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Abstract. Within general relativity, the stress-energy content of van Stockum’s two- 
dimensional dust interior is extended to include a two-dimensional spin fluid. The metric 
and spin-fluid parameters are expressed in terms of one generating function. As an 
application, a rotating cloud of spin fluid is discussed. 

1. Introduction 

Rotating fluids are of great interest in relativistic physics. They are used in stellar and 
cosmological models, in experimental gravitational detection systems and in developing 
idealised models to study specific aspects of the matter-curvature interaction. 

In 1937, van Stockum [l] solved a problem of the latter type. He gave the metric 
and matter content of an infinite rotating cylindrical distribution of matter. The matter 
content and metric potentials of his solution were two dimensional, depending on the 
radial coordinate r and z in a cylindrical (0, r, 4, z )  system. The solution was stated 
in terms of a function W(r, z) obeying the equation 

qrr - W r /  r + Wzz = 0 (1) 

where V i  represents the ordinary derivative with respect to the ith coordinate. The 
van Stockum metric is 

d s 2 =  -dt2-2k d 4  d t + ( D 2 -  k2) d42+ew(dr2+dz2)  (2) 

Pr = (~/~D)(W:-W:) k = W  ~z = (-1/D)WrWz* (3) 

with 

From the field equations, D is found to be a solution of the Cartesian Laplace 
equation 

(4) 1. D,, + D,, = 0. 

The solution commonly chosen is D = r. 
The fluid in the rotating cylinder is pressure-free dust and has energy density 

E = r-2 e-l*(W;+WT). (5) 
This solution is interesting when compared with the Newtonian rotating cylinder. 

In the relativistic cylinder there can be a density gradient along the z axis [2] which 
is absent in the Newtonian cylinder. The interior and some matching exteriors can 
develop closed timelike lines [3] in common with the Kerr and Godel exteriors [4]. 
The matter content of some of the interior solutions exhibit a directional singularity 
[5,6] which may represent an extended axial source. 
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In this paper, we extend the energy content of van Stockum’s two-dimensional dust 
interior to include a two-dimensional stress-energy content with an intrinsic spin 
density. The corresponding metric is obtained. As in the original development, all 
metric potentials and fluid parameters are expressed in terms of one generating function. 
The formalism is developed in the next section. This extension, which widens the 
applicability of the van Stockum spacetimes, is also useful in interpreting the source 
structure of apparent axial matter singularities. As an application we apply the 
formalism to a rigidly rotating cloud of spin fluid. This application is in Q 2.3. 

2. Extension of the van Stockum solution 

2.1. Field equations 

Rotation can be included in relativistic calculations by allowing a metric component 
go,. The fluid rotation introduced in this way is described by the vorticity tensor [7] 

( 6 )  W,” = U [ , ; v ] +  U[,  U”] 

where U, is the fluid velocity and U, = U,;,U” the acceleration. For the metric 
described by equation (2) the velocity of the fluid can be described by 

U’” = (1 ,0,0,0)  U, = ( - l , O ,  -k,  0 ) .  ( 7 )  

The fluid acceleration is zero. 
In addition to the angular velocity described by the vorticity, there is an angular 

velocity related to an intrinsic spin density S,, . The rotation associated with the spin 
density can be described by the tensor [8] 

= A;)A,,,, (8) 

where A;’ is an orthonormal tetrad chosen so that A k ]  lies along the velocity U,. 
Tetrad indices are in parentheses ( i )  = (0, 1 ,2 ,3)  and are raised and lowered with the 
Minkowski metric ( - + + +). Coordinate indices are not in parentheses, p = (0, r, 4 , ~ ) .  

For the metric described by equation (2), a possible tetrad is [9] 

Ah) = (1 9 0, 0, 0) 

A&’ = ( - k / D ,  0 , 1 / D ,  0) 

A:’ = (0, 0,O) 
(9) 

AG] = (0, O,O,  e-,’’). 

This particular tetrad diagonalises the metric. For time-independent problems, the 
vorticity described by equation (8) is independent of the tetrad choice. For the 
unaccelerated fluid of metric (2) the spin and fluid vorticity have the same form 

The spin density S,, defines a density of angular momentum throughout the fluid. It 
is constrained by the Frenkel condition [ lo]  

ups,, = 0. (11) 

U,SP,( - g )  (12) s’* = ;,w..pv 

A spin vector Sw can be associated with the spin density 
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Ray and Smalley [ l l ]  have developed a stress-energy tensor that includes an 
intrinsic spin density. The stress-energy tensor can be written as the sum of two parts 

TC”’ = Tguid) + Tgiin) (13) 

T ~ u l d ) = ( & + p ) U C ” ~ u + p g C ” u  (14)  

where Tr&ld) is the perfect fluid stress-energy tensor 

E is the energy density and p the pressure. 
The spin-fluid portion of the stress-energy tensor is 

TGYp,,) = 2 U‘C”S”’“ i’, + ( u(C”sv’u),v - P(C”S”)U. ( 1 5 )  

This stress-energy tensor was developed within the context of the extended Einstein- 
Cartan relativity but can be used in the torsion-free spacetimes of general relativity 
[ 121. We will use this stress-energy tensor to write the tetrad indexed field equations 

G,,) = A ~ , A r , , G p y  = AC)Ar,,T,” = Tu). (16) 
We take 8rG = 1 .  

We will include only spin components along the r and z axes since consistency 
conditions on the 4 spin component require an irrotational fluid. The field equations 
are 

-Drz +-+-+-=&+- @, pzD,  krkz S k S,,k, 
D 2 0  2 0  2D2 2D2 2D2 

r e :  - 

2.2. The extended solution 

Adding the ( 1 1 )  and ( 3 3 )  components of the field equations we obtain 

This equation is one of the major departures from the van Stockum solutions for 
spinless dust. When spin is included, this is no longer a Laplace but a Poisson equation. 
Clearly a wealth of different fluids can be generated for study by using pressure and 
spin as a source for a new D function. For example, one could specify spinning dust 
and generate the D function corresponding to a spin-vorticity source. Since the purpose 
of this calculation is to extend the original van Stockum fluid content to include spin 
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in a way that allows comparison with existing metric solutions, we shall retain the 
harmonic van Stockum choice of 

D = r. (24 )  

This choice will produce metrics closely related to existing cylindrical spacetimes 
and permit a comparison of the fluid contents. It also creates a spin-related pressure 

p ep = S,,k,/2r2+ S,,k,/2r2. (25 )  
The generating function for the solution comes from the (02 )  equation. Define a 
function W ( r ,  z )  such that 

Q r  = k,  - Srb 
- 
W, = k, - S,, . 

Equation (21 )  becomes 

Q Y r  - 9/ r + qzz = 0 

which is identical to the equation for the van Stockum generating function T ( r ,  z ) ,  
equation (1). We will drop the bar and take the generating functions to be the same. 
To achieve consistency with the field equations, the spin density and the function 
k ( r ,  z )  can be separately proportional to W ( r ,  z )  

k = a W  sr* = - p W r  s z ,  = -PWz a = - P + l .  (29 )  

Substituting into the field equations, one easily finds the extended van Stockum relations 

with fluid content 

E ep = ( 2 + p ) [ ( 1 - p ) / 2 r 2 ] ( ~ ? + W S )  

epS2= s's,+s's, = ( p 2 / r 2 ) ( W ; + W : ) .  

Equations (29) - (31)  are the extended van Stockum solution. They will describe a 
cylindrical distribution of fluid with metric potentials (30). In order to describe a 
physical fluid, p must obey the constraint 

p e@ = ( + a p / 2 r 2 ) ( W S + ~ : )  
(31 )  

o s p < 1 .  (32 )  

The extended solution differs from the dust solution in the presence of a non-zero spin 
density and associated pressure. The energy and metric potentials are scaled away 
from their dust values. The spinless but rotating dust solution is obtained in the limit 
p+o.  

2.3. A rigidly rotating spin-fluid cloud 

A choice that has often been made for W is 

W ( r ,  z )  = -2hr2 ( r2+~2) -3 '2 .  (33 )  

This choice is motivated by the fact that W can be related to a function 5 satisfying 
a cylindrical Laplace equation [ 131 
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The particular choice (33) corresponds to 

6 = 2h(r2+ z’)”’~, (35) 

Using this generating function, Bonnor [2] has developed a model for a rigidly 
rotating cylindrical dust cloud. The dust in this model has a density gradient along 
the z axis which is absent in the Newtonian problem. It also has a directional singularity 
[5] that might signal an extended source. Islam [6] has discussed this problem with 
relation to a charged dust cylinder. 

Using the generating function (33), the spin-fluid extended metric potentials are 

(1 -P2)h2r2(r2-8z2) -2ahr2 
(36) ( r2 + z’) 3’2 ‘ 

k =  
= 2(r2 + z2)4 

The parameters of the fluid that is the source for this metric are 

E = (2+P) (1  - P ) x ( r ,  z )  

S* = &’x( r, z) 

p = +aPx( r, z )  
(37) 

x ( r ,  z )  =2h2(r2+4z2)  e - ’ l ( r ’ + ~ ~ ) - ~ .  

Direct substitution of (36) into equations (17)-(22) easily verifies this matter content. 
The directional singularity found by Bonnor for dust is also present in the spin fluid. 
The fluid parameters, pressure, energy and total spin all depend on the same function 
X(T, z), which has different limits depending on the line of approach to the origin. A 
similar extended source behaviour has also been discussed by Stewart ef a1 [ 141 within 
the context of a toroidal topology. 

In Bonnor’s calculation, the metric source was identified as a rotating cloud of 
dust with a spinning singularity at the origin. The explicit inclusion of spin, while 
eliminating the dust, makes plausible the interpretation of the axial singularity as an 
object with spin since there is now a definite spin form in the fluid that has the same 
directional singularity structure as the energy density. The presence of a z-dependent 
pressure induced by spin helps explain the support of the fluid above the origin plane 
[15]. In the r-4 plane, the fluid and metric are 
Stockum interior with only a z component of spin. 
Krisch and Smalley [16]. 

Spin fluids in the general extension described 
equation of state 

P. 
(2+P) 

P 
E=- 

For the range of allowed ,f3 this gives 

E > 3p. 

- -  
the simple one-dimensional van 
This case has been discussed by 

by equations (29)-(31) have an 

(39) 

Bayin [17] has shown that equations of state of this form can be obtained for a 
lattice of baryons at densities p 5 1015 g cm-3 with no violations of causality. In light 
of this, one might possibly interpret the complete metric source as a structured cloud 
of baryons with an extended axial spinning source. 

In conclusion, we have developed a formalism that allows a two-dimensional spin 
fluid to be used as a source for the metric of a cylindrical matter distribution. This 
extension can be used to provide additional information on the source structure of 
existing solutions. By relaxing the harmonic constraint on the D function, new interiors, 
unobtainable for the dust cylinder, can be studied. 
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One possible physically interesting application of the spin-fluid formalism is to the 
development and behaviour of vortex distributions in superfluids. Superfluids appear 
in many contexts in relativistic problems. For example, they are used in the design of 
gravitational detectors [ 181, an experiment with cosmological significance involving 
the appearance of vortex lines in superfluid 4He has been discussed by Zurek [ 191 and 
superfluids have been suggested as a component of neutron-star interiors [20]. In 
problems with vortices, the vortex distribution could be easily modeled by a spin fluid 
density. The symmetry of the infinite cylinder is appropriate to the experimental set-up 
of rotating superfluids in the laboratory and might possibly be applied to other 
symmetries in regions far from boundaries. 

Spin, in all of its aspects, is becoming increasingly important in physics. Applica- 
tions of a general relativistic spin-fluid formalism to problems in condensed-matter 
physics will inevitably lead to new insights about the interaction of spin and geometry. 
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