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1. Introduction

The hierarchy of quark and charged lepton masses and the small quark mixing angles has

been one of the most puzzling aspects left unresolved by the Standard Model. The recent

discovery of neutrino masses and mixings has provided further clues in the search for the

new physics Beyond the Standard Model which must be responsible for the pattern of

fermion masses and mixing angles. One promising approach to understanding the fermion

spectrum is the idea of family symmetry, and in particular the idea of a U(1) family

symmetry as originally proposed by Froggatt and Nielsen [1]. Such an approach was given

considerable impetus by the observation that in many string constructions additional U(1)

symmetries are ubiquitous, and furthermore such a gauged broken U(1) could provide a

phenomenologically viable candidate family symmetry by virtue of the Green-Schwartz

anomaly cancellation mechanism [3] which provides a string solution to the no-go theorem

that anomaly freedom requires such symmetries to be family independent [2]. As a result

of this a considerable literature has developed in recent years based on string-inspired U(1)

family symmetries [4, 5].
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Many non-abelian family symmetries have also been considered, for example based on

SU(3) family symmetry [6], and also textures and analyses of fermion masses have been

done not using any family symmetry. At the present time some very successful approaches

exist, and others that may with modification also be effective. Family symmetries can

be abelian or non-abelian, they can require symmetric Yukawa matrices or not, they can

be imposed with or without an associated grand unified theory, and so on. Criteria that

could be used to choose among possible approaches include not only describing the quark

masses and mixings, and the charged lepton masses, but also neutrino masses and mixings,

supersymmetry soft breaking effects (since particularly the trilinear couplings are affected

by the Yukawa couplings), how many parameters are used to describe the data, whether

some results such as the Cabibbo angle are generic or fitted, and more. One of our main

goals here is to look at the various possibilities systematically and see if some seem to be

favoured by how well they do on a set of criteria such as the above listed ones. Presumably

family symmetries originate in string theories, and are different for different string con-

structions that lead to a description of nature, so identifying a unique family symmetry (or

a subset of possible ones) could point strongly toward a class of string theories and away

from other classes. At the present time this approach is not very powerful, though it gives

some interesting insights, but better analyses and additional data may improve it.

In this paper we shall consider U(1) family symmetries and unification as a viable

framework for quark and lepton masses and mixing angles in the light of neutrino mass

and mixing data [7], using sequential right-hand neutrino dominance [8] as a guide to con-

structing hierarchical neutrino mass models with bi-large mixing. As has been pointed

earlier [9], models which satisfy the Gatto-Sartori-Tonin relations (GST [10])1 require the

presence of both positive and negative abelian charges. As we will discuss, the sequen-

tial dominance conditions require also the presence of both positive and negative abelian

charges, and hence at least two flavon fields of equal and opposite charges. These models

however result in complicated U(1) charges, on the other hand Non-GST models have a

simpler charge structure and may be possible to realize in a more general context. In this

work we also consider non GST cases.

We shall consider U(1) family symmetry combined with unified gauge groups based

on SU(5) and SO(10), assuming a Georgi-Jarlskog relation, and also consider non-unified

models without such a relation. We will present new classes of solutions to the anomaly

cancellation conditions and perform phenomenological fits, and we will compare the dif-

ferent classes of U(1) to each other and to non-abelian family symmetry models based on

SU(3) [6], by performing specific phenomenological fits to the undetermined coefficients of

the operators. Finally we will consider the implications of such an approach on flavour-

changing processes in the framework of supersymmetry, leaving a detailed analysis for a

future reference.

The layout of the paper is as follows. In section 2 we consider the general conditions

for Green-Schwartz anomaly cancellation, and move on to describe the classes of solutions,

by whether they are consistent with SU(5), SO(10), Pati-Salam unification of representa-

1Vus = |
q

md

ms
− eiΦ1

q

mu

mc
|.
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tions, generalized non-unified relations, or not at all consistent with unification. Having

found these solutions, we move on in section 3 to re-parametrize in terms of differences

in U(1)F charges. In section 4 we consider the constraints on the Yukawa textures from

requiring acceptable quark mixings and quark and lepton masses. Then in section 5, the

constraints from getting acceptable neutrino masses and mixings from single right-handed

neutrino dominance (SRHND) models, which are a class of see-saw models. In section 6

we construct solutions which are consistent with SU(5) unification, the Gatto-Satori-Tonin

(GST) relation [10], and correct fermion masses and mixings. In section 7 we construct

solutions which are consistent with SU(5) unification, correct fermion masses and mixing

angles but which are not consistent with the GST relation. In section 8 we construct

solutions which are not consistent with SU(5) unification. In section 9, we take some of

the solutions constructed in section 6 and section 7 and fit the arbitrary O(1) parameters

to try to closely predict the observed fermion masses and mixing angles. Then in sec-

tion 10 we briefly consider whether flavour changing processes will be dangerously high

in these models, presenting two specific scenarios: a non minimal sugra possibility and a

string-inspired mSUGRA-like scenario which is expected to be (or be close to) the best-case

scenario for flavour-changing and for which we check explicitly µ → eγ Finally, we conclude

in section 11.

2. Anomaly Constraints on U(1) Family symmetries

2.1 Green-Schwartz anomaly cancellation

Consider an arbitrary U(1) symmetry which extends the Standard Model gauge group. If

we were to insist that it does not contribute to mixed anomalies with the Standard Model,

we would find that the generators of U(1) would be a linear combination of Weak hyper-

charge and B − L [2]. This clearly is not useful for family symmetries, so we need to use

a more sophisticated way of removing the anomalies, Green-Schwartz anomaly cancella-

tion [3]. In this case, we can cancel the mixed U(1)−SU(3)−SU(3), U(1)−SU(2)−SU(2)

and U(1) − U(1)Y − U(1)Y anomalies, A3, A2, and A1 if they appear in the ratio:

A3 : A2 : A1 : AU(1) : AG = k3 : k2 : k1 : 3kU(1) : 24 , (2.1)

where we have included the relations to the anomalies of the anomalous flavour groups

AU(1) and the gravitational anomaly; ki are the Kac-Moody levels of the gauge groups,

defined by the GUT-scale relation:

g2
3k3 = g2

2k2 = g2
1k1 . (2.2)

If we work with a GUT that has the canonical GUT normalization, we find:

A3 = A2 =
3

5
A1 . (2.3)

But we still require that the U(1)−U(1)−U(1)Y anomaly, A′
1 vanishes. Now, the anomalies

are given by:

Ai =
1

2
Tr

[{

T (i)
a , T (i)

c

}

T ′
c

]

. (2.4)

– 4 –



J
H
E
P
0
8
(
2
0
0
5
)
0
8
3

Field Qi U i Di Li Ei N i Hu Hd

Charge qi ui di li ei ni hu hd

Table 1: Fields and family charges.

We then use the fact that {Ta, Tb} = δab1 for SU(N) and {Y, Y } = 2Y 2 for U(1)Y to

obtain:

A3 =
1

2

[

3
∑

i=1

(2qi + ui + di)

]

(2.5)

A2 =
1

2

[

3
∑

i=1

(3qi + li) + hu + hd

]

(2.6)

3

5
A1 =

1

2

[

3
∑

i=1

(

qi

5
+

8ui

5
+

2

5
di +

3li
5

+
6ei

5

)

+
3

5
(hu + hd)

]

(2.7)

A′
1 =

3
∑

i=1

(−q2
i + 2u2

i − d2
i + l2i − e2

i ) + (h2
d − h2

u) = 0 . (2.8)

Since in the mixed anomalies of the U(1) group with the SM gauge group that cancel

via the Green-Schwartz mechanism wherever a charge appears, it appears in a sum, we

parameterize the sums as follows [12]:

3
∑

i=1

qi = x + u ,
3

∑

i=1

ui = x + 2u , (2.9)

3
∑

i=1

di = y + v ,
3

∑

i=1

li = y , (2.10)

3
∑

i=1

ei = x , (2.11)

hu = −z , hd = z + (u + v) . (2.12)

Substituting eq. (2.9)–eq. (2.12) into eq. (2.5)–eq. (2.8) we find that they satisfy eq. (2.3):

A3 = A2 =
3

5
A1 =

1

2
[3x + 4u + y + v] , (2.13)

which shows that the parameterization is consistent. However we need to find those

solutions which also satisfy A′
1 = 0. We will see how we can achieve this for different

cases. Since the proposal of the GS anomaly mechanism it has been known that the easiest

solution, u = v = 0, leads to a SU(5) or Pati-Salam group realization of mass matrices.

Another possible solution is to have u = −v 6= 0. Both these forms admit a SUSY µ

term in the tree level superpotential at the gravitational scale. However given the form

of eq. (2.9)–eq. (2.12) one can try to use the flavour symmetry in order to forbid this

term, allowing it just in the Kähler potential and thus invoking the Giudice-Masiero [11]

mechanism in order to generate the µ of the desired phenomenological order. Therefore
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apart from the cases u + v = 0 we examine plausible cases for u 6= −v 6= 0. Of course in

the cases u = v = 0, u = −v 6= 0 one can use another symmetry to forbid the µ term in

the superpotential, however it is appealing if the flavour symmetry forbids the µ term at

high scales.

2.2 Anomaly free A′
1 with u = v = 0 solutions

In this case the parameterization simplifies and in fact we can decompose the U(1) charges

in flavour independent and flavour dependent parts

fi =
1

3
f + f ′

i . (2.14)

The first term is flavour independent because it just depends on the total sum of the

individual charges and the f ′
i are flavour dependent charges. We can always find x and y

which satisfy
3

∑

i=1

f ′
i = 0 . (2.15)

In this way A′
1 can be expressed in flavour independent plus flavour dependent terms

A′
1 = A′

1FI + A′
1FD . (2.16)

Following this, with the unfortunate notation that we have a new u, completely unrelated

to the u that we have already set to zero, we then have:

A′
1 = A′

1FI + A′
1FD

=
1

3

[

−q2 + 2u2 − d2 + l2 − e2
]

+

3
∑

i=1

(−q′ 2
i + 2u′ 2

i − d′ 2
i + l′ 2

i − e′ 2
i ) . (2.17)

Now it is clear that the terms in the square bracket in eq. (2.17) are family independent.

It turns out that the square bracket term is automatically zero in this case, since from

eqs. (2.9)–(2.11), we have: q = u = e = x and l = d = y. Then we have to make the family

dependent part (the second term in eq. (2.17)) vanish.

2.2.1 SU(5) and SO(10) type cases

One way to make the family dependent part vanish, A′
1FD = 0 , is to set li = di and

qi = ui = ei.
2 This condition would be automatic in SU(5), but in general such a condition

on the charges does not necessarily imply a field theory SU(5) GUT to actually be present,

although it may be.

Since the generic Yukawa structure is of the form:

Y f ≈







ε|f1+q1+hf | ε|f2+q1+hf | ε|f3+q1+hf |

ε|f3+q2+hf | ε|f2+q2+hf | ε|f3+q2+hf |

ε|f1+q3+hf | ε|f2+q3+hf | ε|f3+q3+hf |






(2.18)

it is clear that the SU(5) relations di = li, qi = ui = ei lead to Yukawa textures of the

2The reason that the charges are unprimed here is that if it is true for the primed charges, it is also true

for the unprimed charges

– 6 –
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form:

Y u ≈







ε|2e1−2e3| ε|e1+e2−2e3| ε|e1−e3|

ε|e1+e2−2e3| ε|2e2−2e3| ε|e2−e3|

ε|e1−e3| ε|e2−e3| ε|0|






, (2.19)

Y d ≈







ε|l1+e1+hd| ε|l2+e1+hd| ε|l3+e1+hd|

ε|l1+e2+hd| ε|l2+e2+hd| ε|l3+e2+hd|

ε|l1+e3+hd| ε|l2+e3+hd| ε|l3+e3+hd|






, (2.20)

Y e ≈ Y d T . (2.21)

Note that the up matrix is approximately symmetric, due to the assumed SU(5) relation

of charges. The reason why the textures above are approximate is that each entry in each

matrix contains an undetermined order unity flavour dependent coefficient, generically

denoted as af
ij = O(1). We shall continue to suppress such coefficients in order to make the

discussion less cumbersome, but will return to this question when we discuss the numerical

fits later in the paper. We have also assumed that the up and down Yukawa matrices

are described by a single expansion parameter ε. The possibility of having two different

expansion parameters, one for the up sector and one for the down sector, will also be

discussed later in the paper. In order to have an acceptable top quark mass, we have

required that hu + 2e3 = 0, in which case the smallness of the bottom quark mass can be

due to hd + e3 + l3 6= 0, and we are free to have a small tan β, because we don’t need large

tan β to explain the ratio mt

mb
on its own.

Also note that, as expected from the SU(5) relation of charges, the down and electron

textures are the approximate transposes of each other, Y d ≈ (Y e)T . Such a relation

implies bad mass relations for between the down type quarks and charged leptons, but

may be remedied by using Clebsch factors such as a Georgi-Jarlskog factor of 3 in the (2,2)

position of the charged lepton Yukawa matrix.

If we were to look at the case x = y, then we would have a solution suggestive of

unified SO(10) GUT symmetry, for which li = qi = ui = di = ei. The same comments

above also apply here, namely that such a condition on the charges, though consistent with

an SO(10) GUT does not necessarily imply a field theory realization of it. The matrices

eq. (2.19)–eq. (2.20) would all become equal to the same symmetric texture in eq. (2.19),

in the SO(10) case that x = y.

2.2.2 Pati-Salam type cases

In this case, applying the Pati-Salam constraints on the charges,

qi = li ≡ qL
i , ui = di = ei = ni ≡ qR

i , (2.22)

so we can immediately see that also for this choice of charges both the the flavour indepen-

dent and dependent parts in eq. (2.17) vanishes. We have also included the right-handed

neutrino charges, which do not enter into the anomaly cancellation conditions, eq. (2.5)–

eq. (2.8), but with a Pati-Salam group should obey the relation of eq. (2.22). Thus in this

– 7 –
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case all the mass matrices have the form

Y f =







ε|l1+e1+hf | ε|l1+e2+hf | ε|l1+e3+hf |

ε|l2+e1+hf | ε|l2+e2+hf | ε|l2+e3+hf |

ε|l3+e1+hf | ε|l3+e2+hf | ε|l3+e3+hf |






(2.23)

for hf = hu, hd. In this case we always need to satisfy x = y, in contrast with the generic

case of SU(5) where it is not necessary x = y. So we can put one of the charges in terms

of the other two and the parameters x = y

e1 = x − (e2 + e3) , l1 = x − (l2 + l3) , ⇒ e1 + e2 + e3 = l1 + l2 + l3 . (2.24)

We have already noted that the Pati-Salam constraints on the charges imply that the

anomaly A′
1 automatically vanishes. It is also a remarkable fact that the constraints in

eq. (2.24) do not in practice lead to any physical constraints on the form of the Yukawa

texture in eq. (2.23). In practice, assuming only that u + v = 0, one can start with any

set of charges li, ei which lead to any desired Yukawa texture, where the charges do not

satisfy the anomaly free constraint in eq. (2.24). Then from any set of non-anomaly-free

charges one can construct a set of anomaly-free charges which do satisfy eq. (2.24), but do

not change the form of the Yukawa matrix in eq. (2.23), by simply making an equal and

opposite flavour-independent shift on the charges as follows [30]: ei → ei + ∆, li → li −∆.

In this paper we shall not consider the Pati-Salam approach in detail.

2.3 Solutions with anomaly free A′
1 with u + v = 0 (u, v 6= 0)

In this case, we can repeat the analysis of the previous subsection, but with the general

constraints. Note however, that since u + v = 0, hu = −z and hd = +z.

Then we are left with the result that

A′
1 =

1

3

[

6u2 + 6xu + 2yu
]

−
3

∑

i=1

(

q′ 2
i − 2u′ 2

i + d′ 2
i − l′ 2

i + e′ 2
i

)

. (2.25)

Note that the family independent part will vanish if

u = −v = −
(

x +
y

3

)

. (2.26)

Having done this, we may substitute eq. (2.26) into eqs. (2.9)–(2.12) Then we find

that:

3
∑

i=1

qi = −y

3
,

3
∑

i=1

ui = −
(

x +
2y

3

)

,

3
∑

i=1

di = x +
4y

3
,

3
∑

i=1

li = y ,

3
∑

i=1

ei = x . (2.27)

– 8 –
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2.3.1 Yukawa textures for a sample solution

At this point, we note that there will be a large number of solutions. However, one class

of solutions that will easily be satisfied will be:

qi = − li
3

, ui = −
(

2li
3

+ ei

)

, di =
4li
3

+ ei . (2.28)

The same equation will hold for the primed charges:

q′i = − l′i
3

, u′
i = −

(

2l′i
3

+ e′i

)

, d′i =
4l′i
3

+ e′i . (2.29)

We can now put eq. (2.29) into the anomaly, eq. (2.25). In this case we find that:

A′
1 =

1

3

[

x2(6 − 6) +
2

3
y2(1 − 1) + xy(4 − 2 − 2)

]

−

−
3

∑

i=1

(

l′ 2
i

1

9
(−1 + 8 − 16 + 9) + e′ 2

i (2 − 1 − 1)

)

= 0 . (2.30)

So we see that for this particular relation of leptonic and quark charges, we are automati-

cally anomaly-free.

Again, we see that, just as for the u = v = 0 case, we can specify everything by

the leptonic charges li and ei. However, in this case we will get three different textures.

Specifically, we will get:

Y u ≈







ε|l1+e1+hu| ε|
1

3
(l2+2l1)+e1+hu| ε|

1

3
(l3+2l1)+e1+hu|

ε|
1

3
(l1+2l2)+e2+hu| ε|l2+e2+hu| ε|

1

3
(l3+2l2)+e2+hu|

ε|
1

3
(l1+2l2)+e3+hu| ε|

1

3
(l2+2l3)+e3+hu| ε|l3+e3+hu|






(2.31)

Y d ≈







ε|l1+e1−hu| ε|
1

3
(−l1+4l2)+e2−hu| ε|

1

3
(−l1+4l3)+e3−hu|

ε|
1

3
(−l2+4l1)+e1−hu| ε|l2+e2−hu| ε|

1

3
(−l2+4l3)+e2−hu|

ε|
1

3
(−l1+4l3)+e3−hu| ε|

1

3
(−l2+4l3)+e3−hu| ε|l3+e3−hu|






(2.32)

Y e ≈







ε|l1+e1−hu| ε|l1+e2−hu| ε|l1+e3−hu|

ε|l2+e1−hu| ε|l2+e2−hu| ε|l2+e3−hu|

ε|l3+e1−hu| ε|l3+e2−hu| ε|l3+e3−hu|






. (2.33)

We note that this is a rather predictive scheme; we require that the diagonal elements are

of the same order in the between the down and electron Yukawa matrices constrained by

the anomalies. Also, we require (at the very least) l3 + e3 + hu = 0 to get a correct top

quark mass.

2.4 Anomaly free A′
1 with u + v 6= 0 solutions

In this case we can not decompose the expression of A′
1 into flavour independent and flavour

dependent parts, but we can use for example the relation (
∑

fi)
2 =

∑

f2
i +2(f1(f2 +f3)+

f2f3) such that we have

A′
1 = −2(4u2 + u(v + 3x + z) + v(z − y)) −2

∑

f=u,d,l,e,q

gf (f1(f2 + f3) + f2f3) , (2.34)
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where gf = 1,−2, 1,−1, 1 respectively for f = q, u, d, l, e. However it is difficult to depart

from here in order to find some ansatz which cancels the A′
1 anomaly. Instead we can

generalize the kind of relations which in the limit of u = v = 0 would give the SU(5) cases

or the Pati-Salam cases.

2.4.1 An extended SU(5) case

Here a non-GUT case is considered, taken by generalizing the SU(5) relation between the

charges. In the SU(5) case, we had qi = ui = ei and di = li. If instead we have the linear

relations:

qi = ui + α = ei + γ , di = li + β . (2.35)

From the parameterization of eqs. (2.5)–(2.8), we see that in the limit of the u = v = 0 we

recover the SU(5) case. In agreement with the cancellation of anomalies then one should

have

qi = ui −
u

3
= ei +

u

3
, di = li +

v

3
. (2.36)

In the expression of the A′
1 anomaly, as given in eq. (2.8), the sums of squared charges

cancel and we can write it just in terms of sum of charges, which we have parameterized

in terms of u, v, x, y,

A′
1 = −10

u2

3
− 2

3
v2 + 2u(x + v) + 2y

v

3
− 2z(u + v) = 0 . (2.37)

Thus we need to satisfy this equation in order to have anomaly free solutions. Requiring

the condition of O(1) top coupling we have

hu = −z = −2e3 − u ,

hd = 2u + v + 2e3 ,

C(Y u
ij ) = |ei + ej − 2e3| ,

C(Y d
ij) =

∣

∣

∣

∣

ei + lj + 2e3 +
7u

3
+

4v

3

∣

∣

∣

∣

,

C(Y e
ij) = |li + ej + 2e3 + 2u + v| , (2.38)

where C(Y u
ij ) denotes the power of ε for the (i, j) element of the correspondent Yukawa

matrix. Note that although we did not begin with an a priori condition of having Y u

symmetric, the requirement of the O(1) top coupling cancels the parameter u in all the

entries of Y u and so we end up with a symmetric matrix.

2.4.2 An extended Pati-Salam case

Following the extended SU(5) case, we look for solutions which in the u = v = 0 limit

reproduce the Pati-Salam case, so we should have the relations

qi = li + α , ui = di + β . (2.39)

Also ei and ni need to be related to ui by a constant, as in eq. (2.39). In these case in

order to satisfy the G-S anomaly conditions we need

qi = li +
u + (x − y)

3
, ui = ei +

2u

3
, di = ei +

v + (y − x)

3
. (2.40)
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Thus the expression for the A′
1 anomaly is

A′
1 = −2

9

[

8u2 + 4v2 + u(9v + 11x − 2y) + 2(x − y)2 − v(2x + y)
]

−
− 2z(u + v) , (2.41)

and finally requiring the condition of O(1) top Yukawa coupling we have

hu = −z = −
(

l3 + e3 + u +
x − y

3

)

,

hd = l3 + e3 + 2u + v +
x − y

3
,

C(Y u
ij ) = |li − l3 + ej − e3| ,

C(Y d
ij) =

∣

∣

∣

∣

li + ej + l3 + e3 +
4v + 7u + (x − y)

3
+

4v

3

∣

∣

∣

∣

,

C(Y e
ij) = |li + ej + 2e3 + 2u + v| . (2.42)

3. A useful phenomenological parameterization

So far we have discussed the anomaly cancellation conditions in U(1) family symmetry

models, and some of the possible solutions to these conditions, including some new solu-

tions not previously discussed in the literature. It turns out however that the anomaly

free charges themselves do not provide the most convenient parameters for discussing the

phenomenological constraints on the Yukawa matrices arising from the quark and lepton

spectrum. It is more convenient to introduce a new parameterization for the Yukawa

matrices as follows:

Y f ≈







ε|s
′

f
+r′

f
+kf | ε|s

′

f
+rf+kf | ε|s

′

f
+kf |

ε|sf+r′
f
+kf | ε|sf+rf+kf | ε|sf+kf |

ε|r
′

f
+kf | ε|rf+kf | ε|kf |






, (3.1)

where f = u, d, e, ν, and we have introduced the parameters rf , r′f , sf , s′f , kf which are

defined in terms of the charges in table 1 as:

rf = f2 − f3 r′f = f1 − f3 ku = q3 + u3 + hu

su,d = q2 − q3 s′u,d = q1 − q3 kd = q3 + d3 + hd

se,ν = l2 − l3 s′e,ν = l1 − l3 ke = l3 + e3 + hd

kν = l3 + n3 + hu . (3.2)

In order to get an acceptable top quark mass, we require that ku = 0. Note that the

parametrization above is completely general, there is no information loss from the form of

eq. (2.18), and thus far we have not imposed any constraints on the charges arising from

either anomaly cancellation or from GUTs. We now consider the simplifications which

arise in the new parametrization when the charges are constrained by considerations of

anomaly cancellation and GUTs, as discussed in the previous section.
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Simplification in SU(5) type case. Consider the case where the family charges are

consistent with the representations in an SU(5) GUT, di = li, and qi = ui = ei:

ke = kd su,d = ru,e s′u,d = r′u,e

se,ν = rd s′e,ν = r′d . (3.3)

In this case, all of the parameters can be expressed purely in terms of the lepton charges:

su,d = ru,e = e2 − e3 s′u,d = r′u,e = e1 − e3

se,ν = rd = l2 − l3 s′e,ν = r′d = l1 − l3 . (3.4)

Note that this leads directly to the fact that Y e ≈ (Y d)T . The equality is broken by

the arbitrary O(1) coefficients. As discussed, the SU(5) charge conditions are sufficient to

guarantee anomaly cancellation for the case u = v = 0.

Simplification in the extended SU(5) case. In the case u + v 6= 0, anomalies can

again be cancelled by assuming the charge conditions in eq. (2.35). If we take eq. (2.35),

we can again simplify eq. (3.2). In this case we find:

su,d = ru,e s′u,d = r′u,e

se,ν = rd s′e,ν = r′d . (3.5)

In this case we have that the texture of Y e can be attained from Y d by replacing kd

with ke and then transposing.

Simplification in the Pati-Salam case. In the case of having charge relations consis-

tent with a Pati-Salam theory, qi = li and ui = di = ei = ni, we can simplify:

ke = kd su,d = se,ν s′u,d = s′e,ν
ku = kν ru = rd = re = rν r′u = r′d = r′e = r′ν . (3.6)

4. Quark masses and mixings in SU(5)

In this section we shall provide some constraints on the phenomenological parameters

introduced in the last section, arising from the quark masses and mixings, assuming the

simplification in the SU(5) type case mentioned above. In SU(5) eqs. (3.1), (3.3) imply the

quark Yukawa matrices are explicitly of the form:

Y u ≈







ε|2s′| ε|s
′+s| ε|s

′|

ε|s
′+s| ε|2s| ε|s|

ε|s
′| ε|s| 1






, Y d ≈







ε|s
′+r′

d
+kd| ε|s

′+rd+kd| ε|s
′+kd|

ε|s+r′
d
+kd| ε|s+rd+kd| ε|s+kd|

ε|r
′

d
+kd| ε|rd+kd| ε|kd|






, (4.1)

where we have written s = su,d = ru,e, s′ = s′u,d = r′u,e.
3 Note that we are assuming a

single expansion parameter ε, and are suppressing O(1) coefficients. Clebsch factors are

also not considered, and only leading order operators are discussed.

3Note that the extended SU(5) anomaly free solutions examined in section 2.4.1 leave the parameters

s, s′, rd, r
′

d, kd invariant, as is clear by comparing eqs.(3.3) and (3.5). Hence the results in this section for

the quark sector apply not only to the SU(5) type case but also the extended SU(5) anomaly free cases.
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In order to determine the possible solutions for s, s′, rd, r′d and kd which successfully

reproduce quark masses and mixings one can numerically diagonalize Yukawa matrices and

obtain the CKM matrix. However, in order to understand the behaivour of this structure

it is quite useful to use the technique of diagonalization by blocks in the (2, 3), (1, 3) and

(1, 2) sectors.4 The results are presented in the next subsections.

4.1 Quark Masses

Barring accidental cancellations the down quark Yukawa matrix Y d may be diagonalized,

leading to the following eigenvalues:

y1 ≈ a11ε
|s′+r′+k| − (a31ε

|r′+k| + a23a21ε
|s+k|+|s+r′+k|−|k|e2i(βL

2
−βL

1
))

cR
23(ε

|k| + a2
32ε

2|r+k|−|k|e−2i(βR
2
−βR

1
))

×

× (a13ε
|s′+k|+ a23a12ε

|r+k|+|s′+r+k|−|k|e−2i(βR
2
−βR

1
)) −

−(a12ε
|s′+r+k|−a32a13ε

|r+k|+|s′+k|−|k|)(a21ε
|s+r′+k|−a23a31ε

|s+k|+|r′+k|−|k|)

(a22ε|s+r+k| − a23a32ε|s+k|+|r+k|−|k|)e−i(βL
3
−βR

3
)

,

y2 ≈ cR
23

(

a22ε
|s+r+k| − a23a32ε

|r+k|+|s+k|−|k|
)

e2i(βL
2
−βR

2
) ,

y3 ≈ cR
23

(

ε|k| + a2
32ε

2|r+k|−|k|e2i(βR
1
−βR

2
)
)

ei(βL
1
−βR

1
) , (4.2)

where we have suppressed the index d in order to make clearer the notation and re-scaled

all the (complex) coefficients by 1/a33, so that instead of having a33 we have 1. Note that

the down quark masses are given by: md
i = yd

i vd/
√

2. Analogous results also apply to the

up quark sector, with the replacements r → s, r′ → s′, k → 0. The phases βL
i correspond to

the diagonalization matrices of the Yukawa matrices, whose notation is given in appendix A.

It is important to remark that in the case of positive charges all the elements of the first

row of the Yukawa matrix contribute at the same order, s′ + r′ + k, to their correspondent

lightest eigenvalue, so in these cases it is not possible to have the Gatto-Sartori-Tonin

(GST) relation. However in the cases of having s and s′ (analogous for r and r′) with

different sign, as in the example of eq. (4.9), we can have a cancellation in powers of ε

to the contribution to y1 coming from the diagonalization in the (1, 2) sector, which is

the third term in the expression for y1 in eq. (4.2). On the other hand we can have an

enhancement in the power of ε of the contributions from the (1, 1) entry and the rotation

in the (1, 3) sectors, which correspond to the first and second term of y1, respectively, in

eq. (4.2). This together with the condition C(Y21) = C(Y12) are the requirements to achieve

the GST relation. We will present examples satisfying and not satisfying the GST relation.

We remark here the constraints from the bottom mass are

mb tan β = ε|kd|mt , kd = q3 + d3 + hd (4.3)

since mt = O(〈Hu〉) and tan β = 〈Hu〉/〈Hd〉. Thus in terms of charges we have hu =

−(q3 + u3) and hd = q3 + u3, for u = v = 0, k = 2q3 + d3 + u3.

4This only works if there is an appropriate hierarchy among the elements
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4.2 Quark mixings

We can also obtain the mixing angles in this approximation and compare to the required ex-

perimental values (see appendix B). The mixing angles in the down sector, again dropping

flavour indices, are as follows:

tL23 = ei(βL
2
−βL

1
)a23ε

|s+k|−|k| + a23a22ε
|s+r+k|+|s+k|−2|k|eiξL

tR23 = ei(βR
2
−βR

1
)a32ε

|r+k|−|k| + a23a22ε
|s+r+k|+|s+k|−2|k|eiξR

tL13 =
a13ε

|s′+k| + a32a12ε
|r+k|+|s′+r+k|−|k|e−i2(βR

2
−βR

1
)

(

ε|k| + a2
32ε

2|r+k|−|k|e2i(βR
1
−βR

2
)
)

eiβL
1

tR13 =
a31ε

|r′+k| + a23a21ε
|s+k|+|s+r′+k|−|k|e2i(βL

2
−βL

1
)

(

ε|k| + a2
32ε

2|r+k|−|k|e2i(βR
1
−βR

2
)
)

e−iβR
1

√

1 + |a2
32|ε2|r+k|−2|k|

tL12 =

(

a12ε
|s′+r+k| − a32a13ε

|r+k|+|s′+k|−|k|
)

e−i(βR
3

+βL
2

)

(

a22ε|s+r+k| − a23a32ε|s+k|+|r+k|−|k|
)

tR12 =

(

a21ε
|s+r′+k| − a23a31ε

|s+k|+|r′+k|−|k|
)

ei(βL
3

+βR
2

)

(

a22ε|s+r+k| − a23a32ε|s+k|+|r+k|−|k|
)

ξL=−(βL
2 − βL

1 ) − 2(βR
2 − βR

1 ) ξR = −(βR
2 − βR

1 ) − 2(βL
2 − βL

1 ), . (4.4)

Analogous results also apply to the up quark sector, with the replacements rd → s, r′d → s′,

kd → 0. Note that in the case of positive s, s′, r, r′ and k, the angles tL12 and tL23, of the

left sector do not depend on rd, r
′
d, so they are equal, at first approximation, for the up

and down sectors. Having the tangent of the angles expressed in terms of the Yukawa

elements we can see directly their contributions to the CKM elements (VCKM = LuLd† in

the notation of appendix A)

|Vub|
|Vcb|

=
|su

12s
Q
23 − sQ

13e
i(Φ1−Φ2)|

|sQ
23|

≈ 0.09 ∼ (λ2, λ)

|Vtd|
|Vts|

=
|sd

12s
Q
23 − sQ

13e
i(Φ2)|

|sQ
23|

∼ λ

|Vus| = |sd
12 − su

12e
iΦ1 | = λ ≈ 0.224

Im{J} = sQ
23(s

Q
23s

d
12s

u
12 sin(Φ1) − sQ

13(s
d
12 sin(Φ2)) − su

12 sin(Φ2 − Φ1)) , (4.5)

with sQ
ij = |sd

ij − e
iΦXij su

ij |. The phases Φ1, Φ2 and ΦXij
depending on the contributions

that the mixing angles receive from the different elements of the Yukawa matrix and have

a different expression in terms of the phases of the Yukaw matrix for different cases. For

example when the elements (1, 2) and (1, 3) are of the same order and the right handed

mixing angle in the (2, 3) sector is large, the Φ2 phase will be

Φ2 = Arg

[

Y d
12 + Y d

13t
R
23

Y d
33 + Y d

23t
R
23

]

. (4.6)

As we can see from the expressions in eq. (4.5) involving Φ1, this can be associated to the

U sector. When all the signalization angles in this sector are small, then this phase takes
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U(1) relations Constraint Reason U(1) relations Constraint Reason

ε|s+kd|−|kd| ∼ λ2 sQ
23 ε|3q3+d3| ∼ (1, λ3) mb

ε|s
′+kd|−|kd| & λ3 sQ

13 ε|s+rd+kd|−|kd| ∼ (λ2, λ3) ms

mb

ε|s
′+rd+kd|−|s+rd+kd| ∼ λ sQ

12 ε|s
′+r′

d
+kd|−|kd| ∼ (λ4, λ5) md

ms

ε|2s+kd|−|kd| ∼ λ4 mc

mt

ε|2s′+kd|−|kd| ≥ λ6 mu

mc

Table 2: Constraints on the parameters s, s′, rd, r′d and kd from quark mixing angles and mass

ratios. For the mixing angles we need to satisfy the conditions for up or down sector, where the

analogous conditions for the up sector are obtained by making the replacements rd → s, r′d → s′,

kd → 0. They do not need to be satisfied for both as long as for the sector in which they are not

satisfied they do not give a bigger contribution than the indicated power.

the form

Φ1 = φu
12 − φu

22 , (4.7)

where φ12 and φ22 are the phases of the Y u
12 and Y u

22 elements. Finally the phases Φij,

which appear in sQ
ij , can be associated either with the U or with the D sector.

With the requirements of table 2 and the values of quark masses in appendix B, we

can identify the viable solutions in the quark sector. One solution which has been widely

explored is the up-down symmetric case for which we have x = y thus, fi = qi = ui = ei =

di = li. In this case hu = −2e3 = −hd so ku = 0, kd = kl = 4e3, but in this case we need

two expansion parameters εu and εd to reproduce appropriate mass ratios and mixings,

thus we have

Y f =









ε
|2s′+kf |
f ε

|s+s′+kf |
f ε

|s′+kf |
f

ε
|s+s′+kf |
f ε

|2s+kf |
f ε

|s+kf |
f

ε
|s′+kf |
f ε

|s+kf |
f ε|kf |









. (4.8)

We can think of fixing s + s′, and then check for which choice of s we have appropriate

phenomenological solutions. For example if we take s + s′ = ±3 and e3 = 0 (kf = 0, ∀f)

we have

Y f =







ε
|6−2f2|
f ε

|3|
f ε

|3−f2|
f

ε
|3|
f ε

|2f2|
f ε

|f2|
f

ε
|3−f2|
f ε

|f2|
f 1






. (4.9)

The viable phenomenological fit for the case of quarks is for f2 = −1 and f1 = 4 or f2 = 1

and f1 = −4 [17]. In this case we have then x = y = ±3 respectively.

5. Neutrino masses and mixings in SRHND

In this section we apply the requirements of getting acceptable neutrino masses and mixings

by using a class seesaw model where l2 = l3. These are a subset of a class of seesaw models

called single right-handed neutrino dominance (SRHND) or sequential dominance [8]. This

additional constraint l2 = l3 will henceforth be applied in obtaining phenomenological

solutions in the lepton sector.
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Apart from the obvious benefit of considering the neutrino sector, it will turn out that

the neutrino sector will constrain the absolute values of the charges under the U(1) family

symmetry, (not the charge differences,) due to the Majorana nature of neutrinos. This is

due to the relations between the charges imposed by the relevant GUT constraints, or the

extended GUT constraints, eq. (2.36) for the extended SU(5) solution of section 2.4.1 and

eq. (2.40) for the extended Pati-Salam solution of section 2.4.2. For example the additional

constraint l2 = l3 implies immediately

rd = se,ν = l2 − l3 = 0 , (5.1)

in the SU(5) type cases from eq. (3.4).

Here we would like to study the cases for which large mixing angles in the atmospheric

sector and the neutrino sector can be explained naturally in terms of the parameters of

the U(1) class of symmetries that we have constructed in the previous sections, under the

framework of the type I see-saw mechanism together with the scenario of the single right

handed neutrino dominance (SRHND). We refer the reader for a review of this scenario

to [8]. Here we make a brief summary of the results and apply them to the present

cases. In the type I see-saw the mass matrix of the low energy neutrinos is given by

mLL ≈ v2
uY νM−1

R Y νT , where Y ν is the Dirac matrix for neutrinos and MR is the Majorana

matrix for right-handed neutrinos. If we have three right handed neutrinos, M1, M2 and

M3, then for the right handed neutrino mass, in terms of U(1) charges we have:

Y ν =







ε|l1+n1+hu| ε|l1+n2+hu| ε|l1+n3+hu|

ε|l2+n1+hu| ε|l2+n2+hu| ε|l2+n3+hu|

ε|l3+n1+hu| ε|l3+n2+hu| ε|l3+n3+hu|






(5.2)

MRR =







ε|2n1+σ| ε|n1+n2+σ| ε|n1+n3+σ|

ε|n1+n2+σ| ε|2n2+σ| ε|n2+n3+σ|

ε|n1+n3+σ| ε|n2+n3+σ| ε|2n3+σ|






〈Σ〉 , (5.3)

where the charges ni are the U(1) charges of the right handed neutrinos, νRi and σ is the

U(1) charge of the field Σ giving Majorana masses to the right handed neutrinos. These

charges are not constrained by the anomaly cancellation conditions eq. (2.9)–eq. (2.12) of

section 2, at least in the SU(5) case, which gives some freedom in order to find appropriate

solutions giving two large mixing angles and one small mixing angle for neutrinos. We

expect Σ to be of order the scale at which the U(1) symmetry is broken, for example at

MP = MPlanck, or some other fundamental scale, such as the Grand Unification scale, MG,

for the solutions with an underlying GUT theory.

Here we restrict ourselves to the cases in which eq. (5.3) can be considered as diagonal,

MR ≈ diag{M1,M2,M3}, for which we need in the (2, 3) block

|n3 + n2 + σ| > min{|2n3 + σ|, |2n2 + σ|},
2|n3 + n2 + σ| ≥ |2n3 + σ| + |2n2 + σ| . (5.4)

The conditions in the (1, 2) block are analogous to the (2, 3) and also we need

|n1 + n3 + σ| > max{|2n2 + σ|, |2n3 + σ|} . (5.5)

– 16 –



J
H
E
P
0
8
(
2
0
0
5
)
0
8
3

Now, there are two cases that we can consider here, which correspond to selecting which

of the neutrinos will dominate, M1 or M3. For the later case the SRHND conditions are

|Y ν
i3Y

ν
j3|

|M3|
À

|Y ν
i2Y

ν
j2|

|M2|
À |Y ν2

31 , Y ν2
21 , Y ν

21, Y
ν
31|

|M1|
; i, j = 1, 2, 3 . (5.6)

For the case in which M1 dominates we just have to interchange the indices 1 and 3 in the

neutrino Yukawa terms.

For the case in which M3 dominates, at first order approximation, we have the following

expressions for the neutrino mixings [8],

tν23 =
Y ν

23

Y ν
33

, (5.7)

tν13 =
Y ν

13
√

Y ν2
33 + Y ν2

23

+
M3

M2

Y ν
12(s23Y

ν
22 + c23Y

ν
32)

√

Y ν2
33 + Y ν2

23

, (5.8)

tν12 =
Y ν

12(Y
ν2
33 + Y ν2

23 ) − Y ν
13(Y

ν
33Y

ν
32 − Y ν

22Y
ν
23)

(Y ν
33Y

ν
33 − Y ν

32Y
ν
23)

√

Y ν2
33 + Y ν2

23 + Y ν2
13

≈ Y ν
12

c23Y ν
22 − s23Y ν

32

. (5.9)

In terms of the abelian charges the Yukawa elements are

Y ν
ij = ε|li+nj+hu| ≡ ε|l

′

i+nj |, l′i ≡ li + hu = li − 2e3 , (5.10)

where we have defined primed lepton doublet charges which absorb the Higgs charge,

as shown. We can work here in terms of the primed charges, once they are fixed we

can determine the original abelian charges (unprimed). The approximation in eq. (5.9)

corresponds to the case in which we have enough suppression of the second term in the

expression for tν12. In eq. (5.8) the second term can be neglected sometimes, depending

on the ratio M3/M2. The heaviest low energy neutrino masses are given by

mν3
=

aν2
3 ε2|l′

2
+n3|v2

M3
, mν2

=
aν2

2 ε2|l′
2
+n2|v2

M2
, (5.11)

where we have written aν2
3 ε2|l′

2
+n3| = Y ν2

33 +Y ν2
23 and aν2

2 ε2|l′
2
+n2| = (c23Y

ν
22−s23Y

ν
32)

2. Thus

the ratio of the differences of the solar to atmospheric neutrino can be written as

mν2

mν3

≈ M3

M2

c2
23

c2
12

(Y ν
22 − Y ν

32tν23)
2

Y ν2
33 + Y ν2

23

∼ εp2−p3 , (5.12)

where

pk = |2l′2 + nk| − |2nk + σ| , for k = 2, 3 . (5.13)

Note that pk is then defined such that

mνk
≈ v2

〈Σ〉ε
pk . (5.14)
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6. SU(5) solutions satisfying the GST relation

In this section we shall continue to focus on the case of SU(5), where the quark Yukawa

matrices take the form of eq. (4.1), where, motivated by large atmospheric neutrino mixing,

we shall assume rd = 0 from eq. (5.1) The purpose of this section is to show how the GST

relation can emerge from SU(5), by imposing additional constraints on the parameters.5

6.1 The quark sector

We have already seen that the GST relation can be achieved in the u sector, mainly by

allowing the parameters s and s′ to have different signs. In the down sector to satisfy GST

we additionally require:

|kd + r′d + s| = |kd + s′|
|kd + r′d + s′| − |kd| > |kd + r′d + s| + |kd + s′| − |kd + s|

|r′d + kd| > |kd| . (6.1)

The first of these equations ensures the equality of the order of the elements (1, 2) and

(2, 1) of the Y d matrix. The second equation ensures that the element (1, 1) is suppressed

enough with respect to the contribution from the signalization of the (1, 2) block. This last

condition is usually satisfied whenever |kd + r′d + s′| > |kd + r′d + s| is satisfied. Finally the

third condition ensures a small right-handed mixing for d-quarks and a small left-handed

mixing for charged leptons. Now in order to satisfy the relations

su
12 =

√

mu

mc
≈ λ2 , sd

12 =

√

md

ms
≈ λ , (6.2)

we need a structure of matrices, in terms of just one expansion parameter ε = O(λ), such

as

Y u =







. . . ε6 . . .

ε6 ε4 ε2

. . . ε2 1






, Y d =







. . . ε5 ε5

ε5 ε4 ε4

. . . ε2 ε2






, (6.3)

for which we have

su
12 ≈ ε2 , sd

12 ≈ ε , sd
23 ≈ ε2 , sd

13 ≈ ε3 ,
mc

mt
≈ ε4 ,

ms

mb
≈ ε2 ,

mb

mt
≈ ε2 , (6.4)

in agreement with observed values for quark masses and mixings for ε = λ.

Now we can proceed as in the example of eq. (4.9) where s′ + s is fixed to be ±3.

In this case we see that we can have plausible solutions in the up sector by allowing half

integer solutions

|s′ + s| =
13

2
, 6 ,

11

2
. (6.5)

We will refer to these solutions as Solution 1, 2 and 3 respectively. Note that only the

charge differences are constrained here, the actual charges are not.

5Note that results in section 6 and in section 7 apply to both SU(5) type and extended SU(5) models,

as discussed above.
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Here we remark that the power of the expansion parameter ε, in units of the flavon

field θ, accompanying the Yukawa terms has to be positive and integer. In what follows

we find that we can only have solutions with fractionary charges for the combinations of

charges |f1 + q1 + hf | of fields in the Yukawa terms such that we must allow for θ to have

a fractionary charge qθ and hence the net charge |qθ||f1 + q1 + hf | is an integer.

Solution 1, |s + s′| = 13/2,

Y u =







ε35/2 ε13/2 ε35/4

ε13/2 ε9/2 ε9/4

ε35/4 ε9/4 1






, Y d =







ε69/4 ε25/4 ε25/4

ε25/4 ε19/4 ε19/4

ε17/2 ε5/2 ε5/2






, (6.6)

for

r′d = l1 − l3 = 11 , s = −9

4
, s′ =

35

4
, kd = −5

2
, or

r′d = l1 − l3 = −11 , s =
9

4
, s′ = −35

4
, kd =

5

2
. (6.7)

Solution 2, |s′ + s| = 6,

Y u =







ε16 ε6 ε8

ε6 ε4 ε2

ε8 ε2 1






, Y d =







ε31/2 ε11/2 ε11/2

ε11/2 ε9/2 ε9/2

ε15/2 ε5/2 ε5/2






, (6.8)

for

r′d = l1 − l3 = 10 , s = −2 , s′ = 8 , kd = −5

2
, or

r′d = l1 − l3 = −10 , s = 2 , s′ = −8 , kd =
5

2
. (6.9)

Solution 3, |s + s′| = 11/2,

Y u =







ε29/2 ε11/2 ε29/4

ε11/2 ε7/2 ε7/4

ε29/4 ε7/4 1






, Y d =







ε31/2 ε21/4 ε21/4

ε21/4 ε15/4 ε15/4

ε33/4 ε2 ε2






, (6.10)

for

r′d = l1 − l3 =
41

4
, s = −7

4
, s′ =

29

4
, kd = −2 , or

r′d = l1 − l3 = −41

4
, s =

7

4
, s′ = −29

4
, kd = 2 . (6.11)

All the previous solutions eqs. (6.7)–eqs. (6.11) lead to small tan β (O(1)), due to the choice

of kd. To find solutions such that tan β is O(10) is more difficult, due to the requirements

in the up sector, but we have found the following solution

r′d = l1 − l3 =
19

2
, s = −2 , s′ =

15

2
, kd = −3

2
, or

r′d = l1 − l3 =
−19

2
, s = 2 , s′ = −15

2
, kd =

3

2
. (6.12)
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6.2 The neutrino sector

Now we construct solutions for the lepton sector constrained by the requirements from the

quark sector in the previous subsection, where we assumed rd = l2− l3 = 0, and determined

the charge differences r′d = l1− l2 that agree with the GST relation. Indeed it is convenient

to label the solutions in the previous subsection by the value of r′d = l1 − l2. Here we

find the charges ni, li, and σ which satisfy the conditions arising from the neutrino sector,

eqs. (5.7)–(5.9).6 In order to satisfy eq. (5.7), the most natural solution to achieve tν12 large

is to have

|l′1 + n2| = |l′2 + n2| . (6.13)

The simplest solution is to assume that n2 = 0. Since l′1 and l′2 are related through

r′d = l1 − l3 = l′1 − l′2 the solutions to this equation are:

r′d = 0 (6.14)

l′1 =
r′d
2

= −l′2 . (6.15)

Since none of the solutions found in the previous subsection had r′d = 0, we have to work

with the second solution in eq. (6.15). However, we do not need to solve eq. (5.9) exactly,

so we are going to perturb away from it, by keeping n2 6= 0, but we expect it to be small

in comparison with l′1 = −l′2. Then we write:

p12 = |l′1 + n2| − |l′2 + n2| . (6.16)

So tν12 is O(εp12). The solution eq. (6.15) implies that l′1 and l′2 should have opposite sign,

so we choose the case l′1 > 0 (the other case is similar). Since r′d is large for all three

GST solutions, and n2 should be small in order to satisfy eq. (6.16), we can see that

|l′2 + n2| = −(l′2 + n2), and |l′1 + n2| = l′1 + n2 for all the solutions from the previous

subsection. Putting these relations into eq. (6.16) we get:

n2 =
p12

2
. (6.17)

So when we choose p12, n2 is determined. Now for the tν13 mixing, which should be at most

O(λ), from eq. (5.8) we need

|l′1 + n3| > |l′2 + n3| ⇒ n3 > 0 , (6.18)

hence let us define p13 by:

p13 = |l′1 + n3| − |l′2 + n3| , (6.19)

We assume that the first term in eq. (5.8) dominates. Then tν13 ≈ εp13/
√

2.7 By applying

the same logic that led to eq. (6.17), we achieve:

n3 =
p13

2
. (6.20)

6The condition l2 = l3 is a requirement of the class of see-saw models that we are looking for, single

right-handed neutrino dominance (SRHND). Note that here we can also have l′2 = −l′3 which then forces

n3 = 0 for l′2 6= 0, in which case the solutions will be even more restricted.
7We have checked that this is indeed true for the solutions that we find for n2, n3 later in this section.
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So fixing p13 ≥ 1 we fix n3. Now we need to impose the conditions under which we can have

an appropriate value of eq. (5.12). First note that in order to achieve mν3
= O(10−2)eV:

for〈Σ〉 = MP ,
v2

〈Σ〉 ≈ 6 × 10−6 eV we need εp3 ∼ 104

for〈Σ〉 = MG ,
v2

〈Σ〉 ≈ 6 × 10−3 eV we need εp3 ∼ 10 , (6.21)

where p3 has been defined in eq. (5.13). In terms of powers of λ, we have λ−4 − λ−7 =

O(105) − O(104) for 〈Σ〉 = MP and λ−1, λ−2 = O(10) for 〈Σ〉 = MG. This corresponds to

the following requirements:

for〈Σ〉 = MP , p3 = (−4,−7) (6.22)

for〈Σ〉 = MG , p3 = (−1,−2) . (6.23)

We can conclude that for zero n2, from eq. (5.4), since n3 > 0, so must σ be positive. Then

we can write the power p2 − p3 (mν2
/mν3

∼ εp2−p3) as follows:

p2 − p3 = −2(l′2 + n2) − (2n2 + σ) + (2n3 + σ) ∓ 2(l′2 + n3) . (6.24)

The uncertainty in the final sign comes from whether |l′2| > |n3|. If this is the case then

we get:

p3 − p2 = 4(n2 − n3) . (6.25)

Otherwise we end up with

p2 − p3 = −4(l′2 + n2) . (6.26)

The second form is of no use to us, since we know that −l′2 is big for the models we are

considering, and since n2 is small we can not get an acceptable mass ratio for mν2
to mν3

.

For the first form, eq. (6.25), we need n2 6= 0, because substituting eq. (6.20) into eq. (6.25)

we have p2 − p3 = 2p13 − 4n2 and we need p13 ≥ 1 so for n2 = 0 we have p2 − p3 ≥ 2.

With the above requirements then we can see that the parameters n3 and n2 do not

depend on r′d. The only parameter which depends on this is σ, through eq. (6.24), using

the fact that l′2 = −r′d/2. This also fixes the scale at which the U(1) should be broken. So,

independently of r′d, we have the following solutions

p12 =
1

4
, p13 = 1 , p2 − p3 =

3

2
⇒ n2 =

1

8
, n3 =

1

2
;

p12 =
1

2
, p13 = 1 , p2 − p3 = 1 ⇒ n2 =

1

4
, n3 =

1

2
. (6.27)

We can write the approximate expressions of mixings and masses in terms of the above

results and the coefficients aν
ij of O(1),

tν23 =
aν

23

aν
33

, tν13 =
aν

13ε
|2n3|

√

aν 2
33 + aν 2

23

, tν12 =
aν

12ε
|2n2|

(c23a
ν
22 − s23a

ν
32)

,

mν2

mν3

=
cν 2
23

cν 2
12

(aν
22 − aν

32t23)
2

(aν 2
33 + aν 2

23 )
ε|4(n3−n2)| , mν3

=
v2

〈Σ〉(a
ν 2
33 + aν2

23)ε
|p3| . (6.28)
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Sol. r′d n2 n3 p3 σ M3 [GeV]

1 11 1
8

1
2 (−4,−7) (14,16) O(1010), O(108)

1 11 1
4

1
2 (−4,−7) (14,16) O(1010), O(108)

2 10 1
8

1
2 (−4,−7) (13,14) O(1011), O(109)

2 10 1
4

1
2 (−4,−7) (13,14) O(1011), O(109)

3 41
4

1
8

1
2 (−4,−7) (53

4 , 57
4 ) O(1010),O(108)

3 41
4

1
4

1
2 (−4,−7) (53

4 , 57
4 ) O(1010),O(108)

Table 3: Σ at MP for the solutions satisfying the GST relation.

Sol. r′d n2 n3 p3 σ M3 [GeV]

1 11 1
8

1
2 (−1,−2) (10, 11) O(108)

1 11 1
4

1
2 (−1,−2) (10, 11) O(108)

2 10 1
8

1
2 (−1,−2) (10, 11) O(109), O(1010)

2 10 1
4

1
2 (−1,−2) (10, 11) O(109), O(1010)

3 41
4

1
8

1
2 (−1,−2) (37

4 , 41
4 ) O(109), O(108)

3 41
4

1
4

1
2 (−1,−2) (37

4 , 41
4 ) O(109), O(108)

Table 4: Σ at MG for the solutions satisfying the GST relation.

As we have seen above, the charges σ are constrained by the differences r′d, the requirements

of eq. (6.24) and the solutions to eq. (6.27), which have the same value for n3, so for these

two sets of solutions we have the same value for σ. We write down these solutions for

〈Σ〉 = MP in table 3 and for 〈Σ〉 = MG in table 4.

The solutions presented here satisfy the conditions of the single neutrino right-handed

dominance, eq. (5.4), which relate second and third families. For the first and second

family we need similar conditions, which are safely satisfied whenever 2n1 > 2n2 > −σ for

(2ni + σ) positive. Thus n1 is not completely determined but we can choose it to be a

negative number between −σ/2 and 0.

Now that we have determined the conditions that the charges l′i and ni need to satisfy

in order to produce SRHND solutions we can determine the ei and li charges, which are

in agreement with the cancellation of anomalies, eqs. (2.5)–(2.8), and that determines the

matrices Y e, Y u and Y d. In section 4 we presented the conditions that the fermion mass

matrices Y u, Y d, Y e and Y ν need to satisfy in order to give acceptable predictions for mass

ratios and mixings but without specifying the charges. The charges are then determined

from r′d and kd. We start by rewriting kd using the SU(5) charge relations, and the fact

that l′i ≡ li + hu:

kd = q3 + d3 + hd = e3 + l3 − hu = e3 + (l′3 − hu) − hu . (6.29)

Then we use the fact that ku = 0 = 2e3 + hu, and we can solve for e3 in terms of kd and

r′d (using eq. (6.15):

e3 =
2kd + r′d

10
. (6.30)
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Sol. r′d kd n2 n3 e1 e2 e3 l1 l3 Fit

1 11 −5
2

1
8

1
2

187
20

−33
20

3
5

67
10

−43
10 -

1 11 −5
2

1
4

1
2

187
20

−33
20

3
5

67
10

−43
10 -

2 10 −5
2

1
8

1
2 8 −2 0 15

2
−5
2 -

2 10 −5
2

1
4

1
2 8 −2 0 15

2
−5
2 1

3 41
4 −2 1

8
1
2

63
8

9
8

25
8

51
8

−31
8 -

3 41
4 −2 1

4
1
2

63
8

9
8

25
8

51
8

−31
8 -

Table 5: Charged lepton charges for the SU(5) type solutions with u = v = 0 satisfying the GST

relation. The fits are discussed in section 9.

Once we have e3, and l′3, we can get l3 since hu = −2e3. From there, we can calculate the

other charges from s, s′, r, r′ using eq. (3.3) and eq. (3.4).

The charges calculated in this way are laid out in table 5.

6.3 Solutions for the extended SU(5) case with u + v 6= 0

For this class of solutions, it is clear from eq. (2.35) and eq. (3.2) that the quark sector

results will be unchanged. This happens since s, s′, r, r′ are blind to whether the family

charges are related by the SU(5) relation, or the extended SU(5) relation. ku must always be

zero, and the parameterization happens to leave kd unchanged. Since ke is not unchanged,

as discussed in section 2.4.1, we need to find ke in order to know the structure of the

electron Yukawa matrix.

It is helpful to rewrite ke and kd, from the form in eq. (2.40) by using eqs. (2.12), (2.36)

and ku = 0:

kd = l3 + 3e3 + u +
4

3
m ,

ke = l3 + 3e3 + u + m , (6.31)

where we have written u + v = m, as we will discuss in section 10.3 m can be determined

such a that the effects of the breaking of U(1) in the µ term are of order ≤ m3/2. But

on the other hand we need to keep the observed relation at low energies mb = O(mτ ), so

either m has to remain small or be negative to achieve |kd| = O(|ke|). In the present case

the Y d matrix has exactly the same form as in eqs. (2.38) and Y e has the form

Y e =







ε|s
′+r′

d
+ke| ε|s+r′

d
+ke| ε|r

′

d
+ke|

ε|s
′+rd+ke| ε|s+rd+ke| ε|rd+ke|

ε|s
′+ke| ε|s+ke| ε|ke|






. (6.32)

With l2 = l3, which determines the solutions of the charges ei and li compatible with

the condition rd = l2 − l3 = 0, the discussion follows exactly as section 6.2 because there

we have not referred to other parameters than to kd, r, r′, s and s′ without specifying their

relations with the charges cancelling the anomalies.
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Sol. r′d kd u v ke e1 e2 e3 l1 l3 n2 n3 Fit

1 11 −5
2 −13

2 7 8
3

709
60

49
60

46
15

77
15

−88
15

1
8

1
2 -

1 11 −5
2

−13
2 7 8

3
709
60

49
60

46
15

77
15

−88
15

1
4

1
2 -

2 10 −5
2 −13 27

2
8
3

407
30

107
30

167
30

47
15

−103
15

1
8

1
2 2

2 10 −5
2 −13 27

2
8
3

407
30

107
30

167
30

47
15

−103
15

1
4

1
2 -

3 41
4 −2 −10

3
23
6

7
3

363
40

3
40

73
40

653
120

−577
120

1
8

1
2 3

3 41
4 −2 −10

3
23
6

7
3

363
40

3
40

73
40

653
120

−577
120

1
4

1
2 -

Table 6: Charged lepton charges for the extended SU(5) solutions with m = u+v = 1/2 satisfying

the GST relation. The fits are discussed in section 9.

In this case, the analysis that leads to eq. (6.30) must be repeated, but accounting for

the fact that instead of the SU(5) relation between the charges, we must instead use the

extended SU(5) relation between the charges. In this case, we find that:

kd = 3e3 + l3 + u +
4

3
(u + v) − 2hu = 5e3 + l′3 +

10

3
u +

4

3
v , (6.33)

where we have used that l′i = li−2e3−u. l′i is defined in such a way that li+nj+hu = l′i+nj.

Using again the fact that l′3 = l′2 = − r′
d

2 , we find that:

e3 =
1

10

(

2kd + r′d −
20

3
u − 8

3
v

)

. (6.34)

Using these results, and the values of s, s′, rf , r′f , we can find the charges in table 6.

7. SU(5) solutions not satisfying the GST relation

7.1 The quark sector

As we can see the GST relation puts a constraint on the opposite signs of s and s′ and

on the difference of r′d = l1 − l3. If we do not impose these requirements, allowing all the

numbers s, s′, r, r′ and kd to have the same sign, positive or negative, we can factorize the

kd factor out of the Y d matrix and so can write the down matrix in the form

Y d = ε|kd|







ε|s
′+l1−l3| ε|s

′| ε|s
′|

ε|s+l1−l3| ε|s| ε|s|

ε|l1−l3| 1 1






. (7.1)

In this case we do not have the restriction |s + l1 − l3| = |s′| so the parameter l1 − l2 is not

fixed by these conditions. In these cases kd is not constrained so it can acquire a value in

the range ∼ (0, 3) for different values of tan β. In these cases all positive or all negative

charges, the cases which reproduce quark masses and mixings are for

|s| = 2 , |s′| = 3 or |s| = 2 , |s′| = 4 . (7.2)

For |s| = 2, |s′| = 3 we have

Y d = ε|kd|







ε|3+l1−l3| ε|3| ε|3|

ε|2+l1−l3| ε|2| ε|2|

ε|l1−l3| 1 1






. (7.3)
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For |s| = 2, |s′| = 4 we have

Y d = ε|kd|







ε|4+l1−l3| ε|4| ε|4|

ε|2+l1−l3| ε|2| ε|2|

ε|l1−l3| 1 1






. (7.4)

From eq. (7.3) and eq. (7.4) we can check if certain differences of leptonic charges can

yield a suitable quark phenomenology. From eq. (4.2) we can see that in the cases of

having all charges li and ei either positive or negative, then all the terms contributing to

the first eigenvalue of Y d, y1, will have the same power, as we mentioned earlier. So the

difference r′d here is constrained to reproduce an appropriate ratio md/ms. Let us take

here for definitiveness the case for positive charges (the negative charges case is completely

analogous). Thus for s = 2, s′ = 3, we have

md

ms
∼ ε3+r′

d

ε2
∼ (λ2, λ3/2) (7.5)

so in this case we have r′d = 1, 3/2. For the case s = 2, s′ = 4, we have

md

ms
∼ ε4+r′

d

ε2
∼ (λ2, λ3/2) (7.6)

we do not want r′d = 0 as it will give somewhat large contribution from the (3, 1) element

of the Y d matrix to the eigenvalues. So for this case r′d ≈ 1/2. In this case we have the

following matrices for eq. (7.3)

Y d =







ε4 ε3 ε3

ε3 ε2 ε2

ε1 1 1






εkd , Y d =







ε9/2 ε4 ε4

ε7/2 ε2 ε2

ε3/2 1 1






εkd , (7.7)

respectively for r′d = 1, 3/2. For eq. (7.4) we have

Y d =







ε9/2 ε4 ε4

ε5/2 ε2 ε2

ε1/2 1 1






εkd , (7.8)

for r′d = 1/2. These solutions work for kd ∈ (0, 3), depending on the value of tan β, these

matrices yield acceptable phenomenology in both charged the lepton sector and d quark

sector.

7.2 The neutrino sector

As we have seen in section 7.1, in these cases r′d is constrained to be r′d ∈ (1, 3/2) for

(s, s′) = (2, 3) and r′d ≈ 1/2 for (s, s′) = (2, 4) but let us leave it unspecified for the

moment. We consider here the case of all the parameters related to li and ei positive. In

this case we require that all the neutrino charges, ni to be negative but σ positive. We

proceed as in section 6.1, in order to identify the charges l′i, ni and σ. In principle we need

ε|l
′

1
+n2| = ε|l

′

2
+n2| but now we require l′1, l

′
2 ≥ 0 so now the appropriate solution to this
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would be

l′1 = r′d , l′2 = 0 , n2 =
−r′d
2

. (7.9)

However in this case, as in the case of section 6.1, we will only be able to produce mν2
/mν3

∼
ε2. So we work with a solution of the form eq. (6.16). For this case we then have

l′1 = r′d , l′2 = 0 , n2 =
p12 − r′d

2
. (7.10)

Note that in this case the charges li are positive because l2 = kd − 3e3 and here e3 = kd.

For t13 we also make use of the parameterization of eq. (6.19). Assuming that |r′d| > |n3|,

n3 =
p13 − r′d

2
. (7.11)

In order to achieve an appropriate ratio for mν2
/mν3

we need now the conditions 2n3 +σ >

0, 2n2 + σ > 0, l′2 + n2 < 0, l′2 + n3 < 0, for one of the last two inequalities the equality

can be satisfied, but not for both. For this case, we have also p2 − p3 = 4(n3 − n2) and

using eq. (7.10) and eq. (7.11) we have p2 − p3 = 2(p13 − p12). We can also choose the

parameters p12, p13 and p2 − p3 as in eq. (6.27) but now n3 and n2 are given by eq. (7.10)

and eq. (7.11). Thus we have

p12 =
1

4
, p13 = 1 , p2 − p3 =

3

2

→ n2 =
1

8
− r′d

2
< 0 , n3 =

1

2
− r′d

2
< 0 ⇒ r′d ≥ 1 , (7.12)

p12 =
1

2
, p13 = 1 , p2 − p3 = 1

→ n2 =
1

4
− r′d

2
< 0 , n3 =

1

2
− r′d

2
< 0 ⇒ r′d ≥ 1 . (7.13)

In section 4 we determined the approximate values for r′d. For (s, s′) = (2, 3) we can have

r′d = 1, 3/2 while for (s, s′) = (2, 4) we have r′d ≈ 1/2, which however is not in agreement

with the conditions of eq. (7.12) and eq. (7.13). The approximate expressions of mixings

and masses in terms of the above results and the coefficients aν
ij of O(1) are as in eq. (6.28),

except for tν13 and tν12 which now read

tν13 =
aν

13ε
|r′

d
+n3|−|n3|

√

aν 2
33 + aν 2

23

, tν12 =
aν

12ε
(|r′

d
+n2|−|n2|)

(c23a
ν
22 − s23a

ν
32)

. (7.14)

We have listed the possible solutions of table 7 for eq. (7.12) at 〈Σ〉 = MP and in table 8

for 〈Σ〉 = MG.

7.3 Solutions for the extended SU(5) case with u + v 6= 0

We do not present any charges for this class of solutions, but here is how the charges would

be calculated. In this case, the analysis is carried out in the same way as in section 6.3.

The only subtlety is that the relation linking l′2 to r′d is different. Instead, we have, from

eq. (7.10) that l′2 = l′3 = 0. Putting this result into eq. (6.33), we achieve:

e3 =
1

10

(

2kd +
4

3
u − 8

3
v

)

. (7.15)
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r′d n2 n3 p3 σ M3[GeV ]

1 −3
8 0 (−9

2 ,−5
2 ) (9

2 , 5) O(1015)
3
2

−5
8

−1
4 (−17

4 ,−19
4 ) (5, 11

2 ) O(1015)

1 −1
4 1 (-6,-7) (6,7) O(1015), O(1014)

3
2

−1
2

−1
4 (-6,-7) (27

4 ,314 ) O(1014), O(1015)

Table 7: Σ at MP for the solutions not satisfying the GST relation.

r′d n2 n3 p3 σ M3 [GeV]

1 −3
8 0 (0,−1

2 ) (0, 1
2) O(1015)

3
2

−5
8

−1
4 (−1

4 ,−3
4 ) (1, 3

2) O(1015),

1 −1
4 0 1 (-1,-2) O(1018)

3
2

−1
2

−1
4 (-1,-2) (7

4 ,114 ) O(1018),O(1017)

Table 8: Σ at MG for the solutions not satisfying the GST relation.

r′d kd e1 e2 e3 l1 l3 Fit

1 2 17
5

12
5

2
5

9
5

4
5 4

3
2 2 17

5
12
5

2
5

7
10

4
5 5

1 3 18
5

13
5

3
5

7
10

−3
10 -

3
2 3 18

5
13
5

3
5

6
5

−3
10 -

Table 9: Charged lepton U(1)X charges for the solutions u = v = 0 not satisfying the GST relation.

The fits are discussed in section 9.

From e3 and l′3, the other charges may be calculated using the known values of

s, s′, rd, r
′
d, u and v, by using the extended SU(5) charge relations, eq. (2.36) and the sim-

plified parametrization, eq. (3.5).

8. The non-SU(5) cases

8.1 Solutions for u = v = 0, in the Pati-Salam case

With l2 = l3, in this case we have s = q2− q3 = l2 − l3 = 0 then the charges of the matrices

are

C(Y u,ν) =







l1 − l3 + e1 − e3 l1 − l3 + e2 − e3 l1 − l3
e1 − e3 e2 − e3 0

e1 − e3 e2 − e3 0







C(Y d,l) =







l1 + l3 + e1 + e3 l1 + l3 + e2 + e3 l1 + l3 + 2e3

2l3 + e1 + e3 2l3 + e2 + e3 2l3 + 2e3

2l3 + e1 + e3 2l3 + e2 + e3 2l3 + 2e3






(8.1)

In this case the U(1)X symmetry does not give an appropriate description of fermion

masses and mixings, however it can be combined with non-renormalizable operators of the

Pati-Salam group, [30], in order to give a good description of the fermion phenomenology.
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8.2 Solutions for u + v = 0

One trivial example of non- SU(5) cases was given in section 2.3.1 for the solution u+v = 0.

We proceed as in the section 4 — in order to analyze the appropriate phenomenology. We

are interested in the cases l2 = l3, this together with the condition of O(1) top Yukawa

coupling give us the following matrices of charges, which are derived with the appropriate

substitutions in eq. (2.31)–eq. (2.33),

C(Y d) =







l1 + e1
4(l3−l1)

3 + e1 − e3 e2 − e3
l3−l1

3 + e2 − e3 e2 − e3 e2 − e3
l3−l1

3 0 0






,

C(Y u) =







l1 + e1
2(l3−l1)

3 + e3 − e1
2(l3−l1)

3 + e3 − e1
l3−l1

3 + e3 − e3 e3 − e2 e3 − e2
l3−l1

3 0 0






,

C(Y e) =







l1 + e1 l1 + e2 l1 + e3

e2 − e3 e2 − e3 0

e2 − e3 e2 − e3 0






.

(8.2)

Due to the form of the charges in the up and down quark matrices, first at all we would

need two expansion parameters: εu and εd. But with this structure alone it is not possible

to account simultaneously for appropriate mass ratios of the second to third family of

quarks and for an appropriate Vcb mixing. So in this case just with a U(1) it is not possible

to explain fermion masses and mixings in the context of the single neutrino right-handed

dominance, SNRHD.

9. Numerical fits of masses and mixings

9.1 Fitted examples

In this section we present numerical fits to some of the examples detailed in sections 6,7

and we compare the results with a fit of a generic SU(3)-like case [6]. The simplest way

to construct the lepton Yukawa matrices from the charges is to first calculate hu,d. We

extract hd from ke, l3 and e3 from ke = l3 + e3 + hd. In general, we can use Eq. (6.31) to

obtain:

hu + hd = m = 3(kd − ke) . (9.1)

This is then enough to construct the lepton Yukawas from the appropriate line of the

table 5 or 6 of the lepton and Yukawa family charges. Below we specify the examples that

we have chosen to fit.

Fit 1: SU(5) type solution (u = v = 0): example satisfying the GST relation.

This takes GST solution 2, (eq. (6.8)) in the SU(5) type case, with u = v = 0. The charges

li, ei, and n2,3 are read off from the fourth line of Table 5. In principle, the value of σ
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would be read off from either Table 4 (for neutrino masses generated at the GUT scale )

or table 3 (for neutrino masses geneated at the Planck scale). However, these tables allow

for a range of σ; for this fit, we take σ = 21/2 for GUT scale neturino mass generation,

and σ = 29/2 for Planck scale neutrino mass generation.

Then, up to σ and n1 : −σ/2 ≤ n1 ≤ 0, the Yukawa and Majorana matrices are:

Y u =







au
11ε

16 au
12ε

6 au
13ε

8

au
21ε

6 au
22ε

4 au
23ε

2

au
31ε

8 au
32ε

2 au
33






, Y d =







ad
11ε

31/2 ad
12ε

11/2 ad
13ε

11/2

ad
21ε

11/2 ad
22ε

9/2 ad
23ε

9/2

ad
31ε

15/2 ad
32ε

5/2 ad
33ε

5/2







Y e =







ae
11ε

31/2 ae
12ε

11/2 ae
13ε

15/2

ae
21ε

11/2 ae
22ε

9/2 ae
23ε

5/2

ae
31ε

11/2 ae
32ε

9/2 ae
33ε

5/2






, Y ν =







aν
11ε

|n1+5/2| aν
12ε

11/4 aν
13ε

12/4

aν
21ε

|n1−15/2| aν
22ε

29/4 aν
23ε

28/4

aν
31ε

|n1−15/2| aν
32ε

29/4 aν
33ε

28/4







MRR =







ε|2n1+σ| ε|1/4+n1+σ| ε|1/2+n1+σ|

. aN
22ε

|1/2+σ| ε|3/4+σ|

. . ε|1+σ|






〈Σ〉 . (9.2)

Fit 2: Extended SU(5) solution (u + v 6= 0) satisfying the GST relation. This

takes GST solution 2, (eq. (6.8)), in the extended SU(5) case with u + v 6= 0. The charges

li, ei and n2,3 are read off from the third line of table 6. The values of σ taken are σ = 19/2,

σ = 29/2 for GUT scale and Planck scale neutrino mass generation respectively. Again,

n1 is taken to lie in the region −σ/2 ≤ n1 ≤ 0.8

Y u =







au
11ε

16 au
12ε

6 au
13ε

8

au
21ε

6 au
22ε

4 au
23ε

2

au
31ε

8 au
32ε

2 au
33






, Y d =







ad
11ε

31/2 ad
12ε

11/2 ad
13ε

11/2

ad
21ε

11/2 ad
22ε

9/2 ad
23ε

9/2

ad
31ε

15/2 ad
32ε

5/2 ad
33ε

5/2







Y e =







ae
11ε

46/3 ae
12ε

16/3 ae
13ε

22/3

ae
21ε

16/3 ae
22ε

14/3 ae
23ε

8/3

ae
31ε

16/3 ae
32ε

14/3 ae
33ε

8/3






, Y ν =







aν
11ε

|n1+5| aν
12ε

41

8 aν
13ε

11

2

aν
21ε

|n1−5| aν
22ε

39

8 aν
23ε

9

2

aν
31ε

|n1−5| aν
32ε

39

8 aν
33ε

9

2







MRR =







ε|2n1+σ| ε|1/8+n1+σ| ε|1/2+n1+σ|

. aN
22ε

|1/4+σ| ε|5/8+σ|

. . ε|1+σ|






〈Σ〉 . (9.3)

Fit 3: extended SU(5) solution (u + v 6= 0), satisfying the GST relation. This

takes GST solution 3, (eq. (6.11)), in the extended SU(5) case with u+ v 6= 0. The charges

li, ei and n2,3 are read off from the fifth line of table 6. The values of σ taken are σ = 39/4,

σ = 55/4 for GUT and Planck scale neutrino mass generation respectively. n1 lies in the

8The difference between Fit 1 and Fit 2 is that the charges (tables 5 and 6 respectively) are determined

in a different way and hence the value of the effective parameter expansion ε is different
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region −σ/2 ≤ n1 ≤ 0.

Y u =







au
11ε

38/4 au
12ε

22/4 au
13ε

29/4

au
21ε

22/4 au
22ε

14/4 au
23ε

7/4

au
31ε

29/4 au
32ε

7/4 au
33






, Y d =







ad
11ε

62/4 ad
12ε

21/4 ad
13ε

21/4

ad
21ε

21/4 ad
22ε

15/4 ad
23ε

15/4

ad
31ε

33/4 ad
32ε

8/4 ad
33ε

8/4







Y e =







ae
11ε

46/3 ae
12ε

19/3 ae
13ε

97/12

ae
21ε

61/12 ae
22ε

47/12 ae
23ε

13/6

ae
31ε

61/12 ae
32ε

47/12 ae
33ε

13/6






, Y ν =







aν
11ε

|n1+
41

8
| aν

12ε
21

4 aν
13ε

45

8

aν
21ε

|n1−
41

8 aν
22ε

5 aν
23ε

37

8

aν
31ε

|n1−
41

8 aν
32ε

5 aν
33ε

37

8







MRR =







ε|2n1+σ| ε|1/8+n1+σ| ε|1/2+n1+σ|

. aN
22ε

|1/4+σ| ε|5/8+σ|

. . ε|1+σ|






〈Σ〉 . (9.4)

Fit 4: SU(5) (u = v = 0) solution not satisfying the GST relation. Here we present

a solution non satisfying the GST relation of the form of eq. (7.3) for l1 − l3 = 1, which

corresponds to the set of charges of the first line of table 9. We also fix here the expansion

parameter ε = 0.19, using the FI term. The high energy Yukawa and Majorana matrices

are:

Y u =







au
11ε

6 au
12ε

5 au
13ε

3

au
21ε

5 au
22ε

4 au
23ε

2

au
31ε

3 au
32ε

2 au
33






, Y d =







ad
11ε

4 ad
12ε

3 ad
13ε

3

ad
21ε

3 ad
22ε

2 ad
23ε

2

ad
31ε ad

32 ad
33






ε|kd|

Y e =







ae
11ε

4 ae
12ε

3 ae
13ε

ae
21ε

3 ae
22ε

2 ae
23

ae
31ε

3 ae
32ε

2 ae
33






ε|kd|, Y ν =







aν
11ε

|n1+1| aν
12ε

5/8 aν
13ε

aν
21ε

|n1−3/8| aν
22ε

3/8 aν
23

aν
31ε

|n1| aν
32ε

3/8 aν
33






,

MRR =







ε|2n1+σ| ε|−3/8+n1+σ| ε|n1+σ|

. aN
22ε

|−3/4+σ| ε|−3/8+σ|

. . ε|σ|






〈Σ〉 . (9.5)

Fit 5: SU(5) (u = v = 0) solution not satisfying the GST relation. Here we present

another solution non satisfying the GST relation of the form of eq. (7.3) for l1 − l3 = 3/2,

which corresponds to the set of charges of the second line of table 9. We also fix here the

expansion parameter ε = 0.185, using the FI term. The high energy Yukawa and Majorana

matrices are:

Y u =







au
11ε

6 au
12ε

5 au
13ε

3

au
21ε

5 au
22ε

4 au
23ε

2

au
31ε

3 au
32ε

2 au
33






, Y d =







ad
11ε

9/2 ad
12ε

3 ad
13ε

3

ad
21ε

7/2 ad
22ε

2 ad
23ε

2

ad
31ε

3/2 ad
32 ad

33






ε|kd|

Y e =







ae
11ε

9/2 ae
12ε

7/2 ae
13ε

3/2

ae
21ε

3 ae
22ε

2 ae
23

ae
31ε

3 ae
32ε

2 ae
33






ε|kd|, Y ν =







aν
11ε

|n1+1| aν
12ε

5/8 aν
13ε

aν
21ε

|n1−3/8| aν
22ε

3/8 aν
23

aν
31ε

|n1| aν
32ε

3/8 aν
33






,

MRR =







ε|2n1+σ| ε|−5/8+n1+σ| ε|−1/4+n1+σ|

. aN
22ε

|−5/4+σ| ε|−7/8+σ|

. . ε|−1/2+σ|






〈Σ〉 . (9.6)
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9.2 Details of the fitting method

One of the purposes of these fits is to compare which solution fits the data best while

constraining the abritary coefficients to remain at O(1). We therefore choose a minimization

routine to find these O(1) coefficients and compare the numerical values for the different

solutions. In the quark sector we use eight experimental inputs in order to determine the

parameters (coefficients or phases):

Vub

Vcb
,

Vtd

Vts
, Vus , Im{J} ,

mu

mc
,

mc

mt
,

md

ms
,

ms

mb
. (9.7)

We explain in the appendix B how this fit is performed, the important point is that we

can only fit eight parameters and the rest need to be fixed. The minimization algorithm

has been optimized to fit the solutions satisfying the GST relation because the number of

parameters is close to eight. We also fit examples of the non GST solutions but since there

are more free parameters in this cases (mainly phases) it is un-practical to make a fit by

fixing so many free parameters. So we present particular examples in these cases which do

not necessarily correspond to the best χ2.

In the lepton sector we perform two fits, one for the coefficients of the charged lepton

mass matrix and the other for the coefficients of the neutrino mass matrix. We do not

perform a combined fit for the coefficients of Y ν and Y e because the uncertainties in these

sectors are quite different. While the uncertainties in the masses of the charged leptons is

very small, the uncertainties in lepton mixings and quantities related to neutrino masses are

still large, such that we cannot determine the parameters involved to a very good accuracy.

The quantities used for the fit of the coefficients of the charged lepton mass matrix are

me

mµ
,

mµ

mτ
, (9.8)

such that we can just determine two parameters, ae
12 and ae

22, but for the cases presented

here this is enough. In order to do the fit for the coefficients of the neutrino mass matrix

we use the observables

tl23 , tl13 , tl12 ,
|msol|
|matm| , mν3

, (9.9)

where we relate tl23 to the atmospheric mixing, tl12 to the solar mixing and tl13 to the reactor

mixing. In this case we are going to be able to fit just five parameters. For this reason

and because the uncertainties in the above observables are significantly bigger than the

uncertainties in the quark sector, the fits of the coefficients of the neutrino mass matrix

have large errors and they may leave a room for other solutions once the experimental

uncertainties improve. Since we only have an upper bound for the reactor angle, tl13, we

fit the solutions in the neighborhood of this upper bound.

9.3 Results of the fits

9.3.1 Fit 1: SU(5) (u = v = 0) example satisfying the GST relation

This is a SU(5) type solution, and hence u = v = 0, which satisfies the GST relation. The

textures are as laid out in eq. (9.2).
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Quark sector. We can use the expressions eq. (4.2) and eq. (4.4) adapted to the solution

of eq. (6.9) in order to fit the Yukawa coefficients, along with the appropriate phases entering

into the expressions of mixings. The expansion parameter ε is determined with the Fayet-

Iliopoulos term and the appropriate charges cancelling the anomalies, for this case its value

is ε = 0.183. The parameters that we fit are the real parameters

au
12 , au

23 , ad
22 , ad

12 , ad
13 , ad

23 , ad
32 , cos(Φ2) , (9.10)

which enter in the expressions of mixings and masses, eq. (4.2)–eq. (4.5). Note that in these

expressions the coefficients af
ij can be complex but for the fit we choose them real and write

down explicitly the phases. We are free to choose the parameters to fit. However we need

to check which are the most relevant parameters to test the symmetry. Thus we follow

this as a guideline to choose the parameters to fit and leave other parameters fixed. Due

to the form of eq. (6.9) the mixing angles in the (2, 3) sector of both matrices contribute at

the same order in the VCKM matrix mixing, sQ
23 = |ad

23 − au
23e

iΦX23 |ε2, so we have decided

to put a phase here. In the su
12 diagonalization angle and the second eigenvalue of Y u the

combination au
22e

iΦ3 −au 2
23 appears, so we have chosen as well to include a phase difference

there. The fixed parameters are then

au
22 , Φ1 , Φ3 , ΦX23

, (9.11)

where Φ1 has the form of eq. (4.7) and the phases Φ3 and ΦX23
can be written as9

Φ3 = φu
22 − 2φu

23 , ΦX23
= (φd

33 − φd
23) − (φu

33 − φu
23) . (9.12)

The results of the fit in the quark sector appear in the second column of table 10. Given

these results we can think that the structure of Yukawa matrices has the following form

Y u =







∗ y12e
iΦ1 y13

y12e
iΦ1 y22e

iΦ3 y23

y13 y23 1






, Y d =







∗ y12e
iΦ2 y13e

iΦ2

[

y21e
iΦR

2

]

y22 y23

∗ y32 1






, (9.13)

where yij denote real elements and we have associated the phases Φi to particular ele-

ments of the matrices. Note that we need three phases to determine the amount of CP

violation experimentally required because in all the fits we found ΦX23
= 0. If this phase

was not zero then it could have been associated to the Y d
23 element. The entries marked

with ∗ cannot be determined because they are not restricted by masses and mixings, due

to the structure of the Yukawa matrices. The value of y21e
iΦR

2 is determined indirectly

because we need to satisfy the GST relation so tR12 = tL12 for both up and quark sec-

tors.

Lepton sector. We have fixed the coefficients of Y d in the quark sector and now we can

use the results for the charged lepton matrix Y e. The masses of the charged lepton are

9In terms of the βi phases appearing in the diagonalization matrices, eq. (A.1), we have Φ1 = −βu L
3 ,

Φ2 = −βd L
3 and ΦX23

= (βd L
2 − βd L

1 ) − (βu L
2 − βu L

1 ).
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Quark Fitted Parameters

GST sol. 2 GST sol. 2, u, v 6= 0 GST sol. 3, u, v 6= 0

Parameter BFP Value BFP Value BFP Value

au
12 2.74 ± 0.61 1.04 ± 0.19 2.74 ± 0.71

au
23 1.68 ± 0.17 1.34 ± 0.13 1.41 ± 0.18

ad
22 1.08 ± 0.18 1.05 ± 0.11 0.70 ± 0.23

ad
12 0.93 ± 0.15 0.55 ± 0.20 0.74 ± 0.13

ad
13 0.29 ± 0.21 0.30 ± 0.14 0.74 ± 0.17

ad
23 0.79 ± 0.10 0.70 ± 0.13 0.66 ± 0.35

ad
32 0.48 ± 0.17 1.28 ± 0.32 1.28 ± 0.58

cos(Φ2) 0.454 ± 0.041 0.456 ± 0.041 0.547 ± 0.424

Quark Fixed Parameters

ε 0.183 0.217 0.154

au
22 1 1 1.4

cos(Φ3) 0.8 0.83 0.8

cos(ΦX23
) 1 1 1

Φ1 π/2 π/2 π/2

χ2

χ2 1.47 2.41 4.32

Table 10: Quark fitted parameters for the examples of section 6). The second column corresponds

to the Solution 2 in the SU(5) (u = v = 0) case, the third column to the Solution 2 in the u 6= −v 6= 0

case. The fourth column presents the fit to the Solution 3 in the u 6= −v 6= 0 case.

obtained through the SU(5) relations, ensuring the correct value of charged lepton masses,

once the masses of the d-quarks are in agreement with experimental information. Thus in

this case we perform a fit just for coefficients of the neutrino mass matrix, Y ν , using the

ratio of neutrino mass differences (solar to atmospheric), the mass of the heaviest neutrino

and the lepton mixings, which have a contributions from both the charged leptons and

the neutrinos. Here the relevant parameter that we need from the quark sector is ad
32

because the tangent of the angle diagonalizing Y e on the left is related to this parameter:

te23 = ae
23 ∝ ad

32. Since this is an O(1) mixing we have to take it into account for the results

of the UMNS mixings, thus we have

tl23 =
|ce

23s
ν
23e

−iφX23 − se
23c

ν
23|

|sν
23s

e
23 + cν

23c
e
23e

iφX23 |
, (9.14)

where we use the expression eq. (5.7) to determine sν
23 and cν

23, and the approximation

te23 = ad
32; φX23

is a phase relating e and ν mixings in the (2, 3) sector [38]. We denote

the UMNS angles by the superscript l and by e and ν the charged lepton and neutrino

mixings respectively. The mixings tl13 and tν12 are essentially given by the neutrino mixings,

eqs. (6.28), so we fit these mixings according to eq. (5.8) and eq. (5.9) respectively. We

note from table 11 that in the lepton sector we need two phases, φX23
and φν . The phase

φX23
can be associated to the charged lepton sector and we can put it in the Y e

23 entry. The
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Neutrino Fitted Parameters

Parameter GST sol. 2 GST sol. 2, u, v 6= 0 GST sol. 3, u, v 6= 0

MP MG MP MG MP MG

BFP value BFP value BFP value BFP value BFP value BFP value

aν
23 0.75 ± 0.79 0.67 ± 0.61 0.21 ± 0.25 0.85 ± 0.27 0.30 ± 0.18 0.40 ± 0.15

aν
13 1.41 ± 1.32 1.36 ± 1.10 0.97 ± 0.47 1.25 ± 0.63 1.02 ± 0.50 1.45 ± 0.70

aν
12 2.23 ± 0.92 2.10 ± 0.81 1.25 ± 0.29 2.08 ± 0.69 1.35 ± 0.34 1.97 ± 0.45

aν
22 1.84 ± 1.37 1.96 ± 1.92 1.23 ± 1.41 1.98 ± 0.79 1.48 ± 1.31 2.26 ± 1.6

aν
32 1.47 ± 1.93 0.98 ± 0.91 0.65 ± 0.70 1.53 ± 0.75 0.53 ± 0.78 0.56 ± 0.98

Neutrino Fixed Parameters

ε 0.183 0.217 0.154

ae
23 ad

32 = 0.48 −1.6 1.2

aν
33 1 1 0.7 1

σ 29/2 21/2 29/2 19/2 55/4 39/4

c(φX23
) 0.29 0.29 1 0.5

c(φν) −1 −0.5 0.86 1

(n2, n3) (1/4, 1/2) (1/8, 1/2)

χ2

χ2 0.44 0.12 1.67 0.49 2.16 0.72

Table 11: Neutrino fitted parameters for the examples of Section 6. The second column corresponds

to the Solution 2 in the SU(5) (u = v = 0) case, the third column to the Solution 2 in the u+ v 6= 0

case. The fourth column presents the fit to the Solution 3 in the u + v 6= 0 case. Here c(y) is the

cosine of the respective parameter.

second phase, φν can be assigned to Y ν
22. We fit the mass ratio and the heaviest neutrino

state using their expressions appearing in eqs. (6.28). The results for this fit appear in the

second column of table 11.

9.3.2 Fit 2 and Fit 3: Extended SU(5) solutions with u + v 6= 0 satisfying the

GST relation

These are both extended SU(5) solutions, with u + v 6= 0, satisfying the GST relation. Fit

2 corresponds to the textures laid out in eq. (9.3), and Fit 3 corresponds to the textures

laid out in eq. (9.4).

Quark sector. This section is completely analogous to the previous one, the only dif-

ference is in the value of ε. We present here two examples. The first example corresponds

to the first solution of eq. (6.9), which we called Solution 2, and corresponds to ε = 0.217

according to the charges of the third row of eq. (6). The second example corresponds to the

first solution of eq. (6.11), which has been called Solution 3 and corresponds to ε = 0.154,

according to the charges of the fourth row of eq. (6). The fitted and fixed parameters are

also those of the previous example, eq. (9.10) and eq. (9.11) respectively. The results for

the quark fitting are presented in the third and fourth column of table 10, respectively, so

we can compare directly with the previous case.
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Lepton sector. This case is different from the section 9.1 because now we do not have the

SU(5) relations. Instead the parameter ke is different from kd, as explained in section 4, and

hence Y e 6= (Y d)T . In this case we perform two fits, one for the coefficients of the charged

lepton mass matrix, Y e and another for the coefficients of the neutrino mass matrix, Y ν .

For the Solution 2, taking into account the value of the charges, the second row of

table 6, and that m = u + v = 1/2 we have ke = −8/3. We note in this case that since we

need mb ≈ mτ , which are given by

mb = mtε
|kd| , kd =

l3 + 3e3 + u + 4(u + v)

3

mτ = mtε
|ke| , ke = l3 + 3e3 + u + (u + v) , (9.15)

we expect the sum (u + v) to remain small.

Now the coefficients ae
23 and ad

32 are not related but we can fix ae
23 in the neutrino sector

such that it is in agreement with the results from neutrino oscillation. We have performed

a fit using the experimental information of the parameters of eq. (9.9). Here we have also

used the expression eq. (9.14) in order to fit the atmospheric angle, the expressions eq. (5.8)

and eq. (5.9) to fit tl13 and tl12 (reactor and solar angle respectively) and the mass ratio and

the heaviest neutrino state using their expressions appearing in eqs. (6.28). The results for

this fit appear in the third column of table 11.

Once the parameter ae
23 has been fixed we fit the parameters of the charged lepton

mass matrix, of the form eq. (6.32) and the other parameters as in the first solution of

eq. (6.9). In this case the relevant parameters are ae
12 and ae

22. However if we just fit the

expressions

me

mµ
=

|ae
12|2

|(ae
22 − ae

23a
e
32)|2

ε4/3 = se 2
12 ,

mµ

mτ
= (ae

22 − ae
23a

e
32)ε

2 , (9.16)

the coefficients ae
12 and ae

22 are not quite O(1) so we have to make use of a coefficient, c

such that (ae
22 − ae

23a
e
32) → (ae

22 − ae
23a

e
32)/c, e.g. c = 3, in order to have acceptable values

for charged lepton masses. This fit is presented in the second column of table 12. In this

case the extra-coefficient needed for the fit is not really justified in the context of just a

single U(1) symmetry.

For the Solution 3, we have m = 1/2, ke = −13/6, according to the charges of the

third row of table 6. The fit of the coefficients of the neutrino mass matrix are completely

analogous for Solution 2 and they appear in the third column of table 11. The relevant

parameters for the charged lepton sector are

me

mµ
=

|ae
12|2

|(ae
22 − ae

23a
e
32)|2

ε29/6 = se 2
12 ,

mµ

mτ
= (ae

22 − ae
23a

e
32)ε

7/4 . (9.17)

For this case there is no need to invoke another coefficient as for the Solution 2. O(1)

coefficients in this case can account for the masses and mixings in the leptonic sector.

Once the coefficient ae
23 is fitted in the charged lepton sector then we need to use this
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Charged lepton Fitted Parameters

GST sol. 2, u, v 6= 0 GST sol. 3, u, v 6= 0

Parameter BFP Value BFP Value

ae
12 0.56 ± 0.006 2.88 ± 0.032

ae
22 0.92 ± 0.013 1.87 ± 0.013

Charged lepton Fixed Parameters

ε 0.217 0.154

ae
23 −1.6 1.2

ae
32 1.8 1.2

χ2

χ2 0.05 1.2 × 10−5

Table 12: Charged lepton fitted parameters for the examples of section 6 The second column

corresponds to the Solution 2 in the u + v 6= 0 case. The fourth column presents the fit to the

Solution 3 in the u + v 6= 0 case.

parameter as a fixed parameter in the fit for the neutrino sector but in this case the fit is

not as good as for the previous solution. The results are presented in the third column of

table 12.

9.3.3 Fit 4: SU(5) type (u = v = 0) solution not satisfying the GST relation

This is a SU(5) type solution, hence u = v = 0, which doesn’t satisfy the GST relation.

The charges are as laid out in eq. (9.5).

Quark sector. Here we also use the expressions eq. (4.2) and eq. (4.4) adapted to the

solution eq. (7.3) for r′d = l1 − l3 = 1 and check the fit with an exact numerical solution,

which agrees with the fit to eq. (4.2) and eq. (4.4) within a 5% error. Since the fit can just

fit eight parameters, in this case it is not possible to select out “the best fit”, according to

the criteria that we have used for the previous fits, so we present the following solution for

the coefficients of the up and down Yukawa matrices:

au =







0.42 0.58e−iπ/2 0.51

0.58e−iπ/2 0.9e−iπ 0.43e−iπ/2

0.51 0.43e−iπ/2 1






,

ad =







e−i0.5 0.8 0.29ei0.48

1.63e−i1.49 0.86e−i1.2 0.55e−i0.7

e−i0.79 0.4e−i0.5 e−i3.05






. (9.18)

For this fit we have χ2 = 2.31.

Lepton sector. In the lepton sector, once we have done the fit to the quark masses, the

SU(5) relations produce acceptable values for the charged lepton masses, what we need to

care about are the mixings for the neutrino sector. According to the expressions for the

mixings in the (1, 2) and (1, 3) neutrino sector, eq. (7.14), now tν13 = aν
13ε/

√

aν 2
33 + aν 2

23

– 36 –



J
H
E
P
0
8
(
2
0
0
5
)
0
8
3

and tν12 = aν
12ε

1/4/(cν
23a

ν
22 − sν

23a
ν
32)), for (n2, n3) = (−3/8, 0). On the other hand the

mixings in the charged lepton sector go as te12 = |ad
21 + 3ad

23a
d
31/a

d
33|ε/3|ad

22 + 3ad
32a

d
23| and

te13 = ad
31ε/|ad

33 + |ad
32|2|, so here these contributions are important to the UMNS sl

12 and

sl
13 mixings, identified respectively to the solar and reactor mixings, for example for sl

13 we

have

sl
13 = |ce

12c
e
13s

ν
13 − cν

13(e
i(βe

1
−βν

1
)cν

23(c
e
12c

e
23s

e
13 + eiβe

3se
12s

e
23) −

− ei(βe
2
−βν

2
)sν

23(e
iβe

3se
12c

e
13 − ce

12s
e
13)s

e
23)| . (9.19)

The mixing sl
23 is driven by the neutrino mixing sν

23

sl
23c

l
13 ≈ |ei(βe

2
−βν

2
)sν

23c
e
12c

e
23 − ei(βe

1
−βν

1
)se

23c
ν
13c

ν
23| . (9.20)

Despite all the contributions to the mixings sl
13 and sl

12 we can reproduce the observed

masses and mixings in the neutrino sector with O(1) coefficients and with out any phase

in this sector, we just use the phases of the right handed quark matrix, which are given by

βe
1 = ArcTan

[

sin(φd
33)

cos(φd
33) + |ad

32|2
]

− φd
31

βe
2 = (φd

32 − φd
33) + βdR

1

βe
3 = (φd

22 − φd
21) − βdR

2 , (9.21)

and are specified in eq. (9.18). The results of this fit are given in the second row of in

table 13.

9.3.4 Fit 5: SU(5) type (u = v = 0) solution not satisfying the GST relation

This is a SU(5) type solution, and hence u = v = 0 which doesn’t satisfy the GST relation.

The textures are as laid out in eq. (9.6).

Quark sector. Here we present the following solution for the case rd = l1 − l3 = 3
2 , in

this case the coefficients of the up and down Yukawa matrices:

au =







0.5 0.6e−iπ/2 0.5

0.6e−iπ/2 e−iπ 0.43e−iπ/2

0.5 0.43e−iπ/2 1






,

ad =







1 0.72 0.29ei0.49

1.82e−i2.28 0.76e−i1.12 0.55e−i0.71

e−i1.57 0.4e−i0.41 e−i2.951






. (9.22)

For this fit we have χ2 = 2.10.

Lepton sector. The analysis of this fit is completely analogous to the Fit 4, the results

of the fitting procedure is presented in the second column of table 13.
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Neutrino Fitted Parameters

Non GST sol. 1 Non GST sol. 2

Parameter BFP Value BFP Value

aν
23 1.6 ± 0.8 2 ± 0.9

aν
13 1.4 ± 0.7 0.9 ± 0.3

aν
12 1 ± 0.6 1.6 ± 0.3

aν
22 0.67 ± 0.27 0.5 ± 0.4

Neutrino Fixed Parameters

ε 0.19 0.185

ae
23 −3ad

32 = −1.2 −3ad
32 = −1.25

aν
33 1 1

aN
22 2 2

σ (4.5, 0.5) (5, 1)

(n2, n3) (−3/8, 0) (−5/8,−1/4)

χ2

χ2 (5.09, 4.77) (4.78, 3.79)

Table 13: Neutrino fitted parameters for two of the non GST examples of Section 7 The second

and third columns correspond respectively to solution 1 and 2 in the non GST SU(5) (u = v = 0)

cases, for the first one we have used r′d = 1 and for the second r′d = 3/2. While we have fitted

in the first case tν
13

to saturate its current upper limit, we have allowed for the second case to be

smaller than it. The first entry for σ corresponds to the fit using MP and the second entry using

MG; analogously for χ2.

tan β, au
33 and ad

33

Parameter GST sol. 2, u= v=0 GST sol. 2, u, v 6= 0 GST sol. 3, u, v 6= 0

au
33 (1, 1.34) (1.1.3) (1, 1.3)

ad
33 (5.33−1.13

+2.81, 2.40
−0.12
+0.13) (3.49−0.73

+1.84, 1.62
−0.09
+0.08) (3.23−0.68

+1.70, 1.62
−0.09
+0.10)

tan β (3.00−0.66
+4.82, 1.00

−0.06
+0.06) (3.00−0.66

+1.61, 1.07
−0.07
+0.07) (3.00−0.45

+1.61, 1.07
−0.07
+0.07)

(ε, |kd|) (0.183, 5/2) (0.217, 5/2) (0.154, 2)

Parameter Non GST sol. 1, u= v=0 Non GST sol. 2, u= v=0

au
33 (1, 1.2) (1, 1.2)

ad
33 (2.12−0.44

+0.98, 1.1
−0.03
+0.08) (2.11−0.45

+0.87, 1.3
−0.06
+0.09)

tan β (3−0.66
+1.61, 1.3

−0.1
+0.1) (3−0.78

+1.32, 1.2
−0.2
+0.2)

(ε, |kd|) (0.19, 2) (0.185, 2)

Table 14: Value of ad
33

and tanβ for the different models presented, once au
33

is fixed using mt.

9.3.5 Top and bottom masses and tan β

For these cases tan β and ad
33 are a prediction, once the coefficient au

33 is fixed through the

value of mt, mt = Y u
33v/

√
2. The values of au

33, ad
33 and tan β for the cases presented in

this section are given in table 14. We can see that for a natural value of au
33 = 1 we have

acceptable values for tan β (which should be > 2) and ad
33 in any of the cases presented.
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Quark fitted Parameters, SU(3)-like case

Parameter BFP Value ±σ BFP Value ±σ

a′u22 1.11 ± 0.55 1.11 ± 0.07

ad
12 0.66 ± 0.32 2.45 ± 0.20

ad
13 0.10 ± 0.12 0.91 ± 0.15

ad
22 0.74 ± 0.10 1.77 ± 0.09

ad
23 0.45 ± 0.29 1.18 ± 0.12

εu 0.05 ± 0.007 0.05 ± 0.007

εd 0.25 ± 0.03 0.16 ± 0.02

cos(Φ2) 0.516 ± 0.1 0.450 ± 0.045

Quark Fixed Parameters, SU(3)-like case

Φ∗
1 −1.25 ≈= −0.8π/2 1.120 ≈ 0.7π/2

χ2

χ2 0.972 0.974

Table 15: Fitted and fixed parameters for the SU(3)-like case.

9.4 Comparison to the SU(3) case

In this section we present the comparison to a generic SU(3) case [6]. What we fit are the

O(1) coefficients of a Yukawa matrices of the form

Y f =







ε8
f ε3

f ε3
f

ε3
f ε2

f ε2
f

ε3
f ε2

f 1






, (9.23)

where we allow two different expansion paramaters εu and εd and complex phases to re-

produce the CP violation phase. It is enough to consider one different phase in each of the

Y u and Y d matrices. Here we put the phases on Y d
13 and Y u

12 [20], but we have the freedom

to use other choices. We have used here as well the method of minimization that we have

used for the U(1) cases. The results of these fits are consistent with previous determination

of these parameters, [19, 20], taking into account the change induced by the change of the

value used here for the parameter mc/ms = 15.5 ± 3.7 and the different methods used

for the determination of coefficients.10 The fits presented here are the fits with the lowest

possible χ2 because of the minimization procedure. We have not included here for the

SU(3) case a fit in the neutrino sector because in the SU(3)-like cases the neutrino sector

requires more assumptions than in the analogous U(1) cases.

Another important difference between the SU(3) and the U(1) cases presented here

is that in the first one there are two parameter expansions εu and εd which have been

fitted while in the U(1) cases there is only one expansion parameter which can be fixed by

relating the U(1) symmetry to the cancellation of anomalies and the Fayet-Iliopoulos term.

This has allowed that more O(1) coefficients have been able to be fitted.

10In [19, 20] mc/ms = 9.5 ± 1.7.
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Comparison

U(1) (GST) U(1) (Non-GST) SU(3)-like

# of expansion pars. 1 1 2

# of free pars.(quark sector) 12 >18 10

GST relation yes no yes

prediction for tan β small small no

lepton sector o.k. o.k o.k

simple flavour charges no yes yes

Table 16: Some criteria of comparison. Here the number of free parameters corresponds to the

number of coefficients, phases and parameter expansions that need to be adjusted or determined in

the fits.

By comparing tables 10 and 15 we can see that according to the minimization procedure

and the criteria of O(1) coefficients, the second case of the SU(3) solution fits better the

data. However the U(1) solutions also have a good fit and taking into account the fact that

for the neutrino sector we just have added the SRHND conditions, the fits in both of the

U(1) cases presented are good. We can therefore consider that U(1) symmetries are still

an appealing description of the fermion masses and mixings observed. Note that although

the Solution 3 in the u 6= v 6= 0 does not fit the data as well as the Solution 2 (in either

case, u = v = 0 or not) in the quark sector, it does reproduce masses and mixings in the

charged lepton sector. We have for this case Y e 6= (Y d)T but we have mb ≈ mτ without

introducing ad-hoc O(1) coefficients in order to reproduce the appropriate mixings.

Given the results of these fits we need further criteria in order to compare models

based in anomalous U(1) models and non-abelian models, such as SU(3). These other

criteria may be found in the predictions that the models presented here can give in the

supersymmetric sector.

10. Flavour issues in SUSY flavour symmetry models

Since the flavour symmetry is expected to be broken at a high energy scale, non super-

symmetric models will have a hierarchy problem, since the cutoff of the theory must at

least be of the order of the flavour symmetry breaking scale. Supersymmetric models

with soft breaking parameters around the TeV scale do not have this problem. For this

reason flavour symmetries are almost exclusively considered in the context of one of the

minimal supersymmetric models, or one of the popular SUSY unified theories. The soft

lagrangian parameters are strongly constrained by the supersymmetric flavour problem and

the supersymmetric CP problem.

The supersymmetric flavour problem needs the soft scalar mass squared matrices to

be diagonal to good approximation at high energy scales, since the off-diagonal elements

contribute to one-loop flavour violating decays such as the highly constrained µ → eγ

in the lepton sector and b → sγ in the quark sector. It also requires that the trilinear

couplings are aligned well to the corresponding Yukawa matrix, since off diagonal elements

in the trilinears in the mass eigenstate basis also contribute to highly constrained decays.
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The supersymmetric CP problem is related to the phases of the parameters in the soft

lagrangian. The general requirement is that these phases need to be small for the majority

of soft breaking parameters.

The reason that these problems are relevant in the context of family symmetries is

that in general, the existence of the family symmetry and the fields that break it can give

dangerous contributions to the soft lagrangian parameters. It would be remiss to look at

these models but not check whether CP violation or flavour violation is likely to rule them

out. The starting point for investigating these problems is to consider the hidden sector

part of the theory, which leads to the size and phases of the vevs of the fields which break

the U(1) symmetry, θ and θ.

10.1 The flavon sector

We start by considering the values of the expansion parameters ε and ε. They are defined

by:

ε ≡ 〈θ〉
M

ε =

〈

θ
〉

M
, (10.1)

where θ and θ are scalars which break the U(1)F symmetry, and have charges of 1,−1

respectively under the symmetry. The solutions that we have found in the previous sections

need to have the charges of θ different from 1 and −1 but the present discussion is in order

to explain how the value of ε can be fixed. We wish to arrange that ε = ε, which entails

arranging that the potential is minimized by 〈θ〉 = 〈θ〉. This would be simple if the U(1)

were non-anomalous, and thus missing a Fayet-Iliopoulis term. If we set the θ sector of the

superpotential to be:

Wθ = S(θθ − M2
θ ) . (10.2)

We introduce a new field, X, which has charge qX under U(1). qX will be unspecified, but

some number such that when 〈X〉 6= 0, it doesn’t contribute to the fermion mass operators

(or, at the very least, it doesn’t contribute at leading order). Then, if we give θ and θ the

same soft mass,11 and require that X doesn’t get a soft mass, we end up with a hidden

sector potential:

V = |θθ − M2
θ |2 +

g2

2

(

|θ|2 + |θ|2 − qX |X|2 + ξ2
)2

+ m2(θ2 + θ
2
) . (10.3)

If we minimize this potential with respect to θ, θ and X, we end up with the following

constraints:

∂V

∂θ
= 0 = 2θ(θθ − M2

θ ) + g2θ(|θ|2 − |θ|2 + qX |X|2 + ξ2) + 2m2θ (10.4)

∂V

∂θ
= 0 = 2θ(θθ − M2

θ ) + g2θ(|θ|2 − |θ|2 + qX |X|2 + ξ2) + 2m2θ (10.5)

∂V

∂X
= 0 =

g2

2
2X(|θ|2 − |θ|2 + qX |X|2 + ξ2) . (10.6)

11This requirement may seem somewhat strong, but we also wish to minimize flavour violation coming

from the D-term associated with U(1), which is proportional to m2

θ −m2

θ
, and will provide a non-universal

contribution to the scalar masses. This contribution will lead to off diagonal elements in the SCKM basis

which can easily be dangerously large with regard to flavour violation.
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Since X doesn’t have a mass term, it would be massless unless 〈X〉 6= 0. Therefore, of

the two solutions of eq. (10.6), we have to take X 6= 0. From this, we see that:

|θ|2 − |θ|2 + qX |X|2 + ξ2 = 0 . (10.7)

Substituting eq. (10.7) into eq. (10.4) and eq. (10.5), and multiplying by θ and θ respec-

tively, we find:

0 = θθ(θθ − M2
θ ) + m2θ2 (10.8)

0 = θθ(θθ − M2
θ ) + m2θ

2
. (10.9)

From this, we can deduce that either θ = θ = 0 or |θ| = |θ| = Mθ. The potential is

minimized by the second solution if m2 < 2M2
θ . As we expect Mθ to be a GUT scale mass,

and m to be a TeV scale soft mass term, we find, that as desired, that we will have:

〈θ〉 = 〈θ〉 ⇒ ε = ε . (10.10)

This allows us to consider Yukawa textures without having to keep track of whether

the overall charge for each term is positive or negative.

10.1.1 Getting ε from the Fayet-Iliopoulos term

The GST requirement leads to needing flavon fields with opposite charges. under U(1)F .

Were this not the case, we would have an elegant way of generating 〈θ〉. Consider a simple

case where θ doesn’t have a superpotential mass term, but does have a soft mass:

V =
g2

2
(−|θ|2 + ξ2)2 + m2

θθ
2 . (10.11)

Then, without the need for an explicit mass term in the superpotential, we would find that

minimizing the potential with respect to θ would lead to:

〈θ〉 = ξ

√

1 +
m2

θ

ξ2
≈ ξ . (10.12)

Where the final approximation is due to the fact that we expect ξ2 to be much larger than

m2
θ. So we have managed to set 〈θ〉 from ξ, which can be predicted from string theory. So

this allows one to predict the flavon vev, rather than having to put it in by hand.

This provides a motivation for trying to set up the case where 〈θ〉 and 〈θ〉 could both

be set by the FI term. However, it doesn’t seem possible to make this work without adding

in either an extra symmetry, or extra matter. Even then, trying to arrange things so that

〈θ〉 = 〈θ〉 = zξ, with z some real number is difficult.

10.2 Yukawa operators

Since the net U(1) charge can be either positive or negative and we have ε = ε, an effective

potential has the following form:

W =
∑

f=u,d; ij

Qif c jHfaf
ijε

|qi+fj+hf | +
∑

f=e,n; ij

Lif c jHfaf
ijε

|li+fj+hf | . (10.13)
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We cannot say anything in particular about the Kähler potential. We can assume that

the phases responsible for CP violation only appear in the flavour sector. Then observable

CP violating phases will be put into the Yukawa couplings indirectly from the effective

superpotential of eq. (10.13). In general we can consider an effective Kähler potential of

the form:

K = Ko(tα) − ln(S + S̄ + δGS) +
∑

i

fi(tα)θiθ̄i + · · · +
∑

ij

KΦ
ijΦ

iΦ̄j , (10.14)

where Ko is the Kähler potential of the moduli fields, tα = Tα + T̄α, S is the dila-

ton, fi(tα) are possible functions of these moduli fields e.g. f(t) = Πp
α=1t

n(α)ij∗

α . But we

cannot specify the form of the Kähler metric. It may be that the Kähler metric is canon-

ical, in which case KΦ
ij∗ = δij∗ . Such a form has a good change of leading to acceptable

phenomenology, since the scalar mass matrices will be proportional to the identity at the

appropriate high energy scale. When rotating the scalar mass matrices to the super-CKM

(SCKM) basis at the high energy scale, the transformation will leave the mass matrices

invariant. Flavour violation tends to be proportional to off-diagonal elements in the scalar

mass matrices in the SCKM basis, so any flavour violation will be due to RG effects, and

will therefore be suppressed. On the other hand, the Kähler metric could have off-diagonal

structure, in which case the risk of flavour violating effects would be high, and the case

where the Kähler metric is diagonal but non-universal is potentially very interesting since

flavour changing effects are induced in general by the SCKM rotation.

10.3 The SUSY CP problem

10.3.1 The µ problem

In order to avoid the µ problem, a symmetry or other mechanism to protect µ from un-

wanted contributions needs to be introduced. The µ parameter can have contributions from

the superpotential, (expected to be at the Planck scale) and from the Kähler potential,

via the Giudice-Masiero mechanism [11] or other mechanisms [21, 22], µ = µW + µK . The

charges of the fields Hu and Hd under the flavour symmetry can be chosen in such a way

that µW (MP ) is forbidden in the superpotential. Then another field, S can be introduced,

so that the term λSHuHd is allowed in the Kähler potential, which generates an effective

µ = O(m3/2). Note that in the cases that we have found for u + v 6= 0 there is no µW at

MP . In general for a theory containing two flavon fields with opposite charges, once the

flavour symmetry is broken below the Planck scale, the contributions to the µ term are:

ε|u+v|HuHdµW + ε|u+v|HuHdµK . (10.15)

Thus, even if the µ term is missing from the superpotential at renormalizable level, it

will be generated by non-renormalizable operators once the family symmetry is broken.

However, it will appear suppressed by a factor of ε|u+v|. To get an sufficient suppression,

either |u + v| must be large or ε must be small. Obviously, since the same factor ε|u+v|
appears suppressing both superpotential and Kähler potential µ contributions, there is no

extra constraint from considering the second term in eq. (10.15).
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However, |u + v| is related to the anomaly cancellation conditions considered in sec-

tion 2. There are two possibilities for having small |u + v|. The first is to have small

expansion parameters, ε; however if ε becomes too small, it makes predicting the fermion

mass hierarchy very difficult. The second is to accept a contribution to µ that is larger

than order O(m3/2); however phenomenologically, the total µ should not be much bigger

than the O(m3/2). It is, however, possible to apply a new discrete symmetry to disallow

the superpotential µ term, which never allows any flavon corrections to generate it.

10.3.2 Electric dipole moment constraints

The electric dipole moments (EDMs) constrain the form of the trilinear couplings, (Y A
f )ij .

The trilinear couplings are defined through (Y A
f )ijHfQif

c
j . Here we need to ensure that

there is not a large contribution from the phases found in the trilinear terms to the CP

violating phases. In the context of flavour symmetries it is usually postulated that the

only phases appearing in the theory are in the Yukawa couplings and any other phase will

enter as a consequence of a dependence in the Yukawa couplings. Then to check if the

model gives contribution below the bounds one needs to compare the diagonal elements of

the Yukawa couplings with the diagonal elements of the trilinear couplings, in the SCKM

basis. The trilinear terms in general can be written as:

(YA

f )ij = Y f
ij F

a∂a

(

K̃ + ln(Kf
f Ki

iK
j
j )

)

+ F a∂aY
f
ij . (10.16)

We can always write the first term in a “factorisable” form [36], such that if the Yukawa

couplings, eq. (10.13), are the only source of CP violation then the first term does not give

any contribution at the leading order. For the second term, which involves the derivative in

terms of the flavon fields, if the flavon field is the only field with F θ 6= 0 then the diagonal

trilinear couplings in the SCKM basis are real at leading order in the flavon fields [39].

Thus there is not an O(1) contribution to the CP phases from this sector.

One can check this simply by writing the last term of eq. (10.16) in the SCKM basis:

(F a∂a(Ŷ
f ))SCKM

ij =F a(V †
L)ik(∂aVL)kj(YDiag)jj +F a(∂aYDiag)ij +F a(YDiag)ii(∂aVR)ir(V

†
R)rj .

(10.17)

Where V †
L and V †

R diagonalize the Yukawa matrix: YDiag = V †
LY V †

R. The leading term

of the eq. (10.17) is the second term and it is at most of order θ. If another field has

non-zero F-term, FX 6= 0 then all the quantities appearing in eq. (10.16) can be written

as a expansion in X and θ/M = ε:

(YDiag)ii = (aii + biiX)εpii . (10.18)

We are assuming that only the matter sector in eq. (10.13) has phases leading to CP

violation, so the term biiXεpii is real and hence so is:

FX(∂aYDiag)ii = FXbiiθ
pii . (10.19)
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10.4 SUSY flavour problem

In addition to the F term contribution to the soft masses we have to add the D term

contributions

(M2)ij = (M2)F ij + (M2)D ij . (10.20)

If the Kähler metric is diagonal in the basis where the symmetry is broken both contribu-

tions are diagonal and proportional to the Kähler metric. For example, consider universal

SUGRA: (M2)F ij = Kijm
2
o. However, even if we assume that the first term is indeed

proportional to the Kähler metric, the D-term will not in general be proportional to the

Kähler metric:

(M2)D ij =
∑

N

gNXN θa
Kij∗(θa)m

2
D , m2

D = O(m2
3/2) (10.21)

The main problems for FC processes for these kind of theories are the contributions to the

trilinear couplings from the anomalous D-term contribution to the soft masses [26]. For

the last issue there is no real solution so far but one can ameliorate the problem by making

all the scalars heavier, which is a simply mass suppression.

In order to study all the possible consequences of models with the superpotential

structure of eq. (10.13), we can parameterize the Kähler metric according to the different

contributions it may have, assuming a broken underlying symmetry with at least two flavon

fields with opposite charges. Once this is done we can then study their consequences. As

mentioned earlier, this analysis is beyond the scope of this paper, so we just mention

how extreme and dangerous situations may arise and we leave the analysis for a future

reference [23]. Some authors have studied possible consequences of flavour models for

FC effects but very specific assumptions need to be assumed due to the many unknown

supersymmetric parameters [5, 24, 25].

The most strict bound for flavour changing processes is coming from the decay µ →
e γ [28]–[29] and given the fact that we have a large mixing angle in the left handed sector

of the charged lepton matrices it is crucial to determine under which conditions we can

produce a suppressed effect. Also the constraints given by the process B → Φ KS may

select out some of the possibilities presented.

10.4.1 Non minimal sugra and diagonal Kähler metric

Consider, for example, the case for which at the scale at which the flavour symmetry is

broken, the Kähler metric is diagonal. For this case, we also want the soft scalar mass

matrices diagonal but not proportional to the unit matrix, due to possible different D term

contributions. Since the general case it is difficult to handle we consider the case where

M2
f̃ 1

− M2
f̃ 2

is small and M2
f̃ 1

− M2
f̃ 3

> 0. In order to estimate the flavour changing

processes we need to take into account the effects from renormalization group equations

(RGE’s) and then at the electroweak scale make the transformation to the basis where

the fermions are diagonal. Here we consider the case of leptons, since we are interested

in determining δl
ij and in particular δl

12 which is the most constrained parameter due to

B(µ → e γ).
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We make an estimation of the contributions from the renormalization β functions in

this case, such that at the scale where the dominant right handed neutrino it is decoupled

we can write the soft masses as

M2
L̃ ij

(MY ) ≈ M2
L̃ ij

(MX) − 1

16π2
ln

(

MX

MY

)(

β
(1)

M2

L̃ ij

)

(10.22)

for MX = MG or MP, GUT or Planck scales respectively, and for MY = MRR 3 in this case

and considering just one loop corrections. The β functions of M2
L̃ ij

, from MX to MRR 3

receive the contributions from the MSSM particles plus the contribution from right-handed

neutrinos. At M3 we then run from that scale to the electroweak symmetry breaking scale

with the appropriate β function and matter content. In the case of SNRHD scenario and

the form of the Yukawa matrices that we have considered in section 9 we can make the

following approximations for the β functions’:12

(

β
(1)

M2

L̃ ii

)MSSM

≈ 2

[

(m2
M2

L̃ ij

+m2
H̃d

)
(

|Y2i|2 + |Y3i|2
)

+m2
ẽ2

(1 + a2)(
∣

∣Y2i|2 + r2
ẽ23

|Y3i|2
)

]

−

− 6g2
2 |m2|2 −

6

5
g2
1 |m1|2 −

3

5
g2
1S

(

β
(1)

M2

L̃ ij

)MSSM

≈ (2m2
H̃d

+ m2
L̃ i

+ m2
L̃ j

)
(

Y e∗
2i Y e∗

2j + Y e∗
3i Y e∗

3j

)

+

+ 2m2
ẽ2

(1 + a2)
(

Y e∗
2i Y e∗

2j + r2
ẽ23

Y e∗
3i Y e∗

3j

)

, (10.23)

where we have assumed that the trilinear terms can be written as Af
ij = aY f

ij M
2
ẽ , and M2

ẽ

is not necessarily diagonal. The parameter S, defined as S = m2
H̃u

−m2
H̃d

+ Tr[M2
Q̃
−M2

L̃
−

2M2
ũ + M2

d̃
+ M2

ẽ ], does not generate big contributions as long the masses involved remain

somewhat degenerate. The β functions generated by the dominant right-handed neutrino

can be approximated by

(

β
(1)

M2

L̃ ij

)νM3

≈ 2Y ν∗
3i Y ν

3j

[

m2
L̃3

+ m2
ν̃3(1 + b2) + m2

H̃u

]

. (10.24)

From MX = M3 to MY = MS — the supersymmetry breaking scale —, we consider

(β
(1)

M2

L̃ ij

)MSSM . For this estimation we ignore the effect from MS down to the electroweak

scale. At this scale we then transform the renormalized M2
L̃

in the basis where the charged

leptons are diagonal. Since there is a large mixing angle (seL

23 ) in the left sector of Y e we are

interested here only in estimating (M2
L̃
)LL. We can use the parameterization of appendix A

in order to make this transformation, i.e.

Y f
diag = V f†

L Y fV f
R , (M2

L̃
)′LL = V f†

L M2
L̃
V f

L , (10.25)

for V f
L,R as parameterized in eq. (A.1), with the β phases as follow

{βeL

1 , βeL

2 , βeL

3 } = {φe
X23

, 0, 0} , φe
X23

= βeL

1 − βeL

2 . (10.26)

12For the MSSM see for example [27], when including right handed neutrinos, see for example [28].
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Using these approximations, we obtain the following results

(M2
L̃
)′12 = seL

12 (ceL

23 m2
L̃ 22

− m2
L̃ 11

) + (ceL

12 )2e−iβ3L ×

×
(

ceL

23 e−iβ2Lm2
L̃ 12

− 2t12c
eL

23 seL

23eiβ3LRe{m2
L̃ 23

e−iχ} − seL23e
−iβ1Lm2

L̃ 13

)

,

(m2
L̃
)′13 = ceL

23seL

23seL

12 eiβ3L(m2
L̃ 22

− m2
L̃ 33

) + ceL

12 ceL

23 ×

×
((

e−iχceL

23 t12m
2
L̃ 23

− eiχt12t23s
eL

23β∗
m2

L̃ 23

)

+ t23e
iχm2

L̃ 12
+ m2

L̃ 13

)

,

(m2
L̃
)′23 = ceL

23seL

23 eiβ3L

(

m2
L̃ 22

− m2
L̃ 33

)

+

+ eiβ3LceL

12

(

(ceL

23 )2e−iχm2
L̃ 23

− (seL

23 )2eiχβ∗
m2

L̃ 23

)

,

(m2
L̃
)′11 = (seL

12 )2
(

(ceL

23 )2m2
L̃ 22

+ (seL

23 )2m2
L̃ 33

)

(m2
L̃
)′22 = (ceL

12 )2
(

(ceL

23 )2m2
L̃ 22

+ (seL

23 )2m2
L̃ 33

)

− (ceL

12 )2ceL

23 seL

232Re{m2
L̃ 23

e−iχ}

(m2
L̃
)′33 = (ceL

13 )2
(

(seL

23 )2m2
L̃ 22

+ (ceL

23 )2m2
L̃ 33

)

+ ceL

23seL

23

(

2Re{m2
L̃ 23

e−iχ}
)

(10.27)

here the soft masses m2
L̃ij

are the soft masses at MS, renormalized from MX = MG,MP

down to M3 with the appropriate contributions from the dominant right handed neutrino,

eq. (10.22), and eq. (10.23)–eq. (10.24) and then from M3 to MS with the appropriate

β(MSSM) functions. Thus we began with a diagonal matrix M2
L̃

at MX , then the RGE

effects up to the scale where M3 is decoupled generate a non diagonal matrix which re-

ceives more RGE contributions from M3 to MS . At electroweak scale we transformed to

the basis where charged leptons are diagonal. The mixing angles in this sector can be

approximated as

seL

12 =
|(ae

12 − t32a
e
13)|

|(ae
22 − ae

32a
e
23)|εpe

12

, seL

13 =
ae

13

ae
33ε

pe
13

, seL

23 =
ae

23

ae
33

. (10.28)

The powers pe
ij for the different solutions presented now correspond to pe

12 = 2/3, 14/3,

pe
13 = 29/12, 71/12 for Fits 2 and 3 respectively. So in this case we see that we need a big

suppression of the element (m2
l̃ L

)′12 in order to be in agreement with the observed bound

on µ → eγ. In the present example the suppression it is related to a bound on (m2
L̃1
−m2

L̃2
)

and a relative big set of soft masses. The results of these estimations are presented in

table 17.

As we can see from the results of table 17 the estimation of |(δl
LL)Eij | is less dependent

on the relation among the original soft mass terms m2
L̃i

than on the value taken for the

average s-lepton mass, which indeed needs to be large. Here we note that this is just an

estimation on the conditions that B(µ → e γ) imposes on the soft masses, but with out

fully checking whether or not appropriate masses for all the MSSM parameters can be

obtained. In the following we consider a numerical investigation in the minimal sugra case.

10.4.2 Numerical Investigation of B(µ → e γ) in minimal sugra

The presence of a right-handed neutrino fields leads to RG lepton flavour violation. Since

the masses of the right handed neutrinos are so light for the GST solutions, fits 1-3, we

attempted a numerical analysis for all of the fits of section 9 using the same modified

version of SOFTSUSY [41] as used in [37].
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Estimation of δij for the Fit.3 of Section 9.

Paramter Ex. I Ex. II Ex. III

mL̃1[GeV] 520 520 520

mL̃2[GeV] 530 530 570

mL̃3[GeV] 500 500 230

mẽ1[GeV] 520 520 520

mẽ2[GeV] 530 530 550

mẽ3[GeV] 500 300 300

M1[GeV] 500 500 500

M2[GeV] 2M1 700 700

MHd
[GeV] 510 510 510

MHu [GeV] 510 510 510

MS 1000 1000 1000

ml̃ 514 486 456

x = m2
γ̃/m2

l̃
0.3

|(δl
LL)E12| 4.3 × 10−3 5.6 × 10−3 1.4 × 10−3

|(δl
LL)B12| O(10−1) O(10−2)

|(δl
LL)E13| 1.7 × 10−3 1.8 × 10−3 1.9 × 10−2

|(δl
LL)E23| 5.7 × 10−2 6.4 × 10−2 6.3 × 10−1

|(δl
LL)B23| O(10−1) O(10−1)

Table 17: Estimation of |δl
ij |E in the fit 3 presented for the non minimal sugra example and its

comparison to the observed bounds |δl
ij |E [28]–[29].

In order to get a good handle, we have embedded the flavour model fits into a string-

inspired mSUGRA type scenario, with no D-term contribution to the scalar masses. This

scenario was chosen because it is expected to be the embedding with the lowest flavour

violation. In the scenario, A0,m
2
0,M1/2 are all related to a gravitino mass m3/2.

As n1 was only constrained to be between −σ/2 and 0, we allow it to vary within this

range. We define the model at the GUT scale as:

m2
0 =

1

4
m2

3/2 , A0 =

√

3

4
m3/2 , M1/2 =

√

3

4
m3/2 . (10.29)

This setup of the soft parameters corresponds to benchmark point A in [37]. The results

are as follows, for Fit 1 the code being used can not generate any low energy data for this

fit so we do not find any safe B(µ → eγ) region using the conditions presented above. The

Fit 2 has BR(µ → eγ) <= 10−30 which is unattainably low, thus this fit is plausible within

the context of the minimal sugra conditions that have been specified. The smallness of

the branching ratio for fit 2 comes about because with no RG running, in mSUGRA this

rate would be exactly zero. The RG flavour violation will come from terms proportional

to Y ν†Y ν , whose elements are tiny (the largest is O(10−14)).

The Fit 3 generates a tachyonic s-electron for the full (m3/2, n1) range. This is not to

say that this fit will always have a tachyonic s-electron in other, less trivial embeddings.
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Figure 1: BR(µ → eγ) for fit 4, with 〈Σ〉 = O(MG). The solid points are below the experimental

limit of 1.1 · 10−11, and the hollow points are above.

Figure 2: BR(µ → eγ) for fit 4, with 〈Σ〉 = O(MPl). The solid points are below the experimental

limit of 1.1 · 10−11, and the hollow points are above.

Figure 3: BR(µ → eγ) for fit 5, with 〈Σ〉 = O(MG). The solid points are below the experimental

limit of 1.1 · 10−11, and the hollow points are above.

Fits 4 and 5 produce regions below and above the experimental limits on B(µ → eγ), the

graphs for these fits appear in tables 1–4.
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Figure 4: BR(µ → eγ) for fit 5, with 〈Σ〉 = O(MPl). The solid points are below the experimental

limit of 1.1 · 10−11, and the hollow points are above.

11. Conclusions

In summary, we began our analysis by reviewing the Green-Schwartz (GS) conditions for

anomaly cancellation for theories based on a U(1) family symmetry. We then used these

conditions to fix the charges of all the quark, lepton and Higgs fields and studied possibili-

ties where the Higgs mass µ term is either present or absent in the original superpotential.

The solutions which we constructed do not necessarily require an underlying Grand Uni-

fied Theory (GUT) but may be consistent with unification because of the GS conditions.

Regardless of the presence of an explicit unified gauge group, the explicit solutions can

produce matrices of the form that are identical to those that would be expected in an

SU(5) case or Pati-Salam unified theory, for example.

The flavour structure of the resulting Yukawa matrices is controlled by the charges of

the quarks and leptons under the U(1) family symmetry gauge group. We have determined

the charges which are consistent with anomaly cancellation, and studied cases which can

reproduce quark Yukawa matrices satisfying the Gatto-Sartori-Tonin (GST) relation, as

well as other cases which do not satisfy the GST relation. We find the GST relation

to be an appealing description of the value of the element Vus, and the GST relation

provides a useful criterion for classifying flavour models. In our view, having the Cabibbo

angle emerging automatically from a flavour model should have a similar status to gauge

coupling unification in a high scale model. Having classified the solutions in terms of

the GST condition, we then further classify the solutions according to which of them can

produce the observed mixings in the lepton sector, and those that are consistent with a

sub-class of solutions based on the SRHND or sequential dominance scenario with the

further condition that the charges of the lepton doublets for the second and third family

are equal, l2 = l3. We find that the GST solutions combined with SRHND results in highly

fractional charges. On the other hand non-GST solutions with SRHND results in simpler

charges, and we have therefore studied both sorts of examples.

We have presented three numerical examples of solutions satisfying the GST relation

and two examples of non-GST solutions in order to compare how well these solutions fit

the experimental information while maintaining O(1) coefficients. For the GST solutions,
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one of these examples corresponds to a model that can be thought of as coming from

an underlying SU(5) and for which a µ term is allowed in the superpotential. It is well

known that in this case, given the relation Y e = Y d T , there should be a Clebsch-Gordan

coefficient different in the charged lepton (2, 3) sector and in the (2, 3) d-quark sector in

order to produce appropriate mixings in the context of the U(1) flavour symmetry and

the GUT theory. Two other GST examples are presented for which the µ term is not

allowed and which are not consistent with an underlying SU(5), or other GUT theory.

In these cases Y e 6= (Y d)T but it is possible to maintain the relation mτ ≈ mb and in

one of them just the O(1) coefficients of the underlying U(1) theory can account for the

appropriate mixings in the charged lepton and d-quark sector. The non-GST cases also

give a good description of masses and mixings, although in this case we need to rely on

further coefficients, possible Clebsch-Gordan coefficients from an underlying GUT, in order

to achieve a good phenomenological description.

For the above examples we have provided detailed numerical fits of the O(1) coefficients

required to reproduce the observed masses and mixings in both quark and lepton sectors.

The purpose of performing such fits is to compare how well the different models can fit the

data, and to try to determine quantitatively the best possible model corresponding to the

best possible fit. Although in the cases just mentioned the solutions which fit the data best

are the solutions consistent with an underlying SU(5) theory, the other two fits are quite

plausible and represent interesting possibilities which cannot be excluded. Since all the

models constructed have good agreement with the fermion masses and mixings, we clearly

need further criteria in order to discriminate between the different classes of U(1) family

symmetry models.

One may ask the more general question whether family symmetries based on abelian

or non-abelian gauge groups are generically preferred? In order to address this question,

we have extended the fit to include a generic symmetric form of quark and lepton mass

matrices that can be understood in the context of a theory based on SU(3) family symmetry.

We have found that overall the generic SU(3) family symmetry produces Yukawa matrices

which tend to fit the data better, although the effect is not decisive, and one cannot draw

a strong conclusion based solely on fits to fermion masses and mixings (or the way they

can be reproduced). We have therefore enumerated some other possible criteria that are

important in order to further discriminate among different flavour theories. Including the

effects from the supersymmetric sector provides an additional way to discriminate among

different theories based on their different predictions for soft masses and the resulting

flavour changing processes and CP violation. We have presented two frameworks in which

these processes can be studied in the context of flavour theories. The first is a non-

minimal sugra scenario where family symmetries may render the Kähler metric diagonal

at the flavour symmetry breaking scale, with off-diagonal elements arising only due to RG

contributions and the non-degeneracy of soft masses. The second framework is a minimal

sugra scenario for which a numerical exploration of µ → e γ was performed. The results

of this analysis shows marked differences between the different models presented. Of the

GST cases only one survives the test of B(µ → e γ) while for all of the non-GST cases

presented there exist regions compatible with the B(µ → e γ) experimental limit.
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In conclusion, at the present time, phenomenological analyses provide some guidance

about what family symmetry approaches may be valid, but do not yet allow one to draw

any firm conclusion. More specific assumptions or data in the supersymmetric sector are

needed in order to further discriminate between classes of models based on different family

symmetry, unification or GST criteria.
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A. Conventions for the Yukawa diagonalization matrices

We diagonalize the Yukawa matrices, Y f , with the unitary matrices V f
L and V f

R such that

Y f
Diag = V f†

L Y fV f
R . V f can be parameterized as

V f† =







eiαf
1 0 0

0 eiαf
2 0

0 0 eiαf
3






RfT

12 RfT
13







1 0 0

0 eiβf
3 0

0 0 1






RfT

23







1 0 0

0 eiβf
2 0

0 0 eiβf
1






, (A.1)

where a plane Rf rotation has the form:

Rf
23 =







1 0 0

0 cf
23 −sf

23

0 sf
23 cf

23






. (A.2)

In this notation, the CKM matrix is V = V u†
L V d

L .

B. Comparison to experimental information

The experimental information determining VCKM, usually put in terms of the Wolfenstein

parameters A, λ, ρ and η, is extracted mainly from semileptonic decays of B mesons, CP

violation in the K system, B0
d,s − B̄0

d,s oscillations, and CP asymmetries in various B de-

cays. We use a fit, based in a bayesian approach (see for example [19] and [40]), of the the

parameters A, λ, ρ and η including all the available information. Once we have done this,

we compare the predictions of the mass textures with the fitted parameters because these

include in a statistical way the experimental information from all the experiments consid-

ered. In the limit where we neglect all supersymmetric contributions to these observables,

the fitted values for ρ̄ and η̄ are

ρ̄ = 0.199+0.053
−0.049 , η̄ = 0.328+0.037

−0.036 . (B.1)
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Parameter Exp. value Value at MX
Vub

Vcb
(9.16 ± 0.67) × 10−2

Vtd

Vts
0.1989 ± 0.0093

Vus 0.224 ± 0.0036

Im{J} (2.88 ± 0.4) × 10−5 (1.4 ± 0.5) × 10−5

mu

mc
(1.9 ± 0.19) × 10−3

mc

mt
(7.5 ± 1.7) × 10−3 (2.6 ± 1.8) × 10−3

md

ms
(5.2 ± 0.35) × 10−2

ms

mb
(6.4 ± 2.3) × 10−2 (4.5 ± 2.4) × 10−2

Table 18: Experimental values used for the fit of numerical coefficients in the quark Yukawa

matrices.

In order to compare to the VCKM prediction, as given by the U(1) symmetries, we need to

choose four elements, or combinations of them, we choose

|Vub|
|Vcb|

,
|Vtd|
|Vts|

, |Vus| , Im{J} , (B.2)

where J is the Jarlskog invariant. We choose these parameters because they can be put

neatly in terms of the Wolfenstein parameters

|Vub|
|Vcb|

=
λ

cλ

√

ρ̄2 + η̄2 ,
|Vtd|
|Vts|

=
λ

cλ

√

(cλ − ρ̄)2 + η̄2 , |Vus| = λ ,

Im{J} = A2λ6η̄ . (B.3)

To include the information of the quark masses we use

mu

mc
,

mc

mt
,

md

ms
,

ms

mb
. (B.4)

The ratios mu

mc
and md

ms
can be determined from the best measured ratios of the following

mass ratios and the Q parameter, which is determined accurately from chiral perturbation

theory;
mu

md
,

mc

ms
, Q =

ms/md
√

1 − (mu

md
)2

. (B.5)

We note here that a change in ms with respect to previous similar fits [19] has an impact in

the coefficients determined for the SU(3) symmetry, although it is consistent with previous

determinations if we consider the errors involved. We have used here mc/ms = 15.5 ± 3.7

in contrast to mc/ms = 9.5 ± 1.7 as used in [19]. We put in table 18 the experimental

values of the parameters that we use to determine the coefficients of the Yukawa texture.

From equations eq. (B.2) and eq. (B.4) we see that we can fit only eight parameters of

both of the Yukawa matrices as given by the U(1) symmetries, but we will see that in most

cases that is sufficient in order to account for the viability of a given ansatz or symmetry

for the matrices. We also need to take into account the RGE effects in going from the

electroweak scale to the scale at which the U(1) symmetry breaks. We assume first that
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Parameter Exp. value

tan θ23 1.07 ± 0.37

tan θ13 0.21 ± 0.1 (u.b)

tan θ12 0.65 ± 0.12

mν3
0.05 ± 0.01

mν2

mν3

0.19 ± 0.05

Table 19: Experimental values [43] used for the fit of numerical coefficients in the neutrino Yukawa

matrix. For tan θ13 we have fitted using the upper bound.

this is the GUT scale, so in order to determine the values of the parameters defining the

U(1) symmetry (analogously for the SU(3) case) we take the values of the parameters

appearing in eqs. (B.2)–(B.4) at the GUT scale. One of the reasons for using mass ratios

instead of just masses is because the RGE effects on the mass ratios has less impact than

for the masses. This fit of the parameters defining the U(1) symmetry is performed with

the aid of the MINUIT package adapted for root [42]. In this way we are able to compare

how well a symmetry is fitted to the experimental information, and compare among the

fits for different symmetries.

We do a completely analogous analysis in the neutrino sector, using the following

observables

tan θ23 , tan θ13 , tan θ12 , mν3
,

mν2

mν3

(B.6)

and their experimental values as appear in table 19

B.1 Evaluation of observables with fitted parameters

In this section we put the evaluation, at the scale MX , of the experimental inputs using

the fitted parameters in order to compare with table 18.
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