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1. Introduction

The existence of black ring solutions [1] raises interesting questions in classical general

relativity [2] and, since black rings are readily embedded in supergravity [3 – 5], in string

theory. One important challenge is to understand black rings microscopically in string

theory. For BPS black rings it was proposed that one can simply identify circular black

rings with straight black strings [6 – 8]. This prescription gives a statistical account of

the black ring entropy; but it also highlights some confusion about the precise distinction

between black holes and black rings. Therefore, a more detailed microscopic description of

black rings is essential even for the understanding of black holes.

The purpose of this paper is to propose a microscopic description of thermal black

rings, i.e. rings that are excited away from the extremal limit. The strategy is, again,

to identify circular black rings with straight black strings. It is well-known how to take

thermal excitations of black strings into account, in the limit where the excitation energy

is not too large [9] and we simply adapt this description to black rings. The only modest

complication is due to the fact that black rings carry, in addition to the dipole charges

along the circular string, several additional charges. These charged excitations arise as

zero-modes of affine currents in the two dimensional effective CFT describing the collective

excitations of the black string [10, 11]. Combining this with general principles, we find an

expression for the entropy as function of energy, angular momenta, and all charges. Our

final result for the entropy is given in (3.7) below. As a simple application of this result

we work out the thermodynamic properties of black rings.
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Thermally excited black rings are much richer than their extremal counterparts. This

will further focus attention on the limitations of describing black rings in terms of black

strings. As is clear already in the extremal limit, the identification of these two theories

is valid only near the objects, where the extrinsic curvature of the black ring can be

neglected. Such a description is incomplete because, from the dual open string perspective,

it applies only in the infra-red, i.e. it is an effective description. In particular, this means

the parameters of the microscopic description cannot immediately be identified with the

corresponding quantities in the supergravity solution (some relevant discussions are [12,

13]). This is familiar already for BPS rings where several different definitions of charges and

angular momenta seem relevant for the description. In the excited theory these ambiguities

persist and, in addition, the microscopic energy must be distinguished from the mass of the

black ring. Of course, such features do not invalidate the proposed microscopic descriptions;

they are properties of effective theories.

A by-product of the present investigation is the determination of duality orbits for

black rings. For black holes in five dimensions it is sufficient to consider supergravity

solutions with 3 charges because, starting with such a solution, dualities can generate the

most general black hole, characterized by 27 conserved charges [14]. The most general

black ring in five dimensions depends on 27 charges as well, but also on 27 dipole charges.

We will argue that, to generate such general rings, the starting point must have 3 charges

and 15 dipole charges (or vice versa). Taking mass and angular momenta into account,

the most general black ring would then have 21 parameters. This is a much larger class

than those already constructed in the BPS case [5, 4], and also much larger than those

previously conjectured in the non-BPS case [15].

The microscopic interpretation discussed in this paper gives predictions for supergrav-

ity solutions that have not yet been constructed explicitly:

1. The area of a conjectured 9 parameter family of thermally excited black rings is

identified.

2. There exists an 8 parameter family of extremal black rings. These black rings are

not supersymmetric, but they are extremal in the sense that they have vanishing

temperature.

3. Thermal black rings are expected to have an inner and an outer horizon, both of

topology S1 × S2. The area of the inner horizon is predicted as well.

The remainder of this paper is organized as follows. In section 2 we discuss the action

of string dualities on black rings and the parameters needed to describe the most general

black ring solution in five dimensions. section 3 is the core of the paper: we develop the

microscopic description of the black rings, by adapting the description of black strings. In

section 4 we discuss the resulting thermodynamics of black rings. We conclude in section 5

with a brief discussion of the ambiguities in the definition of charges.
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2. Black rings and dualities

At the classical level the theory we discuss is 11 dimensional supergravity compactified on

T 6 or, equivalently, N = 8 supergravity in five dimensions. The issue we want to address is

that, in this theory, duality relates apparently distinct configurations, effectively reducing

the number of truly independent solutions1. In order to factor out this redundancy in the

description we want to determine the duality orbits of black ring solutions.

It is convenient to parametrize solutions in supergravity by their asymptotics near

infinity. Concretely, this means specifying gravitational mass M and angular momenta Ja

(a = 1, 2), the asymptotic value of all scalar fields X∞
I (I = 1, . . . , 42), and the charges of

gauge fields. The gauge charges QI may be computed by gaussian flux integrals2

QI =
1

2π2

∫

∞

GIJ
∗F I (2.1)

In the case of black rings there are also the dipole charges qI specified by integrals

qI =
1

2π

∫

S2

F I (2.2)

where the integral is over a sphere that links the ring. The dipole charges fall off faster

asymptotically than the ordinary charges, and they are not conserved; but this does not

make them any less useful in the classification.

The duality group of N = 8 supergravity in D = 5 is E6(6)(R). The 42 scalar fields

XI parametrize the coset E6(6)/USp(8) (dimension 78 − 36 = 42). The values of these

scalars at infinity can be chosen arbitrarily; they are just integration constants. Indeed,

as indicated by the coset form of the scalar manifold, different asymptotic values of the

scalars are related by E6(6)(R) transformations. Making a definite choice, e.g. taking XI
∞

corresponding to a square torus with no fluxes and sides of unit length, defines the vacuum

and breaks the symmetry spontaneously as E6(6) → USp(8).

The 27 gauge fields in the theory transform in the antisymmetric symplectic traceless

representation of the USp(8) symmetry leaving the vacuum invariant. To make this explicit,

it is convenient to organize the 27 gauge field charges into the 8×8 central charge matrix [18]

Ze =





BJ(1) A

−AT −
1

3
BJ(3) + CijT

ij



 (2.3)

where J(i) are symplectic invariants of USp(2i) and T ij are a basis of trace-less anti-

symmetric 6 × 6 matrices. One can choose the duality frame so that the 2 × 6 charges A

correspond to M5-branes and KK-waves wrapped on cycles fully within the T 6. Then the

1We are just discussing dipole charges, in addition to the conventional black hole charges. It is possible

that black holes and black rings in five dimensions support additional classical hair; indeed, such hair could

ultimately account for the entire microscopic structure of black holes, as recently advocated by Mathur and

collaborators [16] (and earlier in [17]).
2We use units where the 11-dimensional planck length lp = (π/4G5)

1/3 = 1. In these units all charges

are quantized.
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B, Cij are 15 charges corresponding to M2-branes wrapped on the two-cycles of the T 6.

Acting by the USp(8) duality group, the central charge matrix can be skew-diagonalized. In

the canonical duality frame just introduced, this amounts to turning on just three charges,

interpreted as M2-branes wrapped on the (12), (34), and (56) cycles of the T 6.

The important point is that a reference solution with just these three charges is in fact

the most general one, up to duality. Let us show explicitly how duality can reintroduce

all charges: the reference solution, with skew-diagonal charge matrix, is left invariant by a

subgroup US(2)4 ⊂ USp(8). New solutions are thus found by acting with USp(8)/US(2)4

on the reference solution . This amounts to adding 36− 4× 3 = 24 parameters, recovering

the general charge configuration with 3 + 24 = 27 parameters [14].

Next, we discuss the dipole charges, the novel feature introduced by black rings. These

are “magnetic” charges of the same 27 gauge fields considered above, but they are string-

like in character, rather than the point-like “electric” charges parametrized in (2.3). The

dipole charges can similarly be organized into a magnetic “central charge” matrix

Zm =





BmJ(1) Am

−AT
m −

1

3
BmJ(3) + Cm ijT

ij



 (2.4)

which, again, is anti-symmetric and symplectic traceless under the USp(8) duality in a

given vacuum. In the canonical duality frame introduced after (2.3), the 2× 6 charges Am

are the 6 M2-branes and the 6 KK-monopoles with one direction transverse to the T 6;

and the Bm, Cm ij jointly describe the M5-branes wrapping the 15 independent four-cycles

within the T 6. Again, the magnetic central charge matrix Zm can be skew-diagonalized by

a suitable USp(8) duality transformation. However, in the duality frame where the electric

charge matrix Ze has already been simplified in this manner, the magnetic charges are not

in general diagonal.

The subgroup US(2)4 ⊂ USp(8) that leaves the skew-diagonal Ze invariant in general

acts non-trivially on Zm, generating 12-parameter orbits of equivalent solutions. Con-

cretely, we can choose Am = 0 without loss of generality, i.e. keep only the 15 dipole

M5-brane charges. The 6 dipole M2-branes and the 6 dipole KK-monopoles can be taken

to vanish because these are generated when US(2)4 duality transformations act on the

M5-brane dipoles.

In summary, we have shown that the most general black ring in N = 8 supergravity

is parametrized up to duality by 21 parameters: the mass M , 2 angular momenta Ja

(a = 1, 2), 3 eigenvalues Qi (i = 1, 2, 3), and 15 dipole charges Bm Cm ij. As a check note

that the total number of black ring parameters is 3 + 27 + 27 = 57 (from gravitational,

point-like, and string-like charges). Since there are 36 USp(8) duality parameters in a given

vacuum we find that a seed solution must have 57 − 36 = 21 parameters, as in the more

detailed argument.

In the following we will for simplicity focus on the “canonical” 9 parameter family of

black rings where the electric and magnetic central charge matrices (2.3)-(2.4) are simul-

taneously diagonalized. This configuration is left invariant by US(2)4 ⊂ USp(8) so, when

acting on these solutions, duality transformations can only add the 24 parameters of the
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coset USp(8)/US(2)4. The canonical 9 parameter family of rings therefore correspond,

after duality is taken into account, to completely general charges, but only three dipole

charges.

3. The microscopic theory

In this section we discuss some features of the microscopic description of the black rings.

3.1 General comments

For extremal black rings it has been proposed that the effective low energy theory of the

collective excitations is identical to the two dimensional CFT with (4, 0) supersymmetry

governing black holes in four dimensions [6 – 8]. Some motivations for this identification

are:

1. Horizon topology : the S2 × S1 topology of the black ring horizon is identical to that

of a five dimensional black string which, in a suitable limit, is interpreted as a four

dimensional black hole. Then the S2 of the ring is identified with the horizon of the

black hole and the S1 of the ring corresponds to the compact dimension.

2. Near horizon geometry: in the limit where bulk gravity decouples from the theory on

the branes, the near horizon geometry of the standard black holes is locally AdS3 ×

S2, and the global structure is that of an extremal BTZ black hole. AdS/CFT

correspondence then identifies the miscroscopic theory [20]. Black rings similarly

allow a near string limit which decouples bulk modes and identifies a near horizon

BTZ black hole [22, 5, 7]. This shows that the two microscopic theories are identical

as well.

3. The effective string : the usual description of 4D black holes involves an asymmetric

scaling limit that singles out one compact dimension, which is interpreted as the

spatial direction of an effective string [19, 11]. It is natural to simply identify this

effective string with the black ring. Again, this is because the geometry near the ring

is indistinguishable from that of a straight string.

The working hypothesis of this paper is that 5D black rings can be identified with 5D

black strings (and so with 4D black holes) also in the non-extremal case, as long as the

excitations above the extremal limit remains small. This assumption is natural because

the arguments above for the extremal case remain valid (to the extent we can check them).

3.2 The CFT description

In the canonical duality frame described after (2.3) the black string consists of is M5-

branes with wrapping numbers q1, q2, q3 along the cycles orthogonal to the canonical (12),

(34), (56) two-cycles. These five-branes all share one common line which is the locus of

the effective two dimensional CFT. This spacetime CFT has central charge c = 6q1q2q3

for both right and left movers and (4, 0) supersymmetry. The M2 branes (and all other

charges) are realized as charged excitations of this theory.

– 5 –



J
H
E
P
1
0
(
2
0
0
5
)
1
0
0

The supersymmetric sector of the CFT are the right movers. The N = 4 superconfor-

mal algebra contain an affine US(2) current at level k = ĉ = 2
3c = 4q1q2q3. States with

quantum number J under a U(1) subgroup of this R-symmetry have level

hrot
R =

1

k
j2 =

1

4q1q2q3
J2 . (3.1)

The US(2) symmetry is interpreted in spacetime as the rotation group in the three dimen-

sional transverse space; so the quantum number J is simply the projection of the angular

momentum along the quantization axis.

There is one additional right moving current. This current carries the charges dual to

the charges defining the background. Concretely, spacetime supersymmetry gives the BPS

mass3

M2 = (q1X1 + q2X2 + q3X3)
2R2 + (Q1X

1 + Q2X
2 + Q3X

3)2 (3.2)

where XI parametrize the volumes of the four-cycles wrapped by the M5-branes, R is the

radius of the direction along the effective string, and the XI = 1/XI correspond to the

volumes of the dual two-cycles wrapped by the M2-branes. Treating the M5-branes as a

heavy background, the energy associated with the M2-brane excitations is

∆M '
1

2(q1X1 + q2X2 + q3X3)R
(Q1X

1 + Q2X
2 + Q3X

3)2 . (3.3)

In the decoupling limit where the CFT applies this equality becomes exact. If excitations

with this energy arise as zero-modes of affine currents the conformal weight associated with

the charge is

hM2
R =

R

2
∆M =

1

12q1q2q3
(Q1q

1 + Q2q
2 + Q3q

3)2 (3.4)

where we let the scalar fields attain their attractor values XI = qI/(q1q2q3)1/3 for I = 1, 2, 3

(for a discussion of 5D attractors emphasizing black rings see [21]).

The remaining two linear combinations of M2-brane charges are not affected by space-

time supersymmetry; so these are carried by left moving currents. The levels of these

currents are constrained by modular invariance of the CFT which relates right and left

moving currents. The simplest possibility is to form a lattice of signature (2, 2) with the

right moving currents [11]. This prescription gives the conformal weights of the zero-modes

hM2
L =

1

4q1q2q3
(Q1q

1 − Q2q
2)2 +

1

12q1q2q3
(Q1q

1 + Q2q
2 − 2Q3q

3)2

=
1

3q1q2q3

[

(Q1q
1)2 + (Q2q

2)2 + (Q3q
3)2

]

−

−
1

3q1q2q3

[

Q1q
1 · Q2q

2 + Q1q
1 · Q3q

3 + Q2q
2 · Q3q

3
]

. (3.5)

Since (3.5) is not protected by supersymmetry this expression can only be trusted in the

semi-classical regime.

3In our units the brane tensions are automatically taken into account correctly.
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It is not difficult to generalize the argument leading to (3.4) and (3.5) to find a lattice

of signature (14, 14) that describes all 27 charged excitations and angular momentum. The

result requires a bit more notation because it depends on the complex structure moduli

so we just refer to [11] for the details. The microscopic theory describes the most general

thermal black ring up to duality when this full set of excitations is taken into account.

The arguments presented for the existence of the various currents and for the weight

of their zero-modes is somewhat heuristic; but there are several checks on the assignments:

1. Triality : the formulae (3.4) and (3.5) for the weights are invariant under simultaneous

permutations of the M5 brane charges and the M2 brane charges. This symmetry is

in the Weyl subgroup of the duality group and must be respected.

2. Rational levels: the levels (3.4) and (3.5) turned out to be rational even though the

attractor mechanism fixes the scalars at irrational values XI = qI/(q1q2q3)1/3.

3. Level matching : the difference between levels

hM2
L − hM2

R =
1

4q1q2q3

[

(Q1q
1)2 + (Q2q

2)2 + (Q3q
3)2

]

−

−
1

2q1q2q3

[

Q1q
1 · Q2q

2 + Q1q
1 · Q3q

3 + Q2q
2 · Q3q

3
]

(3.6)

is quantized in the same unit 1/k = 1/4q1q2q3 as the angular momentum. This means

the higher modes of currents can be matched consistently.

4. Global symmetry : the total set of 27 currents in the theory (discussed after (3.5) and

in section 2) transform as (1,1)⊗(2,6)⊗(1,14) under the duality US(2)×USp(6) ⊂

USp(8) preserved by the fixed scalar conditions. The (1,1)⊗ (2,6) are right movers,

with level determined by the spacetime BPS algebra, as discussed before (3.4). The

(1,14) relates the normalizations of all left moving currents [11] and confirm (3.5).

3.3 Results

We now count the entropy from the degeneracy of the states in the CFT. The vertex

operators of the states we are counting are given by

Vtot = VirrVU(1) .

The VU(1) is constructed from the U(1) currents such that the full vertex operator carries

the correct U(1) charge. The conformal weight accounted for by this was derived above.

The Virr can be specified freely and so gives rise to entropy. The expression for the entropy

is given as usual by Cardy’s formula

S = 2π





√

chirr
L

6
+

√

chirr
R

6



 (3.7)
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where presently the irreducible weights are given

hirr
L =

ε + p

2
−

1

3q1q2q3

[

(Q1q
1)2 + (Q2q

2)2 + (Q3q
3)2

]

+

+
1

3q1q2q3

[

Q1q
1 · Q2q

2 + Q1q
1 · Q3q

3 + Q2q
2 · Q3q

3
]

(3.8)

hirr
R =

ε − p

2
−

1

12q1q2q3

[

Q1q
1 + Q2q

2 + Q3q
3
]2

−
1

4q1q2q3
J2 . (3.9)

This is our final result for the entropy. In this formula the momentum quantum number

p along the black string should be identified with the angular momentum along the black

ring and the four-dimensional angular momentum J is the angular momentum transverse

to the ring J = Jφ.

The extremal limit is given by hirr
R = 0. In this limit we can eliminate ε and find

hirr
L = p −

1

4q1q2q3

[

(Q1q
1)2 + (Q2q

2)2 + (Q3q
3)2

]

+

+
1

2q1q2q3

[

Q1q
1 · Q2q

2 + Q1q
1 · Q3q

3 + Q2q
2 · Q3q

3
]

+
1

4q1q2q3
J2 . (3.10)

If in addition we impose supersymmetry then J = 0. In this BPS limit our general

result (3.7) for the entropy reduces to the one deduced from E7(7) duality symmetry of

the black string in [7, 25], and from counting deformations of M5-branes in [8, 26]. The 8

parameter family of configurations with hirr
R = 0 but J 6= 0 corresponds to black rings that

are extremal, but not supersymmetric.

The general 9-parameter family of near extremal black rings have not yet been con-

structed in supergravity. The formula (3.7) for their entropy predicts the area of their

outer horizon

A+ = 2π2 1

2

(

√

hirr
L +

√

hirr
R

)

. (3.11)

These black rings are expected to have an inner horizon as well, also of topology S1 ×

S2 [23, 15]. The considerations of [24] predicts the area of the inner horizon

A− = 2π2 1

2

(

√

hirr
L −

√

hirr
R

)

(3.12)

where the hirr
L,R are given in (3.8) and (3.9).

4. Black ring thermodynamics

In this section we derive the thermodynamics of the near extremal black ring. The strategy

is to treat the entropy (3.7) as a potential that generates all other physical features of the

ring through the first law of thermodynamics

dM = TdS + ΩadJa + ΦIdQI + ϕIdqI . (4.1)
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Here M is the total mass of the ring, T is the temperature of Hawking radiation and

S is the entropy. The Ja with a = 1, 2 are the two angular momenta and the Ωa are

the corresponding potentials, interpreted geometrically as the rotational velocities at the

horizon. The M2-brane charges are QI , and the ΦI are the corresponding electromagnetic

potentials at the horizon. Finally the M5-brane dipole charges are qI , and ϕI are the

corresponding magnetic potentials at the horizon.

The first law readily gives the temperature through

1

T
=

(

∂S

∂M

)

Ja,QI ,qI

. (4.2)

We find
1

T
=

1

TR
+

1

TL
(4.3)

where

TL,R =
2

π

√

6hirr
L,R

c
. (4.4)

The two temperatures TL and TR are interpreted as usual as the independent temperatures

of the left and right moving excitations.

In the extremal limit hirr
R → 0 we have TR → 0 so that right moving excitations are

forced to the ground state. This takes the spacetime temperature T → 0 as well. On the

other hand, the left moving temperature approaches the finite value

TL →
12

πc

√

chirr
L

6
=

6

π2c
S (4.5)

in the extremal limit. This is the temperature of the highly degenerate ground state

responsible for the entropy.

A natural parametrization for the two angular momenta a = 1, 2 is to identify one

index with the momentum along the ring a = p and the other with the angular momentum

Jφ = J in the plane transverse to the ring. We then find

Ωp

T
= −

(

∂S

∂p

)

M,Jφ,QI ,qI

=
π

2

√

c

6





1
√

hirr
R

−
1

√

hirr
L



 =
1

TR
−

1

TL
(4.6)

for the rotational velocity along the ring; and

Ωφ

T
= −

(

∂S

∂J

)

M,p,QI ,qI

=
π

2

√

c

6hirr
L

J

q1q2q3
=

π

2

√

6

chirr
L

J = π2 J

SL
(4.7)

for the rotational velocity transverse to the ring. Here SL is the entropy of the left-movers.

The rotational velocity can never exceed the speed of light Ωp < 1 as this would,

effectively, amount to the development of closed time-like curves. However, in the extremal

limit, the rotational velocity along the direction of the ring approaches the speed of light as

Ωp =
TL − TR

TL + TR
→ 1− . (4.8)
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On the other hand, the rotational velocity in the plane transverse to the ring slows down

Ωφ → 0. This happens at the same rate as T → 0 such that, in the extremal limit, there

can be a finite ratio
Ωφ

T
→ π2 J

S
. (4.9)

Of course BPS black holes have J = 0.

For completeness, let us also consider the electromagnetic potentials. They are

Φ1

T
= −

(

∂S

∂Q1

)

M,Ja,Q2,3,qI

=
π

3q1q2q3

√

c

6





2Q1q
1 − Q2q

2 − Q3q
3

√

hirr
L

+
Q1q

1 + Q2q
2 + Q3q

3

2
√

hirr
R



 q1

=
4

c

(

2Q1q
1 − Q2q

2 − Q3q
3

TL
+

Q1q
1 + Q2q

2 + Q3q
3

2TR

)

q1 (4.10)

for the usual charges and

ϕ1

T
= −

(

∂S

∂q1

)

M,Ja,QI ,q2,3

=
π

3q1q2q3

√

c

6





2Q1q
1 − Q2q

2 − Q3q
3

√

hirr
L

+
Q1q

1 + Q2q
2 + Q3q

3

2
√

hirr
R



 Q1 +

+π

(
√

c

6hirr
L

ε + p

2q1
+

√

c

6hirr
R

ε − p

2q1

)

=
4

c

(

2Q1q
1 − Q2q

2 − Q3q
3

TL
+

Q1q
1 + Q2q

2 + Q3q
3

2TR

)

Q1 +
ε − Ωpp

q1T
(4.11)

for the dipole charges. The remaining potentials Φ2,3 and ϕ2,3 are found by the obvious

cyclic permutations.

In the extremal limit TR → 0 and ε → p with TL finite so that

ΦI →
4

c

(

QJqJ
)

qI (4.12)

ϕI →
4

c

(

QJqJ
)

QI . (4.13)

Note that, in the extremal limit, the electric and magnetic potentials are related such that

ΦIQI = ϕIq
I (no sum over I) . (4.14)

5. Discussion

As we have emphasized repeatedly, the strategy in this paper is to find a microscopic theory

of black rings by identifying the circular black rings with straight black strings. The results

are formulae for the thermodynamics of objects that seem quite difficult to construct even

at the level of supergravity. As is clear from the derivation, the results are written in

– 10 –
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the variables that are natural for the black string. When the results are interpreted in

terms of the black ring, as advocated here, these variables must be defined in the near

horizon geometry; and so they may in general differ from the corresponding variables in

the asymptotic geometry.

The distinction between near horizon and asymptotic variables is familiar already from

the extremal case. The near horizon charges QI used in the present paper can be identified

with the “barred” charges Q̄I of [7, 12] and should be distinguished from asympotic charges

of the asymptotically flat black ring [5, 8]. Similarly, as in [7, 12], the momentum along

the ring is related to the angular momenta in the asymptotic space as p = −(Jψ + Jφ) (in

the notation of [5]).

For the thermal ring there is an additional ambiguity: the excitation energy of the

microscopic theory plays the role of “mass” in the near horizon geometry but this mass, and

its dual temperature, cannot be identified with the mass parameter in the asymptotically

flat space. The distinction is seen clearly by noting that the black ring description associates

a non-vanishing energy with all charged excitations, e.g. in (3.2). In contrast, the BPS mass

in the asymptotically flat space is independent of dipole charges, through the mechanism

familiar from supertubes [27].

The microscopic definitions of the parameters used here are clear close to the horizon:

the near horizon geometry of the ring (not yet constructed explicitly) is expected to be

AdS3, because this is the geometry of the corresponding string. The charges, angular

momenta, and mass are the parameters defined asymptotically in this space; and this is

also where the central charge of the dual theory is defined, as are the levels of the various

affine currents exploited in this paper.

It would clearly be interesting to complement the description pursued here with an

interpretation of black rings as excitations in the asymptotically flat geometry. This would

also help clarify the relation between black rings and black holes in five dimensions.
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