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1. Introduction and summary

There has recently been renewed interest in string theories with two-dimensional target

space [1, 2] (for earlier work on string theory in two dimensions see e.g., [3, 4]). One aspect

of this development is that several new theories have been proposed [5 – 11].

The goal of this paper is to study heterotic strings in two target space dimensions.

These are theories that couple to (1, 0) worldsheet supergravity. The supersymmetric side

of the world-sheet theory has the same structure as the N = 1 non-critical superstring. The

bosonic side matches the bosonic fields of the supersymmetric side and has, in addition, a

cL = 12 matter sector. This matter can be organized into either Spin(24) or Spin(8) × E8
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current algebras, thus defining two consistent heterotic string theories. These theories

were discussed in [12, 13]. Other theories with somewhat similar features were studied

in [14 – 17].

The spectrum of the Spin(24) theory are 24 massless “tachyon” fields, as well as discrete

states. The propagating modes of the Spin(8)×E8 theory are 8C massless fermions of one

chirality, 8S massless fermions of the other chirality, and 8V massless “tachyons.”

It is interesting to compactify the heterotic strings, with or without twisting by its

discrete symmetries. Then each field theory degree of freedom gives rise to a tower of

excitations a la Kaluza-Klein. An important novelty is that, unlike the bosonic, type 0

and type-II string theories, we find infinitely many states which have both momentum

and winding. Thus there is a rich spectrum of “states” in the theory with compact time,

with each level transforming as an increasingly complex representation of the gauge group.

These modes can lead to interesting phenomena.

Some of our theories exhibit self-duality under inversion of the compactification radius

R. At the self-dual points there are enhanced gauge symmetries such that T-duality is part

of the gauge symmetry [18]. Due to the enhanced symmetry, there can be new massless

particles which can give rise to phase transitions.

The most striking effect occurs when some of the string theory modes become massless

(in the sense of one-dimensional Liouville theory [19]). In these cases the torus amplitude

is non-analytic and the theory undergoes a phase transition. The mode that becomes

massless can be either a complex boson Φ or a complex fermion χ. We can describe its

one-dimensional Landau-Ginzburg mean field theory lagrangian as

LΦ =
1

2
|∂φΦ|2 +

1

2
m(R)2Φ2

Lχ = iχ†∂φχ + m(R)χ†χ . (1.1)

In our examples the mass m(R) has a simple zero; specifically m(R) = 1
2

(
R − 1

R

)
.

The one loop fluctuations of Φ and χ lead to finite, nonanalytic terms

ZΦ = −
∫

VLdp

2π
log(p2 + m(R)2) = −VL|m(R)| + const.

Zχ =
1

2

∫
VLdp

2π
log(p2 + m(R)2) = +

1

2
VL|m(R)| + const. (1.2)

Here VL =
∫

dφ 1 is the size of the spatial direction φ. The (infinite) constants are

independent of m(R) and can be ignored. All our torus amplitudes are analytic functions

of R plus possible terms arising from (1.2). Our results are summarized in table 2 and 3

in section 4.

The interpretation of the results raises conceptual issues that are not fully understood;

they are discussed in section 4.4. For example, we will see that the torus amplitude of a

theory compactified on a small thermal circle is not given by the standard thermodynamical

trace over the spacetime Hilbert space. It is not clear whether there exists an alternate

thermodynamical description of the physics with such small radius. The moduli space of

other compactifications might have a boundary at finite radius beyond which the radius

cannot be reduced.
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We would like to clarify a few general points of potential confusion. The target space

of the theories we consider have a linear dilaton along the spatial direction, φ, so that the

string coupling constant varies as

gs(φ) = eφ . (1.3)

We focus on the weakly coupled region of the target space where the string coupling

is arbitrarily small gs(φ) → 0, while the string scale Ms is finite. There, the infrared

dynamics of the gauge theory can be ignored, because it is important only at energies

below gs(φ)Ms → 0. The typical energy scale we consider, including the scale 1/R set

by our compactifications, is of order string scale Ms and, therefore, not affected by the

infrared dynamics.

We will be interested in the string theory partition function written in the form

∫
dφZ(φ) =

∫
dφ

(
e−2φA0 + A1 + e2φA2 + · · ·

)
(1.4)

where the φ dependence is associated with the powers of the string coupling (1.3) and, there-

fore, the coefficient An is the genus n contribution. The sphere term A0 is proportional

to the compactification radius R and is not interesting for our purpose. The torus ampli-

tude A1 is more interesting; for example, it receives the non-analytic contributions (1.2).

Importantly, A0 and A1 depend only on physics in the weak coupling region, and on the

weak coupling spectrum. An with larger n depend on the details of the interactions in

the strong coupling region; but they are negligible for φ → −∞. Usually, one turns on a

tachyon background with coefficient µ to control the perturbative expansion (1.4) but this

will not be needed here.

The theories we consider have discrete states formed from the gauge currents; but the

ground ring and its associated towers of currents seems absent. In the bosonic and super-

symmetric theories such currents are related to the symmetries of the dual matrix model

description, specifically the symmetries expressing incompressibility of the free fermion

representation. (Some discussions of discrete states and the ground ring in bosonic and

superstring theories are [20 – 27].) The absence of this structure for the heterotic strings

indicates that, if a dual matrix model description exists at all, it must have some significant

new feature. Additionally, heterotic strings support no D-brane boundary states. Since

the modern interpretation of matrix models identifies the matrix eigenvalues with D-brane

coordinates [1, 2], this is another indication that a matrix model description cannot be sim-

ple. It would clearly be interesting to find a non-perturbative formulation of the heterotic

strings discussed here.

An illuminating way to explore heterotic theories is to employ lattice technology. In

two dimensions the uncompactified theories can be classified by even self-dual lattices in

16 euclidean dimensions, using the covariant lattice construction (which includes right

moving fermions and superconformal ghosts). This confirms that there really are exactly

two “fundamental” theories, with gauge groups Spin(24) and Spin(8) × E8, respectively.

This contrasts with ten dimensions where, in addition to the familiar supersymmetric

Spin(32)/Z2 and E8 × E8 theories, there are a number of non-supersymmetric theories.
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The lattice construction also shows that, after compactification, all theories are con-

nected: there is a 13 dimensional moduli space, parametrized by the radius of compact-

ification and 12 independent Wilson lines. This is much richer than for other strings in

two dimensions. As illustrations, we show explicitly how the twisted lines of theories can

be reinterpreted in terms of Wilson lines; and how T-duality relates the Spin(24) and the

Spin(8) × E8 theories, after the introduction of suitable Wilson lines.

The remainder of the paper is organized as follows. In section 2 we define the basic

Spin(24) and Spin(8)×E8 theories. We also discuss the discrete symmetries of the theories.

In section 3 we consider compactifications of the two theories, with or without twisting of

their discrete symmetries. T-duality and enhanced symmetry points are discussed as well.

In section 4 we evaluate the torus partition function explicitly for the different lines of

theories and discuss the phase transition in detail. Finally, we include an appendix where

lattice constructions are used to classify the theories and reconsider their interconnections.

Throughout the paper we use units in which α′ = 2.

2. Theories in noncompact space

The right movers are the ĉ = 1 noncritical string: a Liouville field φ, (euclidean) time x,

and their fermionic superpartners ψφ and ψx. The slope of the Liouville field is Q = 1

which is such that it contributes cφ = 13 to the central charge. The left movers constitute

a noncritical bosonic theory that includes the Liouville field, (euclidean) time and, in order

to have total left moving central charge 26, a cL = 12 bosonic CFT which we will take to

be 24 free fermions λ̄I with I = 1, . . . , 24. In the remainder of this section we discuss the

two natural theories constructed out of these building blocks.

2.1 Spin(24) theory

Here we correlate the spin structure of the free 24 fermions with that of the right movers.

The physical vertex operators are

G = J J̄
AIJ = J λ̄I λ̄J

T I(k) = e−ϕλ̄IVk (2.1)

where the operators

J = e−ϕψx

J̄ = ∂̄x̄ (2.2)

are U(1) currents and the wave functions are

Vk = eik(x+x̄)+(1−|k|)(φ+φ̄) . (2.3)
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The absolute value in the coefficient of φ was explained in [19]. The discrete states G

and AIJ are the two dimensional graviton/dilaton and the Spin(24) gauge fields. T I(k)

represent 24 massless scalars “tachyons.” The Ramond sector does not lead to physical

particles because the Spin(24) spin fields, S̄α and S̄α̇, have dimension ∆̄ = 3
2 and Vk has

dimensions (∆, ∆̄) = (1
2 , 1

2 ) for all k. These fields, however, will play a role when we discuss

the compactified theory. Clearly, the operators in (2.1) are mutually local. The partition

function (in the notation of [28])

ZF (τ̄) =
1

2

[
Z0

0 (τ̄)12 − Z0
1 (τ̄)12 − Z1

0 (τ̄ )12
]

(2.4)

is modular invariant. Also note that ZF (τ̄) = 24 is independent of τ̄ [13], and hence it is

manifestly modular invariant.

It is possible to turn on background tachyons which break the continuous symmetry

Spin(24) → Spin(23).

2.2 Spin(8) × E8 theory

Here we divide the 24 fermions into two groups: λ̄i with i = 1, . . . , 8 and 16 other fermions.

The latter lead to an E8 left moving CFT. The spin structure of the λ̄i is correlated with

that of the right movers. In this theory the physical vertex operators are

G = J J̄
Aij = J λ̄iλ̄j

Aab = J J̄ab

T i(k) = e−ϕλ̄iVk

Ψα = e−
1
2
ϕ+i 1

2
H S̄αVk , k ≥ 0 Ψ̃α̇ = e−

1
2
ϕ−i 1

2
H S̄α̇Vk , k ≤ 0 . (2.5)

Again, J and J̄ are the U(1) currents (2.2) which lead to discrete states: G is the gravi-

ton/dilaton, Aij are the Spin(8) gauge fields and Aab are the E8 gauge fields constructed

from the E8 currents J̄ab. The other vertex operators represent propagating particles: T i

is a scalar in 8V of Spin(8), Ψα is a left moving spacetime fermion in 8S , and Ψ̃α̇ is a right

moving spacetime fermion in 8C . Unlike the Spin(24) theory, here, the dimension of the

Spin(8) fields Sα and Sα̇ is ∆ = 1
2 , thus giving rise to physical fermions. The conditions

on the momentum k arise from locality with respect to the world-sheet supercurrent (i.e.

the Dirac equation). Note that the spectrum is anomaly free even though it is chiral. It

is straightforward to check that the operators in (2.5) are mutually local. The partition

function of the theory

ZF (τ̄) =
1

2

[
Z0

0 (τ̄)4 − Z0
1 (τ̄ )4 − Z1

0 (τ̄)4
]
·
(
Z0

0 (τ̄)8 + Z1
0 (τ̄ )8 + Z0

1 (τ̄)8
)

= [(8 − 8) + (64 − 64)q + · · ·] · [1 + 248q + · · ·] = 0 (2.6)

is modular invariant. Note that in this case ZF ≡ 0 identically (this follows from the Jacobi

identity, familiar from spacetime supersymmetry in 10 dimensions).
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It is possible to turn on background tachyons which break the continuous symmetry

Spin(8) → Spin(7). The effective lagrangian can include a coupling of the form T iΨαΨ̃α̇γiαα̇

with possible derivatives. It is amusing that this spectrum of particles is the same as in the

worldsheet light cone description of the IIA critical string. However, unlike that theory,

here, because of the linear dilaton, there is no two-dimensional Lorentz invariance and no

(8, 8) two dimensional supersymmetry.

2.3 Discrete symmetries

We next discuss the discrete symmetries of the theories. We focus on transformations that

do not break the gauge symmetry.

The spacetime fermion number FR and the right moving world-sheet fermion number

fR are represented in the same way as in the superstring [11]

(−)FR : ϕ → ϕ + 2πi

(−)fR : ϕ → ϕ + πi H → H + π . (2.7)

In the left moving sector we must proceed differently. The center of Spin(4n) is Z2 ×
Z2. The generators of the center transform representations according to their Spin(4n)

conjugacy class

Z1 = (−)FL : OV → OV ; OS → −OS ; OC → −OC

Z2 = (−)fL : OV → −OV ; OS → OS ; OC → −OC (2.8)

while the O0 are invariant. The transformation Z1 is a rotation by 2π around some axis

in the internal space. It is therefore natural to define the left moving spacetime fermion

number as (−)FL ≡ Z1. The transformation Z2 is world-sheet fermion number insofar as

the Spin(2n) current algebra is realized in terms of 2n free fermions. It is therefore natural

to define the left-moving world-sheet fermion number as (−)fL ≡ Z2. Note that this latter

identification also makes sense for Spin(8)×E8, because there are always an even number

of E8 fermions.

With these notations and conventions, the theories we consider are defined with di-

agonal GSO projections, i.e. the operators satisfy (−)FL+FR = (−)fL+fR = 1 on physical

states. In contrast, the elements (−)FL and (−)fL in the center of Spin(4n) act as symme-

tries. In view of the GSO projection the symmetries can equally be characterized in terms

of right moving quantities (−)FR or (−)fR .

There are two more discrete transformations of interest. Spacetime parity P acts as

P : H → −H ; x → −x ; x̄ → −x̄ (2.9)

while charge conjugation C acts on the Spin(4n) lattice as

C : S ↔ C . (2.10)
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Neither of these transformations are symmetries of the Spin(8) × E8 theory. For ex-

ample, P would transform Ψα in (2.5) into a state with k ≤ 0 and H → −H, leaving S̄α

intact; but there is no such state in the spectrum. However, the combined transformation

CP is a symmetry of the theory: it simply interchanges the spinorial vertex operators Ψα

and Ψ̃α̇. The P, C and CP are all symmetries of the Spin(24) theory.

The diagonal element in the center of Spin(4n), generated by Z1Z2 = (−)FL+fL , is

related to Z2 through conjugation by CP: we have CP(−)fLCP = (−)FL+fL when acting

on any operator in the theories. Thus, (−)FL+fL acts in the same way as (−)fL , up to

a change of conventions; so, later, it will be sufficient to consider orbifolds and twists by

(−)FL and (−)fL .

It is significant that the discrete symmetries are in fact elements of the center of the

group, which can be continuously related to the identity. This means compactifications

twisted by each of these symmetries are all connected to untwisted compactification. We

will make this more explicit in the appendix.

As a final comment on discrete symmetries, recall that Spin(8) allows triality transfor-

mations, realized as outer automorphisms of the algebra. One element of the triality group

acts on the weight lattice by cyclic permutation of the conjugacy classes V → S → C → V .

Concretely, this means we can replace the operators appearing in (2.5) according to

λ̄i → S̄α → S̄α̇ → λ̄i . (2.11)

It is important that no physical observable will be different in theories related by

triality, because an automorphism just amounts to renaming of the representations.

2.4 Orbifolds

Starting from the Spin(24) and Spin(8) × E8 theories discussed above it is natural to seek

new theories by orbifolding with respect to the discrete symmetries. In the following we

argue that this does not lead to interesting new possibilities.

First, let us orbifold by (−)FL . As indicated in (2.8) the untwisted sector is the V

conjugacy class of the Spin(4n) and also the discrete states, but the R-sector (if any) is

projected out. An R-sector arises from the twisted states, but it has the opposite correlation

between spacetime chirality and Spin(4n) chirality. Explicitly, for the Spin(8)×E8 theory

in (2.5), the Ψα and Ψ̃α̇ are being replaced by Ψ̃α and Ψα̇. This does not lead to a genuinely

new theory: it reduces to the transformation C introduced in (2.10). In the Spin(24) there

are no R-states at all, so the orbifold leaves the theory invariant.

Next, let us consider orbifold by (−)fL . From (2.8) we see that the untwisted sector

consists of the S conjugacy class along with the discrete states in the 0 conjugacy class. In

the Spin(8) × E8 theory this leaves the propagating states Ψα and so, adding the twisted

states permitted by locality, we find the propagating states

Ψα = e−
1
2
ϕ+i 1

2
H S̄αVk , k ≥ 0

T α̇ = e−ϕS̄α̇Vk

Ψ̃i = e−
1
2
ϕ−i 1

2
H λ̄iVk , k ≤ 0 . (2.12)
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This is related to the original spectrum (2.5) by triality.

The (−)fL orbifold of the Spin(24) theory is formally expected to have the same struc-

ture as the Spin(8)×E8 theory but now, because the spin fields have dimensions ∆̄ = 3/2,

the only propagating states are the Ψ̃i, i.e. 24 chiral fermions. This spectrum is anomalous

in spacetime and the theory is probably inconsistent.

3. Compactification

In this section we discuss the compactification of the Spin(24) and Spin(8) × E8 theories

on a circle of radius R. We also consider theories that are twisted by discrete symmetries

that commute with the gauge symmetry. As discussed in section 2.3, the non-trivial twists

are (−)FL and (−)fL .

3.1 Circle compactification: no twist

The spectrum at generic radius R includes the currents J and J̄ (2.2) and the discrete

states G and AIJ of (2.1) as well as

TV = e−ϕŌV

(
1

2
+ nw

)
Vn,w

ΨS = e−
1
2
ϕ+i 1

2
HŌS

(
1

2
+ nw

)
Vn,w , pR ≥ 0

Ψ̃C = e−
1
2
ϕ−i 1

2
HŌC

(
1

2
+ nw

)
Vn,w , pR ≤ 0 (3.1)

where now the wave function is

Vn,w = ei n

R
(x+x̄)+i w

2
R(x−x̄)+(1−|pR|)(φ+φ̄) (3.2)

with pR = n
R + wR

2 . The n, w are integers and Ōr(∆̄) are operators in the conjugacy class

r = V, S,C of Spin(4n) with dimension ∆̄. The spectrum (3.1) is modular invariant (some

details of this are discussed in section 4.1).

The theories are clearly invariant under R → 2
R . The right moving U(1) symmetry

cannot be enhanced but, at the selfdual radius R =
√

2, the left moving U(1) symmetry

whose current is ∂̄x̄ is enhanced to SU(2).

The list of operators in (3.1) represents schematically the spectrum of either the

Spin(24) theory or the Spin(8) × E8 theory. The difference between the theories appears

when constructing the operators Ōr explicitly. These must transform according to a repre-

sentation in the appropriate conjugacy class, and with the correct conformal dimension. In

the Spin(24) theory they are formed from the 24 λ̄i (∆̄ = 1
2 ; V representation) and the spin

fields S̄α and S̄α̇ (∆̄ = 3/2; S or C). In the Spin(8)×E8 theory, there are only 8 λ̄i and the

spin fields have dimension ∆̄ = 1/2; but then there are also operators from the E8 part,

including the adjoint operator J̄ ab with ∆̄ = 1. In either theory there are clearly numerous

ways to construct operators with appropriate representations and dimensions. Thus, unlike

the type 0 and type-II theories, here, because the central charge of the left movers, there

is a large spectrum of physical operators obtained using the left moving oscillators.
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3.2 Compactification with (−)FL twist (thermal theory)

We next consider the twisted theory where motion around the circle is accompanied by

action with (−1)FL . The spectrum at generic radius R includes the currents J and J̄ and

the discrete states G and AIJ of (2.1) as well as

TV = e−ϕŌV

(
1

2
+ 2nw

)
Vn,2w

T0 = e−ϕŌ0

(
1

2
+

(
n +

1

2

)
(2w + 1)

)
Vn+ 1

2
,2w+1

ΨS = e−
1
2
ϕ+i 1

2
HŌS

(
1

2
+ (2n + 1)w

)
Vn+ 1

2
,2w , pR ≥ 0

ΨC = e−
1
2
ϕ+i 1

2
HŌC

(
1

2
+ n(2w + 1)

)
Vn,2w+1 , pR ≥ 0

Ψ̃S = e−
1
2
ϕ−i 1

2
HŌS

(
1

2
+ n(2w + 1)

)
Vn,2w+1 , pR ≤ 0

Ψ̃C = e−
1
2
ϕ−i 1

2
HŌC

(
1

2
+ (2n + 1)w

)
Vn+ 1

2
,2w , pR ≤ 0 (3.3)

where again n and w are integers. The untwisted sector consists of all states with even

winding; the spacetime bosons (fermions) have integer (half-integer) momentum, to com-

pensate for the action with (−1)FL . The twisted sector (odd winding) has the opposite

correlation. The spectrum (3.3) is modular invariant (some details of this are discussed in

section 4.2).

The transformation R → 1/R leaves the set of operators (3.3) invariant, except for the

trivial interchange of the S and C conjugacy classes. Hence the theory is self-dual.

Let us be explicit about the decompactification limits: as R → ∞ only operators with

no winding remain, such as ΨS and Ψ̃C . As R → 0 it is the operators with vanishing

momentum that remain, including ΨC and Ψ̃S . The spectra in the two limits are thus

related by charge conjugation C (2.10) which, as discussed in section 2.3, amounts to a

change of convention with no physical significance.

At the self-dual point R = 1 there are additional discrete states

AI
± = J λ̄Ie±ix̄ (3.4)

where I = 1, · · · , N (N = 24 for the Spin(24) theory and N = 8 for Spin(8) × E8). Taken

together with the operators AIJ and G from (2.1) these form an Spin(N + 2) current

algebra at level 1. This means the left moving symmetry is enhanced from Spin(N)×U(1)

to Spin(N + 2) at the self-dual point.

The list (3.3) includes two states that become massless at R = 1

T±
0 = e−ϕV± 1

2
,∓1 = e−ϕe±ix̄eφ+φ̄ (3.5)

so that, in total, there are N +2 tachyons at R = 1, transforming in the vector of Spin(N +

2). These modes are massless in the sense of one-dimensional Liouville theory [19], that

is, they have Liouville dressing eφ+φ̄. In section 4.2 we will show that they signal a phase

transition at R = 1.

At R = 1 the ΨS and ΨC combine into Spin(N + 2) spinors, as do Ψ̃S and Ψ̃C .
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3.3 Compactification with (−)fL twist

As the final compactification we consider the twisted theory where motion around the circle

is accompanied by (−)fL . The propagating modes are

TV = e−ϕŌV

(
1

2
+ (2n + 1)w

)
Vn+ 1

2
,2w

TC = e−ϕŌC

(
1

2
+ n(2w + 1)

)
Vn,2w+1

ΨS = e−ϕ/2+iH/2ŌS

(
1

2
+ 2nw

)
Vn,2w , pR ≥ 0

Ψ̃C = e−ϕ/2−iH/2ŌC

(
1

2
+ (2n + 1)w

)
Vn+ 1

2
,2w , pR ≤ 0

Ψ0 = e−ϕ/2+iH/2Ō0

(
1

2
+

(
n +

1

2

)
(2w + 1)

)
Vn+ 1

2
,2w+1 , pR ≥ 0

Ψ̃V = e−ϕ/2−iH/2ŌV

(
1

2
+ n(2w + 1)

)
Vn,2w+1 , pR ≤ 0 . (3.6)

The untwisted sector (even winding) has momentum shifted by half for odd world-

sheet fermion number (V and C conjugacy classes). The twisted sectors have the opposite

correlation. The theory is modular invariant (shown in detail in section 4.3).

The list (3.3) includes two fermionic states that become massless (in the one-dimen-

sional Liouville sense described below (3.5)) at R = 1

Ψ±
0 = e−ϕ/2+iH/2e±ix̄eφ+φ̄ (3.7)

These will be responsible for a phase transition at R = 1.

At R = 1 the operator Ψ0 with n = w = 0 is the gravitino S+J̄ where

S+ = e−ϕ/2+iH/2V1/2,1 = e−ϕ/2+iH/2+ix (3.8)

is a (1, 0) “supersymmetry” current. It is a special case of the construction of [29]. It exists

only at precisely R = 1 because only then does V1/2,1 have conformal dimension ∆ = 1/2.

In the Spin(8) × E8 (but not the Spin(24) theory) there are also additional discrete

states at R = 1:

Aα
± = J S̄αe±ix̄ . (3.9)

These combine with G and AIJ to extend the gauge symmetry to Spin(10) × E8.

The ΨS and Ψ0 combine into representations in the spinor conjugacy class of Spin(10).

Similarly, TV and TC combine into Spin(10) spinors, as do Ψ̃V and Ψ̃C .

Next we consider duality of the theory. Transforming R → 1/R on the operators (3.6)

we find that the spectrum returns to its original form except that the modings of the

operators in V and C conjugacy classes have been interchanged. In the Spin(8) × E8

theory this is just triality, which just amounts to a change of conventions; so this theory is

self-dual. Again the duality is an element of the enhanced gauge symmetry at R = 1.
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Spin(24) Spin(8) × E8

S1 R → 2

R
; Spin(24) × SU(2) R → 2

R
; Spin(8) × SU(2) × E8

S1/(−1)FL R → 1

R
; Spin(26) R → 1

R
; Spin(10) × E8

S1/(−1)fL No duality/enhancement R → 1

R
; Spin(10) × E8

Table 1: Summary of T-duality symmetry and enhanced gauge symmetry at the self-dual point.

The Spin(24) theory is more confusing. Formally, the R → 1/R again interchanges the

V and C conjugacy classes. However, for Spin(24) these representations are not equivalent,

nor is there enhanced gauge symmetry at R = 1. We therefore find that there is a whole

line of inequivalent theories. As R → 0 the spectrum degenerates to the (−)fL orbifold

theory which, as discussed in the end of section 2.4, appears inconsistent.

As summary of this section, we tabulate for each line of theories the duality symmetry

and the enhanced gauge symmetry at the self-dual point (see table 1).

4. The torus partition functions

In this section we analyze the torus partition function of the compactified Spin(24) and

Spin(8) × E8 theories. We consider in turn the three theories discussed above: untwisted,

thermal twist, and twist by world-sheet fermion number (−)fL . The result in each case

takes the form

Z = aR +
b

R
(4.1)

for some constants a and b. In the twisted theories there is a phase transition at R = 1;

and so the constants a, b are different for R > 1 and R < 1. In each case we compute a, b

and perform non-trivial checks on our results:

(i) We rewrite the string theory partition function in a form that isolates the field theory

result (proportional to 1/R) and the cosmological constant (proportional to R). The

coefficients a, b are computed unambiguously this way.

(ii) The procedure in (i) uncovers a non-analytic contribution to the torus partition

function of the twisted theories. This signals phase transitions at R = 1 for all the

twisted theories. We trace the non-analytic term to modes that become massless at

R = 1 and show how it arises in conventional field theory.

(iii) We compute the coefficient b independently in field theory. As explained in [3, 6, 11]

this can be implemented efficiently by summing over momentum modes using ζ-

function regularization
∑∞

n=1 n → − 1
12 and

∑∞
n=0(n + 1

2) → 1
24 for bosons (opposite

sign for fermions). In the twisted theories these results are reliable for R > 1 only.

(iv) The coefficient a (the cosmological constant) is independent of the boundary condition

(i.e. insensitive to the twists). This is a non-trivial check on the computations.

Additionally, the coefficient a can be computed as in (iii), but now summing over
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winding modes. When there is phase transition the result obtained this way can be

trusted only for R < 1.

Our final results are given in (4.8) and (4.9) for the untwisted theory and tables 2 and 3

in the twisted cases. The interpretation of the results is more tentative; it is discussed in

section 4.4.

A final point to make before we move on concerns the calculation of the odd spin

structure of the right-moving CFT. In higher dimensions the odd spin structure vanishes

trivially, due to the presence of fermion zero modes; but, in two dimensions, these can

be cancelled and a non-zero contribution arises in some cases [6]. For heterotic strings

there are additional fermionic zero-modes due to the left moving fermions so, for diagonal

GSO projection, the odd spin structure is again irrelevant. The only remaining question

is for the compactifications with twist where, in general, the odd spin structure multiplies

nonvanishing left movers. We now argue, following appendix A.1 of [6], that the odd spin

structure in fact vanishes quite generally for heterotic strings.

The effect of the zero mode of the superconformal ghost, γ, is to cancel the zero mode

of the fermionic partner of the Liouville field, ψφ, for both are associated with conformal

Killing spinors on the torus. The zero mode of the supermodulus, β, leads to an insertion

into the path integral on the torus of the supercharge

G(z) = ψx∂x + ψφ∂φ − 2∂ψφ . (4.2)

This insertion absorbs the ψx zero mode leaving only 〈∂x(z)〉 to be calculated, where

only x is to be integrated over. This vanishes due to the x → −x symmetry of the

worldsheet theory and so the odd spin structure also vanishes. In a theory with both

left- and right-moving supercharges, the final result would be proportional to 〈∂x∂̄x〉 and

thus generically non-zero. So we see that it is a feature of the heterotic theories that this

spin-structure vanishes even in D = 2.

4.1 Torus partition function: untwisted theory

First, consider the compactified theory with no twists. The partition function of the matter

field alone is

Zx(τ) =
1

|η(τ)|2
∑

n,w∈Z

q
1
2
p2

R q̄
1
2
p2

L

= 2πR · 1√
8π2τ2

1

|η(τ)|2
∑

m,w∈Z

exp

(
−πR2|m − wτ |2

2τ2

)
. (4.3)

In the first line the lattice sum is over pR,L = n
R ± wR

2 . The symmetry under R → 2
R is

manifest in this form. The second line (obtained by Poisson resummation) is the instanton

sum which is more convenient here. The corresponding partition function for the Liouville

field is regulated by a volume VL and there is no sum over instantons. The contribution

from bosonic ghosts is |η(τ)|4. The complete torus partition function then takes the form

Zcircle = 2πR · VL

∫

F

dτdτ̄

4τ2

1

8π2τ2
ZF (τ̄)

∑

m,w∈Z

exp

(
−πR2|m − wτ |2

2τ2

)
(4.4)
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where, in the present section, we write

ZF (τ̄ ) =
1

2

(
χ0

0(τ̄) − χ0
1(τ̄) − χ1

0(τ̄ )
)

(4.5)

as a convenient expression that combines (2.4) and (2.6) using the notation

χj
i (τ̄ ) =

{
Zj

i (τ̄ )12 Spin(24)

Zj
i (τ̄ )4

(
Z0

0 (τ̄ )8 + Z0
1 (τ̄ )8 + Z1

0 (τ̄)8
)

Spin(8) .
(4.6)

The right-moving fermions and the super-conformal ghosts are included in ZF ; they

cancel except for the relative signs of the various terms.

The modular integral can be carried out explicitly as follows [30 – 33]. First, divide

the instanton sum over (m,w) into the zero-mode m = w = 0 and the non-zero-modes.

Next, rewrite the non-zero-modes m = kp and w = kq with k = gcd(m,w); then p, q are

mutually prime. For each mutually prime pair p, q there is a unique modular tranformation

(p, q) → (1, 0) that maps the fundamental region F (|τ | > 1, |τ1| < 1
2 , τ2 > 0) to a domain

Ep,q ⊂ E, where E is the half-strip (−1
2 < τ1 < 1

2 , τ2 > 0). The union E = ∪p,qEp,q

makes up the entire half-strip so the net result is to trade the sum over all non-zero-modes

for a sum over only (k, 0), while simultaneously extending the integration region from the

fundamental region F to the entire half-strip E. In the present context this procedure gives

Zcircle =
RVL

16π

[∫

F

dτdτ̄

τ2
2

ZF (τ̄) + 2

∞∑

k=1

∫

E

dτdτ̄

τ2
2

ZF (τ̄)e
−πR

2
k
2

2τ2

]
. (4.7)

The first term (integration over F) gives the cosmological constant, and the second

term (integration over E) gives the standard quantum field theory result. In the field

theory term, the integral over τ1 simply implements level matching.

In the Spin(24) theory, carrying out the integral (note dτdτ̄ = 2dτ1dτ2) gives

Zcircle,Spin(24) =
RVL

16π
24

(
2π

3
+ 4 · 2

πR2
· π2

6

)
= VL

(
R +

2

R

)
(4.8)

where we have used ZF = 24. As a check, note that (4.8) is consistent with the self-duality

R → 2/R. In the Spin(8)×E8 theory the fermionic partition function (2.6) vanishes and so

Zcircle,Spin(8) = 0 . (4.9)

We can understand the results (4.8) and (4.9) independently from field theory: for

Spin(24) we sum over momenta
∑

n
n
R → − 1

12
1
R for each of the 24 spacetime bosons.

Multiplication by (−VL) then gives the field theory term in (4.8). Similarly, summing over

the winding
∑

w
wR
2 → − 1

24R for each of the 24 bosons, we recover the term proportional

to R. In the Spin(8) × E8 theory the 8 bosons and 8 fermions cancel in each case; so the

vanishing partition function (4.9) follows from field theory as well.
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4.2 Torus partition function: thermal theory

We next consider the theory with a (−)FL twist. The twisting correlates the left-moving

fermions and the lattice vectors non-trivially, as indicated in (3.3). The torus partition

function for the thermal theory is

Zthermal =

∫

F

dτdτ̄

4τ2

VL√
8π2τ2

· 1

2
×

×
∑

n,w∈Z

{ [
χ0

0(τ̄) − χ0
1(τ̄)

]
q

1
2(

n

R
+ 2wR

2 )
2

q̄
1
2(

n

R
− 2wR

2 )
2

+

+
[
χ0

0(τ̄) + χ0
1(τ̄)

]
q

1
2

ţ
n+ 1

2
R

+
(2w+1)R

2

ű 2

q̄
1
2

ţ
n+ 1

2
R

−
(2w+1)R

2

ű 2

−

− χ1
0(τ̄)

[
q

1
2

ţ
n+1

2
R

+ 2wR

2

ű 2

q̄
1
2

ţ
n+ 1

2
R

− 2wR

2

ű 2

+

q
1
2

ş
n

R
+ (2w+1)R

2

ť 2

q̄
1
2

ş
n

R
− (2w+1)R

2

ť 2]}
. (4.10)

This expression is absolutely convergent for all R but, due to the additional tachyons

T±
0 (3.5) at R = 1, it is not analytic in R. To see this explicitly, focus on the contribution

from these states:

Zthermal =

∫
dτdτ̄

4τ2

VL√
8π2τ2

1

2

[
χ0

0(τ̄) + χ0
1(τ̄)

]
· 2q̄ 1

8
(R+ 1

R
)2q

1
8
(R− 1

R
)2 + regular . (4.11)

Since 1
2(χ0

0(τ̄) + χ0
1(τ̄ )) ∼ q̄−1/2 for large τ2 the exponential damping disappears for

R = 1; the integral remains convergent at R = 1 only because of the powers of τ2. However,

the second derivative ∂2
RZth diverges at R = 1. This establishes a first order phase transition

at R = 1.

The expression (4.10) is symmetric under the duality R → 1/R. However, because of

the phase transition, we focus for now on R > 1. Poisson resummation on the momenta

gives

Zthermal =

∫

F

dτdτ̄

4τ2

2πR · VL

8π2τ2
· 1

2
×

×
∑

m,w∈Z

{[
χ0

0(τ̄ ) − χ0
1(τ̄) − (−)mχ1

0(τ̄)
]
e−S(m,2w) +

+
[
(χ0

0(τ̄) + χ0
1(τ̄))(−)m − χ1

0(τ̄ )
]
e−S(m,2w+1)

}
(4.12)

where S(m,w) = πR2

2τ2
|m−wτ |2. For sufficiently small R, the integral over individual terms

in (4.12) diverges. The finite answer depends on first performing the sum over m,w and

then integrating over τ . This lack of absolute convergence eventually leads to our phase

transition.

It is useful to write (4.12) as

Zthermal = Zcircle − 2Zflip (4.13)
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where we assembled the “wrong sign” contributions into

Zflip =
RVL

16π

∫

F

dτdτ̄

τ2
2

1

2

∑

m,w∈Z

[
χ0

0(τ̄)e−S(2m+1,2w+1) − χ0
1(τ̄)e−S(2m,2w+1) −

− χ1
0(τ̄)e−S(2m+1,2w)

]
. (4.14)

This expression is modular invariant: modular transformations permute the instanton

factors S(2m + 1, 2w + 1), S(2m, 2w + 1), and S(2m + 1, 2w) nontrivially, but the fermion

factors χ0
0, −χ0

1, and −χ1
0 compensate for this, because they are permuted in exactly

the same way. When mapping to the half-strip, the three instanton terms all map into

(2k+1)2S(1, 0) (the greatest common divisor is odd in each case) and the fermion partition

factors in each case maps to the −χ1
0. Between the three terms, all pairs of mutually primes

are being covered; so the union of the integration regions after mapping is again the entire

half-strip E. Therefore, the integral (4.14) can be written as

Zflip = −RVL

16π

∫

E

dτdτ̄

τ2
2

1

2
χ1

0(τ̄)
∑

k∈Z

e−(2k+1)2S(1,0) . (4.15)

Collecting terms we find

Zthermal =
RVL

16π

{∫

F

dτdτ̄

τ2
2

1

2

[
χ0

0(τ̄) − χ0
1(τ̄) − χ1

0(τ̄ )
]
+

+ 2
∞∑

k=1

∫

E

dτdτ̄

τ2
2

1

2

[
χ0

0(τ̄ ) − χ0
1(τ̄ ) − (−)kχ1

0(τ̄)
]
e−S(k,0)

}
. (4.16)

The significance of Zflip in (4.12) is, therefore, to reverse the sign of the field the-

ory contribution from spacetime fermions with odd momentum, as expected of thermal

twisting.

In the form (4.16) the connection to standard thermodynamics is clear [30]. The first

term is the vacuum energy and the second term is the trace over the spacetime Hilbert space

of e−βH . In the second term of (4.16) one has to first integrate over τ1 thus implementing

the level matching condition in the theory in noncompact space, and then integrates over τ2.

In our case this integral over τ2 converges. However, recall the observation after (4.12) that,

for sufficiently small R, the integral over τ of the individual terms in the sum diverges, and

the correct, finite answer is obtained only if one first performs the sum and then integrate

over τ . In the form (4.16) this translates to the statement that the result of the integral

over the half strip E depends on the precise way it is performed. In particular, the correct

answer might not correspond to first integrating over τ1 and then over τ2. We will now see

that for small R this naive result of (4.16) is in fact wrong.

In the Spin(24) theory there are no spacetime fermions; Zflip = 0 by level matching.

Accordingly, the torus partition function (4.16) for the thermal theory agrees exactly with

the result (4.8) from the circle theory

Zthermal,Spin(24) = VL

(
R +

2

R

)
, R > 1 (4.17)
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This makes sense physically: the cosmological constant term (proportional to R) should

not be sensitive to boundary conditions; and the field theory contribution (proportional to

1/R) of the 24 spacetime bosons is also unaffected by the twist.

The result for R < 1 is easily determined as

Zthermal,Spin(24) = VL

(
2R +

1

R

)
, R < 1 (4.18)

by imposing the symmetry under R → 1/R of the original expression (4.10). In more

detail, this can be obtained by Poisson resummation on w, rather than n. This gives

alternate expressions similar to (4.12), (4.14), and (4.16); but now with good convergence

for small R.

The two expressions (4.17) and (4.18) agree at R = 1 but, as expected from (4.11),

the derivative is discontinuous there. This result can be understood from effective field

theory, as explained in the introduction. Indeed, combining the string theory results (4.17)

and (4.18) into

Zthermal,Spin(24) =
3

2
VL

(
R +

1

R

)
− 1

2
VL

∣∣∣∣R − 1

R

∣∣∣∣ , ∀R (4.19)

we see that the field theory result (1.2) for a complex boson with m(R) = 1
2

∣∣R − 1
R

∣∣
accounts precisely for the non-analyticity.

For the Spin(8) × E8 theory the integral (4.16) gives

Zthermal,Spin(8) =
VL

R
, R > 1 . (4.20)

The cosmological constant (proportional to R) vanishes as it did for the circle theory; so

it is independent of the twist as it should be. The field theory contribution is nonvanishing

because the spacetime fermions are sensitive to the (−)k weight of the instanton sectors

in (4.16); they no longer cancel the bosons. The result (4.20) also follows from field theory,

by summing up the momenta
∑

n n/R of 8 bosons and the shifted momenta
∑

n(n + 1
2 )/R

of 8 fermions.

The partition function in the small R phase follows from duality:

Zthermal,Spin(8) = VLR , R < 1 . (4.21)

Combining the results (4.20) and (4.21) into

Zthermal,Spin(8) =
1

2
VL

(
R +

1

R

)
− 1

2
VL

∣∣∣∣R − 1

R

∣∣∣∣ , ∀R (4.22)

we see that the non-analyticity in the Spin(8)×E8 theory is identical to that found in the

Spin(24) theory; it is again accounted for by the complex boson with m(R) = 1
2

∣∣R − 1
R

∣∣.
For easy reference we summarize in table 2 the results for the thermal theory.
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R > 1 R < 1

Zthermal,Spin(24) VL

(
R + 2

R

)
VL

(
2R + 1

R

)

Zthermal, Spin(8) VL
1
R VLR

Table 2: Torus partition functions after the thermal twist (−)FL .

4.3 Torus partition function: theory with (−)fL twist

The theory with a (−)fL twist has the partition function

Ztwist =

∫

F

dτdτ̄

4τ2

VL√
8π2τ2

×

×
∑

n,w∈Z

{
1

2
(χ0

0(τ̄ ) − χ0
1(τ̄))q

1
2

ţ
n+ 1

2
R

+wR

ű 2

q̄
1
2

ţ
n+ 1

2
R

−wR

ű 2

−

− 1

4
χ1

0(τ̄)


q

1
2(

n

R
+wR)

2

q̄
1
2(

n

R
−wR)

2

+ q
1
2

ţ
n+ 1

2
R

+wR

ű 2

q̄
1
2

ţ
n+ 1

2
R

−wR

ű 2

 +

+
1

2
χ1

0(τ̄)q
1
2(

n

R
+ 2w+1

2
R)

2

q̄
1
2(

n

R
− 2w+1

2
R)

2

−

− 1

4
(χ0

0(τ̄ ) + χ0
1(τ̄))q

1
2

ţ
n+ 1

2
R

+ 2w+1
2

R

ű 2

q̄
1
2

ţ
n+1

2
R

− 2w+1
2

R

ű 2

−

− 1

4
(χ0

0(τ̄ ) − χ0
1(τ̄))q

1
2(

n

R
+ 2w+1

2
R)

2

q̄
1
2(

n

R
− 2w+1

2
R)

2
}

(4.23)

As in the thermal theory, there is a non-analytic feature at R = 1, interpreted as a

phase transition. The origin of the phase transition is the two fermions (3.7) that become

massless at R = 1. Their contribution to (4.23) is

Ztwist =

∫

F

dτdτ̄

4τ2

VL√
8π2τ2

(
−1

4

)
(χ0

0(τ̄) + χ0
1(τ̄)) 2 q

1
8
( 1

R
+R)2 q̄

1
8
( 1

R
−R)2 + regular (4.24)

which clearly has a divergent second derivative.

After Poisson resummation, the partition function can be written as

Ztwist =
RVL

16π

∫

F

dτdτ̄

τ2
2

×

×
∑

m,w∈Z

{
1

2
χ0

0(τ̄)(e−S(2m,2w) − e−S(2m+1,2w) − e−S(2m,2w+1)) −

− 1

2
χ0

1(τ̄)(e−S(2m,2w) − e−S(2m+1,2w+1) − e−S(2m+1,2w))

− 1

2
χ1

0(τ̄)(e−S(2m,2w) − e−S(2m,2w+1) − e−S(2m+1,2w+1))

}
(4.25)

This expression is manifestly modular invariant. Comparing with quantities defined in

the previous sections, we find

Ztwist(R) = Zcircle(2R) − 1

2
Zcircle(R) − 1

2
Zthermal(R) (4.26)

for all R. This gives table 3.
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R > 1 R < 1

Ztwist, Spin(24) VL

(
R − 1

R

)
VL

2

(
R − 1

R

)

Ztwist, Spin(8) -VL
1

2R -VL
R
2

Table 3: Torus partition functions after twist by (−)fL .

For R > 1 the entries can be understood from general principles: the cosmological

constant (proportional to R) is the same as in the untwisted theories (4.8), (4.9). For

Spin(24) the field theory term (proportional to 1/R) is due to 24 bosons with momenta

(n + 1
2)/R; and, for Spin(8) × E8 it is due to 8 bosons with momenta (n + 1

2 )/R, 8 real

fermions with momenta n/R, and 8 real fermions with momenta (n + 1
2)/R.

The results in the table can be combined as

Ztwist,Spin(24) =
3

4
VL

(
R − 1

R

)
+

1

4
VL

∣∣∣∣R − 1

R

∣∣∣∣ , ∀R

Ztwist, Spin(8) = −1

4
VL

(
R +

1

R

)
+

1

4
VL

∣∣∣∣R − 1

R

∣∣∣∣ , ∀R . (4.27)

We see that, as expected, the singularity in each theory takes the form predicted by

field theory (1.2) for one complex fermion with mass m(R) = 1
2

∣∣R − 1
R

∣∣. It is also manifest

in (4.27) that only the Spin(8) × E8 theory satisfies the duality symmetry R → 1/R.

4.4 Discussion

Up to this point we have discussed the torus partition function as a rather abstract object.

Our determination of this object is unambiguous, but the interpretation is not necessarily

straightforward. Here we discuss these issues.

Thermodynamic interpretation of theories twisted by (−)FL.

In the thermal theory it is natural to try to identify 2πR = β = T−1. Recalling that the

total partition function, including disconnected amplitudes, is related to the torus ampli-

tude through Ztot = eZsphere+Ztorus+···, we then find the energy density ε = − 1
VL

∂ ln Ztot
∂β =

− 1
VL

∂Ztorus
∂β + · · ·, and the free energy density f = ε−Ts = − 1

VLβ ln Ztot = − 1
VLβ Ztorus + · · ·.

The results of this procedure are recorded in table 4.

T < 1
2π T > 1

2π

f24 −4πT 2 − 1
2π −2πT 2 − 1

π

ε24 4πT 2 − 1
2π 2πT 2 − 1

π

s24 8πT 4πT

f8 −2πT 2 − 1
2π

ε8 2πT 2 − 1
2π

s8 4πT 0

Table 4: Thermodynamics of the theories on a thermal circle.
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In either theory the transition is characterized by negative latent heat per volume

` = T∆s = − 1
π . This means the high temperature phase is more ordered than the low

temperature phase. This situation is usually considered unacceptable in thermodynamics.

Let us make some comments on the possible interpretation of the result.

A clear benchmark for the interpretation is the evaluation of the trace Tr e−βH over

the spacetime Hilbert space. This is represented by the half-strip in our computations and

gives the result indicated in the table for T < 1/2π, but now at all T . The reason this

cannot be the correct answer at high T is that it is inconsistent with the duality R → 1/R;

and also it does not take into account the presence of additional light modes at T = 1/2π.

However, it would be surprising if this result was invalid for T < 1/2π.

The table above does not reflect standard thermodynamics. Usually, when consid-

ering a first order phase transition, one would reason that near the transition there are

two candidate phases which have free energies taking the forms given in the table, with

the range for each phase analytically continued to other values of T . Then one deter-

mines the stable phase as the one with the lowest free energy at each T . We were

guided instead by the field theory interpretation at low temperature, and then applied

duality. Our procedure apparently amounts to taking the highest free energy in each

phase. If taken at face value this means that both phases are unstable. However, as ex-

plained above such an instability would be very surprising, at least in the low temperature

phase.

We are thus lead to a picture where our results and their thermodynamic interpretation

can be trusted at T < 1/2π. For R < 1 the theories exist and we can compute reliably;

but it seems that the proper interpretation of the string calculation in this regime cannot

be standard thermodynamics. One indication of this is that the torus partition function

has no obvious field theory interpretation for R < 1.

Finally, we should clarify that, because of T-duality, the theory with R < 1 can, of

course, be interpreted in terms of a system with 1/R > 1 and, in these variables, there exist

standard thermodynamics with temperature R/2π < 1/2π. The question discussed here is

whether, in addition, this regime permits an interpretation as a genuinely new phase with

T > 1/2π.

Interpretation of theories twisted by (−)fL.

We next discuss the interpretation of the phase transition in the theories twisted by (−)fL .

Again, the results for R > 1 have clear field theory interpretations. As for the regime R < 1,

a distinction must be made between the Spin(24) theory and the Spin(8) × E8 theory. In

the latter, the duality R → 1/R is part of the gauge symmetry at the self-dual point. This

means that the R < 1 phase exists in the Spin(8)×E8 theory. In contrast, in the Spin(24)

theory, there is no duality R → 1/R, and also no enhanced gauge symmetry at R = 1.

In this case it is possible that the theory simply does not exist at R < 1. One appealing

consequence of this possibility is that it would exclude the apparently inconsistent limit

R → 0 from moduli space.
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A. Lattice Constructions

In this appendix we first classify the possible uncompactified theories using covariant lat-

tices, finding exactly the Spin(24) and Spin(8) × E8 theories. Next, we consider the com-

pactified theory and show that there is a single contiguous moduli space with 13 dimensions.

The relation between the Spin(24) and Spin(8) × E8 theories is found explicitly.

A.1 Classification of uncompactified theories

We will use the covariant lattice approach following [34] . In this formalism the super-

conformal ghosts are represented as three bosons ~xgh with canonical normalization and

signature. The correspondence is

eqφ ↔ ei~v·~xgh . (A.1)

The canonical qhost pictures map as

R : q0 = −1

2
↔ ~v0 =

(
1

2
,
1

2
,−1

2

)

NS : q0 = −1 ↔ ~v0 = (0, 0,−1) . (A.2)

Under this identification the levels of simple operators map as

∆(eqφ) = −q − 1

2
q2 =

1

2
~v2 = ∆(ei~v·~xgh) (A.3)

and locality conditions are preserved because

−q1q2 = ~v1 · ~v2 mod 1 (A.4)

for any pairs q1 and q2; and the corresponding ~v1 and ~v2. We can now write vertex operators

of propagating states as

V~wR, ~wL,k = ei ~wR· ~HRei ~wL· ~HLOR,LVk . (A.5)

Here the ~HR = (H,~xgh) denote the 4 right-moving bosons and the ~HL are the cor-

responding 12 bosons, making up the lattice on the left side. The Vk is the (1
2 , 1

2) opera-

tor (2.3) associated with the bosonic matter fields x and φ. Finally, the OR,L are operators

constructed from the towers of bosonic oscillators. In the present context physical condi-

tions will not leave any operators of this kind before compactification. Discrete states take

a similar form, with Vk replaced by the identity operator.
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The consistency conditions on the string theory are satisfied in the covariant lattice

construction by demanding that w = (~wR, ~wL) forms an even, self-dual lattice of signature

(4, 12). This comes as usual from the level matching condition

1

2
~w2

R − 1

2
~w2

L ∈ Z (A.6)

which requires the lattice to be even, and invariance under the modular transformation

τ → −1/τ imposes self-duality. The locality condition

~wR1 · ~wR2 − ~wL1 · ~wL2 ∈ Z (A.7)

is automatic after level matching. The only subtlety in these statements is that, in this

formalism, the description of the superconformal ghosts has more redundancy than is

familiar, a feature that can be factored out [34]. In summary, the uncompactified theories

are classified by the even self-dual lattices of signature (4, 12).

Such lattices are in one-to-one correspondance with even self-dual lattices in 16 eu-

clidean dimensions. It is well-known that there are precisely two such lattices, Spin(32)/Z2

and E8 × E8. Physical string theories then follow from the decomposition1

Γ16 ⊃ Spin(8) ⊗ Γ12 (A.8)

where the first factor encodes the right-moving fermions and the super-conformal ghosts,

while the second factor is the 12-dimensional lattice of left-moving bosons. For Spin(32)/Z2

this decomposition leaves as stabilizer the lattice Spin(24) and so the first of the 2D het-

erotic theories. For E8×E8 the embedding goes into one E8-factor as Spin(8) ⊂ Spin(16) ⊂
E8. The stabilizer of this embedding is Spin(8) × E8, leading to the other 2D heterotic

string.

In both cases the lattice embeddings align conjugacy classes of Spin(2n)×Spin(2m) ⊂
Spin(2n + 2m) in the obvious diagonal fashion2 (0, 0) ⊕ (V, V ) ⊕ (S,C) ⊕ (C,S) = 0 ⊕ C.

This is the lattice analogue of the diagonal GSO in the CFT language.

The covariant lattice construction similarly classifies heterotic string theories in 10

dimensions. In this case the relevant lattices have signature (8, 16), with the first factor

8 = 5 + 3 from bosonized fermions and superconformal ghosts. Such lattices are clas-

sified by the even self-dual lattices in 24 euclidean dimensions, i.e. the Niemeyer lattices.

Decomposing these lattices as Γ24 ⊃ Spin(16)⊗Γ16 identifies 8 distinct heterotic string the-

ories associated with different Γ16.
3 Among these, two correspond to simple factorization

Γ24 = Spin(16) ⊗ Γ16. These are the usual supersymmetric heterotic string theories with

gauge groups Spin(32)/Z2 and E8 ×E8, constructed using a chiral GSO projection. In two

1We do not make any distinctions between the Spin(2n) lattice and the lattice of the Lie algebra Dn.
2The covariant lattice 0 ⊕ S gives a more symmetric decomposition. This corresponds to the theory

obtained from ours using the C transformation (2.10) which amounts to a different convention.
3The covariant lattice construction misses one 10D heterotic string theory, the one with gauge group

E8. The failure in this case is that the fermions cannot be bosonized using lattices. There seems to be no

analogous possibilities in two dimensions.
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dimensions there are no analogues of these theories. The remaining heterotic string the-

ories in ten dimensions involve nontrivial embeddings and correspond to non-chiral GSO

projections. The closest analogue to the 2D heterotic string theories we study are the

non-supersymmetric Spin(32) theory (based on the Niemeyer lattice Spin(48)/Z2) and the

E8×Spin(16) theory (based on the Niemeyer lattice E8×Spin(32)) which both correspond

to simple diagonal embeddings [35, 36]. The famous tachyon-free O(16) × O(16) string

theory [35, 37] is based on the Niemeyer lattice Spin(16)3 which has no analogue in 16

euclidean dimensions so, from this perspective, there can be no analogous construction in

two dimensions.

A.2 Compactification

We next discuss toroidal compactifications using lattices. Thus, the matter field X is

assumed periodic with period R. Additionally, a general compactification has Wilson

lines. These can can be introduced as usual through the shifted momenta

pR =

(
n

R
− ~wL · ~A +

wR

2
~A2

)
+

wR

2

pL =

(
n

R
− ~wL · ~A +

wR

2
~A2

)
− wR

2

~kL = ~wL − wR ~A . (A.9)

Here ~wL refer to the vectors of the 12 dimensional left moving lattice prior to com-

pactification. Since we are using a non-standard GSO projection, the bosonic lattice does

not decouple completely from the right moving fermions the way it usually does in com-

pactifications of 10D heterotic strings. The reason that the usual procedure works anyway

is that
~k2

L + p2
L − p2

R = ~w2
L − 2nw ∈ 2Z (A.10)

so, if the original set of lattice vectors were even, then the deformed set is even as well as

well. Additionally, if we keep the original conjugacy classes, the covariant lattice remains

self-dual. Thus the theory must be consistent also after deformation.

In the covariant lattice approach, the theory is consistent exactly when the full lattice

vector (~kR, pR;~kL, pL) belongs to an even, self-dual lattice of signature (5, 13). The sublat-

tice obtained by restricting ~kR to the canonical ghost pictures (the ~kR ≡ ~wR is unchanged

by the Wilson lines) has signature (1, 13) and its moduli space is

H\O(1, 13, R)/O(13, R) . (A.11)

This 13 dimensional moduli space of compactifications is parametrized locally by the

radius of compactification R and the 12 Wilson lines ~A. The global identifications indicated

by H would be H = O(1, 13, Z) in standard heterotic theory but the situation is not clear

here.

Interestingly, this discussion is independent of which theory is taken as starting point:

Spin(24) or Spin(8) × E8; whether twisted or not. This means all these theories must

belong to the same moduli space; they must be continuously related. In the following we

verify this by explicit comparison.
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ñ w Spin(8, 24)

Z 2Z (0, 0), (V, V )

Z + 1
2 2Z (C,S), (S,C)

Z + 1
2 2Z + 1 (0, V ), (V, 0)

Z 2Z + 1 (S, S), (C,C)

Table 5: Covariant lattice representation of the thermal Spin(24) theory.

Let us first show how the theory twisted by (−)FL , i.e. the thermal theory, can be

obtained from the untwisted theories by turning on a suitable Wilson line. The computation

works the same way for the Spin(24) and the Spin(8)×E8 theories so we just consider the

former.

Before twisting the covariant lattice Spin(8, 24) can be in 0 ⊕ C which, in canonical

ghost picture, decomposes under Spin(8) × Spin(24) as (0, 0) ⊕ (V, V ) ⊕ (C,S) ⊕ (S,C).

Each sector allows n,w ∈ Z along the thermal direction. The thermal twist corresponds

to the Wilson line R ~A = (1, 011) ∈ V of Spin(24). The shift ~wL → ~kL = ~wL − w ~AR

from (A.9) means we still have the conjugacy classes (0, 0) ⊕ (V, V ) ⊕ (C,S) ⊕ (S,C) for

w ∈ 2Z (untwisted sector) but now the conjugacy classes are (0, V )⊕(V, 0)⊕(S, S)⊕(C,C)

for w ∈ 2Z+1 (twisted sector). The shifts (A.9) of pL, pR due to the Wilson line introduces

the shifted momentum

ñ = n − ~wL · ~AR +
w

2
~A2R2 = n − w

2
− ~kL · ~AR . (A.12)

The ~kL · ~AR is integer (half-integer) for ~kL ∈ 0 ⊕ V (S ⊕ C) so the ñ is shifted to

half-integer values for ~kL ∈ S⊕C in the untwisted sector and for ~kL ∈ 0⊕V in the twisted

sector. In summary, the spectrum after twisting is as in table 5.

This spectrum agrees precisely with the one given already in (3.3).

The spectrum of the theory compactified with (−)fL twist can be obtained in an

entirely analogous manner, by including a Wilson-line R ~A = (1
2

12
) ∈ S of Spin(24). The

untwisted sector (even winding) is given by the decomposition of the covariant lattice

0 ⊕ C = (0, 0) ⊕ (V, V ) ⊕ (C,S) ⊕ (S,C) while the twisted sector (odd winding) is the

shifted lattice (V,C)⊕ (0, S)⊕ (C, 0)⊕ (S, V ). The ~kL · ~AR is half-integral for ~kL ∈ V ⊕C,

so these are the conjugacy classes that have half-integral momentum in the untwisted

sectors. Since ~A2R2 = 3 the changes of modings are the opposite in the twisted sector, i.e.

the momentum is half-integral for ~kL ∈ 0⊕ S. This gives the spectrum in table 6 which is

identical to that given already in (3.6).

The lattice implementation of the (−)FL and (−)fL twists simply recasts the discussion

of the center of Spin(4n) (section 2.3) in terms of Wilson lines. The identification is that

Z1 ∼ ( ~AR ∈ V ) and Z2 ∼ ( ~AR ∈ S). The advantage of the lattice technology is that it

automates the procedure; and this is helpful when considering Wilson lines that are not

in the center of the gauge groups. As an example of this, let us show that the Spin(24)

and the Spin(8) × E8 theories are related by T-duality R → 1/R after suitable Wilson

lines are turned on. The computation is similar to the standard comparison between the

Spin(32)/Z2 and E8 ×E8 heterotic theories in ten dimensions [38]. The computation (and
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ñ w Spin(8, 24)

Z 2Z (0, 0), (C,S)

Z + 1
2 2Z (V, V ), (S,C)

Z 2Z + 1 (V,C), (S, V )

Z + 1
2 2Z + 1 (C, 0), (0, S)

Table 6: Covariant lattice representation of the Spin(24) theory with (−)fL twist.

ñ w Spin(8, 8) × Spin(16)

Z 2Z (0, 0), (S, S)

Z + 1
2 2Z (V, V ), (C,C)

Z 2Z + 1 (0, S), (S, 0)

Z + 1
2 2Z + 1 (C, V ), (V,C)

Table 7: Spectrum of the Spin(24) theory with Wilson line R ~A = (04; 1

2

8
).

the relation to 10 dimensions) is clearest if we start from the covariant lattice 0⊕ S.4 The

strategy is to decompose the covariant lattice Spin(8, 24) into Spin(8, 8) × Spin(16) and

then add Wilson lines.

The covariant lattice of the Spin(24) theory with conjugacy classes 0 ⊕ S decomposes

to ~wL ∈ (0, 0) ⊕ (V, V ) ⊕ (S, S) ⊕ (C,C) under the Spin(8, 8) × Spin(16) subgroup. The

Wilson line R ~A = (04; 1
2

8
) is in S of Spin(16) and leaves the Spin(8, 8) intact. The shifted

lattice-vector ~kL = ~wL − wR ~A has the spectrum

(0, 0) ⊕ (V, V ) ⊕ (S, S) ⊕ (C,C) ; w ∈ 2Z

(0, S) ⊕ (S, 0) ⊕ (V,C) ⊕ (C, V ) ; w ∈ 2Z + 1 . (A.13)

The lattice vectors in the X-direction take the form pR,L = en
R ± wR

2 where

ñ = n − ~wL · ~AR +
w

2
~A2R2 = n − w − ~kL · ~AR (A.14)

since ~A2R2 = 2. The ~kL · ~AR is integer (half-integer) when the Spin(16) part of ~kL ∈
Spin(8) × Spin(16) is in 0 ⊕ S (C ⊕ V ). The complete spectrum of the Spin(24) theory is

then specified as in table 7.

Next, we consider the Spin(8) × E8 theory. Then the covariant lattice decomposes to

(0, 0) ⊕ (0, S) ⊕ (S, 0) ⊕ (S, S) under the Spin(8, 8) × Spin(16) subgroup. The Wilson line

R ~A = (1, 03; 1, 07) belongs to the (V, V ) conjugacy class of the full Spin(8, 8) × Spin(16).

It shifts the lattice-vector ~kL = ~wL − wR ~A has the spectrum

(0, 0) ⊕ (0, S) ⊕ (S, 0) ⊕ (S, S) ; w ∈ 2Z

(V, V ) ⊕ (C,C) ⊕ (V,C) ⊕ (C, V ) ; w ∈ 2Z + 1 (A.15)

4As noted in a previous footnote, this is related to the convention used in the rest of the paper through

conjugaction by C defined in (2.10).
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ñ w Spin(8, 8) × Spin(16)

Z 2Z (0, 0), (S, S)

Z 2Z + 1 (V, V ), (C,C)

Z + 1
2 2Z (0, S), (S, 0)

Z + 1
2 2Z + 1 (C, V ), (V,C)

Table 8: Spectrum of the Spin(8) × E8 theory with Wilson line R ~A = (1, 03; 1, 07).

In this case ~kL · ~AR is integer (half-integer) for the diagonal (off-diagonal) conjugacy

classes. This shifts the allowed values of ñ (defined in (A.14)) so that the spectrum becomes

as in table 8

The duality between the two heterotic theories can now be established by comparing

table 7 and table 8; they agree after taking R → 1/R and ñ ↔ w/2 (i.e. n′ = w/2 and

w′ = 2ñ). This concludes the explicit verification that the two theories are on the same

moduli space.
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