(S + S) = µ2k(S + S) . (2.3)

In examples we will examine specific forms for k(S + S). We always assume that K is a

function of S + S, but not of S − S. Consequently, ∂K/∂S = ∂K/∂S = ∂K/∂(S + S), or

in a more abbreviated notation KS = KS = K ′.

Quite often in the literature on supergravity and string-inspired effective theories, only

the leading order Kähler potential, −µ2 ln(S + S), is used; however, just as the superpo-

tential receives instanton corrections, the Kähler potential will likewise be modified by

nonperturbative effects. Due to a lack of holomorphy, it is difficult to obtain any reliable

information on the form of K in the nonperturbative regime. However, instanton correc-

tions are certainly present. For example, if we start from the leading order k = − ln(S+S),

and the nonperturbative superpotential (2.2), the 1-loop corrections to the Kähler potential

take the form

δK ∝ (k′′)−2|W ′′|2 ∝ (S + S)4(ΛΛ)3 . (2.4)

Higher orders in perturbation theory and nonperturbative effects will generalize this result

in a way that we cannot presently determine. For example, nonperturbative corrections

might allow for integral powers of ΛΛ that are not multiples of 3, since they would not

necessarily derive from the superpotential, as was the case with (2.4). We can, however,

be confident that the leading order Kähler potential is just an approximation that in some

regimes may prove to be inaccurate.

Rather than ambling along with a form of K that ignores this reality, we find it more

logical to explore various “reasonable” forms for the nonperturbative Kähler potential;

and, to classify the qualitative results that follow. Indeed, intuition leads us to believe that

some ad hoc assumptions are better motivated than others.

As an example, we find it entirely sensible to include instanton effects in the Kähler

potential in the most naive way, based on dimensional analysis:

K(S + S) = µ2k(S + S) = −µ2 ln(S + S) + c(S + S)ΛΛ +O

(

Λ2Λ
2

µ2

)

, (2.5)

with c(S + S) a slowly varying function of S + S and the O(Λ2Λ
2
/µ2) terms presumably

negligible. Of course more general assumptions exist; say, fractional powers of ΛΛ appearing

– 3 –
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in (2.5), or functions of Λ + Λ. Such generalizations are captured by allowing k(S + S) to

be arbitrary.

Our interest in nonperturbative corrections to K is not just academic. In rigid super-

symmetry, the scalar potential that determines the vacuum is given by

Vrigid = µ4 |24π
2c̃|2

b2k′′(s+ s)
exp

[

−
24π2

b
(s+ s)

]

= µ4 |c̃|
2

∂2
xk(x)

exp(−x) , x =
24π2

b
(s+ s) . (2.6)

Generally, the effect of corrections such as assumed in (2.5) is merely3 to slightly shift the

location and height of the maximum of Vrigid. As an example, we consider the case where

the function c(s+ s) amounts to what is essentially a polynomial in g2:

k(x) = ln(24π2/b)− ln(x) + (c1 + c2x
−1) exp

(

−
x

3

)

. (2.7)

(The constant term is due to the replacement of s+ s with x; it is irrelevant here but must

be kept track of for supergravity considerations below.) Eq. (2.7) is just the first two terms

in (2.5) with c(s+s) ∝ c1+ c2b/24π
2(s+s), with constants c1 and c2. Thus, the correction

behaves like

δK ∼

(

c1 + c2
bg2

48π2

)

exp

(

−
8π2

bg2

)

. (2.8)

We believe this to be a reasonable assumption, though we have no inkling about the

magnitude of c1 or c2 (except that the naive loop factor has been scaled out of c2, so

that this sort of suppression does not seem implied for c2). Higher orders in g2 certainly

will appear in c(s + s), but for our illustration, which is only meant to be qualitative, we

neglect them as small. For convenience, we define V̂rigid(x) = Vrigid(x)/µ
4|c̃|2. In figure 1

the dashed line shows this quantity as a function of x for the case of c1 = 0 and c2 = 1.

It can be seen that the well-known runaway behavior to vanishing and infinite couplings is

retained.

On the other hand if we generalize to supergravity, the scalar potential reads instead

Vsugra = µ4|c̃|2e−x+k(x)
[

(∂2
xk(x))

−1(1− ∂xk(x))
2 − 3

]

. (2.9)

The supergravity corrections have important effects given the assumed instanton-induced

corrections (2.7). For convenience, we define V̂sugra(x) = 24π2Vsugra(x)/bµ
4|c̃|2. In figure 1

the dotted line shows this quantity as a function of x, again for the case of c1 = 0 and

c2 = 1. In the regime where x−1 exp(−x/3) competes with the “leading order,” i.e. where

x ≤ O(1), the modification is so great as to create a deep minimum — and, to completely

lift the infinite coupling runaway.

3We do not consider corrections that are radically different from (2.5); for example, in [11] it was found

that a form of K(S+S) can be engineered to yield a nontrivial minimum in the rigid susy case. Our results

for chiral-linear duality, however, may also be applied to this K(S + S).
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Figure 1: A comparison of the effects of nonperturbative corrections to K for the rigid supersym-

metry and supergravity scalar potentials, as a function of x ∝ s+ s. The dashed line represents the

rigid supersymmetry potential for c1 = 0, c2 = 1, while the dotted line is the supergravity potential

for the same choice of parameters. On the other hand, the solid line represents the supergravity

potential with c1 = 3.27 and c2 = 1; this yields a vanishing cosmological constant.

Clearly, the g4 ∼ x−2 corrections to c(s + s) that have been neglected in (2.7) will

modify the details of the strong coupling behavior. It is also true that in this same regime

ΛΛ/µ2 = exp(−x/3) = O(1), so the truncation of (2.5) is not justified. Nevertheless,

as higher powers of ΛΛ/µ2 are added in, it is a generic feature that the strong coupling

runaway behavior tends to be removed and nontrivial (typically local) minima are created.

Note that for c1 = 0 and c2 = 1 the vacuum energy of is order −µ4; it is well-

known that further refinements and fine-tuning can be used to manipulate this so-called

Kähler stabilization of the dilaton [12, 6]. Indeed, it is possible to obtain an approximately

vanishing cosmological constant and to stabilize at a “weak coupling” minimum. As an

example, we have fixed c2 = 1 and then tuned c1 to a value such that the minimum occurs

at vanishing cosmological constant. We find that c1 = 3.27 works well; the corresponding

potential is indicated in figure 1 by the solid line. Naturally the nonperturbative corrections

to the Kähler potential do not alter the asymptotic behavior at weak coupling, where they

are totally negligible; the weak coupling runaway persists. However, with the cosmological

constant tuned to zero the barrier height is considerable: Ebarrier ≈ 10µ(b|c̃|2/24π2)1/4. If

µ is of order the 4d Planck scale, 2.4×1018 GeV, and if |c̃| is not too small, the effects of the

approximately degenerate vacuum at x → ∞ would presumably be neglible, for suitable

cosmological initial conditions.

While the supergravity potential (2.9), together with assumptions for K such as (2.7),

may be used to stabilize s + s, it can be seen that the axion (s − s)/i is absent and

thus remains a flat direction. To stabilize the axion requires slightly more complicated

assumptions about the form of the effective theory. As a very well-known example, suppose

the relevant gauge group has 2 simple factors with b1 6= b2. Eq. (2.2) is generalized to

Λ1 = µ exp

(

−
8π2S

b1

)

, Λ2 = µ exp

(

−
8π2S

b2

)

, W (S) = c̃1Λ
3
1+ c̃2Λ

3
2 . (2.10)

V is no longer just a function of s + s. In this case the axion (s − s)/i is also stabilized.

Another possibility is to add heavy matter that has a nontrivial vacuum. When this matter

– 5 –



J
H
E
P
0
5
(
2
0
0
4
)
0
6
9

is integrated out, as will be seen in section 7, it is possible to obtain corrections to (2.2)

that stabilize the axion.

In summary, instanton effects — however they might appear in the Kähler potential

— play an important role in the stabilization of the dilaton and axion. Thus it may

be of interest to translate between the chiral dilaton formulation and the linear dilaton

formulation when these effects are present. Furthermore, we would like to be able to do

so without introducing additional machinery, such as the Veneziano-Yankielowicz auxiliary

superfield. In the next section we elucidate how this is to be done in the case of rigid

supersymmetry.

3. Linear-chiral duality

We now want to address these instanton corrections in the the dual linear dilaton formula-

tion. To do this we want to begin with the chiral dilaton formulation and translate to an

equivalent system; this is the so-called duality transformation. It is essential that field re-

definitions are made that respect both: (i) the equations of motion, and (ii) any constraint

equations. To this end we write a first-order lagrangian whose equations of motion contain

both (i) and (ii): the constraints are imposed dynamically.

We begin with the dilaton effective lagrangian in the chiral formulation, written in

superspace notation:4

L =

∫

d4θK(S + S) +

[
∫

d2θW (S) + h.c.

]

. (3.1)

We replace this with a first-order lagrangian that, as will be shown below, imposes the

chirality constraints, using Lagrange multiplier superfields U,U :

LFO =

∫

d4θ K(S + S) +

∫

d4θ

[

U

(

S −
1

4
D

2
Σ

)

+ U

(

S −
1

4
D2Σ

)]

+

+

∫

d2θW

(

1

4
D

2
Σ

)

+

∫

d2θW

(

1

4
D2Σ

)

. (3.2)

Note that in (3.2) all superfields S, S, U, U,Σ,Σ are unconstrained.

The simplest superfield equations of motion occur for fields that appear only in D-

density terms; i.e., only under
∫

d4θ. The superfield equations of motion obtained from

varying U and U yield the chirality and antichirality constraints:

S =
1

4
D

2
Σ , S =

1

4
D2Σ . (3.3)

Varying with respect to S and S yields simply

0 = U +K ′(S + S) = U +K ′(S + S) . (3.4)

Thus when we impose the equations of motion that follow from (3.2), we obtain the on-shell

projection to a real multiplet L:

L = U = U = −K ′(S + S) . (3.5)

4Our conventions are those of [13].
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Note that if we had just used L in place of U and U from the start, we would not

have the two equations in (3.3) independently. Instead, the equations of motion would only

require

S + S =
1

4

(

D
2
Σ+D2Σ

)

. (3.6)

Since S and S are unconstrained superfields in the first order lagrangian (3.2), the con-

straint (3.6) does not enforce (anti-)chirality by its equations of motion. Of course, the

identification (3.3) is a particular solution to (3.6). But for the duality to be faithful,

the equations of motion must have (3.3) as a unique solution. In this respect our duality

transformation is more restrictive than the one that has previously been imposed in the

literature [5, 6].

While (3.5) implicitly tells us how to replace S + S with L in the lagrangian, the

superpotential terms will involve S and S separately. This is particularly important where

the axion has a potential. In the following manipulations we will see that the necessary data

is obtained from variation of (3.2) with respect to Σ and Σ, which leads to modified linearity

conditions for L. Varying with respect to Σ and Σ requires that we handle a mixture of

D-density and F-density terms. To perform the analysis we rewrite the D-density terms

that contain these fields using

∫

d4θUD
2
Σ = −

1

4

∫

d2θD
2
(

UD
2
Σ
)

(3.7)

and similarly for the D2Σ term.5

We vary Σ to obtain

δLFO =
1

16

∫

d2θ

[

D
2
(

UD
2
δΣ
)

+ 4W ′
(

1

4
D

2
Σ

)

D
2
δΣ

]

=
1

16

∫

d2θ
[

D
2
(

D
2
UδΣ

)

+ 4W ′(S)D
2
δΣ
]

= −
1

4

∫

d4θ
[

δΣ
(

D
2
U + 4W ′(S)

)]

. (3.8)

In the second line we use the equations of motion (3.3) and the identity

0 = D
2
[

D
2
UδΣ− UD

2
δΣ
]

. (3.9)

In the 3rd line we use D
2
S ∝ D

2
D

2
Σ = 0 and reverse the type of manipulation that led

to (3.7). A similar analysis leads us to write the variation with respect to Σ as:

δLFO = −
1

4

∫

d4θ
[

δΣ
(

D2U + 4W
′
(S)
)]

. (3.10)

Vanishing of these two variations leads to the constraints:

D
2
U + 4W ′(S) = 0 , D2U + 4W

′
(S) = 0 . (3.11)

5See for example p. 67 of [13].
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Taking into account (3.5) we arrive at the modified linearity conditions

D
2
L = −4W ′(S) , D2L = −4W

′
(S) . (3.12)

These, together with (3.5), are sufficient to (implicitly) redefine the components of S, S in

terms of the components of L.

4. Component fields

We have verified all of the above superfield relations at the level of component fields. This

straightforward exercise begins by writing out the unconstrained superfields appearing in

(3.2) in terms of θ, θ expansions. For example, keeping only bosons, the real part of U is

given by

L = `+ θσmθhm + θ2Z + θ
2
Z + θ2θ

2
(

D +
1

4
¤`

)

. (4.1)

Recall that at this point we want L to be unconstrained, except for the fact that it is

defined as L = (U + U)/2. Thus L contains independent fields Z,Z and the 1-form hm

is completely general. These degrees of freedom will be subject to constraints — i.e., the

modified linearity conditions — when we go on shell. It is straightforward to substitute

analogous expressions for the unconstrained superfields into (3.2) and to work out the

component expansion. From there, one may work out the equations of motion. There are

many, and we will spare the details. Here we will just state key results.

The lagrangian dual to (3.1), neglecting fermions, is merely:

L(`, hm) = −
1

4
`¤ [s(`, ∂mh

m) + s(`, ∂mh
m)]−

1

K ′′(s(`, ∂mhm) + s(`, ∂mhm))
×

×

(

1

4
hmhm + |W ′(s(`, ∂mh

m))|2
)

. (4.2)

Here we have shown that s = s(`, ∂mh
m) wherever it appears. It remains to specify how

this is obtained.

Implicitly, we can replace s+ s everywhere using

` = −K ′(s+ s) . (4.3)

Implicitly, we can replace s− s using the additional constraint

∂mhm =
i

K ′′(s+ s)

(

W ′(s)W
′′
(s)−W

′
(s)W ′′(s)

)

. (4.4)

Up to some factors that involve s + s, one sees that ∂mhm is identified with V ′(a), the

axion force term obtained from the potential V (a) for the axion a = (s− s)/i. This is not

surprising, because we have the θθ part of the constraint (3.5):

hm =
1

i
K ′′(s+ s)∂m(s− s) (4.5)

Thus ∂mhm should involve ¤a. But the equations of motion for the axion relate ¤a to

V ′(a).

– 8 –
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For the θ2 and θ
2
components of L we have

Z = L|θ2 =W
′
(s) , Z = L|

θ
2 =W ′(s) . (4.6)

This is the θ = θ = 0 part of the modified linearity conditions (3.12). In fact it is

straightforward to check that (3.12) is consistent with the component field equations of

motion to all orders in θ, θ. We remark that in the presence of the instanton effects, the

modified linear multiplet contains auxiliary fields. In particular, (4.6) indicates that L

contains the F-term component of the chiral dilaton and its conjugate, FS and FS . This,

of course, has been noted before in formalisms that relied on a Veneziano-Yankielowicz

superfield [5, 6, 14].

5. A brief remark

We note in passing that an apparent inequivalence between the two formalisms was noted

in the appendix of [6]. There it was found in the linear dilaton formalism that the Kähler

moduli tI of a string-inspired effective supergravity were stabilized at the self-dual values

(with respect to an SL(2,Z) isometry of the scalar manifold) of 1 or eiπ/6. A duality

transformation was made in the appendix of [6], and it was found that “the minimum

is shifted slightly away” [from the self-dual value]. However, we find that the apparent

conflict with linear-chiral duality is resolved by noting a simple error that was made by

the authors of [6] in obtaining their eq. (A.16) from their eq. (A.14). They have kept too

many quantities constant in performing the differentiation — simultaneously both s + s

and `. But since tI+ t
I
mixes with s+s to give `, in their eq. (A.1), this is not right. Once

the chain rule is properly applied, it is not hard to show that their dual chiral formulation

also predicts stabilization of tI at the self-dual values. (We do not provide further details

because they just involve elementary manipulations. However, we thought it important to

resolve this apparent problem for lineal-chiral duality.)

6. Dual description for the axion

If we have only one condensate and a superpotential of the form (2.2) then |W ′(s)|2 is

independent of s − s; the axion has no potential and is massless. Equivalently, the right-

hand side of (4.4) vanishes identically. This constraint equation has the general solution

hm = εmnpq∂nbpq . (6.1)

Thus, as has been known for a very long time, the 1-form in the linear multiplet is Hodge

dual to a 2-form field strength [4].

In more general situations the axion gets a potential from the instanton physics. In

this case the right-hand side of (4.4) does not vanish. eq. (6.1) is inconsistent with the

constraints. The 1-form in the linear multiplet must be reinterpreted. It is no longer just

the Hodge dual of a 2-form field strength. Instead, it is the Hodge dual of a massive

3-form [15].

– 9 –
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6.1 Massive axion dual

Temporarily we oversimplify and consider just an “axion” with a constant, field independent

mass. Thus we assume

L(a) = −
1

2
∂ma∂

ma−
1

2
m2a2 . (6.2)

The duality is obtained with the identification

hm ≡ ∂ma ⇒ ∂mhm = ¤a = m2a , (6.3)

where in the second step we use the equation of motion for a. This equation of motion

and the constraint (relating the 1-forms hm and ∂ma) are obtained from the first order

lagrangian

LFO =
1

2
∂ma∂

ma−
1

2
m2a2 + hm (hm − 2∂ma) . (6.4)

It is easy to check that the dual theory obtained by eliminating a from LFO through its

equations of motion is given by

L(hm) = −
1

2m2

(

m2hmhm + ∂mhm∂
nhn

)

. (6.5)

The equations of motion that follow from L(hm) are

∂m∂nhn −m
2hm = 0 . (6.6)

The general solution is nothing but (6.3). Thus, the axion just parameterizes the general

solution to the 1-form equations of motion. We will see that this is likewise true in the

more interesting circumstance of the 1-form dual to an interacting axion.

Note that (6.6) is not the usual equation of motion for a massive vector boson. In

Fourier space the mode expansion coefficients am
p

of hm are not independent. Instead they

satisfy

am
p

=
pm

√

p2 +m2
a0
p
. (6.7)

In the rest frame, the spatial components of hm vanish;6 there is only 1 on shell degree of

freedom. From this we understand how the 1-form can be equivalent to a 0-form. In fact,

this is precisely the behavior of a massive 3-form [15].

6.2 Axion with periodic potential

Here we suppose

L(a) = −
1

2
∂ma ∂

ma+m4 cos
( a

m

)

. (6.8)

The degenerate vacua are labeled by an integer n, indicating 〈n|a|n〉 = 2πn. The mass of

a fluctuation about any of these vacua is m. It is interesting to see how this circumstance

is reflected in the dual 1-form theory. To this end, we write down an equivalent, first order

lagrangian:

LFO =
1

2
∂ma∂

ma+m4 cos
( a

m

)

+ hm (hm − 2∂ma) . (6.9)

6This can also be seen directly from (6.6).
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The equations of motion obtained from LFO are

hm = ∂ma , 0 = ¤a+m3 sin
( a

m

)

− 2∂mh
m , (6.10)

clearly equivalent to the equation of motion that follows from (6.8). Next we eliminate a

to obtain the equivalent 1-form lagrangian. Differentiating the second equation in (6.10)

and contracting with hn it is easy to show

m4 cos
( a

m

)

= m2h
n∂n∂mh

m

hphp
. (6.11)

With this result, one finds

L(h) = −
1

2
hmhm +m2h

n∂n∂mh
m

hphp
. (6.12)

The equations of motion that follow from (6.12) are not illuminating, and we need not

write them here. The sole thing worth noting about them is that because of the duality

transformation that has been made, we are guaranteed that they have a general solution

hm = ∂mψ, where ψ is an integral of the differential equation

¤ψ = m3 sin

(

ψ

m

)

. (6.13)

But this is nothing other than the axion equation of motion. Thus, the periodicity of the

axion potential is reflected in a degeneracy of solutions to the equivalent 1-form equations of

motion. This degeneracy is not immediately apparent (to us) upon inspection of (6.12). For

this reason, the chiral formulation seems advantageous for understanding the pseudoscalar

vacuum of the theory.

7. Single condensate stabilization

We now discuss stabilization of the dilaton and axion using only a single SYM condensate.

To achieve this, we appeal to the corrections — to the Veneziano-Yankielowicz (VY) super-

potential in the case where a very heavy adjoint chiral superfield is present — worked out

recently by Dijkgraaf and Vafa (DV) [2]. We use the DV result that the VY superpotential,

which contains the VY auxiliary superfield U , can be written

W (S,U) = NU

[

ln
U

µ3
+

8π2

N
S + f(U)

]

. (7.1)

Here f is a calculable power series in the VY superfield:

f(U) =
∑

n>0

cn

(

U

µ3

)n

. (7.2)

The equations of motion for the VY superfield are:

∂W (S,U)

∂U
= 0 = N

[

ln
U

µ3
+

8π2

N
S + f(U) + U

∂f(U)

∂U
+ 1

]

. (7.3)
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The solution to (7.3) can be written implicitly as

U = Λ3 exp

(

−f − U
∂f

∂U

)

, Λ3 = µ3e−1 exp

(

−
8π2

N
S

)

. (7.4)

Note that (up to an unimportant factor e−1) we have retained the leading order definition

(2.2) of Λ, the uncorrected dynamical (“QCD”) scale. The VY superfield is auxiliary, in

that it has no kinetic term. It thus has a singular metric, and consequently an effectively

infinite mass. We will therefore eliminate U with its equations of motion.

As an aside, we note that, upon imposing the equation of motion (7.3),

∂2W (S,U)

∂U2
=
N

Λ3

(

1 +O

(

Λ3

µ3

))

. (7.5)

Thus even if U had a (canonical) kinetic term, it would have a very large mass mU :

mU = O

(

Nµ3

Λ3

)

· µÀ µ . (7.6)

At energies of order Λ3 it is essentially static, and certainly should be integrated out in

discussing the low energy effective theory.7 The case where the gaugino bilinear has been

treated as a dynamical field has been studied in much greater detail in [16], where a similar

conclusion was reached about the effective mass scale of this composite degree of freedom.

Eliminating U with its equations of motion, we obtain:

W (S) ≡W (S,U(S)) = −NU

(

1 + U
∂f(U)

∂U

)
∣

∣

∣

∣

U(S)

. (7.7)

Provided Λ ¿ µ and the coefficients cn are not unreasonably large (a more precise state-

ment will be given shortly), we need keep only the leading term in (7.2):

f ≈ c1
U

µ3
≈ c1

Λ3

µ3
. (7.8)

The coefficient c1 depends on the massive matter representations that have implicitly be

integrated out to obtain (7.2). As an example we use the DV perturbative superpotential

with a single adjoint chiral superfield:

W =
1

2
mΦ2 +

1

3
λΦ3 ⇒ c1 = 2λ2

( µ

m

)3
. (7.9)

We implement the approximation (7.8) to obtain:

U
∂f

∂U
≈ f , U ≈ Λ3 exp(−2f) ≈ Λ3

(

1− 2c1
Λ3

µ3

)

,

W (S) ≈ −NΛ3

(

1− c1
Λ3

µ3

)

= −NΛ3

(

1− 2λ2 Λ
3

m3

)

. (7.10)

7We thank Erich Poppitz for emphasizing this to us.
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Now we can be more specific about the smallness of corrections: we require m3 À λ2Λ3 in

order that the approximations be valid. It is worth emphasizing that it is not enough to

have Λ¿ µ.

To understand the vaccum in the presence of the DV corrections, note that

∂Λ3

∂S
= −

8π2

N
Λ3 . (7.11)

Thus

W ′(S) ≈ 8π2Λ3

(

1− 2c1
Λ3

µ3

)

= 8π2Λ3

(

1− 4λ2 Λ
3

m3

)

. (7.12)

This theory has a supersymmetric vacuum, and therefore a global minimum, at

2c1Λ
3 ≈ µ3 ⇔ m3 ≈ 4λ2Λ3 . (7.13)

Unless λ 6= O(1), we find stabilization at Λ ≈ m using only a single condensate and

without reference to nonperturbative corrections to the Kähler potential. Regardless of the

value of λ, the “minimum” is outside of the regime of validity of the approximation (7.8)

made above. This is clear from the far right-hand side of (7.12): the “correction” must

cancel against the leading order to have W ′(S) ≈ 0. Thus it is not possible to draw any

firm conclusions without pursuing the higher order corrections in (7.2). Nevertheless it

is interesting that a nontrivial minimum does exist for the truncated correction (7.8). In

particular, we find it significant that |W ′(S)|2 depends on both S + S and S − S. Thus

the axion can be stabilized with just a single condensate. This qualitative result should

continue to hold even when the additional corrections in (7.2) are taken into account.8

8. Outlook

In rigid supersymmetry, we have arranged for the equations of motion of the first-order

system to enforce all constraint equations of the chiral and linear systems. Thus we are

assured that the two formulations are in every way equivalent: they have equivalent equa-

tions of motion and constraint equations. This same approach may be applied to locally

supersymmetric extensions, which have phenomenological applications to string-inspired

effective supergravity theories. The sort of approach taken here will connect the two for-

mulations in a way that is a faithful translation.

We have elucidated how the component fields of the modified linear multiplet can

accomodate the features of a chiral multiplet with an axion potential. In essence, the

linear multiplet becomes a more general sort of real multiplet when it couples to the

SYM instantons. Its component field content has a more general structure and modified

interpretation.

8At the final stages of preparing this manuscript, we became aware of [17], where nontrivial vacua due

to the DV corrections are also studied.

– 13 –



J
H
E
P
0
5
(
2
0
0
4
)
0
6
9

We have suggested how the DV corrections can lead to stabilization with a single

condensate. This should come as no surprise. We are not forced to integrate out the

adjoint chiral superfield Φ that appears in (7.9). If we leave the field in it has nontrivial

vacua and this additional condensate plays a role in the stabilization of S.

It is interesting to consider the DV corrections in the context of string-inspired effec-

tive supergravity. Here it may be possible to achieve a stable minimum where the DV

corrections are small (Λ ¿ m), unlike the case above. (For this to be true, however, it

would seem that the supergravity effects would have to dominate over those that arise from

the exchange of the adjoint chiral superfield Φ.) In this case the truncations made above

become reasonable approximations and the corrections may have some modest effects on,

for example, soft supersymmetry breaking operators in the low energy effective theory.

We are currently investigating these and related issues.
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