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Abstract
The ability to control a prosthetic device directly from the neocortex has been demonstrated in
rats, monkeys and humans. Here we investigate whether neural control can be accomplished in
situations where (1) subjects have not received prior motor training to control the device (naı̈ve
user) and (2) the neural encoding of movement parameters in the cortex is unknown to the
prosthetic device (naı̈ve controller). By adopting a decoding strategy that identifies and
focuses on units whose firing rate properties are best suited for control, we show that naı̈ve
subjects mutually adapt to learn control of a neural prosthetic system. Six untrained
Long-Evans rats, implanted with silicon micro-electrodes in the motor cortex, learned cortical
control of an auditory device without prior motor characterization of the recorded neural
ensemble. Single- and multi-unit activities were decoded using a Kalman filter to represent an
audio ‘cursor’ (90 ms tone pips ranging from 250 Hz to 16 kHz) which subjects controlled to
match a given target frequency. After each trial, a novel adaptive algorithm trained the
decoding filter based on correlations of the firing patterns with expected cursor movement.
Each behavioral session consisted of 100 trials and began with randomized decoding weights.
Within 7 ± 1.4 (mean ± SD) sessions, all subjects were able to significantly score above
chance (P < 0.05, randomization method) in a fixed target paradigm. Training lasted
24 sessions in which both the behavioral performance and signal to noise ratio of the
peri-event histograms increased significantly (P < 0.01, ANOVA). Two rats continued
training on a more complex task using a bilateral, two-target control paradigm. Both subjects
were able to significantly discriminate the target tones (P < 0.05, Z-test), while one subject
demonstrated control above chance (P < 0.05, Z-test) after 12 sessions and continued
improvement with many sessions achieving over 90% correct targets. Dynamic analysis of
binary trial responses indicated that early learning for this subject occurred during session 6.
This study demonstrates that subjects can learn to generate neural control signals that are well
suited for use with external devices without prior experience or training.

1. Introduction

There are over 250 000 cases of spinal cord injuries in
the United States of America, with a majority of these
injuries resulting in quadriplegia: the loss of movement and
sensation in both the arms and legs (Lucas et al 2004).
Electroencephalographic (Lacourse et al 1999) and functional
magnetic resonance imaging (Shoham et al 2001) studies

have shown that spinal cord injured patients who imagine
movements in their paralyzed limbs can still produce activation
of the motor cortex, even after an extended period of time
post trauma. Early studies demonstrating that single units of
the motor cortex could be operantly conditioned (Olds 1965,
Fetz 1969, Fetz and Finocchio 1971) led Edward Schmidt to
propose in 1980 that unit recordings from the motor cortex may
constitute a viable control signal for external devices (Schmidt
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1980). Recent technology advances have enabled several
groups to begin investigating the possibility of cortically
controlled neural prostheses (Kennedy et al 2000, Serruya et al
2002, Taylor et al 2002, Carmena et al 2003, Shenoy et al 2003,
Musallam et al 2004, Olson et al 2005). Many of the current
cortical control paradigms consist of analyzing the relationship
between cortical activity and measured motor parameters
(Chapin et al 1999, Wessberg et al 2000, Sanchez et al 2004).
This known relationship is then used to transform the neuronal
population signals into real-time prosthetic device movements.
Unfortunately, such motor information cannot be obtained in
patients with traumatic spinal lesions or neurological disorders
which prevent movement.

Several groups have investigated the possibility of neural
prostheses that could adapt to cell tuning properties (Taylor
et al 2002, Eden et al 2004, Musallam et al 2004). One
study (Musallam et al 2004) built a database of cortical
responses to motor reaches that were subsequently used to
decode brain-controlled tasks. Data collected during brain-
controlled reaches to targets were used to continually update
the database which eventually contained only brain-controlled
trials. They reported that this could be done without leading to
a loss in performance. Taylor et al (2002) demonstrated that
an a priori neural database was not required for an adaptive
algorithm to allow brain-controlled movements. By starting
with random tuning properties and allowing these estimates to
be iteratively refined, subjects could make long sequences of
three-dimensional movements using a brain-controlled cursor.
These algorithms mutually adapted to the learning-induced
changes in cell tuning properties, thus creating a coadaptive
neural prosthetic system.

One common thread in these neural prosthetic research
models is that the animals are first trained on a motor task.
The experiment is then repeated with a brain-controlled task
that represents the trained motor control. It is not clear if
this a priori motor training is required to learn control of
a neural prosthetic device. There may also be devices that
do not have inherent correlates with physical motor control
(e.g. powered wheelchairs, trolleys, communication boards
and various adapted vocational tools). Fine control of such
neural prosthetic devices would not come from motor training,
but rather through adapting arbitrary control signals from the
neocortex.

Our objective in this study was to determine if untrained
subjects were able to learn control of an unfamiliar neural
prosthetic device. We hypothesized that by coadapting to the
subject’s neuronal responses, we could allow previously naı̈ve
subjects to gain control of a foreign neural prosthesis. Here we
show that subjects can learn one-dimensional neural control
of a novel auditory device without prior motor training.

2. Methods

2.1. Surgical procedure

Six Long-Evans rats weighing 275–300 g (Charles River
Laboratories) were used during this study. Animals were kept
on a reversed light schedule and housed within the animal

facility of the University of Michigan. Subjects were handled
before surgery; however, training did not occur until the
cortical control experiments began. Implantation methods
have been discussed previously in more detail (Kipke et al
2003, Vetter et al 2004) and will only briefly be described
here. Prior to surgery, anesthesia was induced through an
intraperitoneal injection of a mixture of 50 mg ml−1 ketamine,
5 mg ml−1 xylazine and 1 mg ml−1 acepromazine at an
injection volume of 0.125 ml/100 g body weight. Anesthesia
was maintained with hourly intraperitoneal injections of 0.1 ml
ketamine (50 mg ml−1). Subjects were placed in stereotaxic
ear bars (MyNeuroLab.com, St. Louis, MO) and an incision
was made down the midline of the head. Tissue was removed
to reveal the reference fissures on the skull and three bone
screw holes were drilled using a surgical bit. A craniotomy
was created over the forelimb area of the primary motor cortex
(MI) of the left hemisphere. The dura was resected to allow
insertion of the penetrating electrode. One 16-channel chronic
silicon-substrate microelectrode array (Kipke et al 2003, Vetter
et al 2004) was implanted by hand using fine forceps into the
brain (see table 1 for stereotaxic locations). Each electrode
(Center of Neural Communication Technology, Ann Arbor,
MI; catalog 4 × 4 4mm200 chronic) had four separate shanks
(200 µm inter-shank spacing) with four recording sites spaced
evenly along each shank (200 µm inter-site spacing). The
craniotomy was filled with a hydrogel polymer (ALGELTM,
Neural Intervention Technologies, Ann Arbor, MI) to anchor
the electrode, and a silicone polymer (Kwik-SilTM, World
Precision Instruments) was applied to protect the electrode
ribbon cable. Finally, a protective headcap was created using
dental acrylic (Co-Oral-Ite, Dental Mfg. Co., Santa Monica,
CA). The animals were allowed 48–72 h to recover from
surgery. All surgical and animal care procedures were in
accordance with the National Institute of Health guidelines
and were approved by the University of Michigan Institutional
Animal Care and Use Committee.

2.2. Data acquisition

During each experimental session neural electrophysiological
data from the 16 electrode channels were sampled at 40 kHz.
These signals were simultaneously amplified and bandpass
filtered (450–5000 Hz) on a Multichannel Neuronal
Acquisition Processor (MNAP; Plexon Inc., Dallas, TX).
At the beginning of each recording session, units on each
electrode channel were separated and identified using online
thresholding, template matching and principal component
analysis. Spike times were transmitted with nominal delays
over a local TCP/IP connection to a second computer running
custom software (MATLAB, Mathworks Inc., Natick, MA)
for neural decoding and the environmental hardware control
(Tucker-Davis Technologies, Gainesville, FL). Spike times
and waveshapes were stored to disk for offline analysis. Event
timings for target tone onset and food delivery were captured
and stored by pulse signals that synchronized the hardware
events with spike timing.
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Figure 1. Behavioral paradigm. Dark line indicates auditory tone frequency played back to the subjects (initial cue followed by 90 ms
feedback pips). Horizontal shaded regions represent the criterion windows for the baseline and response frequencies. Responses were
determined correct and were rewarded if the feedback frequency was maintained within the response criterion of the target frequency, for the
duration of a 540 ms sliding window, incrementing in 90 ms steps. The unobserved ideal response or ‘intended’ response used during the
training of the adaptive filter is indicated by a thin dotted line. The result of the illustrated trial would be determined as a ‘correct target’ trial.

2.3. Behavioral paradigm

The cortical control system used in these experiments is a one-
dimensional auditory analog of the center-out reaching task
(Georgopoulos et al 1986, Schwartz et al 1988). In center-out
reaching experiments, the hand (or cursor, in the case of brain-
controlled tasks) is held at the center of a circle until a target cue
is placed in one of a fixed number of points on the perimeter of
the circle. The subject’s task is to move the hand (cursor) into
the target position and hold it for a fixed amount of time. Target
acquisition must be completed within an allowable response
period. In our auditory version, an audio cursor is represented
by 90 ms sound pips representing the one-dimensional location
within the logarithmically spaced 250 Hz to 16 kHz frequency
spectrum. Baseline firing rates were mapped to the center of
the frequency space, and trials began with the presentation of
a target tone at a given frequency. Subjects had a fixed amount
of time to match the target frequency using the auditory cursor.
The movement of the auditory cursor was dependent on the
real-time decoding of the cortical firing rates as described
below. As with the center-out paradigm, trials are marked
either as correct (held at correct target frequency for the
hold period), wrong (held at an incorrect target frequency
for the hold period) or late (no answer within the response
period).

Subjects were kept at 85% of their free feeding weight
and were tested using either a fixed target task (10 kHz tone,
N = 6) or a target discrimination task (1.5 kHz or 10 kHz tone,
N = 2). The fixed target task was run for two to three sessions
a day for 8 days. Each session consisted of 100 trials. Figure 1
illustrates trial timing and sequence for this task. Trials began
when subjects held the auditory cursor within the criterion
window of the baseline level (4 kHz) for 540 ms. The criterion
window was set as ±17% of the logarithmic workspace
(1.5–10 kHz). Pilot studies determined that this criterion
window allowed naı̈ve users to acquire the target in 15–20% of
trials by chance. An auditory cue (10 kHz) was then presented
for 900 ms to indicate the target frequency. Auditory feedback

of the predicted cursor position was presented to the subjects in
90 ms pips. Subjects had a 4.5 s response window to maintain
the cursor within the criterion window of the 10 kHz target for
540 ms. Correct responses were reinforced with a food pellet
(45 mg; BioServe #F0021, Laurel, MD). A random inter-trial
interval (5–15 s) separated each trial.

The behavioral trial for the target discrimination task
was similar to the fixed target, with the exception of an
additional target tone. The two target tones were equally
spaced (log scale) from the baseline tone. Baseline, target 1,
and target 2 frequencies were set to 4 kHz, 10 kHz, and
1.5 kHz respectively. Subjects of the discrimination task
were initially trained on a fixed target before being presented
with two targets. Experimental runs were constructed as
either training or testing sessions. Training sessions repeated
missed targets up to four times, while testing sessions pseudo-
randomly presented an equal number of the 1.5 kHz or
10 kHz targets. All sessions began with randomized weights
and consisted of 200–300 trials. Subjects ran one training
session and one to two testing sessions per day. Only testing
sessions were used for analysis in this study. At the end of
each day of training, supplemental dry food was provided (if
necessary) to maintain body weight near 85% ad lib.

Our behavioral paradigm provided a contingency between
the stimulus (target tone), the desired response (reaching the
correct target) and the presentation of a reinforcer (food pellet)
which allowed subjects to associatively learn the cortical
control task. Initially, the probability of a correct response
was low, but through this operant conditioning paradigm, the
number of correct trials occurred with higher frequency.

2.4. Ensemble decoding

To enable real-time neural control of the auditory cursor, we
used a Kalman filter to infer the cursor frequency from the
neural recording data (Wu et al 2004). A detailed description
of the Kalman filter can be found in Maybeck (1979). Briefly,
the Kalman filter is a mathematical procedure that provides
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Figure 2. Closed loop cortical control schematic. Spike bins (ztk)
from the motor cortex were decoded using a Kalman filter to predict
the cursor frequency (x̂tk). The predicted frequency was fed back to
subjects via a speaker every 90 ms of the response window.

an efficient computational means to estimate the state of a
process based on noisy Gaussian observations. Here, the
observations are the binned spike times, which can be assumed
to be Gaussian distributed provided that unit firing rates are
sufficiently high. In our paradigm, the cursor frequency was
modeled as a system state variable xtk , where t is the trial index
(t = 1, 2, . . . , T ; where T is the total number of trials in the
session), and k is an index of time (k = 1, 2, . . . , K; where K
is the number of 90 ms time steps in trial t). For each trial, the
cursor xtk was assumed to propagate in time according to an
unobserved difference equation

xtk = Axt(k−1) + wt(k−1), (1)

where A relates the prior cursor position to the current position
(A = 1 in our experiments) and wtk is a white noise term
that was assumed to have a normal probability distribution,
wtk ∼ N(0,Wt). Note that xtk is a scalar in our one-
dimensional paradigm. However, similar equations to those
that follow can be written when xtk is a vector of multiple
dimensions.

Unit firing times were collected in 90 ms bins and modeled
as an observed noisy response to the unobserved state process
(1). We define our measurement difference equation that
describes the relationship between the cursor frequency (xtk)

and recorded spike bins (ztk) as

ztk = Ht xtk + qtk (2)

where ztk is a C × 1 vector of spike bins from C cells, Ht is
a C × 1 vector that linearly relates the frequency state to the
neural firing. Again, we assume the noise in the observations
has zero mean and is normally distributed, i.e. qtk ∼ N(0, Qt ).

As figure 2 illustrates, the Kalman filter uses the above
state equations (1) and (2) as a model to infer, or predict, the
cursor position, x̂tk , given only the observed spike bins, ztk , of
a trial. In order to use this model, we must first define three
parameters: Ht ,Wt and Qt . It is with these parameters that we
adapt the Kalman filter to the neural response of our subjects.

2.5. Filter adaptation

The challenge presented to a ‘naı̈ve’ prosthetic controller
is to predict the cursor position, while simultaneously
estimating the weights that should be assigned to an evolving
neural ensemble experiencing learning-induced changes. For
assistance we turn to stochastic control theory, a well-
established engineering discipline for tracking non-stationary
control signals (Åström 1970, Maybeck 1979). Stochastic
control theory offers many tools for dealing with parameter
estimation of dynamical state-space systems. Algorithms such
as recursive least squares (RLS) or recursive Newton–Raphson
provide a way for filter coefficients and cursor predictions to
be simultaneously calculated on a bin-by-bin basis (Davis
and Vinter 1984). Additionally, block estimation allows
for standard system identification techniques to be used on
non-stationary signals (Haykin 1996). In block estimation,
the available data are divided into individual blocks which
are small enough to assume pseudo-stationarity. The filter
coefficients are then computed and updated on a block-by-
block basis. We selected the block estimation approach as it
allowed the filter coefficients to be trained on select regions
within the block that maximized our selection criteria (see
equation (3)). This selective training technique provided an
opportunity to identify and focus on units whose firing rate
properties were best suited for control.

The blocks used in this study consisted of data obtained
from the past ten trials, and were updated on a trial-by-trial
basis. Data from new trials were added to a block by selecting
the appropriate time lag in the response window where the
unit firing rates had the largest correlation to the expected
cursor movement. The time lag at which this occurred was
determined by calculating the correlation coefficient of a
sliding window of the recorded unit responses with a window
of the ‘intended’ target frequency movement for the given trial.
The lag chosen for training (l) was calculated across C cells
via the formula

l = argmax
j

(
max

c∈(1,2,...,C)
corr([xt (1:n) xt (j :j+n)],

[zt (1:n),c zt (j :j+n),c])
)
, (3)

where ztk,c is the spike bin count of cell c at time k, and j is
the index of a sliding window of length n across R response
bins, j ∈ [1, 2, . . . , R − n]. In our experiments, R = 50
and n = 6. The colon operator indicates concatenation; for
example, a vector containing the values of x for the first five
time steps of trial t is written as xt (1:5) = [xt1 xt2 xt3 xt4 xt5].
The function corr is defined as

corr(x, z) =
∑

i (xi − x)(zi − z)√∑
i (xi − x)2

∑
i (zi − z)2

, x = 1

n

n∑
i=0

xi .

(4)

Note that the vector x of equation (3) does not refer to the
predicted cursor position of trial t, but rather to the ideal
unobserved cursor movement (see the dashed line of figure 1).
The vectors used in the correlation function are a concatenation
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of the baseline (1 : n) and response (j : j + n) windows of
the trial, thus allowing for one-dimensional movements. By
correlating vectors of the ideal movements with vectors of the
observed firing rates zt , we can adapt the decoding filter to
focus on unit responses that are potentially suited for control.

The lag calculated from (3) over the past M + 1 trials
was used to train the parameters of the decoding filter for
the immediately upcoming trial (M = 9 in our experiments).
The transformation matrix H was estimated online by the
regression equation

Ĥ(t+1) = (ZXT )(XXT )−1, (5)

where X is the intended cursor block that concatenates Xt of
the past M + 1 trials

X = [Xt X(t−1) X(t−2) · · · X(t−M)], (6)

and Xt is defined as the ideal cursor movement from baseline
to response

Xt = [xt (1:n) xt (l:l+n)]. (7)

Similarly, the matrix Z of (5) is the observation block which
is defined as the concatenation of the ensemble spike bins
from the past M + 1 trials at their appropriate lag, l, that best
correlated to the ideal movement

Z = [Zt Z(t−1) Z(t−2) · · · Z(t−M)] (8)

Zt = [zt (1:n) zt (l:l+n)]. (9)

By using a trial-by-trial sliding block to obtain the least-
squared estimate of the relationship between spike rates and
cursor frequency (Ĥ) and by operantly rewarding correct trials,
we hypothesized that subjects would learn the behavioral task
and develop a strategy to control the auditory cursor.

The noise matrices Q̂(t+1) and Ŵ(t+1) were then estimated
using the equations

Ŵ(t+1) = (X1:(N−1) − AX1:(N−1))

× (X2:N − AX1:(N−1))
T /(N − 1), (10)

and

Q̂(t+1) = (Z − Ĥ(t+1)X)(Z − Ĥ(t+1)X)T /N, (11)

where N is the block length, N = (M + 1)2n.
The updated filter parameters were used to decode the

cursor frequency for the immediately following trial. The end
of one trial was the beginning of the next, so xt0 = x(t−1)K .
On the initial trial of each session H1, Q1 and W1 were
randomized.

2.6. Behavioral performance

The behavioral performance for each subject was investigated
by comparing the percentage of correct targets with the
percentage that would be expected by chance. For the target
discrimination task, late trials were discarded and each session
was treated as a two-state forced choice paradigm in which
chance was 50%. However, the fixed target paradigm consisted
of trials that could not end in a ‘wrong target’ state. Therefore,
a stimulus randomization method was employed to determine
the amount of correct targets that could have been selected by
chance during the response period.

The stimulus randomization method is described as
follows. If the predicted frequency (x̂) was not related to the
stimulus (target) tones, then the tone times can be randomized
without affecting the chance that the rat meets the reward
criterion. For each training session, 300 sequences of random
tone times were drawn. Each random sequence had the same
number of tone times and the same tone time distribution as
the experimental session. The number of times that the subject
would have been rewarded for each of the 300 sequences
was used to determine the distribution of chance. For each
behavioral session, the percent correct above chance was
calculated.

For the fixed target task, we defined the early learning
session as the first session on which there was reasonable
certainty (P < 0.05) that the subject performed better than
chance. For the target discrimination task, we also performed
a dynamic analysis of learning using a state-space framework
that analyzes binary observations (Smith et al 2005). Correct
and wrong trials from all testing sessions were arranged to
form a time series of binary trial responses and were used to
compute the learning curve and its confidence intervals using
the state-space smoothing algorithm described in Smith et al
(2004). We defined the early learning trial as the first trial on
which there is reasonable certainty (P < 0.05) that a subject
performs better than chance for the following 500 trials.

An additional measure of chance was estimated through
the use of catch trials. Catch trials consisted of stimuli in
which the intensity of the tone and feedback were set to 0 dB
to determine the number of trials which reached the correct
target by chance.

2.7. Unit analysis

To monitor the evolution of the tuning properties over sessions,
we measured the signal strength of the peri-event histograms
(PEH) relative to background noise for each unit for every
session. The PEH, or signal histogram, was centered on target
tone onset and had the width of a full trial window (6.66 s,
90 ms bins). Noise histograms were generated by selecting
random times from the recording session, and centering the
trial window at this random location. We calculated the root
mean square (RMS) of both the signal and noise histograms
as

RMSk =
√√√√ 1

N

N∑
n=1

(sk,n − µ)2, (12)

where k is a label, k ∈ {signal, noise}, N is the total number
of bins for the histogram, s is the firing rate value of the nth
bin and µ is the mean firing rate. Using the RMS calculations
of both signal and noise histograms, we then calculated the
signal to noise ratio (SNR) as

SNR(dB) = 20 log10

[
RMSsignal

RMSnoise

]
. (13)

To determine if a recorded unit showed a significant
inhibitory or excitatory response, confidence intervals
were calculated for each target-onset-centered PEH. The
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chance. Error bars represent standard error. Gray band indicates the 95% confidence interval. Bottom lines indicate the length of time each
subject was performing the task. Tick marks indicate early learning sessions. Days of training and mean percent correct for all subjects for
each day are indicated across the top.

computations for these intervals were based on the null
hypothesis that spike trains are the realization of independent
Poisson-point processes as described in the literature (Abeles
1982). Unit responses that crossed the upper 99% confidence
interval during the response window were labeled as
excitatory while those that crossed the lower 99% confidence
interval during the response window were labeled inhibitory.
Responses crossing both confidence intervals were excluded
from this analysis.

To test if discrimination had occurred in our subjects, we
looked for distinct changes in the unit response pattern for
each target. Mean firing rates during the response window of
all trials were loaded into MATLAB (Mathworks Inc., Natick,
MA) and were separated and labeled according to the target
for each trial. Trial by trial analysis was then performed
using a Support Vector Machine (SVM) classification toolbox
(Ma et al 2002). The SVM filter was used to predict the
target frequency given the test data from each trial using
training data (mean firing rates and target labels) from all
other trials. This analysis was repeated for each trial in
the session (‘leave-one-out’ method) and the total percent
correct was noted. Sessions where the classification percent
correct was significantly greater than the calculated binomial
distribution (P < 0.05, Z-test) were labeled as demonstrating
target discrimination.

2.8. Histology

Upon completion of training, rats were transcardially perfused
with 4% formaldehyde. The brains were removed, sectioned
into 40 µm coronal slices and stained with a conventional
cresyl violet Nissl stain. The sections were then analyzed
using a Leica MZFLIII light microscope (Leica Microsystems,
Inc., Germany) to determine probe placement.

3. Results

We summarize two sets of experiments. The first involves
data from six naı̈ve subjects in which the task was to move
an auditory cursor to a fixed target. Next, we considered the
case in which multiple targets were presented and the task was
to discriminate and move to the correct target. Two subjects
from the initial study were used during the later stage.

3.1. Fixed target task

After recovery from surgery, populations of 5–23 (mean, 11.5)
single and multi-unit clusters were discriminated from the
recording electrodes and used for the fixed target control task.
Subjects were able to control the feedback cursor significantly
above chance (early learning session) within 7 ± 1.4 (mean ±
SD) behavioral sessions (P < 0.05, stimulus randomization
method, N = 6). Figure 3 shows the group performance across
24 successive sessions. The 95% confidence intervals indicate
two standard deviations above and below the mean chance
distribution (randomization method). Horizontal lines indicate
the number of days that each subject participated in the study.
Tick marks indicate the early learning sessions for each of the
subjects. Two subjects were not included after session 9 due to
illness (KCD-06) and the loss of all recording units (KCD-03).
The average percent of trials on which the target was
successfully acquired is shown for each day. This percentage
increased from the first session (21.7% ± 6.5%, mean ± SD)
to the last (69.6% ± 17.6%, mean ± SD; P < 0.01, one-way
ANOVA).

Regression coefficients of the subjects’ performance over
chance as a function of session number are given in table 1.
These coefficients were all positive and in five out of six
subjects (83.3%) significant (P < 0.05, one-way ANOVA),
indicating that performance increased with training. The
coefficient for the entire group of subjects was 1.53 percentage
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Figure 4. Example of trial output aligned with neural ensemble response. (a) Raster plot of spike trains from 14 units over two trials.
(b) Behavioral output over two trials. The estimated cursor frequency (x̂) is shown as a thick line, while the expected frequency (x) is shown
as a thin line. The criterion windows for the target and baseline frequencies are indicated as horizontal dashed lines. The beginning of each
target tone is marked with a black vertical line, while gray vertical lines indicate when the subject produced a correct response and was
positively reinforced. (c) Relatively weighted translation decoding Ĥ matrix. (d)–(g) Peri-event histograms over 100 trials, centered on
target onset (indicated by arrow). Bottom bar (R) indicates mean ± SE of the reward distribution for the PEH plots. Time scale for (a) and
(b) is indicated by the 1 s bar. Time scale for (d)–(g) is shown in seconds.

Table 1. Electrode placement and performance for all subjects in
the fixed target task. Total number of sessions and the regression
coefficients of subject’s performance as a function of session
number are given. P values <0.05 indicate that this coefficient was
significant.

Regression
Subject Coordinates (mm) Sessions coefficients P

KCD-01 AP:+3.8 ML:2.0 20 1.6 <0.001
KCD-03 AP:+2.5 ML:3.0 9 1.3 <0.05
KCD-05 AP:+2.6 ML:2.5 24 2.4 <0.02
KCD-06 AP:+3.0 ML:2.5 9 0.24 >0.58
KCD-09 AP:+1.2 ML:2.9 23 1.1 <0.02
KCD-10 AP:+1.5 ML:1.6 24 0.96 <0.01

points per session and was significant (P < 0.01, one-way
ANOVA).

Figure 4 shows a typical output of the fixed target
experiments. Two trials (20–21) from subject KCD-01 are
shown from session 24. A raster of the spike train outputs
(a) from the 14 sorted single- and multi-unit clusters are
aligned with the behavioral output (b). After each trial, the
coadaptive algorithm updated the weights (c) of the decoding
matrix (Ĥ) to minimize the output frequency error based on
the neural ensemble responses from the past ten trials. The
processing time for this updating algorithm to run is indicated
in the figure (typically between 2 and 8 s). PEHs averaged

across all 100 trials are shown in (d)–(g). Each PEH is
centered at the time that the 10 kHz tone was presented
(indicated by arrows). Excitatory and inhibitory responses
can be observed in the response window in both the raster plot
(a) and the averaged PEH (d)–(g), which allowed for control
of the auditory cursor along a one-dimensional frequency
axis. Upon tuning, units that responded in an excitatory
fashion to the tone during the response window received
high positive decoding weights, while inhibitive responses
during the response window received larger negative weights.
Units that did not respond, or only responded outside the trial
window (g), received low weights as they were not useful for
device control. During this session, the estimated auditory
cursor (x̂) was strongly correlated (ρ = 0.707, P < 0.01) to
the ideal target and baseline frequencies (x).

To visualize the cursor across an entire session, we
examined the distribution of the cursor predictions during
all of the baseline and response windows. Figure 5 shows
a histogram of x̂ predictions in 100 logarithmically spaced
bins for both the baseline window (4 kHz, gray) and target
response window (10 kHz, black) from all trials (N = 100)
of three sessions of KCD-01. During the first session (a), the
distributions for both the baseline and response are centered
on the baseline frequency. The response distribution begins to
spread into the target window during the early learning session
(b) as the subject learns to control the cursor towards the target.
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Figure 5. Histogram of auditory cursor frequency estimation (x̂) during two trial windows: baseline (gray) and response (black), for three
sessions: naı̈ve, early learning and late learning of KCD-01. Baseline period was fixed at 1.2 s, while the response window was variable
(up to 4.5 s) depending on response time. Criterion windows for the baseline and response frequencies are indicated by vertical bars on the x̂
axis.
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Figure 6. Intensity randomization test. Behavioral results of a
well-trained subject (KCD-01) from 341 trials across two sessions
where the intensity of both target and feedback tones was
randomized between 0 and 70 dB. Error bars indicate standard error.

By the late learning session (c), the distribution becomes
bimodal indicating that the subject was able to hold the cursor
at the baseline target (4 kHz) during the baseline window, then
quickly acquire the target (10 kHz) and hold it for the required
criterion (540 ms) during the response period. The change
in scaling of the response distribution is an indication of the
increased correct responses (thus shorter response windows)
during learning. The mean response window length was 4.02 s,
2.82 s and 2.05 s for the naı̈ve session, the early learning
session and the late learning session respectively.

To ensure that the subject’s behavior was based on the
target and feedback tones, we conducted an experiment using
randomized intensities of these tones from a set of five
levels (0, 17.5, 35, 52.5 and 70 dB). Figure 6 shows the
mean behavioral results from 341 random intensity trials
across two sessions (KCD-01). The results demonstrate
that the subject’s behavior was a function of the stimulus
intensity, indicating that the target stimuli (and not random
fluctuations in cursor predictions) were driving the observed
behavior. The sigmoidal shape of figure 6 is consistent with
psychophysical measurements of tone detection tasks (Thomas
and Setzer 1972). Furthermore, the 0 dB catch trials provided
an alternative online determination of chance that we could
measure against the randomization method. During these

sessions, 0 dB trials received almost no correct responses
(5.1% ± 1.1%, mean ± SD). Chance for this task using
the randomization method was calculated to be 19.9% ±
2.2% (mean ± SD), indicating that the randomization method
provides a conservative method for determining chance.

The adaptive algorithm selected units that showed
potential for control based on the criterion that they were able
to modulate from their baseline firing rate during the response
window. This selection criterion resulted in changes to the
signal to noise ratio of the PEHs across behavioral sessions.
The mean SNR increased significantly for the unit PEHs of all
rats (P < 0.01, ANOVA), indicating that at least one unit in
the ensemble had developed the ability to control the system
via changes in the firing rates. Moreover, the median SNR
also increased significantly (P < 0.01, ANOVA) across all
subjects indicating that many units in the ensemble were active
in control, a desirable property for establishing a robust control
signal. Figure 7 shows the distribution of SNR calculations for
the PEHs of all units of KCD-05 across 24 training sessions.
Median and mean are indicated, and increased significantly
with session number (P < 0.001, ANOVA). Representative
PEHs and the SNR values are shown from sessions 2 and 23.
Across all subjects, units from sessions in which the subject
did not show significant performance above chance had a mean
SNR of 1.7 ± 2.1 dB (mean ± SD, N = 377 units) with
median 1.2 dB, while units from sessions where control was
significantly above chance measured 3.7 ± 4.0 dB (mean ±
SD, N = 509 units) with a median of 4.4 dB.

3.2. Target discrimination task

Two subjects (KCD-09 and KCD-10) were trained on a two
target discrimination control task for 30 and 8 testing sessions,
respectively. Figure 8 shows the behavioral results for both
subjects. The gray band indicates the 95% confidence intervals
of chance as calculated from a binomial distribution based
on the number of trials for each session. KCD-09 showed
a positive learning trend (0.8 percentage points per session,
P < 0.01, ANOVA) which allowed for several sessions
where >90% of acquired targets were correct. KCD-10
remained at chance for most sessions; however, offline SVM
classification (Ma et al 2002) of the recorded unit activity
was able to correctly classify trials above chance (P < 0.05,

59



G J Gage et al

-1 1 2 3 4
0

sig003a

-1 1 2 3 4
0

5

sig009a

-1 1 2 3 4
0

5

sig014a

-1 1 2 3 4
0

5

sig015a

-1 1 2 3 4
0

5

sig003a

-1 1 2 3 4
0

5

10

sig009a

-1 1 2 3 4
0

5

sig014a

-1 1 2 3 4
0

5

sig015a

Im
pu

le
s/

se
c 

 
 

Session Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

S
ig

n
a
l t

o
 N

o
is

e
 R

a
tio

 (
d
B

)

1.886 dB 1.639 dB 1.741 dB

10.043 dB 13.132 dB 5.749 dB 4.818 dB

Mean
Median
Outlier

-5

0

5

10

15

1.887 dB
Im

pu
le

s/
se

c 
 

 

P
E

H
 - 

S
es

si
on

 2
3 

  
P

E
H

 - 
S

es
si

on
 2

   

-5

0

5

10

15
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Figure 8. Performance of two subjects in discrimination control
task. Gray band indicates the 95% confidence interval of chance as
calculated from a binomial distribution based on the total number of
trials. Changes in band width are due to slight variations in the
number of trials per session. In sessions where both subjects are
present, the gray band indicates the larger of the two chance
intervals.

Z-test) for both subjects indicating that KCD-10 had learned
to discriminate the targets, but had not yet learned control of
the cursor to select both targets. The behavioral performance
of KCD-09 rises and stays above the 95% confidence interval
of chance for several sessions after session 12. However,

dynamic analysis using the method of Smith et al (2004) in
which correct and wrong trials (N = 3708) from all sessions
were used as binary observations of the unobservable learning
state process indicated that early learning occurred much
earlier, on trial 715 (session 6). Dynamic analysis of KCD-10
trials indicated that early learning had not occurred.

Three sessions from KCD-09 fell to chance after the early
learning session. During session 19, the units previously
used for control could not be sorted from the noise. Offline
unit analysis showed that the subject was able to adopt an
alternative strategy involving units from other channels in the
array on session 20, leading to a recovery in performance.

In order for subjects to control the cursor to reach targets
in opposite directions, ideally the unit responses to each target
should also be tuned to deviate from the baseline firing rate
in opposite directions. Across the 39 behavioral sessions of
both subjects, 438 units were manually sorted and used for
control (mean ± SD, 11.1 ± 2.4 units per session). Of these
units, 235 (53.7%) showed significant responses immediately
following the 10 kHz target tone. These responses were further
classified as either excitatory (135 units, 57.5%) or inhibitory
(100 units, 42.6%). For the 1.5 kHz tone, 228 units (52.1%)
showed significant modulation during the response window,
where 176 (77.2%) of these were excitatory and 52 (22.8%)
were inhibitory. Of the units that responded significantly to
either of the targets (371 units, 87.9%), 92 (24.8%) did not
show a discrimination between the tones. These units were
either excitatory (71 units, 77.2%) for both of the presented
targets, or inhibitory for both (21 units, 22.8%). However, 232
units (62.5%) selectively showed a significant response for one
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Figure 9. (a) Raster and PEH plots of three units (selected from ten units) from KCD-09 on session 17 of the two-target task. All plots are
centered on target onset (indicated by arrows). The first 15 trials for both 1.5 kHz target (gray) and 10 kHz target (black) are shown in the
raster plots; the PEH includes all 200 trials of the session. Thickness of PEH indicates standard error. Dashed lines indicate the upper and
lower 99% confidence intervals. (b) Trajectory plot for 10 kHz target (black) and 1.5 kHz target (gray). Late trials were ignored. Horizontal
lines indicate the criterion window for the respective target. Thickness indicates standard error.

but not the other target tone. Moreover, 47 units (12.7% of
all behaviorally responding units) selectively had significant
excitatory responses for one target, while having significantly
inhibitory responses for the other.

These bilateral target discriminating units, combined with
units that responded for only one of the targets, allowed
one subject (KCD-09) to control the cursor to both targets
significantly above chance (P < 0.05, randomization method)
after 12 testing sessions. Figure 9 shows the response of
three units (selected from ten) in the target discrimination task
from session 17. Raster plots of the first 15 pseudo-random
trials for each target have been sorted into 10 kHz (black) and
1.5 kHz (gray). The PEHs for all trials of both tones are
plotted directly beneath. The arrow indicates when the target
was presented. One unit shows an excitatory response for the
10 kHz tone and inhibitory response for the 1.5 kHz tone, while
the other units show the opposite response. The trajectory plot
of all trials is shown in (b). The subject in this session was
able to reach the correct target in 93% of the trials.

4. Discussion

This study demonstrates that naı̈ve subjects can learn closed-
loop, real-time control of one-dimensional cursor movements
using single-unit and multi-unit activity of the neocortex.
Several investigators have demonstrated similar degrees of
adaptation and robustness (Musallam et al 2004, Wolpaw and
McFarland 2004, Taylor et al 2002). Previous studies have
demonstrated that one-dimensional control signals could be
inferred from simultaneously recorded neurons in rats that
were first trained on a lever task (Chapin et al 1999, Olson
et al 2005). Our results suggest that this initial training period
may not be required for neural prosthetic control.

We did observe stereotyped motor behaviors in some
animals performing the cortical control task. We are unable
to determine whether these stereotyped behaviors were related
to the recorded units’ firing rate modulation, or whether the
motor behaviors were merely superstitious behaviors. We can
state, however, that all feedback and rewards were based solely
on the unit activity of the motor cortex. Other neural prosthetic
studies which have looked at EMG signals from the muscle

groups of the cortical region used for control, report that EMG
modulations were eventually absent in brain-controlled control
tasks (Taylor et al 2002, Carmena et al 2003). These and
other studies (Fetz and Finocchio 1971, Chapin et al 1999)
indicate that cortical control is possible without direct motor
movements.

Our model contains assumption violations that do not
affect our conclusions but should be addressed. First, the
Kalman filter implicitly assumes a linear Gaussian relationship
between cursor movement and unit firing rate. While this
assertion is not exact, a linear assumption has been shown
to be a reasonable approximation by several investigators for
real-time control (Taylor et al 2002, Serruya et al 2002). The
Gaussian assumption only holds for binned data when spike
rates are sufficiently high. An alternative approach to avoid
this violation would be to use a filter based not on binned
data, but on the point process observations of spike times
(Eden et al 2004). Additionally, the variance of the noise
used in state equation (1) was not an accurate representation
of the feedback cursor, as this was determined by regressing
intended movements, which were specified as ideal (noiseless)
movements. Nonetheless, the resulting equations allowed our
subjects to quickly learn control of the modeled feedback
cursor. Further work needs to be done to establish whether
decoding filters that remove these assumptions will assist
subjects to learn faster or achieve higher performance.

One limitation of our adaptive algorithm is that it is
based on a supervised learning paradigm in which both the
intended target and neural activity were used to estimate each
neuron’s receptive field. This paradigm works well for goal-
directed tasks but has disadvantages for longer, free-ranging
tasks where receptive fields may change or new neurons
become available after the training stage. Our work could
be extended to allow the adaptive algorithm to simultaneously
predict the cursor estimates while tracking the evolution of the
receptive field parameters (Ĥ) on a bin-by-bin basis. This
technique would allow newly added neurons to contribute
to the decoding, even when they were not present during
the encoding (training) stage. Eden et al (2004) provide
an example of receptive field tracking in their development
of an adaptive stochastic state point process filter for neural
decoding.
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Subjects were able to control the one-dimensional cursor
in the fixed target task using a few (11.5 ± 3.5, mean ±
SD) MI units per session. This is comparable to similar
experiments in monkeys where 7–30 MI neurons were used
for two-dimensional control (Serruya et al 2002) and 18 units
for three-dimensional control (Taylor et al 2002). While the
number of units used per session did not increase or decrease
significantly, there were changes in the number of units sorted
and used for control from session to session (coefficient of
variance = 30.1%). The regression coefficient of the subjects’
performance (percent over chance) as a function of the number
of units used for control was calculated to be an increase of
2.4% per unit, and was significant (P < 0.03, ANOVA). While
this analysis indicates that performance increased with the
number of units, it does not mean subjects could not perform
the task with fewer units. There were sessions where subjects
reached >90% of targets (>50% above chance) using as few
as five units.

Our control algorithm requires no prior knowledge of
the recorded neuron’s tuning properties for adequate system
performance. For the initial trial of each session, random
weights were assigned to each recorded unit. Subsequently,
the system adapted based on stereotyped unit responses across
the microelectrode array to enable control. This coadaptive
process allowed the rats in our paradigm to learn neural control
within 3 days of training. These findings suggest that the
described adaptive decoding filter may be a means of training
paralyzed human patients where motor tuning properties of
neurons are unobtainable. Several groups are investigating
brain computer interfaces in which human subjects must
learn to derive control signals using electroencephalographic
recordings (Wolpaw and McFarland 2004, Fabiani et al
2004), electrocorticographic recordings (Leuthardt et al 2004),
cortical local field potentials (Kennedy et al 2004), and single-
unit activity (Serruya et al 2004, Kennedy et al 2000). As
each of these systems must derive tuning properties from an
initial naı̈ve state, a coadaptive decoding filter (Taylor et al
2002) may decrease the time to learn brain control or may
maximize control performance by allowing the brain to explore
all possible neural responses and to adopt the strategy that is
the easiest for control.
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