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Abstract
We propose a model for human postural balance, combining state feedback control with
optimal state estimation. State estimation uses an internal model of body and sensor dynamics
to process sensor information and determine body orientation. Three sensory modalities are
modeled: joint proprioception, vestibular organs in the inner ear, and vision. These are mated
with a two degree-of-freedom model of body dynamics in the sagittal plane. Linear quadratic
optimal control is used to design state feedback and estimation gains. Nine free parameters
define the control objective and the signal-to-noise ratios of the sensors. The model predicts
statistical properties of human sway in terms of covariance of ankle and hip motion. These
predictions are compared with normal human responses to alterations in sensory conditions.
With a single parameter set, the model successfully reproduces the general nature of postural
motion as a function of sensory environment. Parameter variations reveal that the model is
highly robust under normal sensory conditions, but not when two or more sensors are
inaccurate. This behavior is similar to that of normal human subjects. We propose that
age-related sensory changes may be modeled with decreased signal-to-noise ratios, and
compare the model’s behavior with degraded sensors against experimental measurements from
older adults. We also examine removal of the model’s vestibular sense, which leads to
instability similar to that observed in bilateral vestibular loss subjects. The model may be
useful for predicting which sensors are most critical for balance, and how much they can
deteriorate before posture becomes unstable.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The human central nervous system (CNS) regulates postural
balance of a complex, multi-segment body with many actuators
and a wide array of sensors. Each of these sensors provides
localized and imperfect information regarding the motion of
one or more body segments, subject to the dynamics of the
sensors themselves. These data are then conveyed to the CNS
by an array of afferents, each of which provides only a fraction
of the total sensory information. The CNS continuously
generates motor commands to compensate for the unstable

dynamics of the body. From a control systems standpoint,
there are two challenging issues in posture. The first is the use
of feedback to control an unstable system. The second is the
processing of noisy sensory data to provide the information
necessary to perform this control.

Upright standing places the body in an unstable
configuration that requires active feedback stabilization (see
figure 1(a)). The minimal set of information necessary to
stabilize the body appears to be the full dynamical state,
that is, data equivalent to the positions and velocities of all
body segments. Inertial coupling between body segments
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Figure 1. Schematics of central nervous system (CNS) control. (a) General feedback model produces motor commands u that drive the
body dynamics, producing motion described by body state x. Sensory dynamics translate the state into sensory outputs y, feeding back to
the CNS. Feedback control K is modeled as state feedback, preceded by sensory processing if necessary. (b) Sensors for posture are of three
types: proprioceptors, vestibular sensors and vision. Major proprioceptors include ankle and hip muscle spindles; vestibular sensors include
semicircular canals and otoliths; vision includes sensation of translation and rotation of the head. Each of these sensors has dynamics that
temporally filter the state x. (c) Direct feedback is a simple model of feedback control where sensory outputs y are fed directly into a matrix
of gains to produce a motor command u that is essentially a weighted sum of the components of y. (d) State estimation is a different method
of sensory processing that uses an internal model of body and sensor dynamics and efference copy to produce the state estimate x̂ that enters
the feedback control gain matrix. The internal model also predicts the sensory output ŷ, and the error of this prediction is used to
dynamically correct x̂. State estimation can temporally process information from multiple sensors, each with distinct dynamics, so that
disparate and noisy data can be integrated to yield an optimal estimate.

appears to make purely local feedback—controlling each joint
with information only from that same joint—an unsuitable
stabilization strategy (Camana et al 1977). Stability is
theoretically improved by coupling the feedback, that is,
making the motor commands for a single joint dependent on
feedback from throughout the body (He et al 1991, Kuo 1995).
Indeed, human postural behaviors appear to use heterogenic
feedback, both during quiet standing (Speers et al 2002) and in
response to large perturbations (Barin 1989, Park et al 2004).
This behavior is equivalent to full state feedback, where each
motor command is dependent on the positions and velocities
of many-body segments, with closed-loop stability determined
by body dynamics and a matrix of feedback gains.

The most simplistic implementation of this control is to
feed sensory data (figure 1(b)) directly into a matrix of gains
with no prior processing. The large variety and number of
sensors is certainly sufficient to provide state information

(He et al 1991) needed for such direct feedback control
(figure 1(c)). Where multiple sensors provide redundant data,
the gain matrix effectively performs a weighted sum that
will average out errors from noisy measurements. However,
direct feedback does not adjust for sensory dynamics. For
example, the semicircular canals act as high-pass filters of
angular head velocity, yet posture control does not appear
to be similarly filtered. Direct feedback is also not robust
to sensory conflict. If one sensor conflicts with all others, it
will nonetheless contribute to a compensatory motor command
in direct proportion to its relative weight or gain within the
feedback matrix. If sensory data were applied directly in
feedback, posture control would be expected to exhibit the
dynamics of the sensors, and to be highly sensitive to erroneous
sensory inputs.

These drawbacks could be addressed by processing or
filtering data as part of sensory integration. Such a processing
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system would receive sensory data as input, and produce the
body state as output. An obvious method of removing sensory
dynamics would be to invert each sensory transfer function.
However, an inverse transfer function is not necessarily stable,
for example the inverse of the semicircular canal’s (high-pass
filter) transfer function is unstable. The preferred means
of processing sensory data is the Kalman filter, or optimal
state estimator (figure 1(d)). It uses an internal, forward
model of body and sensory dynamics to predict sensory
output. The error in this prediction is then fed back through
a set of estimator gains to correct the state estimate, which
is in turn used for feedback control. A state estimator is
a near-inverse of sensory dynamics that is both stable and
causal. ‘Optimal’ refers to the design of estimator gains to
minimize the mean-square estimation error, dependent on the
presence of noise acting on the system. State estimators are
used in modern control systems such as aircraft avionics and
navigation systems, and have long been proposed as models
for CNS sensory processing (Borah et al 1988, He et al 1991,
Kuo 1995, Merfeld et al 1993, Wiener 1948).

We propose a computational model for posture control
that combines state feedback and estimation. (Portions of
this work were previously described in abbreviated form,
Kuo (1997)). The state estimator processes information from
multiple physiological sensors to provide the state information
required for feedback control. Our model is stochastic,
with noise acting as disturbances to the body and errors in
sensory transduction. These noise characteristics are not
easily measurable, and therefore serve as free parameters in
the model. We examine the sensitivity of predicted posture
behaviors to variations in these free parameters, and compare
the stabilizing behaviors to human subjects from two age
groups and one sensory loss group. Section 2 provides a brief
background on models for human body and sensor dynamics,
human perception, state feedback control and experimental
methods. Section 3 describes the model, which integrates
many of these components and is used to make predictions
of observable behavior. Section 4 presents a comparison of
theoretical predictions and experimental results along with
a sensitivity analysis. Section 5 discusses biological and
rehabilitative implications. Finally, section 6 summarizes the
findings.

2. Background

Human posture is controlled with feedback from a variety
of sensory organs. Three groups of sensors are thought to
have primary responsibility in posture control: somatosensors,
vestibular organs and vision (Horak and Macpherson 1995).
The somatosensors are responsible for proprioception—the
sensing of joint motion and limb position. Proprioception is
dominated by muscle spindles, which are embedded within
muscle and sense a combination of muscle length change and
the rate of change. There are two types of vestibular organs.
Semicircular canals are fluid-filled canals in the inner ear
which detect angular velocity of the head by sensing viscous
motion of the fluid; otoliths are crystal-like masses mounted on
hair cells, and act as linear accelerometers. Vision is similarly

sensitive to self-motion of the head. In the case of posture, the
relevant signals are processed by motion detection circuitry
not only in the retina but also in the visual cortex, so that the
vestibular nuclei receive signals proportional to rotational and
translational motion of the visual field (Young 1981).

These sensory signals are fed back to a series of
hierarchical feedback loops to generate stabilizing motor
commands. The conduit for all movement signals is the spinal
cord (Horak and Macpherson 1995), which also produces the
lowest level of neural feedback (see figure 1(a)). This feedback
is in the form of local reflexes, in which stretch signals from a
muscle are relayed to the spinal cord, passed across one or a few
intermediate neural connections, and then fed directly back to
the muscle, commanding a compensatory contraction. This
short feedback loop has fast latency, in the range of 30–60 ms.
However, the speed of such a loop comes with a disadvantage:
local reflexes are the least integrative of postural responses,
and are limited to relatively simple behaviors (Nashner 1977).

The second and most important level of feedback for
balance control involves signals traveling up to the mid-
brain (see figure 1(a)). The brainstem serves as a relay
and integration center, receiving and sending vast numbers of
sensory and motor command signals. The mid-level feedback
loop involves longer conduction paths and greater numbers of
neural synapses, and consequently has a longer latency than
spinal reflexes (often 90 ms and greater). But the convergence
of many signals and complexity of connections allows the brain
stem to generate much more complex movements, mostly of
an automatic nature. The brainstem modulates the behavior of
lower level reflexes, and is itself modulated by the next higher
and final level. The cerebral cortex and related structures
generate highly complex movements, mostly of a voluntary
nature, with longer latencies than the two lower feedback
loops (see figure 1). The longer latencies suggest that the
cerebral cortex has a modulatory, rather than direct role in
posture control. Brainstem lesions cause movement disorders
affecting control of balance, indicating a more direct role for
the mid-brain level of feedback (Nashner 1977).

Sensory integration can be assessed experimentally with
clinical tests. A number of clinical tests exist for evaluating
balance in patients suffering from instability (Baloh et al
1995). While some tests examine individual components
such as a single sensory modality, others consider integrative,
systems-level performance. The integrative tests involve
applying perturbations to a movable support surface and
recording the postural response, or recording motion or
forces under the feet during quiet standing. One particularly
integrative clinical test is the sensory organization test (SOT),
also known as dynamic posturography (Mirka and Black
1990, Peterka and Black 1990), which uses a support surface
which can be rotated about an axis approximately aligned to
the ankles, and a visual surround which provides a visual
field which can also be rotated about the same axis (see
figure 2). In response to fore-aft body motion, the support
surface and visual surround may be servo-driven (sway-
referenced) to match the motion of the ankles. Sway-
referencing of the support surface has the effect of rendering
ankle proprioception inaccurate. Visual sway-referencing
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Figure 2. Experimental apparatus for testing balance using dynamic
posturography, or sensory organization test (SOT). Subject stands
on a platform which can rotate about an axis collinear with the
ankles. A visual surround can also rotate about this axis. Subjects
can stand with platform and visual surround kept fixed, or with
either servo-controlled to match lower body motion (using ankle
angle as a reference). These are referred to as vision
sway-referenced and platform sway-referenced conditions, where
visual or ankle proprioceptive feedback is rendered inaccurate.
Combinations of these conditions (also with eye closure) test ability
to integrate sensory data under demanding situations. The sensory
condition number is referred to with the variable κ = 1, 2, . . . , 6.

diminishes accuracy of visual sensing. Combinations
of normal and sway-referenced vision and eyes closed
(summarized in table 1), along with a fixed and sway-
referenced support surface, are employed to test human
response to altered sensory conditions. Subjects with absent
vestibular function are unable to balance when platform sway-
referencing is combined with either eyes closed or vision sway-
referencing. However, the SOT appears to be less sensitive in
diagnosing more subtle balance deficits, and test results offer
limited insight to the cause of instability (Mirka and Black
1990). It is possible that models of balance control may
aid interpretation of results. The present analysis models a
modified version of the standard SOT (Speers et al 1999),
in which ankle and hip joint kinematics are sensed directly
rather than inferred from force plate measurements, as is the
convention.

3. Model of state estimation and control of balance

The proposed model is based on several distinct components
which are assembled into a single state space system. It makes
use of a simplified model of human body dynamics, along
with linear models of three sensory modalities: proprioception,
vestibular organs and vision. The system combining these
models is then controlled using state feedback, designed with
linear quadratic regulator optimal control. A parametrization
scheme makes it possible to describe the objective function
with only two parameters and yet describe a wide range of

postural behaviors. The state information for the resulting
feedback is provided by a state estimator, whose behavior
is determined by parameters describing sensor precision and
other noise characteristics. These estimation parameters are
difficult to determine independently, but can be constrained
through observation of experimental behaviors. The overall
system can then be altered to model the effects of visual and
platform sway-referencing.

3.1. Body dynamics model

Human body dynamics are modeled as a two-segment inverted
pendulum. Segment lengths and inertial properties are chosen
to approximate those of a typical human (Kuo and Zajac
1993a). The two degrees of freedom correspond to motion
about the ankles and hips in the sagittal plane (no side-
to-side motion, and relatively small knee motion). The
state-space representation will use states based on segment
coordinates φ1 and φ2, defined as the angle of the lower
leg and trunk measured counter-clockwise with respect to
the vertical, respectively. This model assumes that lower-
level circuits translate commands coding desired movement
into motor signals to the muscles. The command inputs
may therefore be expressed in terms of two-dimensional joint
motion, rather than the higher-dimensional motor signals.
However, constraints on muscle force are still incorporated
indirectly by calculating the set of feasible accelerations
of a model including fourteen muscle groups (Kuo and
Zajac 1993a, 1993b), and then performing a reduced-order
approximation to that set (Kuo 1995). The result is a simpler
system that still models the mass and inertial coupling of the
body. Its state equations are in standard form,

ẋB = ABxB + BBucontrol (1)

where the state is defined as xB
�= [φ1 φ2 φ̇1 φ̇2]T, and the

subscript ‘B’ denotes the body. The system matrices are

AB
�=

[
0 I 2×2

G 0

]
, BB

�=
[

0
H

]
,

where G and H are matrices summarizing the inertial properties
(see the appendix for numerical values), I 2×2 is the 2 × 2
identity matrix, and ucontrol corresponds to two directions of
motion, scaled to equal command effort.

3.2. Sensor models

The following sensors are to be modeled: ankle and hip
proprioception, visual rotation and translation, and vestibular
rotation and translation. For each type of sensor, a simple
linear model is employed, presented in transfer function form
for simplicity. For interfacing with body dynamics, however,
each transfer function is realized in a state-space form,

ẋs = Asxs + Bsus (2a)

ys = Csxs + Dsus (2b)

where ys is the sensory output, us the stimulus input, xs the
sensor states, and ‘s’ is replaced by a specific subscript for each
sensor. System matrices {As , Bs , Cs , Ds} denote a state-space
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realization equivalent to that sensor’s transfer function. The
following two-letter subscripts will be used to refer to each
sensory modality: ‘ap’ for ankle proprioception, ‘hp’ for hip
proprioception, ‘sc’ for semi-circular canals, ‘ot’ for otoliths,
‘vr’ for visual rotation, and ‘vt’ for visual translation.

Muscle spindles are modeled as simple lead-lag filters
which provide a signal proportional to length and velocity
within a limited bandwidth. The transfer function from length
change to spindle output is (Agarwal and Gottlieb 1984)

Yspindle

Xlength
= Tsps + 1

αTsps + 1
, (3)

where α and Tsp are lead-lag constants (see the appendix for
numerical values). Two sets of muscle spindles are included, at
the ankles and at the hips. The muscle moment arm about these
joints is assumed to be nearly constant around the operating
point, adding a proportionality factor which is normalized
to one. A state-space realization of equation (3) for each
proprioceptor is given by the (1 × 1) matrices

Aap
�= Ahp

�= −1

αTsp
, Bap

�= Bhp
�= 1

αTsp
,

Cap
�= Chp

�= α − 1

α
, Dap

�= Dhp
�= 1

α
,

with the inputs to the sensors set to the ankle and hip joint
angles,

uap = φ1, uhp = (φ2 − φ1). (4)

Each realization may be verified to be equivalent to the transfer
function of equation (3), through the transformation

Ys

Us

= Cs(sI − As)
−1Bs + Ds (5)

where I is the identity matrix.
Semicircular canals have an overdamped response to

angular acceleration, which is detected by hair cells whose
firing rate is roughly proportional to angular velocity.
Fernandez and Goldberg (1971) proposed a linear model with
transfer function from head angular acceleration to neural
firing rate. We modified their model to include a limitation on
bandwidth, both to constraint high-frequency response and to
ensure the overall system’s causality:

Ysc

Xangacc
= kscs (s + ωs1)

(s + ωs2) (s + ωs3)
, (6)

where ksc, ωs1, ωs2 and ωs3 are constant parameters (see the
appendix for numerical values of constants). The canals are
arranged in pairs oriented in mutually orthogonal directions,
none of which are aligned with head rotation in the sagittal
plane. However, because vestibular processing has been
demonstrated to perform coordinate transformations (Merfeld
et al 1993), a single pair of canals is incorporated in the present
model, with state-space matrices {Asc, Bsc, Csc, Dsc} and input

usc = φ̈2. (7)

The otoliths respond to translational acceleration by
detecting deflection of hair cell mounted with massive crystals.
Young and Meiry (1968) found a linear transfer function

Yot

Xlinacc
= kot (s + ωo1)

(s + ωo2)
, (8)

where kot, ωo1 and ωo2 are constant parameters (see the
appendix for numerical values of constants). Though otoliths
are found in two locations, the utricle and saccule, on each
side of the head, a single pair is modeled here, detecting only
fore-aft linear translation of the head, which is in turn fixed
rigidly to the trunk. The corresponding state-space matrices
are {Aot, Bot, Cot, Dot} with input

uot = ct1φ̈1 + ct2φ̈2 (9)

where cT
t

�= [ct1 ct2] transforms the angular accelerations into
linear translation of the head (see the appendix for numerical
values of constants).

The eyes respond to both visual rotation and translation
(Robinson 1981). Many of the cues contributing to self-
motion come from peripheral vision, and much of the signal
processing necessary to detect motion is performed in the
retinal circuitry. Further processing is performed by ganglion
cells and the visual cortex, with a large number of connections
contributing to significant phase lag. A simplified model
for visual signal processing includes detection of velocity
of sagittal plane rotation and of fore-aft translation, with a
bandwidth limitation:

Yv

Xv
= 1

Tvs + 1
. (10)

Tv = 0.1 s is based on visual processing lag (Robinson 1981).
The phase lag for this transfer function is likely more of more
behavioral significance than the magnitude. The velocity input
for rotation and translation is head (fixed to trunk) angular
velocity and head fore–aft translational velocity, with resulting
state space matrices {Avr, Bvr, Cvr, Dvr} and {Avt, Bvt, Cvt, Dvt}
and inputs

uvr = φ̇2, uvt = ct1φ̇1 + ct2φ̇2. (11)

The individual component models are assembled into a
comprehensive system, describing the combined dynamics
of the body and sensors. Body and sensor dynamics
(equations (1), (4), (5), (7), (9), (11) and (12)) together
form the system matrices ABS, BBS, CBS and DBS, where
the subscript ‘BS’ refers to the body and sensors, and the state

vector is defined as xT
BS

�= [
xT

B xT
ap xT

hp xT
sc xT

ot xT
vr xT

vt

]
.

This system is subject to process noise w, and the sensors to
measurement noise v, both modeled as zero-mean Gaussian
white-noise processes. Process noise encompasses unmodeled
dynamics, random external perturbations to equilibrium, and
internal effects such as random fluctuations in muscle force,
all acting at relative levels similar to that of ucontrol. Because
the body dynamics act as a dominant low-pass filter, it is
unnecessary to impose a bandwidth limitation on the noise
inputs. Measurement noise describes the signal-to-noise ratios
of sensory signals, which depend on such effects as precision
of sensors, loss of fidelity due to synapses and transmission
distance, and general information capacity in the sensory
system. Together, these additions result in state equations

ẋBS = ABSxBS + BBSucontrol + BBSw (12a)

ys = CBSxBS + DBSucontrol + v. (12b)

The noise characteristics of w and v constitute the unknown
parameters of the model.
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3.3. State feedback control

State feedback gains for stabilizing the body are determined by
a parametrized objective function for linear quadratic optimal
control (Kuo 1995). Parametrization is helpful for varying
the shape of the state objective, in accordance with changes
in behavior such as scaling of control with perturbation
magnitude (Park et al 2004). The state feedback gains for
posture may generally differ from those produced by optimal
control, but linear quadratic control provides a means to use
relatively few parameters to describe a large number of gains,
and it guarantees a large degree of robustness to time delays
(Kuo 1995). The quadratic objective function is

J =
∫ ∞

0

(
xT

BQxB + uT
controlRucontrol

)
dt . (13)

The control weighting matrix R is set to the identity matrix,
because the entries of ucontrol are proportional to actual neural
command effort. Weighting of the state objective relative to
control effort is set by a single parameter, σ . The shape of
the ankle versus hip trajectory is set by another parameter, µ

(described in detail in Kuo (1995)). The two parameters define
Q with the equation

Q = σ 2 µQcm + (1 − µ)Qup

λmax(µQcm + (1 − µ)Qup)
(14)

where the function λmax (A) refers to the maximum eigenvalue
of a matrix A. Parameter µ sets the joint trajectory shape
by varying the proportion of two objectives Qup and Qcm.
Qup weights joint angles equally, reflecting an unbiased
desire to maintain upright equilibrium. Qcm is a penalty
objective modeling the relative undesirability of allowing
the body center of mass to approach the limits of the base
of support (see the appendix for numerical values). The
relative proportion of this penalty increases with perturbation
size, resulting in a continuum of behaviors approximating
those seen experimentally (Kuo 1995). Equation (13) can
be minimized with feedback control, determined by solving
the algebraic Riccati equation (Bryson 2002),

AT
BS + SAB − SBBR−1BT

BS + Q = 0 (15)

KB = R−1BT
BS. (16)

These equations are solved for KB, the matrix describing
the gains of the states to the control, and S, an intermediate
quantity (sometimes referred to as the ‘cost-to-go matrix’).
This feedback is applied to the entire system (12) using the
augmented matrix

KBS = [KB 0] (17)

with the feedback control given by

ucontrol = −KBSxBS. (18)

3.4. State estimator model

CNS sensory processing is modeled by an optimal state
estimator, which estimates the full state xBS of the body

and sensors for use in the feedback control. The estimate
is produced by an internal model of the body and sensory
dynamics (figure 1(d)). This model can produce both a state
estimate x̂BS and a prediction ŷs of sensory output. Process
noise and other disturbances can cause the actual state to
deviate from this estimate. This deviation can be corrected
with feedback of the sensory prediction error ys − ŷs , with
estimator gain matrix L determining the correction’s effect on
each state:

˙̂xBS = ABSx̂BS + BBSucontrol + L (ys − ŷs) (19a)

ŷs = CBSx̂BS + DBSucontrol. (19b)

The principal problem in state estimation is the design of
the estimator gains L that govern the correction of estimate
x̂BS based on sensory feedback y. There are many criteria
by which L may be designed, with the most important
requirement being the stabilization of the estimation error
xBS − x̂BS. We employ optimal state estimation, which
minimizes the mean-square error for a particular set of process
and sensor noise characteristics. One advantage of optimal
state estimation is that a relatively large number of entries
in L may effectively be parametrized by a smaller number
of noise power spectral densities. Another advantage is
that minimization of mean-square error could potentially
be the outcome of an adaptation process mediated by the
cerebellum (Paulin 1989). Optimization might therefore be
a physiological explanation for how humans might learn to
perform state estimation by iteratively adjusting feedback
gains to minimize prediction error. In the postural control
model, estimator gains L are computed using the algebraic
Riccati equation:

X̃AT
BS + ABSX̃ − X̃CT

BSV
−1CBSX̃ + W = 0 (20)

L = X̃CBSV
−1, (21)

where W and V are diagonal matrices containing the power
spectral densities for w and v, respectively, and X̃ is the
steady-state estimator error covariance. These equations are
solved for X̃ and L. With both w and v assumed to be white
and independent with zero mean, power spectral densities
are sufficient to fully describe the process and sensor noise.
Process noise is assumed to be of equal magnitude for each
input, so that W is set by a single parameter W1:

W
�=

[
W1

W1

]
. (22)

V is parametrized by a set of noise-to-signal power ratios
πap, πhp, . . . (Borah et al 1988). These ratios describe power
spectral densities relative to the output covariance Y of the state
feedback-stabilized system driven by process noise alone,

Y = CBSXfbCBS, (23)

where Xfb is the state covariance, found by solving the equation

(ABS − BBSKBS)Xfb + Xfb(ABS − BBSKBS)
T+ BBSWBT

BS = 0.

(24)
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The sensor noise power spectral densities are then defined as

V
�=




πapY11

πhpY22

πscY33

πotY44

πvrY55

πvtY66




.

(25)

The state feedback and estimator are combined into a
linear quadratic Gaussian (LQG) system. The parameters that
determine the behavior of this system are

πT �= [
σ µ W1 πap πhp πsc πot πvr πvt

]
,

so that two parameters describe the control feedback, and
the remaining seven parameters describe process and sensor
noise. The stochastic nature of this system also means that
the closed-loop system is not designed to predict explicit joint
trajectories. Rather, the model is used to predict the covariance
of joint motion, XLQG about upright equilibrium. Estimator
state covariance X̂ is found by solving the equation

(ABS − BBSKBS)X̂ + X̂(ABS − BBSKBS)
T + LV LT = 0 (26)

and XLQG is the sum of estimator state and error covariances,

XLQG = X̂ + Xe. (27)

Of these covariances, only those corresponding to xbody can be
measured experimentally, and the preferred coordinate system
for comparisons is

xθ ≡
[
θshk

θhip

]
= cθxBS =

[−1 1 0 · · · 0
0 1 0 · · · 0

]
xBS (28)

where θshk and θhip are the shank and hip angles, respectively
(Kuo et al 1998). The shank angle is defined as the angle
of the shank relative to the support surface, and hip angle as
the angle of the trunk with respect to the leg (see figure 3),
both increasing in the extension direction. The corresponding
covariance is

XLQGθ = cT
θ XLQGcθ . (29)

3.5. Models of sensory conditions

Altered sensory conditions imposed by the sensory
organization test affect the behavior of the system significantly,
and are modeled by making changes to the nominal state
equations. These changes may also be accompanied by
changes in the state estimator gains, depending on the subject’s
awareness of those changes. We assume that when subjects
consciously close their eyes, they are aware that visual
information is no longer available, and may make adjustments
to how the remaining sensory inputs are weighted. We model
this as a new set of state estimator gains L. However, in
the sway-referencing conditions, we assume that subjects
are unaware that sensory information has been rendered
inaccurate, and use the nominal set of state estimator gains. We
therefore model the inaccuracy induced by sway-referencing
with appropriate changes to the state equations, but with no
changes to the estimator gains L.

The eyes closed condition is modeled by removing the
visual states xvr and xvt, and their associated outputs. This is

0.15 

0.15 

θshk

θhip

Figure 3. Covariance ellipse summarizes amount of sway about
ankles and hips during upright standing. Motion of the body is
measured in terms of angle of the shank with respect to support
surface normal, θshk, and motion of the trunk with respect to the
shank, θhip. A typical trace of θhip versus θshk is shown during quiet
standing, under normal sensory conditions. The covariance matrix
describes the variances in the hip and shank individually, along with
the coupling between the two joints. A single ellipse, representing
one standard deviation of sway, summarizes the entire covariance.

accomplished by the equivalent action of setting the noise-to-
signal parameters πvr and πvt to infinity, and then re-computing
the state estimation gains accordingly. Closing the eyes is the
only condition in which the subject is explicitly aware of a
change in sensory conditions, and so the estimator gains are
recalculated taking this into account.

Visual sway-referencing takes place without the subject’s
awareness, with the assumption that the CNS does not alter
its control behavior under this condition. However, the
eyes receive inaccurate motion cues, modeled as separate
effects on visual rotation and translation. Ankle-driven sway-
referencing only partially affects visual rotation cues, because
the hips induce significant motions of the upper body that
are not countered by the sway-referencing servo controller.
In contrast, visual translation cues are affected to a larger
degree because translation of the head is dominated more by
(inaccurate) ankle motion than by hip motion (see figure 2).
The visual translation sensory input is therefore modeled as
having zero gain, whereas the visual rotation input is modeled
as feedback of hip motion alone, with the ankle-driven
motion of the visual surround removed. For this condition,
equations (11) are replaced by

uvr = φ̇2 − φ̇1, uvt = 0. (30)

Lack of subject awareness is modeled by retaining the original
state estimator for the intact system, so that the weightings
of visual rotation and translation are unchanged. The state
estimate therefore depends on the inaccurate information to
the same degree as if the visual inputs were accurate.

Platform sway-referencing also takes place without the
subject’s awareness, and is modeled by a feedback control
performed on the support surface under the feet. Motion of
the support surface, φ̈p, not only acts as an inaccurate reference
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for ankle proprioception, but also acts as a small disturbance
to the body. The platform dynamics are modeled as a servo-
driven second-order system,

φ̈p = −kp(φp − φ1) − bpφ̇p, (31)

with gains kp = 400 s−2 and bp = 32 s−1 chosen to make the
platform much faster than the body dynamics. These dynamics
are augmented to the regular state equations (12), and the
disturbance effect is computed by deriving the body dynamics
including an extra degree of freedom for the platform. Under
platform sway-referencing, equation (1) is altered to include
this disturbance:

ẋB = ABxB + BBucontrol + Bpφ̈p (32)

where Bp describes the effect of platform acceleration on
the body, derived from the dynamical equations of motion.
As with visual sway-referencing, platform sway-referencing
only affects the body dynamics, feeding back inaccurate
information to an estimator that was designed for the original,
intact system.

These sensory conditions make the overall behavior of
the closed-loop system a function of not only the nominal
parameters π but also the sensory condition number κ .
We denote this function XLQG θ (κ; π), specifically excluding
independent anthropometric and sensory parameters that
remain relatively fixed. There are nine degrees of freedom
in the free parameters π , of which two—the state feedback
parameters σ and µ—are determined by separate perturbation
experiments. The remaining parameters in π describe noise
characteristics and are therefore determined from experimental
observations of stochastic upright balancing.

4. Comparisons with experimental data

The model was tested by comparing theoretical joint angle
covariances under altered sensory conditions against those
measured experimentally. Some unknown parameters of
vector π were necessarily calibrated using these data; the
model was therefore not purely predictive. However, the
large number of degrees of freedom in the possible observable
behaviors, compared to the smaller number of free parameters,
means that data could constrain the model to a considerable
extent. The most meaningful tests were to determine whether
the model successfully predicted trends in behavior as a
function of sensory condition, and how sensitive this same
model was to variations in parameter values.

4.1. Comparison with healthy young adult subjects

Experimental data were recorded from sensory organization
tests performed on eight subjects, in order to compute
empirical joint angle covariances using a protocol described
previously (Kuo et al 1998). Subjects were young (age < 45
years), healthy normal adults. One trial each of conditions
1 and 2, and three trials of conditions 3 through 6, were
performed. Recorded data included shank and hip kinematics
(θshk and θhip, see figure 3) and ground reaction forces, all
sampled at 50 Hz. Trials lasted 21 s, with 1 s at the beginning
discarded to reduce transients. Data were band-pass filtered

using a third-order digital Butterworth filter, with high-pass
cutoff of 0.5 Hz and low-pass cutoff at 3.5 Hz. The high-pass
cutoff was used to filter out very slow drift, so that covariances
were computed on at least 10 cycles of the lowest remaining
frequency components. The low-pass cutoff was employed
to filter out noise. Sway-referencing commands were based
on feedback of the shank angle. For simplicity, sample
covariances were displayed for only θshk and θhip, forming a
subset of the predicted covariance matrix without the angular
velocities. Mean covariances across all subjects were used for
Xexp θ (κ). Details of the experimental procedure are given in
Kuo et al (1998). A sample trace of θshk and θhip, along with
the covariance ellipse, is shown in figure 3. The horizontal
extent of the ellipse corresponds to θshk variance, the (1, 1)
element of Xexp θ (κ), and the vertical extent to θhip variance,
the (2, 2) element of Xexp θ (κ). Covariance of θshk and θhip, the
off-diagonal element, is distinguished by a tilt to the ellipse
with respect to vertical.

The feedback control system parameters were the most
straightforward to determine. The state objective parameter
µ determines the relative contribution of hip motion to
posture control, with a value near 1 for responding to large
disturbances (Kuo 1995). In quiet standing, there is relatively
little hip motion, with µ approaching zero. Because the
sensory organization test performs no explicit perturbations
and subjects perform quiet standing in all conditions, we set
µ = 0. Process noise covariance W1 was set to 0.08 and σ

was set to 2.5 in order to match the magnitudes of covariance
for κ = 1. These parameters were then kept constant for all
comparisons.

The remaining parameters were associated with sensor
noise-to-signal ratios. Manipulation of the sensor parameters
resulted in a relatively narrow range of behaviors for some
sensory conditions despite extreme variations in parameters.
Indeed, such robustness enabled the determination of σ , µ and
W1 prior to setting the other parameter values. Conditions
κ = 5 and κ = 6 were relatively the most sensitive to these
remaining parameters, and were used as the basis for finding
the following values, which produced a relatively good match
to experimental data:

πap = 0.05, πhp = 0.01,

πsc = πot = πvr = πvt = 0.001.
(33)

These parameter values, along with the sway-referencing
models, together predict a single set of sway covariances
for all six SOT conditions (see figure 4). State estimation
makes the system stable for all conditions despite removal
or inaccuracy of some sensory information. For example,
the model treats the eyes closed (κ = 2) condition as a
reduction in sensory channels that results in slightly greater
sway. Interestingly, the visual sway-referencing (κ = 3)
condition has less effect on sway, because the model allows
some useful motion cues to be detected in that condition.
If visual motion could completely be removed, the model
would predict a larger effect than for eyes closed. The model
is also relatively unaffected by platform sway-referencing
(κ = 4), indicating that sufficient information is available from
other sensors to permit precise stabilization. However, when
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Figure 4. Comparison of experimental results from normal young adults (N = 8) against (a) state estimator and (b) direct feedback models,
for six sensory conditions. Model covariance ellipses were computed for a consistent environment of process noise and measurement noise.
The eyes closed condition (κ = 2) was modeled by removal of vision, and the vision sway-referenced condition (κ = 3) by reducing the
feedback from visual translation and rotation, as if the visual surround were driven by ankle motion. Platform sway-referencing (κ = 4–6)
was modeled by applying a servo command to the support surface, also driven by ankle motion. (a) State estimator model produces changes
in covariance similar to normals as a function of sensory condition κ . Both model and experiment show small increases in sway in
conditions where only one type of sensory feedback is affected (κ = 1–4), with the most sway when two types are affected (κ = 5, 6). All
parameter values are kept fixed when computing model covariances for different sensory conditions. In the eyes closed condition (κ = 2),
human subjects sway less than might be expected from the loss of sensory information. This behavior could potentially be explained by a
change in control strategy, modeled by increasing parameter σ (denoted ‘altered control’, ellipse with dotted line). The resulting covariance
is smaller and more similar to that observed experimentally. (b) Direct feedback model can also produce covariances similar to those
observed experimentally, for three of the sensory conditions (κ = 1–3). However, for platform sway-referenced conditions (κ = 4–6) the
dependence on inaccurate ankle feedback causes the direct feedback model to be unstable. In contrast, both normal humans and the state
estimator model are remarkably robust to inaccurate sensory information.

inaccurate ankle proprioception is combined with eyes closed
(κ = 5) or visual sway-referencing (κ = 6) conditions, the
model predicts a much larger increase in sway. This is due

to the fact that accurate information is received only through
hip proprioception and the vestibular organs. Despite this
reduction of sensory information, the model is able to robustly
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maintain stability, with the only penalty being an increase in
sway.

These model’s sway covariance ellipses compare well
with those measured in healthy young adults (see figure 4(a)).
The state estimator model produces behaviors that are
qualitatively similar to how humans compensate for different
sensory conditions. The model agrees with experimental data
showing that covariance for κ = 3, visual sway-referencing,
is similar to that for κ = 1. The data also show a relatively
small increase in hip sway under platform sway-referencing
(κ = 4), as compared to normal support surface (κ = 1). The
largest disagreement between model and data was for eyes
closed (κ = 2), where the model predicted approximately
50% higher hip sway than seen experimentally. This may be
due to the fact that the model employs the same state feedback
gains KB regardless of sensory condition. Human subjects
may, in contrast, employ higher gain when their eyes are
closed. Indeed, this same behavior could easily be produced by
increasing control parameter σ for this condition (see ‘altered
control’ in figure 4(a)).

4.2. Comparison with direct feedback model

An alternative to state estimation is for each sensory channel to
be filtered independently, and for all such signals to be directly
applied to feedback control without passing through an internal
model (figure 1(c)). Direct feedback can include pathways for
each sensory signal to contribute to control of each joint or
muscle, through a matrix of feedback gains. However, each
sensor’s feedback is taken literally, rather than corroborated
against an internal representation of the body’s state. One of
the arguments for state estimation is that such corroboration
can make the posture control system more robust to inaccurate
sensory information.

We tested the effect of altered sensory conditions on a
model of direct feedback (see figure 4(b)). We used the same
feedback control system as for the state estimation model, but
assumed that sensory dynamics are inverted perfectly to yield
direct measurements of the states. For ankle proprioception,
the muscle spindle dynamics were assumed to be filtered
to yield shank angle and velocity. These were then fed
directly into the control gains K, without need for a state
estimator. Under ideal conditions, the resulting system has
identical performance to the state estimator-based control.
However, under altered sensory conditions, direct feedback
and estimator-based feedback predict very different behaviors.

Sway-referencing of the platform support surface (κ =
4–6) was found to immediately destabilize the direct feedback
system. With no feedback from other sensors to indicate
ankle motion, the system cannot function with inaccurate ankle
proprioception. In fact, the system becomes stable even for
a 50% reduction in ankle gain by platform sway-referencing.
This is because direct feedback takes each sensory channel
literally as an indicator of joint or limb position, so that
platform sway-referencing has an effect equivalent to reducing
the feedback gains associated with ankle position and velocity.

This high sensitivity to inaccurate sensing is in stark
contrast to state estimation. To an internal representation of

body and limb dynamics, ankle proprioception is only one
of many channels contributing to an estimate of the overall
orientation of the body and limbs. Even a 100% reduction
in ankle information results in a much smaller reduction in
the internal model’s estimate of ankle state, and therefore
does not stabilize estimator-based feedback. Normal human
subjects exhibit a similar degree of robustness to altered
sensory conditions (see figure 4(b)). Even though both models
use the same control gains K, the direct feedback model lacks
the robustness of human subjects or the state estimator model.

4.3. Parameter sensitivities

We also considered the effect of parameter variations on
model behavior, by perturbing each sensory noise parameter
and then recalculating the state estimation gains and SOT
sway covariances (see figure 5). Each sensory parameter
variation was perturbed by changing the noise-to-signal ratio.
Expressed in units of decibels (dB) of signal-to-noise ratio,
−10 log10 πsensor, a perturbation of +10 dB in signal to noise
was produced by decreasing the noise-to-signal ratio by a
factor of 10. The model predicts that even extreme changes
in an individual sensor’s precision can have very small effect
on normal sway (κ = 1), because the state estimator is able
to integrate useful information from the other sensors. This
remains the case even with eyes closed (κ = 2), with most
parameter variations resulting in sway changes of only a few
per cent. The most sensitive parameter under this condition
was otolith signal-to-noise ratio, where a 10 dB decrease
produced a 21% increase in hip sway. This indicates that
the model places especially greater reliance on the otoliths
when visual information is lacking. Visual sway-referencing
alone (κ = 3) is also predicted to have low sensitivities
to parameter changes, but with one exception: the system
becomes unstable when ankle proprioception signal to noise
is reduced. The model compensates for poorer proprioception
by placing greater weight on vision, which in this case is
inaccurate. This is a recurring theme, in which the model
places lower weight on poorer sensors, and greater weight on
the most precise sensors, with the effects of these reweightings
manifested most significantly when sensory conditions are
altered.

The model exhibits a larger range of parameter
sensitivities for conditions where the platform support is
sway-referenced. Many parameters changes have little effect,
producing sway changes of a few per cent. With normal
vision (κ = 4), the only sensitivities with more than 20%
change in sway were for ankle and hip proprioception, and
visual translation. The ankle’s sensitivity is such that a
decrease in signal-to-noise ratio actually results in decreased
sway, because the estimator reduces weight on the inaccurate
information. This also produces the corollary effect of
increased difficulty balancing on the sway-referenced platform
with more precise ankle proprioception. The hip and visual
translation sensitivities are of the opposite nature, where
decreases in signal-to-noise result in increases in sway.
When these two modalities are less effective, the model
places relatively greater reliance on ankle feedback. Such
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Figure 5. Parameter sensitivity study of state estimator model, showing changes in sway covariance as a function of perturbation parameter
and SOT condition (κ). Each sensor was individually perturbed with a 10 dB decrease (denoted by ‘–’) or increase (‘+’) in signal-to-noise
ratio. The state estimator model was used to optimally reweight sensors for each variation, and then predict the sway covariance under
identical applied process noise. Each bar shows the resulting change in the covariance matrix: (a) ankle variance, (b) ankle–hip covariance
magnitude, and (c) hip variance, relative to the nominal values of figure 4. All covariances are also shown as (d) ellipses as a function of
sensory condition. The state estimator model exhibits high robustness, remaining stable for nearly all parameter values, although with
greater sway under the most challenging sensory conditions. The model was highly insensitive to sensor precision in normal (κ = 1) and
vision sway-referenced (κ = 3) sensory conditions. For conditions with no vision (κ = 2) or platform sway-referenced (κ = 5), there were
larger insensitivities to select sensors, although sway remained small for most parameter variations. In conditions combining platform
sway-referencing with eyes closed (κ = 5) or vision sway-referenced (κ = 6), most variations in sensor parameters resulted in greatly
increased amounts of sway. Parameter variations caused instability in only one case, κ = 3 when ankle proprioception signal-to-noise ratio
is reduced (ap -); no covariance is shown for this case.

reweightings become more important when vision is removed
(κ = 5), where a 10 dB decrease in hip proprioception causes
a greater than five-fold increase in sway.

There are even greater sensitivities when visual and
ankle proprioceptive sensors are both sway-referenced. Of
particularly note is an instability when ankle signal to noise
is decreased (κ = 6), due to the profound lack of accurate
feedback. Better stability, but still high sensitivities, are
also predicted for hip proprioception and visual translation
and rotation, where decreases in signal-to-noise ratios cause
very substantial increases in sway. Again, this is due to the
estimator’s compensatory strategy of placing greater weight

on the remaining sensors, which do not necessarily receive
accurate information.

These highest sensitivities are, however, very much in the
minority. Of the 216 total parameter variations (figure 5),
only 40 (19%) cause more than a 20% increase or decrease in
sway. For the majority of cases, there is very little sensitivity
to ten-fold changes in sensor precision. This relatively small
range of possible behaviors demonstrates constraints posed by
the model; parameters cannot be used to attain an arbitrarily
precise post hoc fit to experimental data. It also suggests
why normal conditions of eyes open or eyes closed (κ =
1 or 2) might be poor indicators of sensorimotor function
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Figure 6. Experimental covariance data from healthy older adults (N = 15). Older adults showed very small increases in sway for the same
conditions (κ = 1 and 3), and intermediate amounts of variation under the other two conditions (κ = 2 and 4) where only one sensory
channel is missing or inaccurate. Many subjects also swayed a great deal in the last two conditions (κ = 5 and 6). The state estimator model
also exhibited similar sensitivities in response to changes in sensor precision (signal-to-noise ratios, see figure 5(b)). Sensory and posture
control degradation with age may potentially be modeled by decreases in signal-to-noise ratios in one or more sensors.

(Peterka and Black 1990), because a state estimator can
successfully integrate information from the remaining sensory
channels.

4.4. Comparison with older adult subjects

Variations in signal precision might serve as a simple model
for sensory degradation during aging. Sensors degrade in
many different ways with age, and by differing amounts per
individual (e.g., Alexander 1994). The parameter study above
only performed perturbations to a single sensor at a time,
whereas the effect of aging is likely to affect multiple sensors
simultaneously. However, the general sensitivity of the model,
for a variety of parameter perturbations, might exhibit a similar
trend of behaviors as observed in a variety of older adults.
To make this comparison, we examined the parameter study
covariance ellipses, along with those measured experimentally
in a group of healthy older adults (aged 60–69 years, Speers
et al 2002).

A visual inspection of covariances (figure 6) reveals
similar trends in behavior as a function of sensory condition.
The model is least sensitive to parameter changes in the
conditions with normal support surface (κ = 1–3), as are the
older adults. Of these three conditions, eyes closed (κ = 2)
produces the most sway in both model and experiment. In
the platform sway-referenced conditions (κ = 4–6), the model
exhibited larger sensitivities, especially with eyes closed or
inaccurate vision. The human subjects generally swayed
far more than the model, due to the model variations being
restricted to single sensors. The sway observed in the model
could be increased by changes of greater than 10 dB in
individual sensors, or by simultaneous changes in multiple

sensors. However, even with individual sensor variations,
the model appears to exhibit broadly similar sensitivities to
inaccurate or missing sensory information.

4.5. Comparison with bilateral vestibular loss subjects

An additional calculation was done to model response to
bilateral vestibular loss, in which pairs of both canal and
otolith sensors are completely dysfunctional. We modeled this
dysfunction by decreasing the canal and otolith signal-to-noise
ratios by 80 dB, effectively removing any useful information
from these sensors. Recalculating the state estimation gains
and the resulting covariances, the model predicts remarkably
small increases in sway for four SOT conditions (κ = 1–4).
As long as either vision or proprioception remains accurate,
the model remains stable, with the eyes closed (κ = 2)
producing more sway than the others. This appears to be
due to the model’s greater dependence on otolith sensors with
eyes closed, which was manifested (in the normal parameter
sensitivity discussion above) as an increase in sway with
10 dB decrease in otolith signal-to-noise (see also figure 7).
Extrapolating this same change to an 80 dB decrease, the result
is still greater amounts of sway. However, the remaining two
conditions (κ = 5, 6) were affected to a much larger degree,
with the model becoming unstable. In the absence of vestibular
feedback, with inaccurate ankle proprioception and inaccurate
or missing vision, there is simply insufficient data for the
system to be stable.

We compared this model against sway covariances
measured from three subjects with bilateral vestibular loss.
These subjects were measured under the same protocol as
for the older adults (Speers et al 2002). They were able
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Figure 7. Comparison of sway covariances predicted by state estimator model with results from subjects with bilateral vestibular loss
(N = 3). Vestibular loss was modeled by removal of semicircular canal and otolith feedback. Despite this change, the model was stable for
the first four SOT conditions, producing substantial increases in sway only in the eyes closed (κ = 2) and platform sway-referencing (κ = 4)
conditions. However, the model became unstable for the remaining conditions, where platform sway-referencing was combined with no
vision (κ = 5) or inaccurate vision (κ = 6). These results compared well with larger populations of human bilateral loss subjects, for whom
the same two conditions consistently produce instability (Mirka and Black 1990).

to balance well under four SOT conditions (κ = 1–4), with
modest increases in sway. However, as is typical of vestibular
loss patients (Mirka and Black 1990), they were unstable under
the conditions with altered feedback from vision and ankle
proprioception (κ = 5, 6). The model agreed well with these
results, both in terms of the amount of sway in the first four
SOT conditions, and the instability in the last two conditions.
The model displays a similar degree of robustness as vestibular
loss patients to loss of one or two types of feedback, and
a similar degree of instability with loss of three types of
feedback.

4.6. Summary of comparisons

It is concluded that the model is able to reproduce much of
the behavior seen experimentally in humans. It predicts high
robustness to sensor degradation under normal conditions, and
only slightly lower robustness when two or more sensors are
rendered inaccurate. It also predicts other general changes
in sway, in response to alterations in sensor information, that
are consistent with experimental evidence for older adults and
bilateral vestibular patients. These results are conservatively
produced with only a single set of control parameters across all
conditions, rather than by exploiting all of the model’s degrees
of freedom. It is likely that greater flexibility in parameters
could improve predictions further. For example, the model
responded to closure of the eyes with a larger increase in
sway than exhibited by human subjects. But decreased sway
could potentially be explained compensating for lack of vision
by increasing the feedback control gains, thereby ‘stiffening’
the system. As discussed below, these behavioral predictions
have certain implications regarding the organization of sensory
processing in the CNS.

5. Biological implications

The proposed state estimator model for sensory integration
has implications regarding the neural substrate for movement
control, and for further experimentation of movement
disorders. A neural implementation of state estimation
would be expected to exhibit a convergence of multisensory
information, as well as temporal filtering. Convergence
is, however, not uniquely required by state estimation,
because even direct feedback requires convergence of signals
from many sensors. Human posture control appears to
be heterogenic, with feedback from throughout the body
contributing to the torque at any single joint (Barin 1989,
Camana et al 1977, Speers et al 2002). This feedback
property is due to the coupled dynamics of the joints.
The same coupling implies that state estimation will also
exhibit convergence. These two types of convergence have
distinct but subtle differences. For state feedback, each joint
torque will be correlated with multiple joint states, provided
sensory information is accurate. The convergence in state
estimation is most easily demonstrated through inaccurate
sensory information, as was the case with platform sway-
referencing above. These behavioral differences do not,
however, lead to useful anatomical predictions. Sensory
convergence is a common property of the spinal cord and
higher levels of the CNS, and the state estimator model does not
necessarily localize any of this convergence for the purposes
of an internal model. Nor need state estimation be functionally
confined to postural control alone. Feedback control of other
movements such as locomotion may also require knowledge
of state information, and estimation circuitry could be used for
multiple purposes.
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The requirement for temporal filtering implies that the
CNS may process sensory information through a set of
dynamics that have similar time scales to the body and
sensors. Neuronal dynamics are typically on the order of
milliseconds, whereas the body has time constants on the
order of seconds. A CNS implementation of state estimation
must therefore assemble neurons into networks that operate
on far longer time scales than a single neuron’s. Such
slow dynamics have long been observed in central pattern
generators for locomotion, and in the velocity storage system
for visual–vestibular interactions (Robinson 1981). It is
therefore plausible that similar dynamics could perform state
estimation. Indeed, we have proposed state estimation as an
interpretation of the central pattern generator (Kuo 2002).

The internal model for state estimation also implies the
need for a mechanism for adaptation. Body and sensor
dynamics change throughout life, and an internal model
would have to be continually updated with these changes.
Such adaptation would require feedback, but in an outer
loop operating at much slower time scales than posture
control. Physiological evidence implicates the spinal cord and
brainstem in feedback control of postural and other automatic
motor tasks, and the cerebellum in learning outside of the
feedback loop. The cerebellum receives a wide array of
sensory data, as well as efference copy, through the mossy
fiber network (Ghez 1991). It also receives error signals which
appear to code differences between expected and actual input.
The cerebellum does not necessarily participate in feedback
control directly, but it does modify lower-level behaviors with
mechanisms such as long-term depression. These could be
interpreted as a substrate for adaptive state estimation (Paulin
1989). However, the present state of knowledge is insufficient
to speculate beyond such an interpretation.

Aside from these neurophysiological implications, the
model may also have value as a diagnostic tool. While the
sensory organization test is a reliable means of diagnosing
vestibular disorders, it is less sensitive for detecting systems-
level balance dysfunction in subjects suffering from other
disorders, such as partial loss of proprioception or other senses.
The proposed model could be used to predict the level of
performance to be expected given certain degrees of sensory
loss, and to predict the critical points at which such loss could
result in serious instability. For example, the elderly may suffer
from loss of balance due to deterioration of multiple sensors.
Used in conjunction with the model, the sensory organization
test could therefore potentially be used to detect deterioration
at early stages and to specify appropriate rehabilitation or
intervention procedures prior to loss of mobility.

6. Conclusion

A combined state estimator and state feedback controller
reproduces and predicts the statistical behavior of quiet
standing under altered sensory conditions. This model implies
that the CNS forms its feedback control with an awareness
of the dynamics of the system and the costs associated with
certain movements. It also appears to use the equivalent of
an internal model to process sensory information and form an

estimate of the body state, which is then used in feedback.
Such processing optimally integrates multiple sensory signals
and minimizes the effects of noisy disturbances and imperfect
sensors. As verified by experiment, the model predicts that
loss of any single sensory modality has little effect on balance
control. However, postural sway increases significantly when
two of the three main modalities are disrupted. The ability to
predict deterioration in performance as a function of sensory
function may improve the utility of clinical balance tests and
help diagnose contributors to balance dysfunction.
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Appendix. Details of estimator model

Numerical values are given for model parameters below. The
body dynamics are defined in terms of matrices

G
�=

[
gT

1
- - -
gT

2

]
=

[
26.64 −13.70
- - - - - - - - - - - - -−46.61 44.04

]
,

H
�=

[
hT

1
- - -
hT

2

]
=

[
0.048 −0.132
- - - - - - - - - - - - - -−0.084 0.3540

]
,

the rows of which are to be referred to below as gT
1 , gT

2 , hT
1 and

hT
2 . We also define a matrix F, which will be used to convert

between joint angles (θshk and θhip) and segment angles (φ1

and φ2):

F
�=

[
f T

1
- - -
f T

2

]
=

[
1 0
- - - - - -−1 1

]
.

Sensor parameters describe the dynamics of muscle
spindles and vestibular organs. The muscle spindle parameters
include the lead time constant Tsp = 0.4 s, and lag parameter
α = 0.15 (Agarwal and Gottlieb 1984). Semicircular canals
are parametrized by ksc = 0.574, ωs1 = 100 rad s−1, ωs2 =
0.1 rad s−1, and ωs3 = 0.033 rad s−1 (Fernandez and Goldberg
1971). Similarly, the otoliths are parametrized by kot = 90,
ωo1 = 0.1 and ωo2 = 0.2 rad s−1 (Young and Meiry 1968).

Several other parameters couple the body and sensor
dynamics. Motion of the head is determined by ankle and

hip motions, with cT
t

�= [ct1 ct2] = [−0.835 m −0.735 m]
transforming angular joint accelerations into translational
acceleration. The platform and body are also dynamically
coupled, and the transformation from platform acceleration
to joint motion described by Bp = [−0.13 0.026]T, derived
from the body equations of motion (Park et al 2004).
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The overall system matrices are composed from the
individual body and sensory matrices:

ABS =




0 I 2×2

G 0
Bapf

T
1 Aap

Bhpf
T
2 Ahp

Bscg
T
2 Asc

Botc
T
t gT

1 Aot

Bvrf
T
2 Avr

Bvtc
T
t Avt




,

BBS =




0
H

0
0

Bsch
T
2

Botc
T
t hT

1

0
0




,

CBS =




0 0 Cap

0 0 Chp

Dscg
T
2 Csc

Dotc
T
t gT

1 Cot

0 0 Cvr

0 0 Cvt




,

DBS =




0
0

Dsch
T
2

Dotc
T
t hT

1

0
0




,

where I 2×2 denotes the 2 × 2 identity matrix.
The control objective uses the following matrices

Qcm =
[

0.57 0.17
0.17 0.05

]
, Qup =

[
1.45 −1.18

−1.18 0.96

]
,

where only the upper-left (2 × 2) entries are shown, the rest
being zero.
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