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1. Introduction

In the last few years, there has been a renewed interest in two-dimensional physics, spurred

by advances in our understanding of the c = 1 matrix model (for reviews, see [1 – 3]),

particularly regarding the role of D-branes [4]. This recent work has revisited several two-

dimensional examples of the early 1990’s, which are largely related to the bosonic string,

and also explored new physical systems associated with (worldsheet) supersymmetric string

theories. These systems have contributed significantly to the discussion by providing new,
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non-perturbatively stable realizations of open/closed string duality. In addition these the-

ories also have a richer low-energy spectrum than the bosonic string, including fermions

and fluxes [5 – 7].

Most effort has been devoted to two types of time-independent backgrounds: “flat

space” and black holes. The “flat space” backgrounds are well-described by worldsheet

methods. They have a trivial target space metric and a spacelike linear dilaton. The linear

dilaton indicates that there is an asymptotic region which is weakly coupled, and one which

is strongly coupled. Typically the strong coupling region is classically forbidden due to a

large potential. The observable processes of the theory involve scattering of quanta off of

this potential. There has been a great deal of success in describing string theory in these

backgrounds with matrix models [5, 6].

On the other hand, the status of two-dimensional black holes has remained somewhat

murky. There exists a solution to bosonic string theory, wherein the worldsheet dynamics

are described by a SL(2, R)/U(1) coset model [8]. This solution is known variably as

the D = 2 euclidean black hole, the cigar geometry, or Witten’s black hole. In the limit

k → ∞, where k is the level of the worldsheet current algebra, the worldsheet theory is

weakly coupled and one can perform a semi-classical analysis. The large level limit of the

coset model is also a solution to the tree-level two-dimensional beta function equations at

lowest order in α′. We will be concerned with Witten’s black hole in the limit where the

lowest order beta-function equations are valid. In addition, there are a handful of other

two-dimensional black hole solutions which are not known to have a worldsheet description.

In this paper we will focus on one such object, the 0A black hole with constant RR flux,

a solution to the genus zero beta function equations of type 0A string theory to leading

order in α′ [9].

The primary goal of this paper is a study of the thermodynamics of the 0A black hole

solution. A number of attempts have been made in this direction [9 – 12], with conflicting

results. The difficulty lies in the lack of a natural scheme for removing infra-red divergences

from the euclidean action for the solution. A common approach, background subtraction,

was used to study the thermodynamics of the Witten black hole in [13 – 15] and the 0A black

hole in [11, 12]. We will use a different technique, based on the Hamilton-Jacobi method

for determining boundary counterterms [16 – 20]. This method is intrinsic to the spacetime;

it does not require a reference spacetime like background subtraction. The summary of

the technique is as follows. The action is regulated by truncating the spacetime at some

large coordinate distance from the black hole horizon. This effectively adds a ‘regulating

boundary’ to the spacetime. We postulate an additional term in the action, which is

supported only on the regulating boundary. This additional term must be intrinsic to the

regulating boundary so that the bulk equations of motion go unmodified. The form of this

additional “counterterm” lagrangian is determined using three criteria. It should comprise

local terms intrinsic to the boundary, it should have the same symmetries as the original

action, and it should solve the Hamilton-Jacobi equation obtained from the hamiltonian

constraint for the action. The resulting counterterm action characterizes the infra-red

divergences of the on-shell action, which can then be removed to produce a renormalized

action. Once we have the renormalized action, standard techniques allow us to calculate the
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full thermodynamics of the black hole. We verify this approach by confirming the results

of [13], as well as previous calculations of the 0A black hole entropy [10 – 12]. However, the

mass we obtain for the 0A black hole is a new result. We confirm our result by showing

that it satisfies the first law of black hole thermodynamics. To the best of our knowledge,

this check has not been performed in the other analyses of these spacetimes.

As stated previously, the study of two-dimesional black holes in string theory has not

been as fruitful as that of the two-dimensional flat space models. With a few exceptions

(most notably the coset model description of Witten’s black hole), one does not have

worldsheet descriptions of these objects. Although there have been a number of attempts

at providing a matrix model for a two-dimensional black hole [21, 22], none of the proposals

have enjoyed the success of the c = 1 model or its supersymmetric generalizations. In fact,

doubts have been expressed as to whether black holes can be formed in two-dimensional

string theory [23, 24], or even exist as eternal solutions. These discussions are outside the

scope of this paper, and we will not comment on them here.

The structure of this paper is as follows. In section 2, we will summarize the solutions

that we will be studying throughout the paper. Then, in section 3, we calculate the on-shell

action for each solution. In section 4, we will discuss how the variational principle used

to calculate the on-shell action determines the thermodynamic ensemble being studied. In

section 5 we outline our technique for deriving boundary counterterms and find a universal

form for the counterterms for both of our examples. Section 6 contains the actual thermo-

dynamic calculations and verification of the first law. Finally we close with some discussion

in section 7.

2. Black holes in two dimensions

In this section we will summarize the derivation and properties of two black hole solutions.

First we will construct the k → ∞ black hole solution of [8] in two dimensional dilaton

gravity. We will then derive a similar solution in two dimensional type 0A string theory

with constant R-R flux. The explicit construction of these solutions is intended, in part,

to clarify the relation between our conventions and others in the literature.

2.1 Witten’s black hole

The lowest order β-functions for the two dimensional bosonic string can be derived from

an effective space-time action of the form:

I = − 1

2κ2

∫

M
d2x

√
g e−2φ

(

c + R + 4(∇φ)2 − (∇T )2 − V (T )
)

−

− 1

κ2

∫

∂M
dx

√

g̃ e−2φK . (2.1)

In this action c = 16/α′ is related to the “excess” central charge, and T is the tachyon.

Note that we have included the usual Gibbons-Hawking boundary term [25] in the action,

which is required for the action to have a well defined variational principle.
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We are interested in solutions of this theory where the tachyon vanishes, in which case

the equations of motion are:

c + R + 4∇2φ − 4(∇φ)2 = 0 (2.2)

Rµν + 2∇µ∇νφ = 0 . (2.3)

The linear dilaton, black hole solution [8] of these equations can be written:

ds2 = −l(r) dt2 +
1

l(r)
dr2 (2.4)

φ = −1

2

√
c (r − r

H
) + φH . (2.5)

In this solution r
H

denotes the location of the horizon, φH is the value of the dilaton at

the horizon, and the function l(r) is:

l(r) = 1 − e−
√

c (r−r
H

) (2.6)

An asymptotic observer measures a temperature for the black hole given by:

T =
1

4π
l′(r

H
) =

√
c

4π
. (2.7)

The thermodynamics of this black hole is well-understood [13 – 15]. Therefore, it provides

a nice example for illustrating our approach before addressing the 0A black hole, which we

now review.

2.2 Black hole solutions of type 0A supergravity

The effective low energy action of type 0A string theory in two dimensions is given by [5]:

I = −
∫

M
d2x

√
g

[

1

2κ2
e−2φ

(

c + R + 4(∇φ)2 − a(∇T )2 +
2a

α′ T
2 + . . .

)

−

−2πα′

4

(

e−2T |F (−)|2 + e2T |F (+)|2
)

+ . . .

]

−

− 1

κ2

∫

∂M
dx

√

g̃ e−2φK . (2.8)

This action describes the metric, dilaton, and tachyon, as well as two Ramond-Ramond

gauge fields. In the two-dimensional theory c is given by 8/α′. We are once again interested

in solutions with vanishing tachyon. Consistently setting the tachyon to zero requires that

we cancel terms linear in T in the action (2.8). This means that the RR field strengths

must be equal. In this case the action reduces to:

I =−
∫

M
d2x

√
g

[

1

2κ2
e−2φ

(

8

α′ + R + 4(∇φ)2
)

− 1

2
(2πα′)FµνFµν

]

− 1

κ2

∫

∂M
dx

√

g̃e−2φK .

(2.9)
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In the following we will set 2κ2 = 1. Note that, because the two RR field strengths must

have the same flux, we have written our action in terms of a single field strength with

a non-canonical coefficient. Once we begin to analyze the black hole thermodynamics it

will be important to remember that this field strength actually represents two canonically

normalized field strengths with equal flux.

It is straightforward to vary the action (2.8) and obtain the following equations of

motion for the gauge field and the dilaton:

∇µFµν = 0 (2.10)

c + R + 4∇2φ − 4 (∇φ)2 = 0 . (2.11)

Varying the action with respect to the metric yields the Einstein equations:

Gµν = Tµν . (2.12)

In two dimensions the Einstein tensor vanishes identically due to the identity Rµν = 1
2 gµνR,

so the Einstein equations become Tµν = 0. The stress tensor is given by:

Tµν =
1

2
gµν e−2φ

(

c + 4∇2φ − 4 (∇φ)2
)

− 2e−2φ∇µ∇νφ +

+(2πα′)

(

F λ
µ Fνλ − 1

4
gµν F λρFλρ

)

. (2.13)

We now look for a solution of these equations that corresponds to a black hole in a linear

dilaton background, with constant R-R flux. We choose the r → ∞ limit to correspond

to asymptotically flat spacetime, and require that the function gtt(r) vanishes at a horizon

r = r
H

. This leads us to the following solution:

ds2 = −l(r) dt2 +
1

l(r)
dr2

Fµν =
q

2πα′ εµν

φ(r) = −1

2

√
c(r − r

H
) + φH . (2.14)

The function l(r) appearing in the metric is given by:

l(r) = 1 − e−
√

c (r−r
H

) − q2

2πα′
1√
c
(r − r

H
)e−

√
c(r−r

H
)+2φH . (2.15)

In the q → 0 limit this solution takes the same form as the black hole of the previous

section.

The horizon of the black hole solution (2.14) is located at r = r
H

. The black hole

temperature is given by:

T =
1

4π
l′(r

H
) . (2.16)

In terms of c, q, and φ
H

this is:

4πT =
√

c − q2

2πα′
1√
c

e2φH . (2.17)
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The T → 0 limit sets a maximum value for the electric charge . In terms of c and the value

of the dilaton at the horizon this is:

q 2
max = 2πα′ c e−2φH . (2.18)

Alternately, we can express this in terms of the string coupling at the horizon as qmax =

16π g−2
H . This upper limit represents the extremal black hole, where both l(r) and l′(r)

vanish at the horizon.

The field strength is associated with a U(1) gauge field Aµ. We partially fix the gauge

by setting Ar = 0. The remaining component At is then determined by Frt = ∂rAt, which

gives:

At(r) =
q

2πα′ r + a (2.19)

where a is an undetermined constant. There is a residual gauge freedom associated with

gauge transformations Aµ → Aµ+∂µΛ(t) which preserves the original gauge choice Ar = 0.

We will eliminate this remaining invariance later on and completely fix the gauge.

Finally, we should mention that in several references [9 – 11] the function l(r) appearing

in the metric is written (after suitable rescalings) in terms of a ‘mass parameter’ m as:

l(r) = 1 − 4

c
e−

√
c r

(

m +

√
c

4

q2

2πα′ r

)

. (2.20)

For the sake of comparison, this is related to our expression (2.15) by:

4
m√
c

=
√

c e−2φH − q2

2πα′ r
H

. (2.21)

3. The partition function and on-shell actions

In this section we briefly review the general procedure for obtaining the thermodynamic

partition function in terms of the on-shell gravitational action. We then calculate the on-

shell action for each of the solutions discussed in section 2. The variational procedure used

to calculate the on-shell action will lead us to a discussion of the relevant thermodynamic

ensembles in the following section.

3.1 The partition function

In the usual approach to black hole thermodynamics the partition function is given by a

path integral weighted by the exponential of the euclidean action. We assume that the

path integral is dominated by solutions close to the classical field configurations, so that

the partition function can be approximated as

Z = exp (−IE) . (3.1)

The euclidean action appearing in (3.1) is the on-shell action, evaluated for euclideanized

field configurations solving the bulk equations of motion. In practice we will evaluate the

partition function and the relevant thermodynamic potentials in terms of the euclidean

– 6 –
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action, but present them in terms of quantities which have been Wick rotated back to

lorentzian signature. This will not lead to any confusion, as long as we remember to

impose the appropriate periodicity and regularity conditions on the fields in the action.

In the following two sub-sections we will evaluate the on-shell action for the black

hole solutions presented in section 2. In higher dimensions it is well known that such

gravitational actions contain infra-red divergences which must be addressed in order to

obtain a sensible thermodynamics [25]. The issue is more subtle in two dimensions, and

will be discussed in detail in section 5. For now, we avoid this issue simply by regulating

calculations of the action with a ‘wall’ placed at r = r
W

. The boundary of the regulated

spacetime is the one-dimensional hypersurface defined by r = r
W

. Both solutions we

consider have metrics with the same form:

ds2 = −l(r) dt2 +
1

l(r)
dr2 (3.2)

so the unit normal that defines the boundary at r = r
W

is given in both cases by:

nµ = δµr
1

√

l(r)
nµ = δµr

√

l(r) . (3.3)

The trace of the extrinsic curvature, which appears in the action, is given by the covariant

divergence of this normal:

K = ∇µnµ =
l′(r)

2
√

l(r)
. (3.4)

The induced metric on the boundary consists of the single component g̃tt = gtt, so the

metric factor in the measure on the boundary is simply
√

g̃ =
√

−g̃tt(rW
).

3.2 The regulated action for Witten’s black hole

When the tachyon is set to zero the action (2.1) reduces to:

I = −
∫

M
d2x

√
ge−2φ

(

c + R + 4(∇φ)2
)

− 2

∫

∂M
dx

√

g̃e−2φK . (3.5)

Using the dilaton equation of motion (2.2) we can re-write the bulk integrand, which gives:

I = −
∫

M
d2x

√
g e−2φ

(

8(∇φ)2 − 4∇2φ
)

− 2

∫

∂M
dx

√

g̃e−2φK . (3.6)

Integration by parts cancels the bulk terms, and leaves a boundary term:

I =

∫

∂M
dx

√

g̃e−2φ (4nµ∇µφ − 2K) . (3.7)

Evaluating the integrand for the linear dilaton black hole gives:
√

g̃ e−2φ (4nµ∇µφ − 2K) = −e−2φ
(

2
√

cl(r) + l′(r)
)

. (3.8)

Using the expression (2.6) for the function l(r) appearing in the metric, the derivative in

the last term is simply:

l′(r) =
√

c (1 − l(r)) . (3.9)

We are interested in the euclidean action, in which case the imaginary time τ = i t has

periodicity β = T−1. Evaluating these boundary terms at the wall r = r
W

gives an action:

IE = −β
√

ce−2φ(r
W

) (1 + l(r
W

)) . (3.10)
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3.3 The regulated action for the 0A black hole

The euclidean action for the 0A black hole of section 2.2 can be evaluated in the same

manner as in the previous section. It differs only in the definition (2.15) of the function

l(r) appearing in the metric, and the presence of the RR field strength, which does not

couple to the dilaton. Thus, the form of the on-shell action is simply the integral of (3.8)

over the boundary, plus the RR term:

IRR =
1

2
(2πα′)

∫

M
d2x

√
gFµνFµν . (3.11)

We begin by rewriting the integrand and integrating by parts:

FµνFµν = 2Fµν ∇µAν = 2∇µ (FµνAν) − 2Aν∇µFµν . (3.12)

Thus, the contribution to the action (3.11) becomes:

IRR = (2πα′)

∫

∂M
dx

√

g̃nµ Aν Fµν − (2πα′)

∫

M
d2x

√
gAν∇µFµν . (3.13)

The bulk term vanishes by the equations of motion, except for at r = r
H

where the gauge

field is not regular. However, the euclidean path integral should only involve fields with

appropriate periodicities and regularity at the origin. In our choice of gauge the gauge

field (2.19) is of the form:

Aµ ∼ ∂µτ (3.14)

where τ , the imaginary time, is an angular coordinate about the ‘axis’ r = r
H

. To obtain

a regular gauge field at the origin of this coordinate system, where τ is undefined, we use

the remaining gauge freedom to set the constant a appearing in (2.19) so that the electric

potential vanishes at the horizon:

At(r) =
q

2πα′ (r − r
H

) . (3.15)

We can now evaluate the RR contribution to the on-shell action. The bulk term vanishes

everywhere on-shell, leaving only a boundary term:

IRR = −β
q2

2πα′ (r
W

− r
H

) . (3.16)

Adding this contribution to (3.8) yields:

IE = −βe−2φ(r
W

)
(

2
√

cl(r
W

) + l′(r
W

)
)

− β
q2

2πα′ (r
W

− r
H

) . (3.17)

Rewriting the derivative of l(r) using (2.15) gives the on-shell euclidean action for the 0A

black hole:

IE = −β
√

ce−2φ(r
W

) (1 + l(r
W

)) + β
q2

2πα′√c
− βqΦ . (3.18)

In the last term we define Φ, the electrostatic potential between the wall and the horizon, as:

Φ ≡ At(rW
) − At(rH

) . (3.19)

– 8 –
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3.4 The wall and divergences

Now that we have obtained the regulated euclidean actions for the two black hole solutions

of section 2 we can clearly see the effect of removing the ‘wall’ located at r = r
W

. The

functions l(r) appearing in both actions asymptote to 1 as r
W

→ ∞, which was simply our

requirement that far away from the black hole we recover the usual Minkowski metric:

lim
r
W

→∞
gµν = ηµν . (3.20)

In the same limit the string coupling goes to zero, which means that the exponential dilaton

factor e−2φ(r
W

) diverges. In section 5 we will discuss these divergences and our approach

to removing them, which will lead to a partition function with sensible thermodynamics.

But first we turn to the nature of the partition function, and the relation between the

variational principle used to obtain the on-shell actions and the thermodynamic ensembles

these actions represent.

4. Black hole thermodynamics and the question of ensembles

In this section we show how the variational principle used to extremize the gravitational ac-

tion specifies the variables that the partition function depends on, and therefore determines

the particular thermodynamic ensemble we are studying. We introduce the appropriate

thermodynamic variables for each of the theories discussed in section 2 and the formulae

for determining relevant thermodynamic quantities.

4.1 On-shell actions as boundary functionals

The approximation (3.1) for the partition function comes from evaluating the contributions

to the path integral from field configurations ‘close’ to the solutions of the classical equations

of motion. In other words, if φcl is a solution of the classical equation of motion associated

with an action I[φ], then we assume that the path integral is dominated by fields φ = φcl+δφ

that represent small deviations from the classical solution. The action for such fields can

be expanded as:

I[φcl + δφ] = I[φcl] +
δI[φ]

δφ

∣

∣

∣

∣

φcl

δφ +
1

2

δ2I[φ]

δ2φ

∣

∣

∣

∣

φcl

δφ 2 + · · · . (4.1)

Since φcl solves the equations of motion, the linear term vanishes up to boundary terms

coming from integration by parts. For these terms to vanish we fix the value of φ at the

boundary by considering variations δφ which vanish there. Neglecting higher order terms

in the expansion (4.1), the on-shell action is approximately I[φcl].

Because (3.1) is interpreted as the thermodynamic partition function for the black hole

spacetime, the boundary conditions placed on the bulk fields determine the thermodynamic

ensemble [26]. This is because the on-shell action, and therefore the partition function, is

a function of the bulk fields evaluated at the boundary 1. Depending on the theory being

1In general, the on-shell action is a functional of the bulk fields evaluated at the boundary. The two

dimensional examples we are considering are somewhat simpler, because the bulk fields are independent of

the boundary coordinate t. Therefore, our on-shell actions are simply functions of the values that the bulk

fields take on the regulating surface r = r
W

.

– 9 –
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studied, the boundary value of a bulk field may be related either to a conserved charge, or

to a chemical potential associated with a conserved charge. An example of the former is the

dilaton, which is directly related to the dilaton charge, as described in the next subsection.

An example of the latter is the time component of the gauge field, which is related to the

electrostatic potential due to a conserved electric charge.

If fixing the bulk fields at the boundary corresponds to fixing conserved charges,

then (3.1) represents the partition function in the canonical ensemble. On the other hand,

if fixing bulk fields at the boundary corresponds to holding chemical potentials fixed, then

the partition function is calculated in the grand canonical ensemble. It is also possible, as

we will see in the case of the 0A black hole, that the partition function is calculated in

an ensemble which is canonical with respect to some variables, and grand canonical with

respect to others.

4.2 Witten’s black hole

For the solution in section 2.1, the value of the temperature is clear from the requirement

that the imaginary time coordinate has the appropriate periodicity at the horizon. The

other thermodynamic variable is the dilaton charge, which we denote by DW . In two

dimensions any function f(φ) of a scalar field leads to a conserved current:

jµ = εµν ∇νf(φ) . (4.2)

Hence, there are an infinite number of conserved charges to choose from. We follow the

usual convention [13] and choose the function f(φ) = exp(−2φ). This gives the square of

the inverse string coupling at the wall as the dilaton charge DW :

DW = e−2φ(r
W

) . (4.3)

We write the dilaton charge with a subscript ‘W ’ to indicate its dependence on the location

of the wall.

The variational principle used to obtain the equations of motion and the solution (2.4)

required that the metric and dilaton are fixed at the boundary of spacetime:

δgµν = δφ = 0 . (4.4)

Given the definition (4.3), this amounts to fixing the dilaton charge contained within the

wall. Furthermore, in the path integral we fix the periodicity in the imaginary time at

the horizon to be β, the inverse temperature. The conclusion is that we have computed

the partition function in the canonical ensemble, producing a function of the temperature

and the dilaton charge. Since we have evaluated the boundary terms at r = r
W

they are

properly expressed as functions of the blue-shifted temperature at the wall, TW . This is

given by the Tolman relationship [27]:

TW =
1

√

−g̃tt(rW
)
T . (4.5)
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The log of the partition function gives the Helmholtz free energy FW (TW ,DW ). The

subscript reminds us that this quantity is the free energy for the finite volume system

interior to the wall at r = r
W

. We may then use the usual definitions (see, for example [28])

to obtain the entropy and dilaton potential (the chemical potential associated with the

dilaton charge) of the system:

S = − ∂FW

∂TW

∣

∣

∣

∣

DW

ψW =
∂FW

∂DW

∣

∣

∣

∣

TW

. (4.6)

Once we have the entropy, we can obtain the mass (energy) of the black hole spacetime by

inverting the Legendre transform used to define the Helmholtz free energy:

MW = FW + TW S . (4.7)

4.3 The 0A black hole

The reasoning in the previous section also applies to the case of the 0A black hole. The

variational principle used to calculate the on-shell action leads to a partition function which

is a function of the temperature at the wall, TW , and the dilaton charge DW . However,

there is an additional conserved charge due to the RR gauge field(s). The partition function

for the 0A black hole is not a function of the electric charge, which we denote by Q. Rather,

it is a function of the electrostatic potential ΦW between the wall and the horizon. This

is because the potential is the time component of the gauge field Aµ, which we have fixed

at the boundary of spacetime when carrying out the variational principle that leads to the

on-shell action. As a result we are working in the grand canonical ensemble with respect to

the electric charge. Therefore, the log of the partition function corresponds to the Legendre

transform of the Helmholtz free energy with respect to the electric charge, a quantity which

we denote by YW :

YW (TW ,DW ,ΦW ) = FW (TW ,DW , Q) − QΦW . (4.8)

The electrostatic potential Φ is related to the t component of the gauge field, so the

electrostatic potential that an asymptotic observer measures at the wall, ΦW , contains an

appropriate Tolman factor:

ΦW =
1√−gtt

Φ

=
TW

T

q

2πα′ (rW
− r

H
) . (4.9)

Although we are used to working in either the canonical or grand canonical ensemble,

there is nothing wrong with considering a mix of the two. We are simply studying the

thermodynamics of a system with fixed dilaton charge and electrostatic potential. It is

straightforward to obtain the entropy, electric charge, and dilaton potential for the system:

S = − ∂YW

∂TW

∣

∣

∣

∣

DW ,ΦW

(4.10)
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ψW =
∂YW

∂DW

∣

∣

∣

∣

TW ,ΦW

(4.11)

Q = − ∂YW

∂ΦW

∣

∣

∣

∣

TW ,DW

. (4.12)

As in the previous section, once we have the entropy and the electric charge we can invert

the Legendre transform used to define YW and obtain the mass of the 0A black hole

spacetime with constant RR flux:

MW = YW + TW S + QΦW . (4.13)

We are now almost ready to calculate the thermodynamics of these solutions. The

only thing that remains is to address the divergences that have been alluded to in previous

sections. We discuss these in the next section.

5. Taming divergences

In order to use the thermodynamic formulae of the previous section we must remove certain

divergences from the on-shell actions, and hence the partition functions. In this section we

review the nature of these divergences and summarize a method of systematically removing

them from the on-shell action. In other words, a prescription for producing an appropriate

renormalized action. This is illustrated using Witten’s black hole, then applied to the 0A

black hole.

5.1 The nature of the problem

There are many approaches to removing infra-red divergences from gravitational actions.

The most common technique is ‘background subtraction’ [25], which was used in [13] to

study the thermodynamics of Witten’s black hole 2. Background subtraction, which uses

a second, reference spacetime to identify divergences which should be subtracted from the

action, has been remarkably successful. But in some cases the choice of reference spacetime

is ambiguous. In those cases it would be nice to have a method that is intrinsic to the

solution at hand, instead of one which requires another solution to compare to.

In this paper we will use a generalization of the boundary counterterm method [16, 17],

often used to study black holes in asymptotically anti-de Sitter space [17, 29 – 34]. Our

approach is based on the Hamilton-Jacobi method in which a counterterm action, made

up of intrinsic boundary terms, is added to the on-shell action [18 – 20]. The counterterm

action cancels the appropriate infra-red divergences and gives a partition function with a

well defined thermodynamics 3.

2It was also used in [12] to study some aspects of the 0A black hole. Their calculation is performed in the

canonical ensemble, which forces them to use a spacetime with charge q in their background subtraction.
3Another approach, known as holographic renormalization [35], exists. There are many reasons to believe

that holographic renormalization and the Hamilton-Jacobi method are equivalent. We expect that applying

it to the problem we study here would lead to the same results.
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Before describing this approach, it is important to note that the counterterm actions

proposed in this section give results that are completely equivalent to what one obtains

using the background subtraction method. The same arguments used by Gibbons and

Perry in [13] can be used here, for both of the systems we consider. We employ the

Hamilton-Jacobi approach for two reasons. First, as stated above, it appears to be a more

general technique than background subtraction, and it is interesting to explore the range

of problems to which it applies. Second, it leads to an elegant derivation of the first law

of black hole thermodynamics as a consequence of Hamilton’s Action principle. We will

return to the second point in a subsequent publication [36].

5.2 Hamilton-Jacobi counterterms

The Hamilton-Jacobi approach has been reviewed in several publications; for a thorough

discussion see [20]. We will only give a brief outline of it here, using Witten’s black hole as

an example to illustrate the procedure. We will then verify that the renormalized action

yields the correct thermodynamics [13].

The regulated, on-shell actions calculated in section 3 contain terms which diverge

in the r
W

→ ∞ limit, as the regulating surface is taken to infinity. To remove these

divergences we split the regulated, on-shell action into a counterterm action Ict and a

renormalized action Γ, as:

I = Ict + Γ . (5.1)

The renormalized action Γ is the action we want to use to calculate the partition function.

The counterterm action is a boundary integral whose integrand comprises a set of local

terms on the regulating surface r = r
W

. These terms are all intrinsic to the boundary, and

therefore the variations of I and Γ lead to the same bulk equations of motion.

The counterterm action is determined by requiring that it is a solution of the Hamilton-

Jacobi equation associated with the hamiltonian constraint, H = 0, of the full action I.

For example, for the action (2.1) the hamiltonian density is given by:

H =
1

16
e2φπ 2

φ − e2φ

(

g̃ttπ
tt +

1

4
πφ

)2

− e−2φc . (5.2)

The canonical momenta can be expressed as derivatives 4 of the on-shell action with respect

to the fields at the boundary:

πφ =
1√
g̃

∂I

∂φ(r
W

)

πtt =
1√
g̃

∂I

∂g̃tt(rW
)

. (5.3)

4In higher dimensional examples, the on-shell action is a functional of the bulk fields, evaluated at the

boundary. In the two dimensional examples studied here, the bulk fields do not depend on the boundary

coordinate t and the on-shell action is therefore a function, as opposed to a functional, of the fields evaluated

at the boundary.
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The Hamilton-Jacobi equation is simply the hamiltonian constraint, expressed as a non-

linear differential equation for the on-shell action. Requiring that the counterterm action

also be a solution of the Hamilton-Jacobi equation gives:

1

16
e2φ

(

∂Ict

∂φ(r
W

)

)2

− e2φ

(

g̃tt

(

∂Ict

∂g̃tt(rW
)

)

+
1

4

(

∂ Ict

∂φ(r
W

)

))2

= −g̃tt(rW
) e−2φc . (5.4)

In order to solve this non-linear differential equation we make an ansatz for the counterterm

action, based on the symmetries of the action.

First, we need a counterterm action that is invariant under diffeomorphisms of the

single coordinate along the boundary. We enforce this requirement by writing the coun-

terterm action as a boundary integral with the proper covariant volume element on the

boundary:

Ict =

∫

∂M
dx

√

g̃F (φ(r
W

), g̃tt(rW
)) . (5.5)

The function F (φ(r
W

), g̃tt(rW
)) in the integrand is a scalar that depends only on quan-

tities intrinsic to the boundary; i.e. not on normal derivatives of any of the fields. Since

the function F is a scalar, and there are no non-trivial curvature invariants intrinsic to

the one-dimensional boundary, we conclude that it cannot have any dependence on the

induced metric g̃tt. Furthermore, derivatives of φ(r
W

) along the boundary vanish, so

F (φ(r
W

)) can only be a function of the dilaton at the boundary. With this restriction,

the Hamilton-Jacobi equation actually reduces to a linear differential equation for the

quantity F (φ(r
W

))2. Solving this equation would give a one-parameter family of solu-

tions F (φ(r
W

))2. However, we have not yet exhausted all of the symmetries of the action.

Namely, the action (2.1) is invariant under the duality transformation [37, 38]:

gtt → 1

gtt

φ → φ − 1

2
log(|gtt|) . (5.6)

We want to make sure that the counterterm contributions to the action respect this symme-

try as well. The conclusion is that the integrand of (5.5) should be invariant under (5.6).

The only ansatz consistent with boundary diffeomorphism invariance and the T-duality

transformation (5.6) is:

Ict = b

∫

∂M
dx

√

g̃e−2φ (5.7)

where b is a constant which is determined by solving the Hamilton-Jacobi equation. Using

the definitions (5.3) and the ansatz (5.7), the momenta are:

πφ = −2 b e−2φ (5.8)

πtt = − 1

2 l(r)
b e−2φ . (5.9)
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Solving the Hamilton-Jacobi equation (5.4) determines5 the constant b, which gives the

counterterm action

Ict = −2
√

c

∫

∂M
dx

√

g̃ e−2φ . (5.10)

The renormalized action is therefore given by:

Γ = −β
√

ce−2φ(r
W

)

(

1 − 2
√

l(r
W

) + l(r
W

)

)

. (5.11)

5.3 Does it work?

To verify that (5.11) is, in fact, the correct action to use in studying the thermodynamics of

Witten’s black hole, we now show that it reproduces the results of [13]. Using the Tolman

relationship (4.5) and the thermodynamic variables discussed in section 4, the renormalized

action corresponds to a Helmholtz free energy:

FW (TW ,DW ) = −
√

c DW

(

2 − T

TW
− TW

T

)

. (5.12)

Note that the counterterm contribution gives a term proportional to the dilaton charge,

but does not depend on either T or TW . We can now use the thermodynamic relations (4.6)

to obtain the entropy and chemical potential. The central charge is always taken to be

constant, and therefore derivatives of T will vanish by (2.7). After a little algebra, one

obtains the entropy:

S = − ∂FW

∂TW

∣

∣

∣

∣

DW

= 4π e−2φ(r
H

) . (5.13)

This agrees with the standard result [13]. The exponential is just the dilaton charge

evaluated at the horizon. Thus:

S = 4π DH . (5.14)

It is important to note that, unlike the dilaton charge DW , the entropy is independent of

where the wall is, because the only contribution comes from the black hole. The chemical

potential is:

ψW =
∂FW

∂DW

∣

∣

∣

∣

TW

=
√

c

(

2 − T

TW
− TW

T

)

. (5.15)

This result is in agreement with the observation that, for a system with a single conserved

charge DW , the Helmholtz free energy should be given by:

FW = ψW DW . (5.16)

5Since the equation is quadratic, it only determines b up to a sign. Only one choice for b removes

divergences from the action. Alternately, one may motivate that choice of b by noting that, in the variation

of the renormalized action Γ, momentum flow across the boundary is zero due to counterterm contributions,

so that the action is properly extremized for the finite region inside the boundary.
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Finally, using the relationship between the energy and the Helmholtz free energy gives the

mass of the black hole spacetime:

MW = 2
√

c DW

(

1 − T

TW

)

. (5.17)

Because this system is particularly simple, it is straightforward6 to verify the first law of

black hole thermodynamics:

dMW = TW dS + ψW dDW . (5.18)

In the limit in which the wall is taken to infinity, the mass of the spacetime 7 asymptotes

to the black hole mass:

MBH =
√

c DH . (5.19)

All of these results are in complete agreement with those of [13]. Furthermore, the last

result agrees with Mann’s definition of the mass [39], which generalizes earlier work of

Frolov [40].

The contribution of the counterterm action is now clear. Because it modified the free

energy by a term that did not depend on the temperature, it did not affect the calculation

of the entropy. Rather, the counterterm action served to renormalize what would have

been a finite chemical potential for the exponentially growing dilaton charge. As a result,

both the renormalized action and the mass of the black hole are finite.

5.4 The 0A blackhole

The results of the previous section agree with the usual treatment of the Witten black hole

using background subtraction. This inspires confidence in the counterterms determined by

the Hamilton-Jacobi method. We now apply this technique to the case of the 0A black

hole with constant RR flux.

Our ansatz for the 0A solution is identical to the ansatz of the previous section. The

only difference is in the justifications for this particular form. As before, we propose a

general ansatz, and refine it via considerations of symmetries. We want a counterterm

action that is invariant under diffeomorphisms of the boundary coordinate. Since there

are no non-trivial intrinsic curvature invariants which we can construct from the induced

metric, we expect a counterterm action of the form:

Ict =

∫

∂M
dx

√

g̃ F (φ(r
W

), At(rW
)) . (5.20)

6In section 6.5 we will demonstrate the first law for the 0A black hole with constant RR flux. The q → 0

limit reproduces the first law for Witten’s black hole.
7Of course, as with all theories of gravity, there are natural ambiguities in the definition of a mass. We

take the point of view that these ambiguities are fixed by consistency with the first law of thermodynamics

and the quantum statistical relation. For thorough discussions on the notion of mass in 2D dilaton gravity,

see [43, 44] and references therein.
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The only local gauge-invariant quantities which can be constructed from the gauge field At

are the field strength Frt, or invariants built from gauge covariant derivatives of charged

fields. The field strength involves a normal derivative of At and is, therefore, not intrinsic to

the boundary. Including it would modify the bulk equations of motion, so any dependence

on At via the field strength is ruled out. Since the dilaton is neutral we cannot introduce

At through gauge covariant derivatives, either. We once again find that the counterterm

action must be of the form:

Ict =

∫

∂M
dx

√

g̃ F (φ(r
W

)) (5.21)

In the previous section we used the duality transformations (5.6) to pin down the

form of the function F (φ(r
W

)). A generic solution of the 0A theory is not invariant under

this transformation, but there is a T-duality relating solutions of the 0A and 0B theories

which leaves the value of the on-shell action unchanged. Specifically, the 0A solution with

constant RR flux is T-dual to a solution of type 0B with a null one-form field strength [10].

Furthermore, the transformation of the NS-NS fields φ and g̃tt are exactly the same as

the duality transformation we’ve already considered. Since the counterterm action only

depends on the NS-NS fields φ and g̃tt, it should be invariant under the T-duality. This

leads to the same form of the counterterm action that we found in the previous section:

Ict = −2
√

c

∫

∂M
dx

√

g̃e−2φ . (5.22)

Adding this contribution to the on-shell action (3.18) gives the renormalized on-shell action:

Γ = −β
√

ce−2φ(r
W

)

(

1 − 2
√

l(r
W

) + l(r
W

)

)

+ β
q2

2πα′√c
− β

q2

2πα′ (rW
− r

H
) . (5.23)

The corresponding thermodynamic potential in the mixed ensemble is:

YW (TW ,D,ΦW ) =
√

c
TW

T
DH − 4πT DH +

√
cD

(

2 − TW

T
− T

TW

)

− q ΦW (5.24)

where it is understood that DH and T depend implicitly on the thermodynamic variables

TW ,DW , and ΦW . In obtaining this expression we used the relationship (2.17). Because

this system possesses more than one conserved charge its thermodynamics is more com-

plicated than the previous example’s. We devote the next section to understanding the

thermodynamics of the 0A black hole spacetime.

It is important to point out that the renormalized action for the 0A black hole contains

a term which diverges in the r
W

→ ∞ limit. This is in contrast to higher dimensional

examples, in which Γ tends to be finite, with the exception of possible log divergences

related to conformal anomalies. Specifically, because the electrostatic potential is linear

in two dimensions both the renormalized action and the mass of the spacetime contain a

term linear in (r
W

− r
H

), the separation between the wall and the horizon. A divergence

of this sort as r
W

→ ∞ is not unphysical, it is merely a consequence of two-dimensional

electrostatics. Misinterpreting the nature of this divergence and attempting to remove it

from the renormalized action Γ leads to thermodynamic quantities which are not consistent

with the first law.
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6. The thermodynamics of the 0A black hole

In this section we use the thermodynamic potential (5.24) to determine the entropy, dilaton

chemical potential, electric charge, and mass for the 0A black hole. As a check of our work

we demonstrate that the first law of black hole thermodynamics is satisfied. We point out

how this result is in agreement with Mann’s result for the mass of a 2d black hole, and

explain how it disagrees with several other results in the literature.

6.1 The entropy

The entropy is given by:

SW = − ∂YW

∂TW

∣

∣

∣

∣

DW ,ΦW

(6.1)

To evaluate this expression we need to determine the conditions associated with holding

DW and ΦW constant:
∂DW

∂TW
= 0

∂ΦW

∂TW
= 0 . (6.2)

These two equations lead to the following conditions:

∂

∂TW
(r

W
− r

H
) = − 1√

c
D−1

H

∂DH

∂TW
(6.3)

ΦW
∂q

∂TW
=

q2

√
c

D−1
H

TW

T

∂DH

∂TW
+ q ΦW

(

1

T

∂T

∂TW
− 1

TW

)

. (6.4)

Using these expressions, along with the identity 8:

DH = DW

(

1 − T 2

T 2
W

)

− 1√
c

q Φ (6.5)

the entropy is determined to be:

S = 4πDH . (6.6)

The entropy is in agreement with the results found in [10 – 12]. As noted by those authors,

this is in disagreement with matrix model results. It is independent of the position of the

wall, as expected, and has the same functional form as the entropy of Witten’s black hole.

This suggests a reassuring analogy with higher dimensional black holes, where the entropy

is always found to be one quarter of the horizon area, in Planck units, regardless of whether

or not the black hole carries an electric charge.

6.2 The electic charge

The total electric charge of the solution is obtained from:

Q = − ∂YW

∂ΦW

∣

∣

∣

∣

DW ,TW

. (6.7)

8This is obtained from the Tolman relation (4.5) by rewriting gtt in terms of DW ,DH ,q, and Φ.
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As with the evaluation of the entropy, it is necessary to find the conditions associated with

holding DW and TW fixed:

∂

∂ΦW
(r

W
− r

H
) = − 1√

c
D−1

H

∂DH

∂ΦW
(6.8)

ΦW
∂q

∂ΦW
= q +

TW

T

q2

√
c

D−1
H

∂DH

∂ΦW
+

1

T
qΦW

∂T

∂ΦW
. (6.9)

To obtain the second relationship we have also used (4.9), the definition of ΦW . Using

these expressions, a small amount of algebra leads to the result:

Q = 2q . (6.10)

At this point it is important to remember that we have been working with a non-canonically

normalized field strength which actually represents two canonical field strength terms in

the action, both with flux q. Thus, the total conserved electric charge of 2q is merely a

conserved charge q for each gauge field. It is important to remember the origin of this

factor of 2 when identifying the contribution of the electric fields to the total mass of the

black hole spacetime.

6.3 The dilaton charge chemical potential

The chemical potential associated with the dilaton charge is given by:

ψW =
∂YW

∂DW

∣

∣

∣

∣

TW ,ΦW

. (6.11)

The two identities associated with holding TW and ΦW fixed are:

∂

∂DW
(r

W
− r

H
) =

1√
c

D−1
W − 1√

c
D−1

H

∂DH

∂DW
(6.12)

ΦW
∂q

∂DW
=

1

T

∂T

∂DW
q ΦW − TW

T

q2

√
c

D−1
W +

TW

T

q2

√
c

D−1
H

∂DH

∂DW
. (6.13)

Using these expressions, the chemical potential is:

ψW =
√

c

(

2 − T

TW
− TW

T

)

+
TW

T

q2

√
c

D−1
W . (6.14)

6.4 The mass of the 0A black hole

Now that we have obtained the entropy, electric charge, and dilaton potential, it is straight-

forward to obtain the mass (energy) of the 0A black hole spacetime. The partition function

was calculated in a mixed ensemble. From the point of view of the dilaton charge it is the

canonical ensemble, while from the point of view of the electric charge it is the grand canon-

ical ensemble. Therefore, the Helmholtz free energy is related to the log of the partition

function, YW , by an inverse Legendre transform:

FW (TW ,DW , Q) = YW (TW ,DW ,ΦW ) + QΦW . (6.15)
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Using the standard relationship between the energy and the Helmholtz free energy, we

obtain:

MW = YW + TW S + QΦW . (6.16)

Using the results of the previous sections, the energy is given by:

MW = 2
√

c DW

(

1 − T

TW

)

. (6.17)

The functional form of the energy is identical to that of Witten’s black hole (5.17). However,

the asymptotic value of the total energy of the spacetime is quite different, due to the

presence of the linear electric potential associated with the RR charge. Expanding (6.17)

for r
W

À r
H

we find:

MW ≈
√

c DH + q Φ + O(e−
√

c r
W ) . (6.18)

As we move the wall further away from the horizon, the total energy decomposes into two

distinct contributions, each with a clear physical interpretation. The first term is the mass

of the black hole itself:

MBH =
√

c DH (6.19)

and the second term is merely the acculumated electrostatic energy between the wall and

the horizon:

MΦ =

∫ r
W

r
H

dr (Frt)
2 (6.20)

= q Φ . (6.21)

The integrand is the electrostatic energy density associated with our non-canonically nor-

malized field strength.

There are several results quoted in the literature [9 – 11] regarding the semi-classical

black hole mass that disagree with our result (6.17). There are two compelling reasons to

believe that our result is valid. The first is that the mass of the black hole agrees with

the definition proposed by Mann [39]. The second, which we will turn to momentarily,

is that our result (6.17) is consistent with the first law of black hole thermodynamics.

For this to work, it is essential that the mass contains the cut-off dependent term that

represents the electrostatic potential at the cut-off wall. This term is necessary because

the thermodynamic work terms should depend on the physical potential difference between

the wall and the horizon. In contrast, other authors have included only the terms non-

analytic in q for the purpose of comparison with the 0A matrix model. The above results

include terms regular in q which are not visible in matrix model calculations. Again, such

terms are required and guarantee thermodynamic consistency for all values of q and the

cut-off surface’s position.

6.5 The first law

As a verification of our result (6.17) for the mass of the 0A black hole spacetime, we show

that it satisfies the first law of black hole thermodynamics:

dMW = ψW dDW + TW dS + ΦW dQ . (6.22)
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This sort of calculation is usually not shown explicitly, as it often reduces to an excercise in

algebra and differentials. However, since our expression (6.17) for the mass disagrees with

several other results, we feel it is necessary to demonstrate the first law in detail. Also,

note that setting q to zero throughout this section gives a proof of the first law for Witten’s

black hole, as mentioned in section 5.3.

We begin by taking the differential of the expression (6.17)

dMW = 2
√

c

(

1 − T

TW

)

dDW + 2
√

cDW d

(

1 − T

TW

)

. (6.23)

By adding and subtracting factors of T/TW and TW /T this can be re-written in the form:

dMW =
√

c

(

2 − T

TW
− TW

T

)

dDW +
√

c
TW

T

(

1 − T 2

T 2
W

)

dDW −
√

cDW
TW

T
d

(

T 2

T 2
W

)

=
√

c

(

2 − T

TW
− TW

T

)

dDW +
√

c
TW

T
d

(

DW

(

1 − T 2

T 2
W

))

. (6.24)

Next we need the result (6.14) for the dilaton chemical potential ψW , as well as the identity:

DW

(

1 − T 2

T 2
W

)

= DH +
1√
c

q Φ . (6.25)

Using these two expressions in (6.24) allows us to write dMW as:

dMW = ψW dDW +
√

c
TW

T
dDH +

TW

T
d (qΦ) − TW

T

q2

√
c

d log DW . (6.26)

Using the relationship (2.17) between T ,c,q, and DH we can expand the second term on

the right hand side, which leads to:

dMW = ψW dDW + TW d (4π DH) +
TW

T
q dΦ + ΦW dq − TW

T

q2

√
c

d log

(

DW

DH

)

. (6.27)

Referring to the result (6.6) for the entropy, the second term is just TW dS. Since the total

electric charge is Q = 2q, we can rewrite the differential as:

dMW = ψW dDW + TW dS + ΦW dQ +
TW

T
q dΦ − ΦW dq − TW

T

q2

√
c
d log

(

DW

DH

)

. (6.28)

Using the expression (4.3) for DW the last term on the right hand side is:

−TW

T

q2

√
c

d log

(

DW

DH

)

= −TW

T
q2 d (r

W
− r

H
)

= −TW

T
q (dΦ − (r

W
− r

H
) dq)

= −TW

T
q dΦ + ΦW dq . (6.29)

Thus, the last three terms in (6.28) cancel, leaving:

dMW = ψW dDW + TW dS + ΦW dQ . (6.30)

This confirms that our results for the 0A black hole spacetime satisfy the first law of black

hole thermodynamics. We should also point out that the first law, as shown here, is true

regardless of the location of the regulating surface.
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7. Discussion

In this paper we have analyzed the thermodynamics of black hole solutions with constant

RR flux in two-dimensional type 0A string theory. After clarifying the role of boundary

conditions in determining the thermodynamic ensemble we calculated the renormalized,

on-shell actions that determine the partition function. The approach we used to remove

infra-red divergences from the partition function is based on similar techniques used to

address infra-red divergences in gravitational actions in higher dimensions [16, 17]. Unlike

background subtraction, our approach does not require the identification of a reference

spacetime. We motivated this technique by applying it to the black hole studied by Witten

in [8]. The results we obtain for the 0A black hole provide a consistent picture of the

thermodynamics of these solutions. In particular, our result (6.18) for the mass of the

black hole spacetime resolves a number of contradictory claims in the literature. We are

confident in our results, as they are the only ones (of which we are aware) that satisfy the

first law of black hole thermodynamics.

From the semiclassical point of view our results do not support the conclusions of

proposed matrix model duals of the 0A black hole. However, this does not necessarily

invalidate the matrix model conjectures. A necessary caveat for our analysis is that the

semiclassical description may not sufficiently capture the physics of two-dimensional black

holes. Because curvatures near the horizon are of order O(1/α′) the semiclassical analysis

will generically break down there, as stringy corrections become important.

For this reason, two-dimensional black holes may be too stringy to have a valid ge-

ometric limit at all. In that case, one needs separate techniques on the string/gravity

side in order to verify matrix model predictions. For example, Witten’s black hole can be

described using a gauged WZW coset model. If we set the string coupling in the region

exterior to the horizon to be small, gH = exp (φH) ¿ 1, then quantum corrections can be

controlled and the genus zero analysis is sufficient. String corrections, however, may be

important. To see this, note that the action (2.1) corresponds to the k → ∞ limit of the

worldsheet theory. The expansion in 1/k is equivalent to the α′ expansion. But the two

dimensional string is critical for the relatively small value k = 9/4, which means that the

spacetime effective action should receive significant α′ corrections. A solution exists which

incorporates higher order corrections [41], but the corresponding effective action, which is

necessary to calculate the thermodynamic potential, is not known. It would be interest-

ing to see whether or not the method used here could be applied to the considerations

of [42], perhaps extending our analysis to finite level k. It is not clear what aspects of the

critical string black hole are captured by the large level analysis. It is interesting to note

that there are D = 10 critical string backgrounds which contain Witten’s black hole as a

two-dimensional subspace, for which a sensible large k limit exists. Our analysis may be

completely valid in such cases. But, for now, a worldsheet theory describing the 0A black

hole with constant RR flux is not known to exist.

The results derived in this paper support the idea that two dimensional black holes,

like their higher dimensional analogues, seem to exhibit certain universal features. The

most obvious example is the entropy. In both the charged and uncharged cases we find
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that the entropy takes the form:

S = 4πDH =
4π

g 2
H

. (7.1)

This is analagous to higher dimensional black holes, where the entropy is always given by

a quarter of the horizon area, measured in Planck units:

S =
AH

4G
. (7.2)

In fact, (7.1) is equivalent to this formula. Our calculations were all performed in units

where 2κ2 = 16πG = 1. Restoring these units, we have:

S =
DH

4G
. (7.3)

The area of a ‘sphere’ with coordinate radius r in n dimensions is given by:

A(r) =
2πn/2

Γ
(

n
2

) rn−1 (7.4)

so the area of the horizon in one spatial dimension is simply A = 2, independent of r
H

.

An observer outside the horizon has access to only one of the two points composing the

1-sphere, so the area that should appear in the entropy-area relation is AH = 1. Thus, (7.1)

is in fact:

S =
AH

4GH
(7.5)

where GH is the effective two dimensional Newton’s constant at the horizon:

GH = Ge2φH . (7.6)

Because this quantity is dimensionless in two dimensions, it is more appropriate to regard

it as setting an effective Planck resolution which defines the notion of ‘per unit area’.

Notice that as we decrease the string coupling the black hole becomes both more entropic

and more massive, which is in agreement with our intuition that making the system very

massive should make quantum corrections less important.

It is also interesting that the total mass of the spacetime out to the wall takes the

same form in both the charged and uncharged cases:

MW = 2
√

cDW

(

1 − T

TW

)

(7.7)

In the case of Witten’s black hole this quantity asymptotes to the black hole mass
√

c DH

as r
W

→ ∞. In the 0A case its asymptotic form comprises two distinct contributions, the

black hole mass and an electrostatic energy due to the electric field.

Finally, the counterterm calculated in section 5 captures a universal infra-red diver-

gence in linear dilaton gravitational backgrounds. The effect of the counterterm action can

be thought of as subtracting a divergent contribution from the thermodynamic potential

– 23 –



J
H
E
P
0
9
(
2
0
0
5
)
0
7
2

(and mass of the spacetime) related to the dilaton charge. This should be expected; the

dilaton is a long range scalar field that violates the weak equivalence principle. It was

pointed out in [13] that the energy associated with the term we subtract does not grav-

itate; it is an irreducible energy due to the dilaton. It is remarkable that such a simple

procedure isolates this divergence. Once we made an ansatz of local terms on the regulating

boundary, specifying the symmetries of the counterterm action was sufficient to completely

specify its functional form.

Our approach can be viewed as validating the use of background subtraction by re-

producing its results without having to appeal to a reference spacetime. In the same vein,

we provide an alternate justification for the subtractions considered in [14, 15]. One of

the conclusions of this paper is that the Hamilton-Jacobi method of determining boundary

counterterms seems to be applicable to a wide range of interesting gravitational back-

grounds.
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