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1. Introduction

The origin of the structure of the fermion Yukawa couplings is one of the most intriguing

puzzles left unanswered by the Standard Model. The hierarchical pattern of fermion masses

and quark mixing angles strongly suggests the existence of a spontaneously broken family

symmetry with the order parameter of breaking (the vacuum expectation value (vev) of one

or more scalar familon fields) providing the small expansion parameter(s). This has been

the most popular strategy to try to improve our understanding of the flavour structures

in nature. In this scheme the (usually Supersymmetric) Standard Model is extended by

a gauge or global family symmetry GF which is then spontaneously broken. The Yukawa

couplings (or just those associated with the two lighter generations) are not allowed in the

limit of unbroken family symmetry but are filled in by higher dimension operators involving

powers of the familon field(s). Thus below the scale of GF breaking, we have an effective

theory resembling the Supersymmetric Standard Model where the Yukawa couplings (with

the possible exception of the third family) and all the different flavour structures are given

by non-renormalisable operators in the superpotential of the kind,

ψψcH

(〈θ〉
M

)n
, (1.1)

where ψ and ψc denote quark/lepton superfields, H is a Higgs superfield, M is the heavy

messenger mass corresponding to the intermediate state in the Froggatt-Nielsen mechanism

and 〈θ〉 is the familon vev that breaks GF such that 〈θ〉/M is a small expansion param-
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eter [1]. In the following, we do not specify the family group or the exact mechanism of

symmetry breaking as our conclusions are equally applicable to (abelian or non-abelian)

flavour theories generating a given structure in the Yukawa couplings [2].

The generation of Yukawa couplings (or other holomorphic couplings in the superpo-

tential) though non-renormalisable operators is not the only effect of integrating out the

heavy fields in the low energy effective theory. It is well known that the non-holomorphic

couplings involving the kinetic terms and gauge couplings also receive corrections from the

flavour breaking terms. This implies a non canonical Kähler potential, different from the

identity in flavour space. In determining the physical implications of the theory it is much

simpler to work in a theory with canonical kinetic terms and this can be done by choosing

a linear combination of the chiral superfields such that the new fields have a canonical

Kähler potential [3]. As originally shown by Leurer, Nir and Seiberg [4] this transforma-

tion in the chiral superfields consists of a rotation in flavour space and a rescaling of the

fields. However, even after this field redefinition, we can still perform further arbitrary

unitary rotations of the chiral superfields which will preserve the canonical form of the

Kähler potential. Clearly any superfield field redefinitions in the Kähler potential must be

performed consistently for all the superfields in the theory and this will result in a transfor-

mation of the superpotential couplings when written in terms of the new chiral superfields.

This transformation of the Yukawa couplings is the main subject of this work and we are

especially interested in the observable effects of this transformation on the physical masses

and mixing angles. In fact, in the literature it is often stated that these field redefinitions

can have very important observable effects in quark and squark mixings [5 – 7]. That this

is not the case in specific models has been stressed in [4, 8]. Here we generalise this result

and show that, at least for the case of an hierarchical Yukawa textures for the up and

down sectors, the effect of the Kähler potential, is always sub-dominant and cannot change

the structure coming from the superpotential. In the presence of a hierarchical texture

ordered by an underlying family symmetry, the structure of the Kähler potential is such

that the off-diagonal elements are given by powers of the same small expansion parameter

that generates the hierarchy in the Yukawa matrices. Under these conditions we show that

we can choose an upper triangular form for the inverse of the square root of the Kähler

metric which brings the fields to the canonical basis. Using this form we can prove the

subdominance of the Kähler corrections to the Yukawa matrices. Even in cases without a

clear hierarchy we show that only unknown coefficients O(1) can be changed without mod-

ifying the structure of the observable mixings and masses, consistent with the results of [4].

Therefore our conclusions apply to all flavour models with hierarchical Yukawa textures

considered in the literature.

2. The Kähler metric

After the flavour symmetry is spontaneously broken we obtain a certain Yukawa texture

given by non-renormalisable operators which are functions of the flavon vevs as in eq. (1.1).

In the same way the effective Kähler potential will be a general non-renormalisable real

function invariant under all the symmetries of the theory coupling the superfield combi-
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nations ψ†iψj to the flavon fields, and similarly for ψc†iψ
c
j , where i, j are flavour indices.

The terms ψ†iψi, ψ
c†
iψ

c
i without flavon superfields are clearly invariant under gauge, flavour

and global symmetries and hence give rise to a family universal contribution. However,

family symmetry breaking terms involving flavon superfields give rise to important correc-

tions [9, 10, 4]. In fact, it is interesting to notice that, due to the non-holomorphicity of

the Kähler potential, new terms are allowed with different structure from the terms that

appear in the Yukawa couplings of the superpotential.

In general the matter fields do not have canonical wave functions (kinetic terms) in the

symmetry eigenstate basis ψ̂ci , ψ̂j [7]. Rather, flavon field vevs contribute to the diagonal

terms and also generate new flavour off-diagonal entries. Thus, we have now non-canonical

kinetic terms and we must redefine the fields to obtain canonical kinetic terms. The effect

of these redefinitions, which can be regarded as wave function corrections, on the Yukawa

couplings and other couplings in the theory may be determined after this field redefinition,

ψ̂ = Nψ.

To obtain canonical kinetic terms we have to redefine the fields to go to the canonical

basis by the inverse of the square root of the Kähler metric K given by

ψ̂†Kψ̂ = (Nψ)†(N−1)†N−1Nψ . (2.1)

Thus K = (N−1)†N−1 and hence N = K−1/2, as claimed above. Using Supergravity

(SUGRA) equations, the Kähler metric is obtained as Kāb = ∂2G/(∂Φ†a∂Φb) with G the

Kähler function and it determines both the Kinetic terms and the non-canonically nor-

malised soft scalar mass squared matrices m̂2
āb. In SUGRA, where Kāb represents a metric,

N−1 is also a hermitean matrix, such that N−1 = (N−1)† and hence it can be convention-

ally written as [6, 7]

K = (N−1)†N−1 = V †X2V ⇔ N−1 = V †XV

with V a unitary matrix diagonalising the hermitean matrix K and X the square root

of the eigenvalues of K. We call this solution the “standard” form of N−1. Note that if

N−1 is a solution of eq. (2.1) then also R.N−1 is a solution of eq. (2.1), with R a unitary

matrix. Of course physical quantities will not depend on R and for any choice we must

always obtain the same physical result. This is due to the invariance of the lagrangian

under the so-called Weak Basis Transformations (WBT) [11, 12]. The theory is invariant

if we transform the fields as,

qL = Rqq
′
L ; uR = Ruu

′
R ; dR = Rdd

′
R

where Rq, Ru and Rd are transformations from the global unitary groups U(3)L, U(3)uR
and U(3)dR respectively, while simultaneously the Yukawa couplings are transformed as,

Y ′u = R†qYuRu Y ′d = R†qYdRd . (2.2)

Therefore when we choose the different Ra all we are doing is to choose a particular weak

basis where we write our theory and the physical results are absolutely independent of this

choice. However, it is very useful to choose the unitary transformation R in the definition

– 3 –



J
H
E
P
0
7
(
2
0
0
5
)
0
4
9

of N = K−1/2 to get a simpler form for this transformation. The form that proves to be

useful is the Cholesky decomposition of an hermitean matrix. It is always possible to write

an hermitean matrix as K = U †U in terms of an upper U triangular matrix,

K =



K11 K12 K13

K∗12 K22 K23

K∗13 K
∗
23 K33


 = U †U =



u11 0 0

u∗12 u22 0

u∗13 u
∗
23 u33






u11 u12 u13

0 u22 u23

0 0 u33


 (2.3)

This equation is very easy to solve,

u11 =
√
K11 u12 =

K12√
K11

u13 =
K13√
K11

(2.4)

u22 =

√
K22 −

|K12|2
K11

u23 =
K23K11 −K13K

∗
12√

K22K2
11 −K11|K12|2

u33 =
√
K33 − |u23|2 − |u13|2 .

The inverse of this upper triangular matrix is also upper triangular, and it is also easily

obtained. Obviously we could have chosen to use lower triangular matrices L instead of the

upper triangular matrices U and the explicit form of the L would then have been obtained

in a similar way in terms of K.

This form for the square root of the Kähler matrix is different from the “standard”

form used in the literature [6, 7]. Clearly the “standard” form is related to our triangular

form by an unobservable WBT and therefore the two forms are physically indistinguishable.

However it is evident from Eq. (2.4) that from the point of view of calculability it is much

simpler to obtain the triangular form than the “standard” form.

3. The Kähler corrections to Yukawa couplings

3.1 The form of the Yukawa coupling matrix

To proceed we need to know the form of the Yukawa couplings coming from the super-

potential. A fit to the data using a form for the Yukawa matrices where the smallness of

CKM mixing angles is due to the smallness of the off-diagonal entries with respect to the

relevant diagonal entry yields the structure [13],

Yd ∝




0 ε̄3 ε̄3

. ε̄2 ε̄2

. . 1


 , Yu ∝




0 ε3 ε3

. ε2 ε2

. . 1




with the expansion parameters ε̄ = 0.15 and ε = 0.05. Some non-abelian family symmetry

models can provide such a structure quite naturally [14, 15]. Here we have suppressed

coefficients of O(1). This structure has Ykj < Yij for i > k and j ≥ i and is unique if

the contribution to the left-handed mixing angles from the elements below the diagonal

are negligible. If one relaxes this constraint then it is possible for some of the entries to be

smaller or zero (texture zeros). We will discuss both these possibilities. To do so let us first

note that, although there are no direct bounds on the Yukawa couplings below the diagonal
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from (right-handed) mixing angles, we can obtain some upper bounds on these entries from

their contributions to the mass eigenvalues. Just requiring that the determinant of the down

Yukawa matrix is ε̄6 = 1 × ms
mb
× md

mb
we arrive to the conclusion that Y d

21 ≤ ε̄3, Y d
31 ≤ ε̄

and Y d
32 ≤ 1, assuming no cancellation between different contributions to the determinant.

With this the most general hierarchical down-quark Yukawa structure consistent with the

masses and mixing angles is

Yd ∝



≤ ε̄4 a ε̄3 b ε̄3

≤ ε̄3 c ε̄2 d ε̄2

≤ ε̄ ≤ 1 1


 . (3.1)

Not all of the four coefficients a, b, c, d must beO(1) allowing for the possibility of additional

texture zeros. In principle the Yu structure could also be described by this structure with

the only replacement ε̄ → ε. As explained below, given that the SM gauge group does

not relate the up and down right handed sectors, this structure with different expansion

parameters in Y u and Y d emerges naturally in a multitude of flavour models both with

abelian and non-abelian symmetries, for example in a U(1) model with Frogatt-Nielsen

messenger fields of different masses [16]. However, our results below do not require the

presence of two different expansion parameters for the up and the down sector and we

could reproduce the same fit with different powers of the same expansion parameter [17].1

In this paper we consider the case that this hierarchical structure eq. (3.1) is reproduced

by the terms of the superpotential in the symmetry basis and we show that the effect of

the Kähler potential is then always subdominant in its effects on the masses and mixing

angles.

3.2 The Kähler corrections

It proves to be useful in most realistic models to go to the canonically normalised basis

by redefining the fields by a wave function normalisation matrix chosen to have the upper

triangular form, as discussed above. Using this form the correction to the Yukawa coupling

matrix in the Standard Model (SM) is of the form

Hψ̂L Y ψ̂R ≡ H ψ̂∗L i Yij ψ̂R j = H ψ∗LkN
∗
L ik Yij NRjmψRm = H ψ∗Lk Y

t
km ψR,m

If we consider, for the moment, only the transformation on the Left Handed (LH) fields

using our triangular matrices, with N = U , the total (t) Yukawa is,

Y t
ij =

∑

i≥k
N∗kiYkj ' N∗iiYij +

∑

i>k

N∗kiYkj . (3.2)

As may be seen in eq. (1.1) the expansion parameters are given by terms of the form

< θ > /M where M is the messenger mass. In the superpotential the expansion parameters

come from both the LH and Right Handed (RH) sectors. The expansion parameters, ε

1Strictly speaking the observed values of up-quark masses and CKM mixing angles would still allow

(Yu)23 = O(ε) and/or (Yu)13 = O(ε2) if simultaneously (Yu)32 = O(ε) and (Yu)31 = O(ε2). Given that this

structure is hierarchical, all the results presented in the following are also valid in this case.
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and ε̄, for the up and down sectors2 in the superpotential may differ as the SM gauge group

does not relate the up and down right handed quark sectors. However the contribution

from the LH sector to the mass matrix structure must be equal in the up and down sectors

due to the SU(2)L gauge symmetry. Thus its contribution cannot be larger than ε, the

smaller of the two (right handed) expansion parameters. This implies that the Kähler

rescaling matrix in the LH sector, NL
ik, has a strong hierarchy controlled by the small

parameter ε with NL
ii ' 1 and NL

ik ≤ ε for the non-zero entries of the upper triangular

form. Notice that the smallness of off-diagonal elements in Nij (and Kij) is necessary

in any model where the hierarchy of the Yukawa matrices is due to the presence of an

underlying family symmetry, either abelian or non-abelian. This is specially simple in

abelian models where the hierarchy in the Yukawa matrices and CKM mixing angles is

guaranteed by the different powers of the flavon field. Using a triangular form for N and

taking into account that the hierarchy in the left handed angles implies that qj > qi, we

have that Ni<j = (θ∗/M)(qj−qi) = ε(qj−qi). This form is forced from the requirement of

invariance under the abelian symmetry of the canonically normalised Yukawa element. In

the case of non-abelian symmetries the hierarchy in the Yukawa matrices is obtained from

the smallness of vevs of the different flavon fields. In principle, only the vev defining the

third generation can be O(1) while vevs in the direction of the second or first generation

are ≤ ε. Given that the flavour structure of the Kähler matrices is necessarily generated in

terms of the same flavon vevs, we have that any off-diagonal term in the Kähler matrices

involves at least one power of the small vevs and hence Ni<j ≤ ε. A similar argument

applies to the up quark RH sector, NR,u
ii ' 1 and NR,u

ik ≤ ε but in the down quark RH

sector the expansion parameter must be the larger one, ε̄, so NR,d
ii ' 1 and NR,d

ik ≤ ε̄.
In fact it is easy to prove that for the hierarchical textures of interest here the leading

correction to a given Yukawa element is suppressed by at least O(ε2).3 With the underlying

family symmetry ordering the correction we know that, before symmetry breaking, the

operator giving rise to the correction to a given element must transform in the same way

under the family symmetry as the leading term. We have just proved that the difference of

the Kähler transformations from the identity is at least of O(ε). Furthermore corrections

to Yij after transformations to canonical Kähler with upper triangular matrices come only

from Ykj with i > k and Ykj < Yij. This implies that a new contribution to Y t
ij is

subdominant relative to Yij at least by O(ε) where ε =< θ > /M . As θ transforms non-

trivially under the family symmetry, to maintain the symmetry property of the leading

term, this relative correction must be given by a combination of fields which transforms

as a singlet, that is at least of the form θθ† and hence of O(ε2). This result applies to

hierarchical Yukawa structures. For the case that the (2, 3) element saturates the bound

of eq. (3.1) it violates the condition of hierarchical Yukawa couplings and our conclusions

above do not apply. In what follows we consider this possibility separately.

2Here we have implicitly assumed that ε = 〈θ〉/M is the fundamental expansion parameter. If this is

not true and the true expansion parameter is larger (e.g. θ is itself generated by a higher dimension term

φ.φ/M) one should allow for the possibility that the expansion parameter in the Kähler sector is the larger

one (e.g. < φ > /M).
3This was first shown in the particular case of abelian flavour symmetries in ref. [18]
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Using this we will now calculate the canonical Yukawa through eq. (3.2). Although we

have started with the superpotential generating the form of eq. (3.1) in the symmetry basis

we have the freedom to use any basis when calculating the effects on physical quantities.

It is convenient to go to the Cholesky form when determining the effects of the Kähler

potential and we use an upper triangular form for the Kähler rescaling matrix in the LH

sector with NL
ki = 0 for i < k. The corrections to a given element of the Yukawa matrix

induced by the transformation to canonical Kähler are given by N ∗kiYkj.

3.2.1 No additional texture zeros

We first consider the case without additional texture zeros so that all of a, b, c, d are of O(1).

Taking into account that Ykj < Yij for i > k and j ≥ i we conclude that NkiYkj < Yij.

Therefore, these corrections are always sub-dominant in ε. This is not yet sufficient to

prove that the transformation to the canonical left handed Kähler basis does not change

the observable mixings and masses because they could be sensitive to elements of Y below

the diagonal. Given the bounds of eq. (3.1) the only terms that could be modified by

Kähler corrections are the (2, 1), (3, 1) and (3, 2) terms. For instance, for Y3,1 < Y2,1 the

Kähler correction can dominate the (3, 1) element. However in this case, from the structure

in eq. (3.1) and with Ni<j ≤ ε, Y t
3,1 ≤ ε4. Clearly this is too small to affect masses or LH

mixing angles at leading order. It can be easily checked that the same is true in the case of

the (2, 1) and (3, 2) elements. As we have discussed, for the hierarchical textures of interest

here, the leading correction to a given Yukawa element is suppressed by at least O(ε2).

One might worry that the condition Ykj < Yij for i > k and j ≥ i is too strong and

that what are constrained are the elements after Kähler mixing, i.e. Y t
kj < Y t

ij for i > k

and j ≥ i and the condition on Ykj is not satisfied. However this is inconsistent. To see

this note that the phenomenological structure of Y t
kj in eq. (3.1) would correspond both

to the basis of canonical Kähler with upper triangular transformations or to the basis of

”standard” canonical transformations. This is due to the fact that both basis are related

by a small rotation which does not change the order of the elements if the departure of the

original Kähler metric from the identity is also hierarchical as expected in models with a

spontaneously broken family symmetry. Thus we still have Nik ≤ ε for i 6= k. Therefore,

we would need Ykj > Yij for i > k, or more exactly the power in ε of Ykj is smaller than

the power in ε of Yij for i > k so that N ∗kiYkj > Yij is possible. However in this case we

necessarily have Y t
kj = Ykj > Yij + NikYkj = Y t

ij for i > k and j ≥ i (neglecting smaller

contributions from Ymj with m < k if present) and we arrive to an inconsistency with the

initial statement Y t
kj < Y t

ij. Thus even with the weaker condition we need Ykj < Yij for

i > k and j ≥ i.
So far we have discussed the transformations to canonical Kähler for the left handed

fields. Now, we have to proceed exactly in the same way for the right-handed transfor-

mation. Clearly, if the Yukawa structures are also hierarchical we can perform the same

analysis using upper triangular matrices and we would again arrive to the conclusion that

corrections from the Kähler to any Yukawa element are always sub-dominant at least by ε2

(ε = ε̄, ε for Y = Yd, Yu). There is an exception to this conclusion if Y23 does not preserve

the hierarchical structure and is of O(1) saturating the bound in eq. (3.1). In this case it

– 7 –
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is possible that NR
23 = O(1) and therefore corrections O(1) to Yi3 are still possible. Even

in this case, it is clear that we can never modify the order in ε of the different elements

of the Yukawa matrix, all it can do is to change the O(1) coefficients of the Yi3 elements.

To determine whether this special case is possible one needs to know Y32 and this can be

done through measurement of flavour changing neutral currents [19, 20] or lepton flavour

violation [21].

Thus, using the triangular form, we have shown that the Kähler corrections to the

Yukawa matrix are sub-dominant for hierarchical Yukawa matrices. In the next section we

prove that this is also true for the observable mixing angles and mass eigenstates.

3.2.2 Additional texture zeros

A special situation occurs when one of a, b, c, d is < O(1) giving rise to an approximate

texture zero. This can spoil the hierarchical structure of our Yukawa textures, Ykj < Yij for

i > k and j ≥ i and therefore must be analysed separately. An example of the origin of such

zeros occurs in spontaneously broken abelian theories through the so-called holomorphic

zeros [5]. In this case the symmetry breaking is through flavon field(s) carrying only one

sign of charge (say negative) and then a net negative charge of the fermionic fields cannot

be compensated with insertions of the flavon field because, due to the holomorphicity of

the superpotential, the charged conjugated flavon can not be used. However the Kähler

potential is non holomorphic and therefore these zeros can be filled after the transformation

to the canonical basis.

As before, if we are only interested in the physical effects of this texture zero filling

we can choose a convenient basis [5]. Once more our choice of upper triangular matrices is

especially simple. In a hierarchical texture we can have a texture zero in any position of the

matrix except in Y33 which is necessarily O(1). Although it is clear that the texture zeros

can be filled in by the Kähler corrections we can immediately use the analysis presented

above to show that physical measureables will not be affected by these corrections. The

point, as is explicitly demonstrated in the next section, is that the form of eq. (3.1) gives

the value of each entry of the Yukawa matrix that has a leading effect on a mass or a

mixing angle. If the entry is larger than the value shown it will give a mass or mixing

angle in conflict with the measured value. If the entry is smaller it will only contribute to

measureable quantities at subleading order.

In the previous section we showed that, for the case of hierarchical textures, the Kähler

corrections only contribute to the Yukawa matrix elements suppressed relative to the order

shown in eq. (3.1) by at least O(ε2). For example we can see that a zero in Y11 is never filled

by any other element. In the same way a zero in Y12 or Y21 is only filled by a non-zero entry

in Y11. Taking into account the constraints from the determinant of the Yukawa matrix,

Y11 ≤ ε4 and in the hierarchical case with N
L(R)
i6=j ≤ ε this implies that they can only be

filled at O(ε5). In the same way Y13 Y31 and Y22 can only be filled at O(ε4) (Y12, Y21 ≤ ε3).

Finally a zero in Y23 or Y32 implies that Y22 = ε2 and hence these zeros can be filled at

most at O(ε3). As we will now show, these subleading terms only contribute to physical

quantities at subleading order even though the texture zero may be filled in. The only

– 8 –
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exception to this is when the hierarchical structure is spoilt through an O(1) term in Y23.

In this case, following the discussion given above, the Kähler corrections can contribute at

O(1) to physical quantities.

4. Kähler corrections to the mass matrix eigenvalues and mixing angles

To complete our proof we need to demonstrate that the entries of eq. (3.1) are the smallest

that can affect masses and mixing angles and thus the Kähler corrections, which we have

shown are smaller than those of eq. (3.1), are necessarily subdominant in determining

physical quantities.

4.1 Quark and charged lepton masses and mixing angles.

Since the Kähler corrections are wave function corrections which cannot change the rank of

the mass matrix we know that they lead to multiplicative normalisations of the masses. For

hierarchical Yukawa matrices the wave function normalisation has the formNik = δik+O(≤
ε) and this means the Kähler corrections to masses are necessarily sub-dominant. To see

this explicitly, consider only the left handed canonical normalisation Nik with N upper

triangular. Now using eq. (3.2) the canonical Yukawa and the fact that the Yukawa and

Kähler matrices are hierarchical in the left handed sector, the determinant of Y t is,

Det(Y t) = Det(N)Det(Ŷ ) ' (1 +O(≤ ε))Det(Ŷ ) .

Moreover, from the hierarchical structure in eq. (3.1) we know that any element of the

matrix is corrected only at O(≤ ε2) under the transformations to canonical left-handed

Kähler. In particular, the heaviest eigenvalue in Y t will be still be 1 +O(≤ ε2). Therefore

this implies that the product of the two lightest eigenvalues can only be changed at O(≤ ε2).

Finally the second eigenvalue is basically obtained from the lightest eigenvalue of the (2, 3)

submatrix and thus we obtain again that any change to this eigenvalue will be sub-dominant

in ε and therefore the same is true for the first generation eigenvalue.

In the case of a non-hierachical structure in the (2, 3) entry with NR
23 of O(1) we expect

Det(NR) to be O(1) barring accidental cancellations. In this case the corrections to the

eigenvalues, while still not changing their order in ε, could be O(1).

Concerning the mixing angles, with the use of triangular matrices we have not changed

the hierarchical structure of the Yukawa matrices. Hence, we can still use the usual per-

turbative expansion. In this way, after the transformations to left handed canonical Kähler

we have,

θ23 = θd23 − θu23 =
(Y d

23)t

(Y d
33)t
− (Y u

23)t

(Y u
33)t

=
Ŷ d

23(1 +O(ε2))

Ŷ d
33(1 +O(ε2))

− Ŷ u
23(1 +O(ε2))

Ŷ u
33(1 + O(ε2))

= θ̂23(1 +O(ε2)) (4.1)

the discussion is identical for the θ13 mixing angle. The case of θ12 is slightly more com-

plicated, now we have,

θd12 =
(Y d

12)t

(Y d
22)t − (Y d

23)t(Y d
32)t

(4.2)
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where the denominator is really the Y d
22 element in the basis where we have already diag-

onalised the 2, 3 sector, and it is approximately equal to ms/mb = ε̄2. However, we know

that both (Y d
22)t ≤ ε̄2(1 + O(ε2)) and (Y d

23)t(Y d
32)t ≤ ε̄2(1 + O(ε2)). This means that the

denominator can also be corrected only at O(ε2), then we have,

θd12 =
Ŷ d

12(1 +O(ε2))

(Ŷ d
22 − Ŷ d

23Ŷ
d

32)(1 +O(ε2))
= θ̂d12(1 +O(ε2)) (4.3)

doing the same for θu12 we arrive immediately to θ12 = θd12 − θu12 = θ̂12(1 +O(ε2)).

Moreover, it is easy to check that the effect of the transformation to canonical Kähler

for the right handed fields on the left handed mixings is usually negligible. To see this, we

consider the limit of trivial left handed Kähler and nontrivial right-handed Kähler. Then,

we consider the diagonalisation of the hermitean matrix H t,

Ht = Y t(Y t)† = Ŷ NRN
†
RŶ
† = Ŷ K−1Ŷ † = V̂ †LM̂f V̂RK

−1V̂ †RM̂fVL ≡ V̂ †LM̂fK̃
−1M̂f V̂L ,

where we have written Ŷ = V̂ †LM̂f V̂R and reabsorbed the right-handed rotation in K̃−1,

i.e. we have written the inverse of the Kähler in the basis of right handed mass eigenstates.

Now it is trivial to see that the matrix diagonalising H t will be the product of VL with

the matrix diagonalising M̂fK̃
−1M̂f . As we have seen M̂f are approximately equal to the

eigenvalues of the total Yukawa matrix, this implies that M̂f K̃
−1M̂f is strongly hierarchical

and then the mixing angles diagonalising this matrix will be,

θ̃i3 '
mim3(K̃−1)i3

m2
3(K̃−1)33

θ̃12 '
m1m2(K̃−1)12

m2
2

(
(K̃−1)22 −

|(K̃−1)23|2
(K̃−1)33

)

therefore these contributions are suppressed both by the smallness of off-diagonal entries

in the Kähler with respect to diagonal ones and by ratios of fermion masses. This last

suppression is usually enough to make θ̃ij ¿ θij and then we can safely neglect the effect

of right handed transformation in left handed mixings.

The exception to this rule arises when the right handed Kähler in the basis of right

handed mass eigenstates is not hierarchical and has O(1) entries in K23, K22 and K33. In

this case the correction to the angle θ23 from the down quark right handed Kähler could be

of leading order as both θ23 and ms/mb are O(ε̄2). Still this situation can be understood

as an exception to the main rule we formulated above. The correction from the right

handed Kähler in the left handed mixing angles would still be of the same order as the

contribution from the non-canonical Yukawa matrix and therefore would only modify the

unknown O(1) coefficients. Usually, we find this structure in U(1) models with lopsided

Yukawa textures [22]. These models depend precisely on the existence of different O(1)

coefficients in the elements of the Yukawa texture to obtain the correct masses and mixing

angles. However, the U(1) symmetry has no control on these O(1) coefficients and so this

means that we do not need to worry about these effects. Only in a theory where we can

control these unknown coefficients we should worry about the effects of this right-handed

field redefinition.
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4.2 Neutrino masses and mixing angles

The case of neutrino masses can be analysed with similar techniques. In this case, we

obtain the effective Majorana mass matrix for the left handed neutrinos through the seesaw

mechanism. The neutrino mass matrix structure has the form

Lν = −νL iY ν
ijν

c
R j −

1

2
νR iMR ijν

c
R j + h.c.

giving the effective Majorana mass matrix of the effective low energy neutrinos, Mν of the

form

Mν = χν (v sinβ)2 = Y ν(MR)−1Y ν T (v sinβ)2 .

The transformation properties of the effective neutrino mass matrix under the transforma-

tions to canonical Kähler for both left handed and right handed fields is given by

χtν = Y ν t(M t
R)−1(Y ν t)T = NT

L Ŷ ν NR(NR)−1 M−1
R (NT

R )−1NT
R Ŷ ν T NL

= NT
L Ŷ ν M̂−1

R Ŷ ν T NL = NT
L χ̂ν NL . (4.4)

Hence, we see that the effective neutrino coupling χν is transformed only by the left handed

canonical transformations and the right-handed transformations cancel exactly.

However the neutrino sector can be special because in this case, we do not know much

about the hierarchy of the leptonic Yukawa couplings Y ν and Y e. In fact we can find two

different situations:

1. Y ν and Y e are hierarchical and Ykj < Yij for i > k and j ≥ i. This is this situation

in realistic non-abelian flavour theories explored to date [14].

2. Y ν or Y e have two rows of similar size. We can find this situation in some U(1)

models [23].

In case 1 the Kähler metric is also very close to the identity with small off-diagonal

entries. Therefore we can choose NL to be upper triangular with (NL)ii ' 1 and (NL)ij ≤ ε.
Then both Yν and Ye are only changed at higher order in ε and neutrino masses and mixings

are only changed at sub-dominant order. In the case of non-abelian symmetries χtν and

Y e are changed at most at order ε2. Then we can immediately use the standard formulae

for the neutrino mixings compiled in Ref. [24]. For all the different cases compatible with

hierarchical rows in the lepton Yukawa matrix, we can immediately see that neutrino

mixings will only be changed at sub-leading order. Although small, this might still be

relevant for the difference of the solar mixing angle from maximality [25].

Case 2 arises if two left handed fields have identical flavour symmetry charges. As

a result the Kähler metric will have large mixing between these two fields and therefore

O(1) off-diagonal entries. In this case, it is possible to modify the O(1) coefficients in the

different elements of the canonical Yukawa matrices, but the order in ε of these entries is

not changed. Therefore, in this case, it is possible to generate changes at leading order

in neutrino masses and mixings. This corresponds again to the case where right-handed

mixing angles can modify left-handed mixings in the quark sector. Since only the O(1)

coefficients are modified these corrections do not change the predicted structure if the

family symmetry does not predict the value of these coefficients.
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4.3 Soft SUSY breaking masses and mixing angles

Finally, we would also like to comment on the effects of the Kähler transformations on

the soft breaking masses which may give rise to dangerous flavour changing neutral current

processes [19]. Notice that the F-term contributions to soft breaking masses in supergravity

are closely related to the Kähler potential [26]. In fact the non canonical soft breaking

masses are,

m̂2
ab = m2

3/2Kab − Fm
(
∂m∂nKab − ∂mKac(K

−1)cd∂nKdb

)
Fn .

To obtain the canonical soft breaking masses we have to multiply this matrix by the inverse

of the square root of K, m2 = (K−1/2)†m̂2K−1/2. Then we obtain,

m2 = m2
3/21− (K−1/2)†Fm

(
∂m∂nK − ∂mK(K−1)∂nK

)
FnK

−1/2

≡ m2
3/21−N †Fm

(
∂m∂nK − ∂mK(K−1)∂nK

)
FnN .

Therefore we see that we have a universal contribution proportional to m2
3/2 plus other

terms which in principle will depend on flavour. These terms depend on the derivatives of

the Kähler potential with respect to fields with non vanishing F-terms.

If the field with non-vanishing F-term is a hidden sector field it must be neutral under

the flavour symmetry and therefore the structure in powers of ε of ∂m∂nK or ∂mK will

be the same as the structure of K. However, factors O(1) can be different and indeed

can sometimes be zero. The important point is that no terms larger in powers of ε are

generated than are in K itself. Due to this difference in the O(1) coefficients the product

(K−1/2)†∂mKK−1/2 will be different from the identity, but will be bounded by the same

power in ε as the original K matrix [8].

Another possibility is that the field with non-vanishing F-term is a flavon field with

non-trivial quantum numbers under the flavour symmetry. As shown in [27], the natural

size for Fθ for θ a flavon field is m3/2〈θ〉, although it can be smaller depending on the

characteristics of the scalar potential. In this case, we also have that Fm∂mK cannot

generate terms larger in powers of ε than the terms initially present in K itself and the

conclusion above still applies.

We have also to consider the possibility of a non-vanishing flavour D-term contributing

to the soft masses. Although this possibility is extremely dangerous for the phenomenology

of flavour changing neutral currents (FCNCs) it can be realised for heavy sfermion masses

in some abelian flavour models. In this case we obtain a new contribution to the soft

masses,

(m̂2
ab)

D = g qbKab 〈D〉

with qb the charge of the field φb under the U(1)fl symmetry. Notice that due to the

dependence on the charges of the different fields this contribution to the soft masses is

not diagonalised when we make the transformation to the basis of canonical Kähler and

therefore it gives rise to new FCNC effects.
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To analyse these FCNC effects it is convenient to work in the SCKM basis where the

corresponding Yukawa matrix is diagonal. Therefore, to obtain the sfermion mass matrix

in the SCKM basis we have to do two trasformations. First we go to the basis of canonical

Kähler with our triangular matrices and second we diagonalise the corresponding Yukawa

matrix with a rotation of the full superfield. Now, we can compare the effects of the trans-

formations to the basis of canonical Kähler with the effects of the second transformation to

the SCKM basis. First it is easy to see that in U(1) models the structure in ε of our trian-

gular Kähler transformations are always smaller or equal that the corresponding rotation

diagonalising the Yukawa matrix. For instance, the left handed Kähler transformation is

usually of the same order as the left handed rotation diagonalising the up quark Yukawa

matrix and smaller than the left handed rotation diagonalising the down quark Yukawa.

If the diagonal elements of the Kähler metric are O(1), this means that the corrections

to offdiagonal elements that we obtain from the transformations to the SCKM basis are

larger or equal than the corrections obtained in the transformation to the canonical basis.

As before, if we are not interested in coefficients O(1), we can also ignore the effects of

transformation to canonical Kähler in the soft breaking masses.

5. Conclusions

In this letter we have studied the effects of the transformations to the canonical Kähler

basis on the Yukawa textures for quarks and leptons and their contributions to physical

masses and mixing angles. We have developed a simple formalism that allows a straight-

forward calculation of the necessary Kähler transformations and simplifies enormously the

phenomenological analysis. Using this formalism we have proved that, in the case of mod-

els with a hierarchical structure of the Yukawa matrices, the corrections obtained through

the transformations to canonical Kähler are always suppressed by a factor ≤ ε2 with ε

the expansion parameter in the Yukawa matrix. This implies that, in this case, fermionic

masses and mixing angles receive only corrections at ε2 from the Kähler transformations.

We have seen that although texture zeros can be filled by transformations to canonical

Kähler the physical effects of this texture zero filling are only subdominant corrections in

ε to observable masses and mixing angles. We have also discussed some exceptions to the

case of completely hierarchical Yukawa matrices where some corrections at leading order

are possible. In any case, we have seen that in these models only unknown O(1) coefficients

are modified. We have also shown that the corrections to the scalar soft breaking mass ma-

trices can only change the unknown O(1) coefficients. We conclude that in the large class

of models considered here the leading order superpotential couplings in the noncanonical

Kähler basis are essentially unchanged when transformed to the canonical Kähler basis.
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Note added. During completion of this work, we learnt about two groups [28, 29] work-

ing along the same lines with different techniques. Our conclusions agree in the points

where the analysis overlap. In ref. [28], the authors provide an exact formula relating the

“naive” CKM and MNS matrices to the physical matrices. They show that the effects of

canonical normalisation are subdominant in the case of hierarchical matrices in agreement

with the present analysis which uses somewhat simpler mathematical techniques to obtain

the transformation to the canonical Kähler basis. In addition we analyse the effects of

canonical normalisation in the sfermion mass matrices and we find that these transforma-

tions do not change the structure of the sfermion mass matrices.
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