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Abstract: We study various configurations in which a domain wall (or cosmic string),

described by the Nambu-Goto action, is embedded in a background space-time of a black

hole in (3+1) and higher dimensional models. We calculate energy fluxes through the black

hole horizon. In the simplest case, when a static domain wall enters the horizon of a static

black hole perperdicularly, the energy flux is zero. In more complicated situations, where

parameters which describe the domain wall surface are time and position dependent, the

flux is non-vanishing is principle. These results are of importance in various conventional

cosmological models which accommodate the existence of domain walls and strings and

also in brane world scenarios.
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1. Introduction

Topological defects can arise in a wide class of cosmological models. In principle, classical

field theory models, embedded in a particular cosmological model, which admit non-trivial

topology give rise to topological defects. Most of grand unifying theories (GUT) [1] and

some extensions of the electroweak standard model [2] support the existence of topological

defects. This is the primary motivation for the study of topological defects in the early

universe.

According to the standard cosmology, evolution of domain walls in the universe is such

that they quickly come to dominate the energy density of the universe. Such domination

would severely violate many observational astrophysical constraints, so that domain walls

represent a cosmological disaster. If the universe produces domain walls, it must get rid of

them before the nucleosynthesis epoch at the latest.

In [3], a simple solution to the cosmological monopole problem was proposed. Primor-

dial black holes, produced in the early universe, can accrete magnetic monopoles within

the horizon before the relics dominate the energy density of the universe. One could hope

that a similar idea can be applied to the domain wall problem. However, the extended

nature of domain wall topological defects (in particular its super-horizon size) makes the

domian wall problem much more difficult to treat.

The question of how black holes interact with domain walls is not trivial. For example,

if a static, planar domain wall enters a static black hole perpendicularly to the horizon (i.e.

the null Killing vector which generates the horizon hypersurface is tangent to the domain

wall surface), the energy flux through the horizon is zero due to the symmetries of the

system. In this idealized case, the black hole cannot accrete energy from the wall. However,

the situation is different in more complicated cases. In a more realistic case, we expect
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domain wall to have some velocity with respect to the black hole. As the domain wall

encounters the black hole, its surface will deform and parameters describing the domain

wall surface will be time and/or position dependent. In section 2 we will show that in this

case the energy that crosses the horizon is non-vanishing.

In section 3 we study the case where a black hole is rotating. A rotating black hole

can also accrete the energy from the domain wall. However, the term proportional to the

rotational parameter has an opposite sign from a leading order term which signals that

rotation works in the opposite direction — it helps extraction of energy from the black

hole and reduces acreetion.

Another important reason to study this question comes from so-called brane world

models with large extra dimensions [4]. In this framework our universe is just a three

dimensional domain wall (a brane) embedded in a higher dimensional space. All the stan-

dard model particles are localized on the brane while gravity can propagate everywhere. In

particular, black holes being gravitational solitons can propagate in a higher dimensional

bulk space. In the simplest formulation, the gravitational field of the brane is neglected

and extra dimensions are flat. An important generic feature of this model is that the fun-

damental quantum gravity mass scale M∗ may be very low (of order TeV) and the size

of the extra spatial dimensions may be much larger than the Planck length (∼ 10−33 cm).

The maximal size L of extra spatial dimensions, allowed by the experiments testing the de-

viations from Newton’s law at shortly distances, is the order of 0.1 mm. The gravitational

radius R0 of a black hole of mass M in the spacetime with k extra dimensions is defined by

the relation G(4+k)M ∼ Rk+1
0 , where G(4+k) = 1/M

(k+2)
∗ is the (4+k)-dimensional Newton

coupling constant. The minimal mass of the black hole is determined by the condition that

its gravitational radius coincides with its Compton length ∼ 1/M . The mass of such an
elementary black hole is M∗. For M∗ ∼ TeV one has R∗ ∼ 10−17cm. When M ÀM∗ the

higher dimensional mini black holes can be described by the classical solutions of vacuum

Einstein’s equations. It is assumed that the size of a black hole R0 is much smaller than

the characteristic size of extra dimensions, L, and neglect the effects of the black hole

deformation connected with this size.

In this framework, there exist interesting possibility of production of mini black holes

in future collider and cosmic rays experiments. Estimates [5] indicate that the probability

for creation of a mini black hole in near future hadron colliders such as the LHC (Large

Hadron Collider) is so high that they can be called “black hole factories”. After the black

hole is formed it decays by emitting Hawking radiation. As a result of the emission of

the graviton into the bulk space, the black hole recoil can move the black hole out of the

brane [6, 7]. Black hole radiation would be terminated and an observer located on the

brane would register the virtual energy non-conservation. In order to quantify this effect,

it is important to know more details about interaction of the black hole with the brane.

In particular, the difference in energy of the black hole before and after it leaves the brane

(the energy “cost” of leaving the brane) will strongly depend on the amount of energy

which crosses the horizon in the process of this time-dependent interaction. This question

is analyzed in section 4.

In section 5 we analyzed the case of a cosmic string.
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The interaction of various topological defects with black holes has been studied before.

In [8] and [9] interaction of black holes with cosmic strings and domain walls in (3 + 1)-

dimensional universe was studied. This study was generalized in [10] to the case where

both the brane and the bulk space in which the brane is moving may have an arbitrary

number of dimensions. The relevant calculation was done in the weak filed approximation

where the black hole is far from the brane. Rotating black holes were studied in the limit

of slow rotation. The question of energy flux trough the horizon in the black hole-defect

system was not studied by now.

2. Schwarzschild black hole in 3 + 1 dimensions

We consider an axially symmetric domain wall in a background of Schwarzschild black

hole in (3 + 1)-dimensions. The Schwarzschild background metric in standard coordinates

(t, r, θ, φ) is:

ds2 = −
(

1− 2GM
r

)

dt2 +

(

1− 2GM
r

)−1

dr2 + r2dθ2 + r2 sin2(θ)dφ2 , (2.1)

where M is the mass of the black hole and G is the Newton’s gravitational constant.

In vicinity of the horizon (rh = 2GM), it is convenient to work in a new set of

coordinates (u, r, θ, φ), where new timelike coordinate is defined as:

u = t+ r + 2GM ln
( r

2GM
− 1

)

. (2.2)

This change yields:

ds2 = −
(

1− 2GM
r

)

du2 + 2dudr + r2dθ2 + r2 sin2(θ)dφ2 . (2.3)

Induced metric on a domain wall world-sheet γab, in a given background metric gµν is:

γab = gµν∂aX
µ∂bX

ν , (2.4)

where Latin indices go over internal domain wall world-sheet coordinates ζ a, while Greek

indices go over space-time coordinates, Xµ. We fix the gauge freedom due to world-sheet

coordinate reparametrization by choice:

ζ0 = X0 = u , ζ1 = X1 = r , ζ2 = X2 = φ . (2.5)

The remaining coordinate θ describes the motion of a domain wall surface in the background

space-time. If θ =const, i.e. domain wall is static, one could argue that due to symmetries

of the system the energy flux through the horizon is zero. However, the situation is different

if for example θ = θ(u, r). This can happen when a domain wall encounters the black hole

with some relative velocity v (see figure 1).
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Figure 1: A black hole encountering the domain wall with a relative velocity v.

With this choice, we can calculate the non-zero elements of the induced metric:

γuu = −
(

1− 2GM
r

)

+ r2θ̇2 (2.6)

γrr = r2θ′2

γφφ = r2 sin2(θ)

γur = 1 + r
2θ′θ̇ .

Here, a dot and a prime denote derivation with respect to the coordinates u and r respec-

tively.

The dynamics of the domain wall can be derived from the Nambu-Goto action:

S = −σ
∫ √

−γd3ζ , (2.7)

where σ is the energy density of a domain wall and γ is the determinant of the induced

metric γab.

From the Killing equation and the conservation of momentum-energy tensor, T µν it

follows that whenever there is a symmetry of the system (described by a Killing vector ξµ

for a given geometry) there is a covariantly conserved quantity T µνξν . If the Killing vector

is ξµ(u), describing invariance with respect to translations in time, the conserved charge is

energy. Then, the vector T µνξ(u)µ can be interpreted as the negative of the energy flux

through some hypersurface as seen by an observer at infinity. Thus, the total energy which

passes through some hypersurface whose element is dσν is

∆E = −
∫

T µνξ(u)µdσν . (2.8)

Similar result is valid for the total angular momentum

∆J =

∫

T µνξ(φ)µdσν . (2.9)
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Here, ξµ is the Killing vector for a given geometry. In particular ξ
µ
(u) = δµu and ξ

µ
(φ) = δµφ .

Since we are interested in behavior near the horizon of the black hole, we take dσν to be

the element of horizon null-hypersurafce:

dσν =
√
−gδrνdudθdφ . (2.10)

Here, we took that the unit vector defining the horizon null-hypersurafce points outwards

from the black hole. Thus, we get:

∆E = −
∫ √
−gT rududθdφ . (2.11)

This expression gives the change of energy of the domain wall. The corresponding change

of energy of the black hole will be the same in magnitude with an opposite sign. From now

on we discuss changes in quantities defined for a black hole.

For the metric (2.3) we have T r
u = guuT

ur + gurT
rr. At the horizon, the metric

component guu vanishes so the only contribution is from T rr. From the action (2.7) we can

derive the momentum-energy tensor:

√
−gT µν = −σ

∫

δ4 [Xµ −Xµ(ζ)]
√
−γγab∂aXµ∂bX

νd3ζ . (2.12)

The final expression for the energy which crosses the horizon of the black hole (rh =

2GM) is thus:

∆E = σ16πG3M3

∫

δ [θ −Θ(u, r)] θ̇2 sin(θ)
√

1 + 8G2M2θ̇θ′
dudθ . (2.13)

The second order equations of motion for θ(u, r) which follow from the action (2.7) are

rather complicated and we are not going to present them here. One can check that they

do not give any constraints on θ̇ and θ′.

Canonical momentum, Pµ =
∂L

∂Ẋµ
can be derived from the action (2.7):

Pµ = −
√
−γγub∂bXµ . (2.14)

This form of momentum, in general case, gives three constraints on dynamical variables:

Pµ∂iX
µ = 0 (2.15)

and

PµP
µ + h = 0 , (2.16)

where index i goes over spatial indices r, φ, while h is the determinant of the spatial part

of the metric γab. With the gauge choice (2.5), these constraints are automatically satisfied

and do not give any further constraints on θ̇ and θ′.

For simplicity, let us analyse expression (2.13) under assumption that θ does not change

much with radial coordinate r, i.e. θ ′ ≈ 0. In that case we have

∆E = σ16πG3M3

∫

δ [θ −Θ(u)] θ̇2 sin(θ)dudθ . (2.17)

– 5 –



J
H
E
P
0
9
(
2
0
0
4
)
0
6
1

The overall sign of ∆E is positive signaling that the energy is flowing into the black

hole, i.e. the black hole grows. In other words, domain wall gets “eaten” by the black hole.

Strictly speaking, eq. (2.17) gives the total energy which crosses the horizon since T µν

in (2.12) is the total momentum-energy tensor of the domain wall containing both kinetic

and “static” energy of the wall.

The amount of energy which crosses the horizon obviously depends on θ̇. If the process

is slow and adiabatic (quasi-static), then θ̇ → 0. This implies ∆E → 0, which means that
not a significant amount of energy crosses the horizon.

The case when θ̇ is large is more interesting. This can happen, for example, when

the black hole encounters the domain wall with large relative velocity v, say v ≈ c. In

that case Rbhθ ≈ vu. Rbh here is the horizon radius (rh) of the black hole. Thus, we have

θ̇ ≈ v/Rbh. We assume that energy is flowing through the horizon while the angle θ is taking

values from π/2 to π. Performing the integration in (2.13) and taking
∫

sin [θ(u)] du ≈
Rbh/v

∫ π
π

2

sin(θ)dθ = Rbh/v we have

∆E ≈ σR2
bhv , (2.18)

where we dropped factors of order of unity. This result agrees with the one that could be

guessed on dimensional grounds.

Note that the expression for energy in (2.17) depends only on θ̇2, i.e. it does not change

the sign when θ̇ changes the sign. If the domain wall oscillates, then there will be several

cycles and in each of them the energy which crosses horizon will be of order given in (2.18).

For completeness, let us mention that the angular momentum flux through the horizon

of the Schwarzschild black hole is zero as expected.

3. Rotating black hole in 3 + 1 dimensions

We now calculate the energy flux through the horizon of a rotating black hole. In [10], a

domain wall in the background of a rotating black hole was studied. Angular momentum

fluxes corresponding to various positions of a domain wall (i.e. in equatorial and azimuthal

planes etc.) were calculated. Since the solution describing the shape of the wall was

stationary (time independent) no energy flux through the horizon was found. Here, we

extend this analysis to the case where the parameters describing the wall’s world sheet can

be time dependent.

We consider an axially symmetric domain wall in a background of a rotating black

hole in 3 + 1 dimensions. The rotating black hole background in coordinates (u, r, θ, φ) is:

ds2 = −
(

1− 2GMr

ρ2

)

du2 + 2dudr + ρ2dθ2 − 2a sin2(θ)drdφ+

+
(r2 + a2)2 −∆a2 sin2(θ)

ρ2
sin2(θ)dφ2 − 4aGMr

ρ2
dudφ , (3.1)

where a is the rotational parameter and

ρ2 = r2 + a2 cos2(θ)

∆ = r2 − 2GMr + a2 . (3.2)
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The event horizon is given by the solution of the equation ∆ = 0, i.e.

rh = GM +
√

G2M2 − a2 . (3.3)

The static limit surface (or the infinite redshift surface) is given by the solution of the

equation g00 = 0, i.e. rsl = GM +
√

G2M2 − a2 cos2(θ), and its position does not coincide

with the horizon. The region between the horizon and the static limit surface is known as

“ergosphere”.

We fix the gauge freedom due to domain wall world-sheet coordinate reparametrization

similarly as before:

ζ0 = X0 = u , ζ1 = X1 = r , ζ2 = X2 = φ . (3.4)

We consider the case where the remaining coordinate θ which describes the motion of a

domain wall surface is θ = θ(u, r). With this choice, the non-zero elements of the induced

metric are:

γuu = −1 +
2GMr

ρ2
+ ρ2θ̇2

γur = 1 + ρ
2θ̇θ′

γuφ = −
2aGMr sin(θ)2

ρ2

γrr = ρ2θ′2

γrφ = −a sin2(θ)

γφφ = (r
2 + a2) sin2(θ) +

2a2GMr sin4(θ)

ρ2
. (3.5)

The energy flux can be calculated from eq. (2.8). The relevant Killing vector for the

metric (3.1) is again ξµ(u) = δµu .

From (3.1) we also have have T r
u = guuT

ur + gurT
rr + guφT

φr. The corresponding

energy flux at the horizon (rh = GM +
√
G2M2 − a2) is non-vanishing:

∆E = 4π
√
2σG3M3K

∫

δ [θ −Θ(u, r)]
θ̇2 sin(θ)

√

K − 1
2

(

a
GM

)2
sin2(θ)

√

1 + θ̇2a2 sin2(θ) + 4θ̇θ′G2M2K
dudθ , (3.6)

where K = 1 +
√

1−
(

a
GM

)2
. For a = 0 we recover the result (2.13) for a non-rotating

black hole. For an extremal black hole a = GM , eq. (3.6) becomes

∆Eextremal = 4πσG
3M3

∫

δ [θ −Θ(u, r)] θ̇2 sin(θ)(1 + cos2 θ)
√

1 + θ̇2G2M2 sin2(θ) + 4θ̇θ′G2M2

dudθ . (3.7)

In order to illustrate some interesting consequences, we expand (3.6) in terms of small

θ̇, θ′ and a, and keep only the leading order terms. We get

dE

dudθ
= 16πσ sin(θ)G3M3θ̇2−64π sin(θ)G5M5θ̇3θ′−2π sin(θ)GM(4−cos2(θ))a2θ̇2 . (3.8)

The term which depends on rotational parameter a has an opposite sign from the leading

order term. As expected, rotation of the black hole helps extraction of energy from the

black hole and reduces acreetion.

– 7 –



J
H
E
P
0
9
(
2
0
0
4
)
0
6
1

4. Higher dimensional static black hole

Higher dimensional black holes are of particular interest in theories with large extra dimen-

sions. In these models, all the standard model fields are localized on the (3+1)-dimensional

brane while geometrical degrees of freedom can propagate everywhere. This implies that

small black holes can leave our brane. The probability for something like this to happen

due to Hawking radiation was studied in [6]. The difference in energy between the config-

uration where the black hole is on the brane and the one where the black hole is in the

bulk was not calculated, it was only estimated on dimensional grounds. Here, we calculate

the energy flux through the horizon during the process of the black hole extraction from

the brane. In the rest frame of the black hole this situation corresponds to the interaction

with a non-static brane.

We consider a non-rotating higher-dimensional black hole which is a simple general-

ization of the Schwarzschild solution in (3 + 1)-dimensional space-time.. Although it is

straightforward to write down the metric in an arbitrary number of dimensions, all the

basic results can be presented in (4 + 1)-dimensional space-time.

The metric, in coordinates (u, r, θ, φ, ψ), is

ds2 = −
(

1− R2
0

r2

)

du2 + 2dudr + r2dθ2 + r2 sin2(θ)dφ2 + r2 cos2(θ)dψ2 , (4.1)

where R0 is the gravitational radius of the (4+1)-dimensional black hole. The extra angular

variable ψ takes values from the interval [0, 2π].

The domain wall, which represents our universe is (3 + 1)-dimensional. We fix the

gauge freedom due to domain wall world-sheet coordinate reparametrization in this way:

ζ0 = X0 = u , ζ1 = X1 = r , ζ2 = X2 = θ ζ3 = X3 = φ . (4.2)

Let us consider the case where the remaining coordinate ψ which describes the motion

of a domain wall surface is a function of time and radial coordinate, i.e. ψ = ψ(u, r). With

this choice, the non-zero elements of the induced metric are:

γuu = −
(

1− R2
0

r2

)

+ r2 cos2(θ)ψ̇2

γrr = r2 cos2(θ)ψ′2

γφφ = r2 sin2(θ)

γθθ = r2

γur = 1 + r
2 cos2(θ)ψ̇ψ′ . (4.3)

This yields the expression for the energy which crosses the horizon (rh = R0)

∆E = σR4
0

∫

δ [ψ −Ψ(u, r)] ψ̇2 sin(θ) cos2(θ)
√

1 + 2 cos2(θ)R2
0ψ̇ψ

′

dudθdφdψ . (4.4)
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Note that the brane tension (energy density) σ now has dimensions of (mass)4. If for

simplicity we set ψ′ ≈ 0 and integrate over angular variables θ and φ we get

∆E =
2

3
πσR4

0

∫

δ [ψ −Ψ(u)] ψ̇2dudψ . (4.5)

Here again, the sign signals that the net energy is flowing toward the black hole. We can

use a similar approximation as earlier, R0ψ ≈ vu, where v is the relative black hole-brane

velocity. After integration we get

∆E ≈ σR3
0v , (4.6)

where we dropped the terms of order unity. This expression agrees with the one used in [6].

5. Cosmic string

We now consider the case of a cosmic string described by a Nambu Goto action in the

background metric of a Schwarzschild black hole in 3 + 1 dimensions. The background

metric is given in (2.3). We fix the gauge freedom due to string world-sheet coordinate

reparametrization in this way:

ζ0 = X0 = u , ζ1 = X1 = r . (5.1)

The string world sheet is fully specified with two coordinates (u, r), while the back-

ground is (3+1)-dimensional (u, r, θ, φ). Thus, we have two embeding coordinates θ and φ.

Let us consider the case where the two remaining coordinates θ and φ which describe the

motion of a string in a background speace time are functions of time and radial coordinate,

ie. θ = θ(u, r) and φ = φ(u, r). With this choice, the non-zero elements of the induced

string metric are:

γuu = −
(

1− 2GM
r

)

+ r2θ̇2 + r2 sin2(θ)φ̇2

γur = 1 + r
2θ̇θ′ + r2 sin2(θ)φ̇φ′

γrr = r2θ′2 + r2 sin2(θ)φ′2 . (5.2)

This yields the expression for the energy which crosses the horizon (rh = 2GM) of the

black hole

∆E =

∫ µ4G2M2δ [θ − θ(u, r)] δ [φ− Φ(u, r)]
(

θ̇2 + sin2(θ)φ̇2
)

dudθdφ
√

1 + 8G2M2
(

θ̇θ′ − sin2(θ)φ̇φ′
)

− sin2(θ)16G4M4
(

θ̇2φ′2 + θ′2φ̇2 + 2θ̇θ′φ̇φ′
)

.

(5.3)

Here, µ is the energy density per unit length of the string.

If we fix the coordinate φ, say φ = 0, we get

∆E = µ8πG2M2

∫

δ [θ − θ(u, r)] θ̇2

√

1 + 8G2M2θ̇θ′
dudθ . (5.4)
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This is just an analog of the result (2.13) for domain walls. In order to quantify the effect,

we can apply a similar approximation of a large relative velocity v ≈ c. In this case we get
∆E ≈ µRbh.

The other configurations, like a cosmic string in the background space-time of a rotat-

ing (and/or higher dimensional) black hole, can be treated in analogy with domain wall

treatments.

6. Conclusions

We addressed the question of the energy flux through the horizon during black hole in-

teraction with domain walls and strings. In the simplest case, when a static domain wall

(or string) enters the horizon of a black hole perperdicularly the energy flux is zero. In

more complicated situations, the flux could be non-vanishing. For example, if one of the

parameters which describes the domain wall surface in the black hole background is time

and position dependent, the net flux through the horizon is non-zero. These results are

of importance in various cosmological models which accommodate the existence of domain

walls and strings. In particular, the cosmological domain wall problem could be alleviated

if primordial black holes can accrete a significant portion of the energy density contained in

walls (we note however, that the extended (super-horizon) nature of domain walls requires

a very careful treatment). Another possible framework of interest could be interaction of

large black holes located in centers of galaxies with domain walls and strings.

A similar analysis can be done in the framework of brane world scenarios. Going from

(3 + 1)-dimensional models to higher dimensional ones, only quantitative results change.

The qualitative picture remains the same. These results are of importance in studying

the interaction of our world with small higher dimensional black holes. In particular, a

probability for a black hole to go off the brane in various processes will strongly depend on

the amount of energy which crosses the horizon during the process of the extraction from

the brane.

There are some model independent features for the various scenarios we considered.

As expected, there is the net energy flow through the horizon only if the configuration in

question is time dependent. For quasi-static processes the amount of energy which crosses

the horizon is negligible. Otherwise, the energy is always proportional to the area (volume)

of the domain wall-brane cross section.
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