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1. Introduction

The main purpose of this paper is to complete, at least in some sense, our investigation [1, 2]

of a refinement of the K-theory RR partition function of type II string theory [3, 4]. The

RR K-theory partition function is obtained from the observation that K0(X) and K1(X)

classifies the RR sources in type IIA and IIB string theory on a 10-manifold X [5, 6]. The

K-theory partition function is a theta function obtained from quantizing essentially the free

field theory on those sources, i.e. where the lagrangian is essentially the hermitean metric

on a field strength which is set up in such a way that the phase term of the lagrangian

can be thought of as an index (see [4]). The main result of [4] is that in type IIA string

theory, this partition function agrees with the partition function of M-theory compactified
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on S1 where the effective action is taken to be the Chern-Simons term together with correct

normalization and a 1-loop correction term, which makes the phase again an index. This

time, however, the index is a combination of an E8-index and a Rarita-Schwinger index

on a 12-manifold Z12 which cobords X × S1. An extension of part of the construction to

twisted K-theory, i.e. to include NSNS background, was studied in [7].

In [1], we observed that an anomaly W7(X) detected in [4] on both the IIA and M-

theory sides coincides with the anomaly of orientation with respect to elliptic cohomology.

This led us to propose in [1] a refinement of the K-theory partition function, which would

be based on elliptic cohomology. When fully quantizing the theory associated with that

partition function, we encountered a refinement of the obstruction W7(X) to w4(X) (one

has W7(X) = βSq2(w4(X))). This suggests that the elliptic partition function must be

related to a scenario where type II string theory is unified with type I and heterotic, where

a 4-dimensional obstruction is detected — such obstruction is not known in type II theory

per se.

Elliptic cohomology is a certain refinement of K-theory which is introduced in topology,

and which has the striking property that its coefficients (homotopy groups, or cohomology

groups of a point) consist of modular forms, of weight k/2 where k is dimension. This led

us to propose in [2], after eliminating some simpler scenarios, that the elliptic cohomology

partition function may be a step toward solving the puzzle of [4] related to IIB modularity:

when one writes the K-theory partition function for type IIB, it does not seem to acco-

modate a modularity in the presence of an H3 source. It is remarked in [4] and further

investigated in [2] that twisted K-theory, which is the first approach which comes to mind,

does not solve the problem.

The papers [1, 2] left unanswered the question where the elliptic cohomology source

partition function of type II string theory really comes from. In [4], the IIA partition

function is linked to M-theory compactified on a circle. What, if any, is the analogous link

for the elliptic cohomology partition function? In this paper, we attempt to answer that

question, and derive some implications from the answer.

The scenario we propose is that the elliptic cohomology partition function is related

to compactification of F-theory on an elliptic curve E, which is a theory first suggested by

Vafa [8]. We propose that the modularity of elliptic cohomology, which makes the partition

function itself modular, comes from modularity in H1(E), i.e. from the moduli parameter of

the elliptic curve E. This is in fact somewhat linked to the purely mathematical paper [9],

in which it was derived that in developing a purely mathematical link between elliptic

cohomology and conformal field theory, modularity of elliptic cohomology is related to an

elliptic curve in spacetime, not merely to a genus one worldsheet.

In the present paper, the link in fact goes one step further: in the same way in which

the action of the free approximation to the RR sector of type II theory is related to the

Â-genus, the elliptic cohomology form of the RR sector of the theory is related to the

Witten genus. Why is that? We propose an explanation. In [10], Witten shows that the

Witten genus is related to index of elliptic operators on loop space. Using a standard

lifting [11] of the M-theory action to F-theory [8] (cf. [12] for the reduction), we propose

that in F-theory compactified on a circle, the phase factor analogous to that analyzed in [4]
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may be obtained as loop versions of the E8 and Rarita-Schwinger indices. We view the loop

group bundles [13, 14, 7] as coming from bundles over the loop space of spacetime. Thus,

we possibly link modularity in four different places: S-duality in type IIB string theory,

elliptic cohomology (spacetime aspect), the Witten genus and F-theory fiber.

There is one caveat to our story: the modularity of elliptic cohomology is not entirely

anomaly-free, and accordingly the modular forms are really just automorphic forms of a

certain level (= 3 if we focus on integrality at the prime 2). There is a theory constructed by

Mike Hopkins and known as TMF (topological modular forms, the connective form of the

theory is known as tmf) which remedies the difficulty: this theory has a complete anomaly-

free modularity. However, the price for that is that it is again a much more complicated

generalized cohomology theory, which can no longer be called an elliptic cohomology theory

— it is obtain from elliptic cohomology theory by a procedure which we could compare to

the physical procedure of orbifolding.

Indeed, this orbifolding seems to correspond to orbifolding in physics literally. Orbifold-

ing type IIB in the worldsheet sense (reversing chiralities) leads to type I string theory.

Orbifolding S1-compactified M-theory with respect to the 11-th dimension in spacetime

leads to Hořava-Witten M-theory [15]. We deduce from this a relation between this type of

worldsheet and spacetime orbifolding. In F-theory, we further predict a more complicated

orbifolding with respect to (roughly) the group SL(2, Z/2), which should produce an “ideal

F-theory” governed by TMF , which would have a complete, anomaly free modularity. We

do not however work out this optimal scenario in detail, and in most of this paper still use

just ordinary elliptic cohomology instead.

The Chern-Simons part of the action of M-theory was used by Witten and rewritten

as in a symmetric way as a cubic expression in the four-form [16]. One wonders whether

there is a general mathematical reason for such a structure, beyond just being able to use

some form of Stokes’ theorem. We show that the lifted Chern-Simons term can be written

as a Massey triple product and the one-loop term can be explained as being a part of the

Massey product indeterminacy.

The lagrangian of the ultimate twelve dimensional theory is not completely worked out

in the present paper. There are at least two sources of topological terms in such lagrangian,

one of them which should be related to M-theory upon compactification on S1, another

which should be related to M-theory by cobordism. However, it is possible that a Massey

product device similar to the one mentioned above can also be used to unify these situations

— we make a comment to that effect.

The present paper is organized as follows: in section 2, we revie basic features of IIB

modularity from a classical and quantum-mechanical point of view. In section 3, we review

the lagrangians of known theories in 12 dimensions. In section 4, we present our evidence for

topological modular forms from the IIB modularity question and also from the cobordism

approach to M-theory [16]. In section 5, we give our main explanations about the elliptic

cohomology partition function and its relation to F-theory and the Witten genus. Finally,

in section 6, we give some general comments on what would be needed to discuss F-theory

at physical signatures. In order to make the paper more self-contained and more accessible

to physicists, we included a brief appendix on topological modular forms.
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2. Type IIB and modularity

In this section we review the basic features of type IIB supergravity and string theory that

will be relevant for our later discussions.

The bosonic field content of type IIB supergravity is: metric g, two scalars φ and

χ, a complex 3-form field strength G3 and a real self-dual five-form field strength F5.

The fermionic content is: two gravitini ψi (i = 1, 2) of the same chirality, i.e. sections

of S(X)± ⊗ (TX − 2O) (with the same choice of sign), and two dilatini of the opposite

chirality to the gravitini, i.e. λi ∈ Γ[S(X)∓]. The two scalars parametrize an upper half

plane H = SL(2, R)/U(1). In a fixed U(1) gauge, the global SL(2, R) induces on the fields,

collectively Φ, a U(1) transformation that depends on their U(1) charge qΦ, as [17]

Φ −→ Φ

(
cτ + d

cτ + d

) qΦ
2

. (2.1)

The SL(2, R) symmetry is broken down to the local discrete subgroup SL(2, Z) by

nonperturbative quantum effects. The arithmetic subgroup is conjectured to be an exact

symmetry of type IIB string theory. Its action factorizes into a projective action on the

complex scalar τ and a charge-conjugation that reverses the signs of the two 2-forms and

leaves τ invariant.

Strings with fractional charge do not exist and so the type IIB string must be SL(2, Z)

invariant [18, 19]. The action can be written in a manifestly SL(2)-invariant way as

SIIB =
1

2κ2
10

∫

X10

d10x
√−g

[
R− 1

4
Tr(∂MM−1)2 − 1

12
H̄T

µνρMH̄µνρ − 1

4
F̃ 2

5

]
−

− 1

8κ2
10

∫

X10

C4 ∧ H i ∧ Hjεij , (2.2)

where M is the metric on the coset SL(2)/U(1) (i.e. the upper half plane) given by

M =
1

Im(τ)

(
|τ |2 Re(τ)

Re(τ) 1

)
, (2.3)

H̄ =
(H1

H2

)
is the doublet of three-forms with H i = (H3, F3). The five-form F̃5 is an RR

field strength modified by the RR and NS three-forms, i.e.

F̃5 = F5 −
1

2
C2 ∧ H3 +

1

2
B2 ∧ F3 (2.4)

with F5 = dC4, which can be written as

F̃5 = F5 +
1

2
εijB

i ∧ Hj , i, j = {1, 2} , (2.5)

and C4 is the SL(2)-invariant RR 4-form potential. This way we see that the two scalars,

namely the dilaton from the NS sector and the axion from the RR sector, can be viewed

as the coordinates on the upper half-plane. So the modular parameter is built out of the

dilaton φ and the axion (= 0-form RR potential), τ = C0 + ie−φ.
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The above action is invariant under the SL(2, Z) transformations

M′ = ΛMΛT (2.6)

H
′
= (ΛT )−1H (2.7)

with the metric in the Einstein frame being invariant, g′µν = gµν , where the group element

is Λ =
(a b
c d

)
, with ad − bc = 1.

Alternatively, one can choose to use complex differential forms and write the effective

action of type IIB string theory in the SL(2, Z)-invariant form (in the Einstein frame, see

e.g. [20])

SIIB =
1

2κ2
10

∫

X10

d10x
√−g

[
R− 1

2

∂Mτ∂M τ̄

(Im τ)2
− 1

12
G3 ∧ ∗G3 −

1

4
F̃ 2

5

]
+

+
1

8iκ2
10

∫

X10

C4 ∧ G3 ∧ G3 + S(2p+1)−branes . (2.8)

Here the RR field strength F3 and the NS field H3 are grouped as SL(2, Z) doublet into

the invariant complex field

G3 =
1√
Im τ

(F3 − τH3) (2.9)

and similarly for the complex conjugate field,

G3 =
1√
Im τ

(F3 − τH3) . (2.10)

The self-duality for F̃5 cannot be seen at the level of the above action but has to be

imposed as an extra condition on the equations of motion. The action is obviously invariant

under SL(2, Z) transformations.

The S-duality transformation is the subset of the above SL(2, Z) transformations given

by a = d = 0 and b = −c = 1, so that the fields transform as

τ → −1/τ

B2 → C2

C2 → −B2 , (2.11)

and again the metric and the five form are left invariant.

The moduli space of scalar fields is then SL(2, Z)\H. The supersymmetry algebra has

an automorphism group, a continuous U(1) R-symmetry that rotates the supercharges,

and this is broken down to a discrete subgroup [21] Z4 = SL(2, Z)∩U(1) that interchanges

the two supercharges and reverses the spatial worldsheet direction.

The Z4 symmetry (see e.g. [22]) generated by the elements a = 0, b = 1, c = −1,

d = 0 inverts the modular parameter τ as τ → −1
τ , so that for vanishing axion C0 = 0,

this inverts the coupling constant e−φ → eφ, which can be interpreted as the weak/strong

coupling duality (S-duality). This Z4 symmetry also acts on the NS and RR 2-forms as

B
(1)
2 → −B

(2)
2 and B

(2)
2 → B

(1)
2 , so that G3 and Ḡ3 are interchanged and F̃5 is of course
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still invariant. This duality also acts on the metric in the string frame, and that is why one

has to use the Einstein frame to get a duality-invariant action. Applying Z4 twice gives a

Z2 with almost trivial effect, in the sense that it leaves τ invariant but changes the sign of

the two 2-forms B
(i)
2 .

There is no one-loop correction in type IIB in ten dimensions analogous to the term∫
B2 ∧ X8(R) in type IIA [23, 24]. The nonperturbative result for type IIB is [25, 17]

L = f(τ, τ̄)

(
I1 −

1

8
I2

)
(2.12)

where f(τ, τ̄) is a modular form in τ = C0 + ie−φ, and [26]1

I1 = t8t8R
4 +

1

2
ε10t8B2R

4

I2 = −ε10ε10R
4 + 4ε10t8B2R

4 (2.13)

so that the term in L involving B2 cancels out and one is left with the pure R4 term.

There is also a similar perturbative result at tree level and one-loop. For type IIA there is

another term in L with a + sign between I1 and I2, which leads to nonzero B2R
4 term [27]

(see [28] for details). This is still compatible [29] with type II T-duality, because of radius

dependence of the corresponding term in nine dimensions.

The SL(2, Z) symmetry of type IIB string theory in nine dimensions can be interpreted

as a geometric symmetry of M-theory compactified on a torus T 2 [30 – 32]. This way there

are three scalar fields corresponding to the moduli of the torus (along directions 9 and 11)

given by the volume V = R9R11 and the complex structure ω = ω1 + iω2 = C1 + iR9/R11,

where the metric on the torus is

GIJ =
V

ω2

(
|ω|2 ω1

ω1 1

)
. (2.14)

By T-duality RA ↔ 1/RB , ω is identified with τ of type IIB theory, and thus manifests

itself as the S-duality in type IIB e−φ ↔ eφ.

All R4 one-loop terms can be obtained from one-loop terms in M-theory [33]. Such

terms contain factors that are of the form

AR4 ∼
∫

dt
∑

l1,l2

exp(−tGIJ lI lJ)

∼
∫

dt
∑

l1,l2

exp

(
− t

V

|m + nω|2
ω2

)
. (2.15)

A double Poisson resummation converts the sum over the Kaluza-Klein charges (m,n)

to a sum over the winding modes (m̂, n̂) of a worldline along the two cycles of T 2, and the

1Here t8 is the usual rank eight tensor that shows up in higher order corrections, ε10 is the antisymmetric

constant tensor, and R4 is a certain quartic polynomial in the curvature tensor.
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gaussian integral gives terms proportional to the nonholomorphic modular form of weight

zero [25, 17, 34, 35] (see [33] for an overview)

∑

(m̂,n̂)6=(0,0)

ω2
3/2

|m̂ + n̂ω|3 . (2.16)

3. Theories in twelve dimensions

Let us now begin looking at what sectors of F-theory are actually known. Quite a lot is

already in the literature. One can get hints from eleven-dimensional M-theory and ten-

dimensional type IIB string theory that there is a theory (or theories)2 in twelve dimensions

that is (are) playing a role in the topology and the dynamics of those theories. One can

think of two such theories, the manifolds on which they are defined we take to be Z12 and

V 12, respectively.

First, there is the twelve-dimensional coboundary theory that Witten introduced [16]

to rewrite the Chern-Simons term of M-theory in terms of the index of the E8-coupled

Dirac operator and the index of the Rarita-Schwinger operator. The topological part of

the low energy limit of M-theory, namely eleven-dimensional supergravity, is captured by

the Chern-Simons term and the one-loop gravitational correction term,

1

6

∫

Y 11

C3 ∧ G4 ∧ G4 − C3 ∧ I8 (3.1)

where I8 is a polynomial in the curvature of Y 11 whose class is given in terms of the

Pontrjagin class and the string class as [I8] = p2−λ2

48 . The lift of this action to the twelve-

dimensional manifold Z12 (where Y 11 = ∂Z12) is given by [16]

1

6

∫

Z12

G4 ∧ G4 ∧ G4 − G4 ∧ I8 (3.2)

by directly using Stokes’ theorem.3 A priori this theory has no connection to type IIB.

However, we will show later that there is in fact such a connection.

Second, there is the “standard” F-theory [8], which is the lift of type IIB via an elliptic

curve. The complex structure of the elliptic curve is varying over the type IIB base. In

contrast to conventional type IIB compactifications where τ , as a physical parameter, is

taken to be constant. One can relate type IIB on a manifold X10 to F-theory on an

elliptically fibered manifold with base X10. A choice of section is usually required [36] for

the elliptically fibered manifold, i.e. a choice of an embedded base manifold.

To be compatible with dualities, this theory can also be considered as the lift of M-

theory via a circle. If we choose to start from M-theory, then we lift the action (3.1) via a

circle S1 to4

1

6

∫

V 12

A4 ∧ G4 ∧ G4 − A4 ∧ I8 , (3.3)

2In this paragraph we use the term “theory” rather loosely and we do not yet specify the dynamics (nor

claim a full construction of course).
3Of course this is not as trivial as it seems because it requires the vanishing of the relevant spin cobordism

groups. Happily, this satisfied.
4Such terms were proposed in [11] in the context of Calabi-Yau compactifications.
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where A4 is a 4-form potential which is the lift to twelve dimensions of the 3-form potential

C3 of M-theory in eleven dimensions. On can view C3 in turn as the contraction of one

index of A4, i.e. C3 = i∗A4. This lagrangian has been essentially considered in [12], and

global manipulations of this type for circle bundles have been considered in [7].

Looking for field theory in F-theory as a circle bundle on M-theory leads to certain

puzzles and we cannot claim that all sectors of F-theory arise in this way (accordingly,

the F-theory lagrangian may need other terms which we do not yet know). To see this,

for example IIA string theory should be a compactification of M-theory and IIB string

theory should be a compactification of F-theory, but as far as known so far, IIA and IIB

spacetimes can have different homotopy types. This seems contradicted by proposing a

simple relation between M-theory and F-theory via S1-compactification.

While we do not have a definitive answer to this problem, there are two ways we can

deal with it in the present paper: first, our main interest is a free field theory based on

elliptic cohomology, which approximates a certain refinement of the partition function in

type II string theory. For this elliptic field theory to exist, a stronger condition (w4 = 0) is

required than the known conditions for consistence of type II theories. The condition we

use is the same for type IIA and IIB, so it can be argued that duality is not violated in

our setting (it is at present unknown if the stronger condition is simply an artefact of our

model, or if it expresses some intrinsic new restriction on type II strings).

The second possible approach is to deal with IIA and IIB separately. We shall discuss

this in more detail below, and in fact shall see evidence that different physical signatures

may arise in both cases. In this approach, the lagrangian (3.3) is valid for the sector

of F-theory which contains M-theory and type IIA, and the precise lagrangian for IIB

remains to be determined (however, should be related, since, as we shall see, the present

lagrangian can be interpreted in a way as to contain IIB fields). It should be also mentioned

that [12] consider certain projections to reconcile on-shell states between F-theory and M-

theory/type IIB. While we believe this might be possible in our formulation (see end of

section 5.3), we do not attempt a construction, as it seems out of the scope of the present

paper.

4. Evidence for TMF

4.1 Type IIB and TMF

Let us now consider again the equation (2.9). From what we learned in previous investi-

gations, it is likely correct to say that the field strength G3 should live in a generalized

cohomology theory. For example, when analyzing the IIB partition function, Witten found

that F3 ∈ K1(X). K-theory, on its own, of course does not tell a modularity story, and

one needs to solve the puzzle of what happens in the presence of H3. Some aspects of this

were considered in [2]. But from the point of view of (2.9), it seems that if we want G3

to live in a generalized cohomology theory, then τH3, F3 must coexist in the same theory.

We conjectured in [2] that this theory should be the theory of topological modular forms,

tmf , the coefficients of which are, at least rationally, holomorphic (chiral) modular forms

— see appendix for a brief review. However, even then, what should one do about the

– 8 –
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factor 1/
√

Im τ? This scaling factor is troublesome from the point of view of algebraic

topology, since it is not chiral and therefore does not occur among the kinds of modular

forms described by tmf .

If we are to lift our fluxes to tmf , we must proceed one chirality at a time, and therefore

see no choice but to drop the 1/
√

Im τ factor. Thus, we consider

G̃3 = F3 − τH3 . (4.1)

This, of course, now is a flux with modular weight −1, i.e. we have if we denote by G̃′
3 the

expression obtained by replacing τ by

τ ′ =
(aτ + b)

(cτ + d)
, (4.2)

G̃′
3 = G̃3 · (cτ + d)−1 . (4.3)

Now this has a striking implication to the dimension of this class, if it is to be lifted to

tmf : in that theory, a class of modular weight k appears in tmf2k(X10). Therefore, our

assumptions lead to

G̃3 ∈ tmf−2X10. (4.4)

This points to the 12-dimensional picture: suppose, in the simplest possible scenario fol-

lowing Vafa [8] that

V 12 = X10 × E (4.5)

where E is an elliptic curve. Then let

µ ∈ tmf2(E) (4.6)

be the generator (given by orientation). This then suggests introducting µ, instead of

1/
√

Im τ , as the correct scaling factor of G3, and passing to 12 dimensions: we have

G̃3 × µ ∈ tmf0
(
V 12

)
. (4.7)

It is a surprise that the class ends up in dimension 0 and no odd number shows up here.

However, note that the fiber E contains odd-degree non-torsion cohomological classes, so

all kinds of shifts between even and odd are possible here. Modular classes of weight 0,

however, must be in dimension 0.

We used here the statement that for a space X, classes in tmfk(X) are modular

of weight k/2, which means that upon the transformation (4.2), the class transforms by

introducing the factor (cτ + d)k/2. It is fair to point out that to make this rigorous math-

ematically, some discussion is needed. In fact, we will find it necessary to generalize to

an elliptic cohomology theory E which is in general modular only with respect to some

subgroup Γ ⊂ SL(2, Z) (see below). So, we give the discussion in this context. The tmf

discussion is analogous. The first question we must ask is what is τ mathematically? The

answer is that τ appears only when we apply the forgetful map5

Ek(X) → Kk(X)
[[

q1/24
]] [

q−1/24
]

. (4.8)

5This is formal expansion of K-theory in the the power q1/24 of the formal parameter q. The second set

of paranthesis indicates that the generator q1/24 is inverted. Such expansions relating elliptic cohomology

to K-theory were used in [1] to interpret the elliptic refinement of the type IIA partition function.
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Then one takes q = exp(2πiτ). The right hand side denotes power series in K-groups, with

the parameter q1/24 inverted. This map was discussed in our previous papers [1, 2]. On this

level of coefficients, it is given simply by the fact that a modular form may be expanded in

the modular parameter τ . For forms which are modular only with respect to a subgroup

of the modular group, fractional powers of q are needed: in the case of complex-oriented

cohomology, one encounters q1/24.

But in addition to this, (4.8) must be suitably normalized. As explained in [1], one

has a canonical map of generalized cohomology theories

E → K
[[

q1/24
]] [

q−1/24
]

(4.9)

whose induced map on coefficients (homotopy groups) makes the k-th homotopy group

modular of weight k/2. This is not the correct normalization to use in (4.8), because then

Ẽ0(Sk) = E−k(∗) would have modular weight −k/2, whereas we would like 0. To this end,

we need to compose with some map which would multiply by some normalizing factor of

weight k/2 in the k-th homotopy group. Such operation indeed exists, and it is the Adams

operation6

ψη : K
[[

q1/24
]] [

q−1/24
]
→ K

[[
q1/24

]] [
q−1/24

]
. (4.10)

Here η is the Dedekind function (∆1/24 where ∆ is the discriminant form), which, note, is

a unit in K[[q1/24]][q−1/24]. Now we see that composing (4.9) with (4.10) gives the correct

normalization of (4.8) for k = 0. For general k, if we simply delooped this map, we would

be be in weight 0 instead of k/2, so we need to multiply the delooped map by ηk to get

the correct normalization.

To summarize the results of this section, our conclusion confirms that if we want to

seriously consider the modularity of the flux G3 in tmf , the correct way is to introduce

the normalization (4.7), and work in F-theory. We will see in the later sections that the

picture described above may be overambitious: we do not know of a sector of F-theory

which would really use tmf this way, and which would explain modularity of IIB with

respect to the whole group. Nevertheless, we will see that the naive discussion given in

this section is roughly correct.

4.2 Twelve dimensions and TMF

Let us dedicate one section to speculation about an F-theory which would be governed by

the ideally modular elliptic cohomology theory tmf . As already remarked, we will see later

that we will fall somewhat short of this goal, and will have to revert to less ideal elliptic

cohomology theories and elliptic curves. Perhaps the “ideal theory” could be reached by

some type of advanced orbifolding of the fiber E in (4.5), just as tmf in mathematics is

constructed that way from elliptic cohomology. For now, however, let us make a few first

observations about the field content of such ideal F-theory.

6In fact, a more precise discussion uses Ando power operations in elliptic cohomology, but we will not

need that here.
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At least when tensored with Q (or more generally a field of characteristic 0), the

coefficients (homotopy classes) of tmf are modular forms:

tmf∗ ⊗ Q = Q[g2, g3] . (4.11)

Here recall that g2, g3 are the standard modular forms of weights 4 and 6, given by the

Eisenstein series as

g2(z) =
4

3
π4E4(z) (4.12)

g3(z) =
8

27
π6E6(z) (4.13)

with the (normalized) Eisenstein series given by

Ek(z) =
1

2

∑

m,n∈Z;(m,n)=1

1

(mz + n)k
(4.14)

where (m,n) denotes the greatest common divisor.

In particular, the notation has nothing to do with our previous notation for fluxes.

Now as remarked above, in tmf , the dimension of a class is twice its modular weight, so

rationally,

g2 ∈ tmf8 ,

g3 ∈ tmf12 . (4.15)

Now the F-theory we are considering takes place on a tmf -orientable manifold Z12, and

the topological fluxes we consider are in its tmf -cohomology. Recall (cf. [2]) that the

obstruction to tmf -orientability is

λ ∈ H4(Z, Z) mod 24 . (4.16)

In any case, orientability implies that we have a class

u ∈ tmf12(Z) , (4.17)

so using (4.11), and the dimensions, we see that in non-negative dimensions, we have

possible field strength sources u, ug2, ug3 in dimensions 12, 4, 0 (the dimension of the

coefficients is subtracted from the dimension of a class in generalized cohomology). Note

that this derivation is of course quite schematic, but on the other hand somewhat analogous

to the derivation of the dimension of RR-sources in type II string theory from K-theory.

Also, we have only considered tmf rationally. Delicate questions regarding the integrality

of the proposed fields would have to be considered, specifically at the primes 2 and 3.

If we accept this, then we see there is a fundamental field strength in dimension 4.

It is, of course, natural to conjecture that this is related to the field strength G4 in the

M-theory compactification of the appropriate sector of F-theory. We look at this next.
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4.3 Anomalies in type IIB and congruences

In principle there can be anomalies associated with the U(1) symmetry and with the

SL(2, Z). The U(1) anomaly [37] can be cancelled by adding the term [21]

S =
1

4π

∫

X10

φF2 ∧ I8(R) (4.18)

provided that
1

4π

∫

X10

F2 ∧ I8(R) ∈ Z (4.19)

since φ is 2π-periodic. Here F2 is the curvature of the upper half plane, given in terms of

the modular parameter by

F2 =
idτ̄ ∧ dτ

4(Im τ)2
, (4.20)

and I8(R) is the Green-Schwarz anomaly polynomial in R, the curvature of TX10.

The SL(2, Z) anomaly is cancelled by adding the term [21]

S′′ =
i

4π

∫

X10

ln g(τ)F2 ∧ I8(R) (4.21)

where g(τ) is a modular form that satisfies (up to a constant phase)

g(Λτ) =

(
cτ + d

cτ̄ + d

)1/2

g(τ) (4.22)

where Λ is the SL(2, Z) Möbius action. The SL(2, Z) symmetry is unbroken if [21]

1

4π

∫

X10

F2 ∧ I8(R) ∈ NZ (4.23)

where N is 4 or 12 depending on the transformation property of g(τ). Therefore, we see

that if we take the latter case then the integral

1

2π

∫

X10

F2 ∧ I8(R) (4.24)

is in 24Z. If I8(R) is integral, then the U(1) curvature F2 is in 24Z. We again see the mod

24 congruence.

4.4 The M-theory topological lagrangian

In [16], Witten derives the effective lagrangian of M-theory which comes from the Chern-

Simons term. Simply to get consistency, i.e. to make the lagrangian well-defined, one gets

the action (in our notation) (3.2) where Z12 is a Spin-manifold whose boundary is M-

theory spacetime Y 11. In this section, we shall try to understand this lagrangian in the

context of the kind of theories we are considering in this paper.

One has, (at least as differential forms),

d ∗ G4 = −1

2
G4 ∧ G4 . (4.25)
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It is therefore appealing to write the Chern-Simons lagrangian term (“on-shell”) as

1

12
G4 ∧ (∗G4) , (4.26)

which looks rather like a gauge-theoretical kinetic term. However note that this still does

not explain the consistency of such expression.

But this is related to the mathematical notion of Massey products. A differential

graded algebra (DGA) is a (not a priori commutative) graded algebra A with a map

d : A → A of degree +1 which satisfies the relations

dd = 0 , (4.27)

d(ab) = (da)b + (−1)dimaa(db) . (4.28)

(Different sign conventions are possible.) Then the cohomology H(A) of A with respect to

d is a graded algebra. It has further certain operations called (matrix) Massey products.

These are essentially the only operations, but if A has any kind of commutativity property,

more operations arise, although many of them are torsion. In any case, the simplest Massey

product is a correspondence

H(A) ⊗ H(A) ⊗ H(A) → H(A) (4.29)

which is denoted by [a, b, c], where a, b, c ∈ H(A). It is defined only when ab = bc = 0 ∈
H(A), and the dimension of the result is

dim(a) + dim(b) + dim(c) − 1 . (4.30)

It is also not well defined, it is only defined modulo terms of the form ax + yb where x, y

are some elements of H(A) over which we have no control. They may, however, sometimes

be excluded, for example for reasons of dimension.

The definition of [a, b, c] is as follows: we have

ab = dy , bc = dz for y, z ∈ A . (4.31)

Then set

[a, b, c] = yc + (−1)dima+1az . (4.32)

It is obvious that this is a cocycle, and that the cohomology class is defined modulo the

indeterminacy given above. It is worth noting that all Massey products are essentially

elaborations of this principle. A Massey product [a1, . . . ., an] exists if and only if all “lower”

Massey products of these elements vanish, and also one may do the same thing for matrices

of elements. That is the whole story for DGA’s.

In our situation, the equation (4.25) implies

−1

2
[G4, G4, G4] = [G4, ∗G4] (4.33)

(the right hand side has the Lie bracket, the left hand side the Massey product). This

suggests rewriting (3.2) as
1

6
[G4, G4, G4] , (4.34)

which now is at least an expression which lives entirely in cohomology. However, let us

take this one step further and see what are the implications of this in F-theory.
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In [16], as noted above, Y 11 is the boundary of a manifold, a ‘Spin cobordism’, Z12.

To prove invariance, one also considers the case when Z12 is obtained from gluing two

cobordisms together, i.e. Z12 is an orientable compact manifold and Y 11 is a submanifold

of codimension 1 such that Z − Y has two connected components (each of which is a

cobordism). Then from the Mayer-Vietoris sequence, there is a connecting map

T : Hk(Y 11) → Hk+1(Z12) (4.35)

(which can be thought of as a kind of transfer). Now let a, b, c ∈ H∗(Z12) (we should think

a = b = c = G4). Suppose further a′b′ = b′c′ = 0 ∈ H∗(Y ) (the ′ means restriction from

H∗Z12 to H∗Y 11). Then we have

T [a′, b′, c′] = abc mod indeterminacy (4.36)

where the Massey product is taken in H∗Y , the product in H∗Z. The indeterminacy can be

taken as az+xc where z, x are cocycles in the opposite connected components of Z12−Y 11.

A sketch of a proof can be obtained as follows: let us think of the Poincaré dual chains.

Make the cycles representing a, b, c in Z12 intersect transversally with Y 11. Now restrict

the chains a, b, c to chains (not cycles) ai, bi, ci on the closures Zi of connected components

of Z − Y, i = 1, 2. Then d(a1b1) = a′b′, d(b2c2) = b′c′. Furthermore, in Z1, the intersection

of a1b1 with c1 is the same as the restriction in Z1 of u with c1 where du = a′b′ in Y 11,

which in turn is the same as the intersection of u with c′ in Y . Similarly on Z2. Now on

chains, T is represented by inclusion. So

a1b1c1 + a2b2c2 (4.37)

represents T [a′, b′, c′], as claimed.

This suggests again that the effective 12-dimensional topological lagrangian term

should be ∫

Z12

1

6
G4 ∧ G4 ∧ G4 (4.38)

with the indeterminacy described above, which of course coincides with the result of [16].

But more interestingly, the 1-loop correction term in (3.2) can be explained as a part of

the indeterminacy of (4.36). Thus, it is interesting to note that indeed (4.34) is a correct

way to rewrite (3.2), and that the 1-loop correction terms in M-theory is a part of Massey

product indeterminacy.

Another comment is perhaps in order. It could be argued that a defect of the Massey

product approach is that it does not specifically predict the 1-loop gravitational term as

the correction term. This is a delicate issue and we would say this criticism is partially

true: on the one hand, certainly the Massey product approach does not, without further

rigidification of the input, predict the precise form of the counterterm. On the other

hand, it does predict that such a term must exist.7 (A caveat is the coefficient 1/6, which

cannot be predicted by rational cohomology; a proper integral refinement, possibly using

7While there is a version of the Massey product which does not use indeterminacy, it requires more input

data, and at present we do not know if it helps predict the one-loop term more accurately.
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generalized cohomology, would be needed. Recall that the arguments applied in [4] are

rather delicate. Although generalized cohomology is the main theme of this paper, and

this is perhaps one of the fundamental issues of M-theory, we do not have this precisely

worked yet.)

Accepting, however, that the Massey product does predict the existence of a countert-

erm, it is then actually not bad at predicting the term itself. The indeterminacy is

G4 ∧ I7 (4.39)

where I7 is a 7-dimensional cohomology class in Y 11 (which must be distinguished from

the 8-dimensional cohomology class I8 in Z12).8 The term (4.39) does not appear to

be excluded by the 1-loop approach. Although we do not know its exact meaning, it is

probably related to the dynamics of M5-branes, as is the 1-loop term. In fact, (4.39) looks

like a coupling of M2-brane and closed M5-brane field strengths.

One reason for discussing these manipulations here is that it is possible a similar

device could be used to unify the two seemingly different F-theoy lagrangians (3.2), (3.3)

in section 3. If we denote by G5 the field strength corresponding to the potential A4, the

suggested F-theory topological term is

1

6

∫

V 12

[G4, G4, G5] . (4.40)

As written, the Massey product takes place in the algebra of differential forms.9 This of

course needs further discussion, but the point is both a 1-loop gravitational correction term

and a term of the form (3.2) can be considered indeterminacy terms to (4.40). In the case

of the 1-loop term, the discussion is similar as the case of M-theory earlier in this section.

In the case of (3.2), this phase vanishes on a closed manifold Z12 = V 12. This indeed

corresponds to adding the cocycle G4 to the potential A4, which is a gauge transformation

not affecting the field strength.

5. The partition function of F-theory compactified on an elliptic curve

5.1 Elliptic cohomology

Let us now approach the problem from another angle. Namely, let us go back to 10-

dimensional type II string theory. In [1, 2], we have observed that the partition functions of

IIA and IIB string theories (see [4, 3]) can be lifted to elliptic cohomology. We constructed

8One might be tempted to say that dI7 = I8 via Stokes theorem. However, this is not correct for two

reasons. First, I8 is not a coboundary (although of course it is locally), and second, I7 is closed, i.e. it is a

cohomology class in H7(Y 11). The situation is quite analogous to that of the potential/field strength: I8

plays the role of the field strength, I7 is the indeterminacy of the potential, which is a closed gauge term,

i.e. a shift gauge transformation that can be added to it.
9Of course, a refinement of G5 in elliptic cohomology of the 12-dimensional spacetime would be desirable.

Schematically, this seems consistent since the dimension of the class would increase by 1 by wrapping around

the additional degree of freedom. However, one must be careful while considering the exact nature of this

additional dimension. We will return to this point later.
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this lifting by carefully observing the homotopical content of the IIA partition function

obstruction of [4]. However, what is the correct interpretation of these partition functions?

In this section, we propose an answer to this question: the elliptic partition function

belongs to F-theory compactified on an elliptic curve, which unifies both IIA and IIB string

theories. Roughly, the idea is this: in elliptic cohomology, we see another parameter in

the coefficients of the theory. In [1], we worked mostly with the cohomology theory E(2),

in which case the extra parameter will be (v1)
3(v2)

−1, where v1 is the Bott generator and

v2 is the degree six analog. One can work with other elliptic spectra and get different

parameters. But the point is that in all cases, the additional parameter is some modular

form of some level, i.e. a power series in q = e2πiτ where τ is the modular parameter of an

elliptic curve. So one can ask what causes a theta function (more precisely theta constant)

of a lattice Γ to be modified in this fashion, i.e. where the value is, instead of a number,

a function in a modular parameter τ of an additional elliptic curve? The answer is that

this arises precisely when we tensor Γ by another lattice of dimension 2 whose period is

τ . Tensoring with a two dimensional lattice amounts to summing two copies of Γ (at least

as abelian groups). One can argue that if q → 0, then τ → i∞, so the other copy of Γ is

“infinitely far”, thus reducing the new function to the old one in the q → 0 limit.

But where does the new lattice come from? It comes from the 1st cohomology of an

elliptic curve, which is the theory E on which we are compactifying F -theory. In other

words, in F -theory on V 12 = X10 × E which contains type IIB string theory on X10, the

odd degree field strengths move to even-dimensional cohomology of V 12, as predicted above

in section 4.1. For example, from the F-theory term

∫

V 12

A4 ∧ G4 ∧ G4 (5.1)

which was proposed in [11] and used in [12], we obtain the type IIB Chern-Simons term

∫

X10

A4 ∧ F3 ∧ H3 (5.2)

after reducing on the elliptic curve one step at a time to get H3 and F3 as results of

contraction of one index of G4, and A4 remains the same. So G5 is lifted by H0(E) and

G3 by H1(E). What about G1? Note that the reason to consider F-theory in the first

place was to try to interpret G1 (i.e. the axion-dilaton combination) as the (non-constant)

moduli of the elliptic curve. Thus we propose that G1 is not lifted to F-theory but only

shows up in ten dimensions upon compactifying on a nontrivial torus. This is compatible

with [12] who consider a field content in twelve dimensions consisting of a metric, a dilaton,

a four-form and a five-form field strengths, but no p-form field strengths (p = 2, 3) which

would come from lifting G1 via H1 and H2. Of course, there could be a nontrivial mixing

between the dilaton in twelve dimensions and the dilaton coming from the moduli of the

torus. This might not be surprising from a Kaluza-Klein point of view, but we do not

explore it further as it would be outside the scope of the paper.

In IIA, this might seem more confusing, since we have a field G4 in dimension 4 and H3

in dimension 3. However, we think the answer has to be as follows. Once again, we should
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have compactified F-theory on V 12 = X10 × E. But this time, consider an intermediate

step, M-theory compactified on X10 × S1. In this compactified M-theory, the H3 picks up

a dimension by multiplying with a first cohomology class of S1 and is absorbed into G4.

In the F-theory considered here (the standard F-theory), indeed G4 expands into G5 by

coupling with H1(E). On the other hand, the IIA-theoretical H3 becomes absorbed in this

G5 also by coupling with H2(E). Thus, we see the same modularity (see below for more

notes on modularity) as in the standard F-theory related to IIB, and since that theory has

both G4 and G5, this further supports the idea that this theory be a unification between

type IIA and IIB string theories (see [8, 11, 12]). However, we note from section 3 above

that this sector is not obtained as cobordism of Y 11, but as Y 11 × S1.

5.2 E-theoretic formula for the fields and new characteristic classes

According to [4], formula (7.2) states that the total field strength G(x) of type II 10-

dimensional string theory is 2π times
√

Â(X)ch(x) . (5.3)

This formula is needed, since the metric of the K-theory lattice is, up to a factor of 1/(2π)2,

given by ∫

X
G(x) ∧ ∗G(y) . (5.4)

However, formula (5.3) applies to a K-theory setting, so it needs adjustment in case of

elliptic cohomology. There is no problem with the Chern character, since for any elliptic

cohomology theory E, there is a canonical map E → K((q)) (where q is as above), so we

may compose with the Chern character to get a map

chE : E → H∗((q)) . (5.5)

On the other hand, the term
√

Â(X) should be replaced by an analogous term related to

the Witten genus, which is

σ(X)1/2 (5.6)

where σ(X) is the characteristic class of X associated with the power series

σ(z) = (ez/2 − e−z/2)
∏

n≥1

(1 − qnez)(1 − qne−z)

(1 − qn)2
. (5.7)

Therefore, our formula for the elliptic field strength associated with x is10

G(x) = σ(X)1/2chE(X) . (5.8)

Note that this σ-function, in the q → 0 limit, reduces to the characteristic function of the

Â-genus, thus reducing this field strength to the type II field strength in the 10-dimensional

limit.

10We have demonstrated this formula only up to terms that vanish as q → 0, so in principle such terms

could be present. However, it is not obvious that there are natural such candidates.
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We should of course remark that the partition function we consider is, similarly as

in [4], approximate in that we work in the free field limit. This means that the action we

consider is essentially just the hermitean metric on the field strengths. Using the standard

definition of partition function, we therefore obtain the theta function.

The definition of the elliptic partition functions given in [1, 2] are then complete.

As mentioned above, we propose that these functions are, in fact, partition functions of

the F-theory sectors on X10 × E which, when E goes to 0, reduce to type IIA and IIB

10-dimensional string theories.

5.3 Interpretation of Twist and modularity

Let us recall now again the IIB string theory modularity puzzle (see section 4.1). In type

IIB string theory, we have an RR-field strength F3 and an NSNS-field strength H3 which

are in a relation of modularity. As pointed out in [4], the K-theory based partition function

for type IIB does not explain that modularity, and it cannot be explained by twisted K-

theory either, as shown in [2]. Of course, as also mentioned there, the possibility is not

excluded that by introducing more terms, such as the P -term that depends only on the

topology and the spin structure of the manifold [4, 38], into the modularity equation, one

could start building by hand a Postnikov tower of a different classifying space or generalized

cohomology which could give the correct explanation.

This is however not the approach we take here. Instead, we build directly a theory

(at least its free field approximation) based on elliptic cohomology of the 10-dimensional

spacetime X10. What we conjecture (see also [2]) is that this theory is related to F-

theory compactified on an elliptic curve E. It is rather natural then to conjecture that

modularity in the first cohomology of E explains the modularity in type IIB theory. (We

also commented briefly above on why this modularity is broken in IIA.) This construction

does not come for free. In order for the lift to F-theory to be consistent, we get an

obstruction

w4 = 0 (5.9)

which seems foreign to type II string theory (although it occurs in heterotic string theory,

thus perhaps hinting that F-theory provides an even further unification). Also, the com-

bined field strength G3 (see section 4.1 above for more discussion) must be lifted to elliptic

cohomology, which restricts the kind of configurations allowed. Twisting in the new theory

disappears. The combined G3 field strength is (an additive) generalized cohomology class,

whereas twisting allows, at least a priori, non-additive configurations.

After introducing all this, we got modularity which is indeed tied to the modularity

in the first cohomology of the F-theoretical fiber E. However, note that even then the

picture we get is not quite as ideal as one might hope. Mathematically, the problem is that

elliptic cohomology spectra are not completely modular with respect to the whole group

SL(2, Z). Only the spectrum TMF enjoys such full modularity, but that is not an elliptic

spectrum. In fact, if we agree to specialize to information at p = 2 (2-torsion does seem

like the most interesting information), then following Hopkins and Mahowald [41], we may

use the elliptic spectrum E2 with coefficients W2[[a]][u, u−1]. Then TMF (at p = 2) can be
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obtained as homotopy fixed points of E2 with respect to an action of the group SL(2, Z/3).

In other words, we may roughly say that E2 is modular with respect to the congruence

group Γ(3), i.e. that we are only allowed to perform modular transformations which fix

the group of points of order 3 on the elliptic curve. Accordingly, we only recover level 3

modularity of the combined G3 field strength of type IIB string theory.

One could conjecture that an ideal F-theory (as was suggested above) could be obtained

by an orbifolding analogous to the construction in homotopy theory which produces the

spectrum TMF (or its connected form, tmf). Let us try to work out the implications of

such construction. First of all, mathematically, we have the advantage that we have a toy

model. To simplify the discussion, let us look again at generalized cohomology theories

completed at p = 2, as in the last paragraph. Then we saw we get TMF from E2 by taking

homotopy fixed points with respect to the group SL(2, Z/3). However, that group has a

normal subgroup, namely the center, which is isomorphic to Z/2. The non-zero element

α of this center is the diagonal matrix with entries equal to −1. We can therefore obtain

TMF in two stages, first taking homotopy fixed points

(E2)
hZ/2 , (5.10)

and then again homotopy fixed points of the generalized cohomology theory (=spec-

trum) (5.10) with respect to PSL(2, Z/3). However, as noted above, the map α is the

inverse operator on the elliptic curve (in homotopy theory, one sees a so called supersingu-

lar elliptic curve over F4, and in fact all its information is extracted from its formal group

law, which is of height 2; see [1] for a review of formal group laws in the physical context.

The element α is then the inverse series of that formal group law). The point of discussing

this in such detail is that taking fixed points with respect to the inverse series of a formal

group law is a well known operation in homotopy theory: one obtains the real form of

the theory. For example, starting with K-theory, one obtains KO. Starting with E2, the

theory (5.10) becomes in fact the real elliptic cohomology theory

(ER2)
Z/2 (5.11)

discussed in [45] (as shown there, there is a “completion theorem” which makes it unnec-

essary in this case to distinguish between actual and homotopy fixed points).

The appearance of the real form of a generalized cohomology theory is interesting here.

In the case of K-theory, its real form KO describes the sources of type I string theory,

which can be obtained from type IIB string theory by orbifolding. Note however that this

is worldsheet orbifolding, using the automorphism of the theory which exchanges the chiral

sector, i.e. a worldsheet involution that reverses the signs of the worldsheet coordinates,

and thus interchanging left movers with right movers. It does not seem from this worldsheet

point of view that in 10 dimensions, one could consistently orbifold any further. Another

way of expressing this is to say that supersymmetry cannot be broken further than N = 1,

starting from N = 2.

From the 12-dimensional point of view, when constructing (5.10), however, we see an-

other side of the story. We can, in fact, identify physically what kind of orbifolding (5.10)
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corresponds to. This is because we know that the element α is the inverse of the elliptic

curve, and that elliptic curve we understand (from modularity) to be a form of the fiber E

of (4.5). Therefore, we are orbifolding with respect to the involution of the two fiber dimen-

sions in spacetime! In this context, the additional orbifolding with respect to PSL(2, Z/3)

could possibly be consistent, although details would certainly have to be worked out. But

how is it possible that worldsheet orbifolding of type IIB in 10 dimensions could correspond

to the spacetime fiber orbifolding in dimension 12?

While we do not have a complete explanation (it is perhaps a “string miracle”), we

can point out that this phenomenon, at least in 11 dimensions, has in some sense already

been observed. Compactified M-theory on S1 is on the strong/weak duality line between

type IIA string theory and M-theory. Applying spacetime orbifolding to the eleventh

dimension with respect to the inverse operator gives Hořava-Witten M-theory, which is S-

dual to E8 × E8 heterotic string theory. Applying T-duality, we get Spin(32)/Z2 heterotic

string theory, which is S-dual to type I string theory. The latter is obtained by worldsheet

orbifolding of type IIB string theory [39] via projecting by an involution (i.e. orientifold) Ω

that exchanges the left and the right closed string oscillators and acts on the open string

oscillators by introducing a Z2 phase.11 We propose that type I can be lifted to a theory

M̃ which is T-dual to the original M-theory compactified on S1 (as remarked below, we do

not know if M̃ = M). In any case, if we suppress U-dualities from the notation, we get,

schematically, the following diagram:

∗ sO
//

T
²²

∗
T

²²∗ wO
// ∗

where sO stands for spacetime orbifolding in the eleventh dimension, and wO stands for

worldsheet orbifolding in 10 dimensions, and T stands for T-duality. This is the kind of

relation between worldsheet and spacetime orbifolding proposed above.

Note that the spacetime involution applies to both dimensions of E, so it preserves

orientation, while the worldsheet involution only applies to one coordinate, i.e. it reverses

orientation.

One might also justify the truncations done in [12] for the reduction from F-theory

to M-theory and type IIB string theory. There, (consistent) truncations were imposed by

hand on the fields, which amounted to setting G5 to zero in compactifying to M-theory

on S1 and setting G4 to zero in compactifying F-theory to type IIB string theory on an

elliptic curve. We propose that such truncations can be made natural by looking at a

Hořava-Witten-like construction, but for the elliptic curves instead of the circle. More

precisely, we propose the existence of involutions on both elliptic curves, the one fibered

over IIA and the one fibered over IIB, in such a way that orientation-reversing kills G4 in

the case of IIB and kills G5 in the case of IIA. From the point of view of M-theory, this

11More precisely, Ω acts on the closed sector by exchanging αµ
m and α̃µ

m and on the open sector by

exchanging αµ
m and ±(−1)mαµ

m.
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means that the extra twelve-dimensional circle comes with an involution on it. 12 We do

not attempt a construction here as this would be beyond the scope of this paper.

Let us make one more comment, which is more related to the IIA sector. Diaconescu,

Freed and Moore [38] consider a cubic refinement of the triple pairing in G4 associated with

M-theory. This in our language is related to the cubic structure [40] on elliptic cohomology

in the same way as the quadratic refinement of the pairing ω in [4] is related to the quadratic

structure on K-theory corresponding to KO.

5.4 The Witten genus and a possible explanation via loop groups

There is another provocative coincidence which may support our explanation of the elliptic

partition function as compactification of the standard F-theory (3.3) on an elliptic curve.

When considering the elliptic field strength (5.8), we see that the free action (hermitean

metric) in that theory relates to the Witten genus in the same way as the action of the

K-theoretical field strength [4] relates to the Â-genus.

But when Witten first introduced his genus [10], he made another suggestion of relation

with the Â-genus, namely that his genus should be related to taking index of loop bundles on

loop space. This, in fact, has led to much speculation on the nature of elliptic cohomology,

which is well summarized in [42] (see the volume [43] for the orginal references). Most

of this speculation, which continued to the present day (cf. [44]), was in the worldsheet

modularity direction, but when trying to match this with evidence from loop groups, [9]

found that the elliptic curve shows up in spacetime as well. Here we shall propose that the

elliptic curve in spacetime should, in fact, be the fiber of standard F-theory compactified

on the elliptic curve. In fact, strikingly, [9] found defects to modularity very similar to

those found in the present paper.

What we propose is the following. When forming the compactification of F-theory on

an elliptic curve, there is an intermediate step: compactification of F-theory on a circle,

which should be M-theory following [12]. In view of our previous discussion in section 3,

it is safest here to consider this as a sector of F-theory which contains type IIA string

theory; the sector containing IIB-theory may possibly be different. In fact, in the IIB case,

one should also have an S1-reduction of F-theory, and one can have a symmetric picture

between type IIA and type IIB string theory in connection to F-theory. Another way to

pose this question is whether it makes sense to ask for a “T-dual” of M-theory. We do not

know if M-theory would be “T-dual” to itself, although this seems to be hinted at in [8]. We

sometimes use the term M̃-theory to refer to the “T-dual” of M-theory which contains IIB.

We do not know if M̃ -theory is the same as M-theory under suitable conditions. However,

the existence of such a theory would not follow from a strong coupling argument, since

IIB is S-selfdual, and thus the arguement could be similar to the one used for going from

M-theory to F-theory.

12We do not imply that all the theories we discuss are related either by taking boundaries or simply by

using S1 factors. The discussion is schematic and a more precise description will involve other manifolds

such as K3 in order for the picture to be compatible with the web of dualities. In some limit, K3 can be

viewed as some orbifold of T 4 so what we mean by a circle with an involution is something crudely similar

within the Calabi-Yau manifolds.
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Now looking at the IIA picture, M-theory on an 11-dimensional manifold Y 11 vs. F-

theory [12] compactified on Y 11 × S1. If we look at the lagrangian term (3.3), then it

suggests that we can in fact express the whole Y 11 × S1-state by a state on Y 11, valued

not in the original target space, but in the loop space of that space. Therefore, one could

conjecture that the effective action of F-theory compactified on S1 can be computed in the

same index-theoretical way as the effective action of M -theory, but instead of the E8 and

Rarita-Schwinger index terms, one would substitute loop bundle versions of those indices.

Now note that the index of such operators should also be taken on loop space, but it is

well known that the relevant homotopical information is contained at constant loops (this

is well explained in [42]), so integrating again over Y 11 seems adequate.

But now following [42], replacing Dirac operators by the corresponding Dirac operators

on loop bundle should correspond to replacing the Â-genus by the Witten genus in the

answer. Thus, this suggests a modification of the method of [4] to compare genuine F -

theory partition function obtained from its kinetic term, via its interpretation as loop-

bundle index on the spacetime Y 11 of M-theory, to the elliptic ‘Witten genus’ modification

of the K-theoretical partition function described in in detail above in this section. We

do not carry out this calculation here in detail, but propose it as a concrete calculational

experiment which could be used to test whether the field theory [12] really has a consistent

compactification to M-theory.

6. Remarks on signatures and supersymmetry

Note however first that all the homotopy theory work seriously described in this paper is

done in euclidean signature. To discuss signatures seriously, we need to adapt our discussion

to manifolds with signatures. Here we simply point out the relevance of signatures.

As far as generalized cohomology with signatures, not much has been done. Manifolds

with signature typically cannot be compact, so we must take cohomology with compact

supports. But how to take the signature into account in generalized cohomology? A

suggestive point is that KO-theory KOp,q ∼= KOp−q looks like it should be KO-theory of

spacetime with signature (p, q). This, indeed, suggests a proposal: ordinary cohomology,

K-theory and elliptic cohomology are all Z/2-equivariant generalized cohomology theories,

which we can interpret as generalized cohomology theories with a real form ([45]). Now if M

is a manifold with signature, this makes the tangent bundle TM a Z/2-equivariant bundle,

where Z/2 reverses signs of purely time-like dimensions (this is not completely Lorentz-

invariant, but is so up to homotopy). Let us call this new Z/2-equivariant structure on the

tangent bundle TMε. Then we can define, for a real-oriented generalized cohomology ER,

the signature-cohomology of M as

ERk
c (TMε) , k ∈ Z (6.1)

where c denotes compact support. This is, of course, still a long way from working out all

the homotopy theory we have above at signatures, but it is a start. We will develop the

theory further elsewhere.
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We start with by looking at Clifford algebras in twelve and eleven dimensions with

various signatures. A discussion on spinors in different dimensions and with various signa-

tures can be found in [46]. In twelve dimensions, we are interested in (s, t) signatures, with

t = 0, 1, 2, 3. The corresponding Clifford algebras are isomorphic to the matrix algebras

(12, 0) : Mat32(H) (6.2)

(11, 1) : Mat32(H) (6.3)

(10, 2) : Mat64(R) (6.4)

(9, 3) : Mat64(R) (6.5)

so that the spinor representations are quaternionic in the first two cases and real in the

last two cases. For the spinor representation, one has to look at the even Clifford algebra

which is given by

Cl(s, t)even ∼= Cl(s − 1, t) for s ≥ 1 . (6.6)

Then the even Clifford algebras are given by

(12, 0) : Mat16(H) ⊕ Mat16(H) (6.7)

(11, 1) : Mat32(C) (6.8)

(10, 2) : Mat32(R) ⊕ Mat32(R) (6.9)

(9, 3) : Mat32(C) . (6.10)

So one can have the following types of spinors in twelve dimensions

(12, 0) : Symplectic Majorana-Weyl (6.11)

(11, 1) : Majorana (6.12)

(10, 2) : Majorana-Weyl (6.13)

(9, 3) : Symplectic Majorana . (6.14)

For the lorentzian case, (11, 1), we have Majorana spinors. In this case, one can try

to form a supermultiplet for supergravity formed out of 320 bosons and 320 fermions, but

the gravitino and the form sectors of the structure are incompatible [47]. One can then ask

whether one can construct supergravity theories with other signatures in twelve dimensions.

A general discussion on this can be found in [48], and a proposal in the (10, 2) signature

can be found in [49, 50]. Note that for (9, 3) we can have symplectic-Majorana spinors,

whose defining relations for the charge-conjugation matrix C and the gamma matrices γµ

are given by

CT = −C (γµC)T = +γµC γµT = −C−1γµC . (6.15)

Some more discussion on this from point of view of physics as well as mathematics will be

discussed seperately.

Let us however make one final remark on a possible significance of the signatures in

connection with the IIA/IIB duality. In the (10, 2) signature, the fiber is a lorentzian torus,

which seems to break modularity. On the other hand, this model seems forced if we want
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a physical version of the proposal of [12] (since signature (9, 3) does not contain (10, 1),

which is the physical signature of M-theory). This could be consistent, since in type IIA,

over which this sector of F-theory is fibered, we indeed do not have manifest modularity.

On the other hand, in type IIB theory, we need manifest modularity, so it seems that

physically, the (9, 3)-sector is required. However, now this sector of F-theory cannot contain

a physical (10, 1)-M-theory, which again seems consistent, as IIB theory does not seem to

have a (10, 1)-M-theory dimensional expansion. It is possible that a (9, 2) expansion is

possible, and that this could in fact be the correct physical signature for M̃ -theory. This

might be not so unreasonable since there are versions of eleven-dimensional M-theory in

signatures (1, 10), (2, 9), (5, 6), (6, 5), (9, 2), and (10, 1) [51 – 53]. In fact in those theories,

one already sees a difference between type IIA and type IIB theories: while IIA allows for

both (10, 0) and (9, 1) signatures, type IIB allows for (9, 1) but not (10, 0).

A. A brief review of topological modular forms.

To make this paper more self-contained, we give here a very brief review of the theories

tmf and TMF . This theory is due to Mike Hopkins and Haynes Miller. All information

necessary for our purposes can be essentially found in [41]. The main point is this: in

homotopy theory, it is convenient to consider multiplicative (commutative associative)

generalized cohomology theories E (also called spectra) which are 2-periodic (in the same

way as K-theory), and are complex oriented, which means that the generalized cohomology

of the complex projective space is of the form

E∗(CP∞) = E∗[[x]] (A.1)

where x is the E∗-valued 1-st Chern class of the universal line bundle (equivalently, it

suffices to say that such Chern class exists). It then follows that all complex bundles have

E∗-valued Chern classes. In particular, one has

E∗(CP∞ × CP∞) = E∗[[1 ⊗ x, x ⊗ 1]] = E∗[[y, z]] . (A.2)

The multiplication CP∞ ×CP∞ → CP∞ (classifying tensor product of line bundles) then

gives, via (A.1), (A.2), a map

E∗[[x]] → E∗[[y, z]] ,

and the image of x under this map is a series F (y, z) called a (1-dimensional commutative)

formal group law (abbr. FGL). Its properties are

F (x, 0) = x ,

F (x, y) = F (y, x) ,

F (x, F (y, z)) = F (F (x, y), z)) .

Note that this looks like the properties of an analytic parametric expansion of the multipli-

cation in a 1-dimensional commutative Lie group. That is not very interesting, of course,

since all such groups are additive. Accordingly, even more generally, over a field of char-

acteristic 0, all FGL’s are isomorphic. However, the essential point is that FGL’s can be
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considered over any commutative ring, and then this isomorphism statement is no longer

true. In fact, much information about a complex oriented generalized cohomology theory

can be deduced from its FGL. In particular, the Lie group construction can be extended

to 1-dimensional commutative algebraic groups, and this includes, in addition to the ad-

ditive and multiplicative group, also elliptic curves. In fact, in the case of elliptic curves,

it can be extended even further, to generalized elliptic curves, which only have multipli-

cation defined in a Zariski neighborhood of the identity. Details are irrelevant here (more

precisely, are for our purposes subsumed by what we shall say next). A complex-oriented

2-periodic spectrum whose FGL is isomorphic to that of a generalized elliptic curve by a

given isomorphism is called an elliptic spectrum. (To be completely precise, it is in fact

convenient to add another condition that all coefficient groups of elliptic spectra are in

even dimensions.)

Now algebraic geometers had long had to cope with the fact that there is not, in the

proper sense, a universal generalized elliptic curve (for the same reason, there is also not a

universal elliptic cohomology theory), although the problem only arises at the primes 2, 3.

What there is, however, is the Weierstrass curve, which is written, in affine coordinates, as

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6. (A.3)

The coordinate transformations allowed are

x = x′ + r ,

y = y′ + sx′ + t .

Transformations for the ai’s are easily deduced, but we do not need to write them down

for our purposes. The outcome is that we obtain the pair

(A,Λ) = (Z[a1, a2, a3, a4, a6], Z[a1, . . . a6, r, s, t]) . (A.4)

Here one should think of r, s, t as free variables, i.e. polynomial generators. When repre-

senting an actual reparametrization of a generalized elliptic curve, they would take values

in the ring of definition of the curve. The main point is that although every generalized

elliptic curve is essentially a Weierstrass curve (i.e. can be obtained by choosing the a1’s

appropriately in an appropriate commutative ring), the pair (A.4) does not have the struc-

ture of coefficient rings of a group scheme, thereby confirming that there indeed cannot be

a universal (generalized) elliptic curve. However, (A.4) satisfy the axioms of what is called

an affine algebraic groupoid (or, in homotopy theory, often Hopf algebroid). This proves

that there is a Deligne-Mumford stack of generalized elliptic curves.

Tensoring (A.4) with Z[u, u−1] where u is an element of dimension 2, we get

(A[u, u−1],Λ[u, u−1]). These graded rings can be realized as coefficient rings of general-

ized elliptic spectra. Now all of the difficulty of the construction of tmf is contained in the

statement that the structure maps of (A.4) (i.e. the maps realizing its structure as an affine

algebraic groupoid) can be realized by maps of spectra (in particular generalized cohomol-

ogy theories). In fact, more is true, it can be generalized by maps of E∞-ring spectra,

which are commutative associative ring cohomology theories in a particularly strong sense.
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The spectrum tmf is then defined as the homotopy inverse limit of these structure maps,

or equivalently of the system of all E∞ elliptic spectra with respect to E∞ maps coming

from morphisms of generalized elliptic curves. This construction was carried out in detail

by Hopkins and Miller, and recently much simplified by Jacob Lurie, using a remarkable

approach to algebraic geometry directly in the category of E∞ ring spectra.

Now just as there is no universal generalized elliptic curve, there is no universal elliptic

spectrum, so accordingly, tmf is not an elliptic spectrum. However, its coefficient groups

map to modular forms, and are called topological modular forms. Not every form is a topo-

logical modular form, and there are also topological modular forms which are 0 as ordinary

modular forms. In particular, the discriminant form ∆ is not a topological modular form,

but its 24’th power is. It is some times convenient to invert this 24’th power, thereby

obtaining a 576-periodic spectrum, which is denoted by TMF .

As we mentioned above, all the subtlety of TMF is at the primes 2, 3. When inverting

2, 3 in TMF∗, we obtain simply ordinary modular forms:

Z[1/6][g2, g3][∆
−1] .

Completing at the prime 2 (which is a slightly stronger operation than localizing), the

calculation of the homotopy groups of tmf is carried out in [41]. There, one can in fact

say that there is a universal curve (with automorphisms). Its formal group law is the

Lubin-Tate law of height 2. The curve can be taken to be the curve x3 + y2 + y = 0 over

the 4-element field F4, and its group of rational points is Z/3 × Z/3. We see there is a

remarkable coincidence here with modular forms of height 3 over C, which in fact plays a

major role in mathematics, but we do not need to consider this in detail for the purposes

of the present paper.
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