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Abstract The weak discontinuities that can propagate in a relativistic two fluid syslem are 
examined and expressions obtained for their speed of propagation. The acoustic speeds and 
discontinuity amplitudes are described by theu Frenet parametem. Both longitudinal and 
transverse acoustic modes are possible. The discontinuity in lhe two fluid anisolropy vector 
can be timelike. spacelike. or null. As an application we use the existence of two longitudinal 
modes to extend (he fluid content of h e  inhomogeneous cosmologies discussed by Van den 
Bergh and Skea Fca lhei solution we find a family of two perfect fluids whose properties range 
from a dust-perfect-fluid set to two y = 9 mmoving perfect fluids. 

PACS numbers: 0420.0440,0340 

1. Introduction 

Two fluid systems have a stress-energy content of the form: 

T’” = ( E l  + pI)u@Iu”I t (E2 t PZ)W’2WY2 t (PI + p2)g’”. (1) 

where U’I and W”2 are the physical fluid velocities and U”IU,I = -1, W’zW,, = -1; 
p is the spacetime index; (1,2) labels the physical velocity. WO fluids can be a convenient 
stressenergy model for many different physical situations. Recently, for example, two fluid 
models have been actively applied to cosmological models in which one fluid represents 
radiation and the second a matter content for the universe [1-9]. If the two fluids are 
assumed to be comoving, then the stressenergy is effectively that of a single fluid 

T’” = (E  + p)U’U” + pg’”, (2) 

with E = el + &2 and p = p ,  + pz.  If the fluids are not comoving, then Letelier [lo] has 
shown that equation ( I )  can be transformed into a tensor explictly exhibiting a preferred 
spatial direction: 

T’” = EU’U” + n(g’” + U’U”) t (U - n)W’W”, (3) 

where E is the effective energy density and x and U are anisotropic pressures. U’ is 
a timelike unit vector and W” a spacelike unit vector, both obtained from the physical 
velocities by a rotation. The relation between these fluid parameters and the physical fluid 
parameters is reviewed in section 4 of this paper. At first glance this streswnergy tensor 
looks like that of a viscous fluid. It is important to realize that W @  is independent of U”. 
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and represents the direction of anisotropy in the medium, dated to the motion of one fluid 
relative to the other. 

In this note we examine some of the sound waves that can propagate in a relativistic 
two fluid system. In addition to their intrinsic interest, the speeds of some of the waves are 
useful in interpreting equations of state for relativistic two fluid models. In section 2 we 
consider the conservation laws and obtain the wave speeds. Section 3 contains a discussion 
of some of the acoustic modes. In section 4 we use the existence of two longitudinal fluid 
modes to extend an inhomogeneous perfect fluid cosmology discussed by Van den Bergh 
andSkea[Il]. 
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2. Conservation laws and wave speeds 

2.1. Conservation laws 

The conservation laws associated with equation (3) are: 

2”’”;” = 0, 

or, on rewriting: 

&,vu”u’ f ( H  f &)(u’:,u” f u’u”;,) f H,, (g””  + U’U”) 
+ ( U  -n).,W”W”+(u-n)(W’;”W”+ wpw”:”) =o. 

The projection along the timelike U’ is: 

&;”U” + u”;,(E +n) - (U - H)U’W”w,;, = 0. 

Using the projection operator gpv + U,U,, the spatial projection is: 

(4) 

(E JC)L /L l iV ( Iy  f H,’ f u , H , , u ”  f (U - R ) . v w ” W p  

+ ( U  - a ) ( W ’ , , w ” - U , W ” U y ; n W = +  W,W”:.) =o, (7) 

where we used the othogonality of U” and W’ to switch covariant derivatives in the last 
line of equation (7). 

2.2. Discontinuities 

The wavefront that we will consider is a hypersurface across which the accelerations 
Cb = Up;; ,U” and W p  = W”;,U” are discontinuous. The propagation of this surface 
through the medium can be described by a set of unit vectors i”, V p ,  and A”, in the 
notation of Carter [121. V” is the vector describing the direction of propagation. i’ is 
the polarization vector describing the relation of the acceleration discontinuity in U @  to the 
direction of propagation. We shall later identify the polarization vector with a particular 
member of the Frenet triad. A’ is the normal lo the characteristic hypersurface associated 
with the wavefront. We have: 

hp = V’ - WU’, 
U’i, = U’V, = 0, 

where w is the velocity of wave propagation relative to the fluid flow [13]. 
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The method that we shall use to discuss the wave propagation is Hadamard’s method 
as applied by Carter [I21 to the propagation of sound in high pressure relativistic solids. 
The method assumes that the discontinuities of the fluid functions across the wavefront 
hypersurface are proportional to the normal, A@, to the hypersurface, i.e., that we are dealing 
with weak discontinuities in the field functions [14]. Denoting the discontinuity by square 
brackets, we can write: 

[&,#I = EAp [r,#l = &vi [U,,] = &e 
( 9 )  

[U”;,] = UqAp [W”;,] = r A ,  
where the underlined quantities are the proportionality functions. We have assumed that the 
pressure changes are driven by the density changes. Non-relativistically we would write, for 
example, E = (&I/&)&. The thermodynamics of a mixed system can be very complex, 
possibly involving the entropy of mixing. We will consider only isentropic processes. 

The discontinuities in U’ and W” defined by equation (9) can be rewritten in a very 
convenient form by using a Frenet tetrad to describe the relationship between U” and W”. 
The Frenet tetrad (U,, A’, E’, C”) is assumed to have a timelike member along the fluid 
velocity. 

For the tetrad we have [15]: 
r U P i  r o  K o o i ru ’ i  

with K the curvature, and rl and 52 the first and second torsions associated with the fluid 
aajectory. The acceleration vector lies along A’: 

so that the discontinuity across the front is: 

Comparing with equation (9). we find that: 

wg’ = [KIA’. (13) 
[ K ] ,  the discontinuity in the curvature can be identified with Carter’s [la] a, the amplitude of 
the acceleration jump. With this choice of basis tetrad, the polarization vector i” is A’. The 
propagation vector V” can be any of the spacelike hiad (A” ,  B’, CC).  The discontinuities 
in W” can be treated in the same way as those in U’. Since W” can lie along any of the 
spacelike triad (A” ,  B’, C’), we have, using equations (8H10): 

if WP = A’, then: 

U P  = KA’ (11) 

[U’] = [ K I A ~ .  (12) 

WE’ = [Wp;”]u”; ( 14) 

Wy’ = [K]U’ + [ q ] B ’ ;  

WE’ = - [rlJA’ + [TzJC’; 

(15) 

(16) 

= - [QJB’; (17) 
where [rll and [rz] represent the jump discontinuities in the first and second torsion. They 
will contribute to the amplitude of the discontinuity in W’ along the respective directions 
and are analogous to Carter’s 1121 IY for the amplitude of the discontinuity in the fluid’s 
acceleration. We have identified a with [ K ] .  

if Wp = b’, then: 

if W’ = C’, then: 



2618 

2.3. Discontinuities and conservation 
Taking the discontinuities of equation (6) and using (15x17) one finds: 
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w 2 ~ = - [ ~ ] [ ( ~ + n ) A ’ V ’ + ( u - n ) W ’ V ’ W ” A I l ~ .  (18) 

The discontinuities in the spatial projections of the conservations laws, equation (7), are: 

[ K ] ( & + R ) A * + n r V ’ + @ - ~ ) E V ” W “ W ’ + ( U  - n ) w ’ V ’ W V  (19) 

There are three choices for W ” ,  and we shall consider them separately. 

2.3.1. W’ = A’. Using equation (15) to describe 11%. we find for equation (IS): 

- [K]w-’A”W,V”W,U’) + (U -n)(W’V’lV,  4- [K]AYWvW’) =O. 

w2g = - ( E  + u ) [ K ] V “ A , ,  (20) 
where we have used W” = A’, and for equation (19): 

A P ( E K I ( U + E ) + ~ ~ - ~ V Y A v + ( U - ~ ) ~ - ’ [ t i I V Y B , ~  
(21) +&’ + (U - n ) w - ’ [ r l ] V Y A , B ~  = 0. 

If the wave is propagating along A’, V* is parallel to A’, and we have: 

A’([K](E + 0) +E] + B”(0  - n)[r~]w-I 0. 

The projection along A’, along with (18). gives the first acoustic mode: 

W I  x & V’A, = I ,  W” = A’. (22) 
From the B’ projection we see that there is no discontinuity in the first torsion, [ r l ]  = 0. 

(21) c&n be wriuen as: 
If the prcpagatim is not along A’, then there is no density variation, E = 0, and equation 

A’([K](E + U )  + (0 - n) [ r l lw- ’V”B, )  0. (23) 

There is a ScMnd acoustic mode associated with propagation along 8”. The speed is: 

2.3.2. W’ = B P .  The density variation, equation (18), for this case is: 

W z E  = - ( X  + &)[K]V’Ap.  (25) 
The spatial discontinuities follow from equation (19) and are given by: 

A ’ ( [ K ] ( n + & )  - [ r~I(u  - n ) W - ’ V “ B a ] +  V”=+C’[T?](U -n )W-‘V“Be  

If the wave is propagating along A’, so that VPA,  = 1. then we have: 

(26) 
+ B ’ { & - ~ ) E v o B e  - [ ~ I ] ( U - ~ ) V ~ A A . + [ T ~ ] ( U  - R ) V e C e ) = O .  

~3 [ti] = 0, V’A, = 1. (27) 
If V’ is not along A’, then, as in the previous case., E = 0 and there is no density variation. 
For this case we find a wave speed of: 
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2.3.3. W” = Cfl. The speed of sound for propagation along A” has the same form as (27). 
There is no restriction on [q]. For the case P A ,  = 0 there is no propagation, and we 
have [ K ]  = [rz] = 0. 

3. The amplitudes of the W’ wave 

The amplitude of the WP wave, IK’l, can be used to further classify the various acoustic 
modes. Using equations (15x17) we can write the square amplitudes as: 

W’K’IV~ = [TI]’ - [K]’ if W” = A”. (29) 
The longitudinal mode has [?I] = 0 and the amplitude is timelike. The complete W’ vector 
develops a timelike part as the wave progresses through the medium. The transverse mode 
can be either spacelie, timelike, or null. The traverse mode is particularly interesting, 
since it occurs if [ s ]  = 33~1.  If initially the trajectory had no torsion or curvature, so that 
the developing discontinuity were to be the torsion and curvature, the equality of the torsion 
and curvature would be the condition for the curve to be a timelike helix 1151: 

W’K’K~ = [TI]’ i- [rZl2 if W’ = B’; (30) 
- W’ is a spacelike vector, and so W” remains a spacelike vectol: 

In the longitudinal mode W” remains a spacelike vector. There is no transverse mode for 
this case. The various amplitude behaviours along with the associated speeds of sound are 
summarized in table 1. 

W’K’K,, = [T~I’ if W’ = c’. (31) 

Table 1. Behaviours of ampliludes and associaled speeds of sound. 

W’ V” W - W” Comment 

A!‘ ALL .E T m e l i e  Longitudinal [I!] = 0 
n - a  h l  BI’. C,‘ - - V‘B. limelike Transverse 2 = 0 
€ + U  [K] 

Spacelike 
Null Null case is timelike helix 

BI‘ AIL z Spacelike Longitudinal [ n l =  0 
a - n kt1 BI’. C!’ - - V“B= Spacelike Transverse r = 0 [@I= 0 
E + R  [ K ]  

Spacelike Longiludinal C g  A!’ z 
811, C‘ [XI = 0, [nl = 0 

4. Discussion 

Taub [I61 was the first to show that the relativistic speed of sound for a perfect fluid was 
simply the classical result w = ,/p = m. The two longitudinal acoustic modes 
found for the anisotropic equivalent of the two perfect fluid system, wl = and 
w j  = are the intuitive extensions of Taub’s result. These modes can be explained 
as the two fluids moving as a unit with the propagation direction parallel to the fluid 
acceleration A’. The different values reflect a varying direction of anisotropy in the fluids. 
The other two transverse modes involve no net density variation, and should involve the 
motion of the two fluids relative to each other. In order to see how this occurs in the 
physical fluid, we need to briefly review Letelier’s formalism. 
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4.1. Letelier Formalism 

J P Krisch and L L SmnlIey 

The stress-energy tensor, equation (I), is invariant under the transformation: 

7 

Under this transformation equation ( I )  becomes: 

TGv = ( E I  + pl)U;U: + (EZ + PZ)W;W: -k ( P I  + P d g p v .  

The angle a is chosen so that: 

u”’w; = 0, 

with U’* timelike and WP’ spacelike. This angle is specified by: 

Defining 

the stress-energy tensor becomes: 

Twu=(E+X)UpUu +(U -n)W,W,+Hg,,,, 

which is equation (3) with 

( E  + H )  = -(PI + Ei)UP*U’ P 

(U - n) = (pz + E2)w”W; 
K = (PI + P2) 

or 

(34) 

(39) 

Note that equation (41) implies that U II. 



Two fluid acoustic modes and inhomogeneous cosmologies 262 1 

4.2. The tramverse modes 

If there is no density variation, i.e., 5 = 0, then [x,,] = 0, and from (42) we have 
[PI.,,] = - [pz . , ] .  The pressure variations in the two physical fluids are opposite. [U,,,] is 
also zero, and using (43) and (44) we find in addition that [&I,,,] = -[Ez.,,]. The density 
variations in the two physical fluids are also opposite to one another. The two fluids are 
moving relative to one another to maintain zero variation in pressure and energy density. 

There are other examples of fluid systems that exhibit similar behaviour. One well 
known example is the speed of sound in supemuid helium [17]. In this system, first sound 
involves the normal fluid and the superfluid moving with the same speeds. In second sound, 
the two fluids move in opposition to each other with zero density change. Another example 
[IS] is the constant density layer thickness oscillation in smetics. 

5. Application 

Van den Bergh and Skea [ l  I ]  have discussed a cosmological metric of the form: 

(46) & = -eZIK+k) (&)2 + ,+2IK+kI(&)Z + eZtS+s)(e-Z(F+fl(dz)2 + e+Z(F+f)(d$)2), 

Using the two fluid stress-energy form described by (39). the five non-zero field equations 
are: 

(rr) 

(Zz) 

(44) 

(Or) (51) 

where we have assumed that the direction of anisotropy is in the radial direction. This 
would correspond to one of the two perfect fluids moving radially to the second. Van den 
Bergh and Skea, in their single perfect fluid treatment, assume an equation of state of the 
form p = ( y  - 1)&, and discuss the solvability of the special case y = $. We will use two 
equations of state: 

(s')' - (f')' + W s '  - 23 + 2kS - y.9)' - (k)' = ue2(K+k) 

- S - I: - (s + hZ = irez(K+k) 

k" + sn - f" + (s' - f')* - - S + F - ($ - j?)z = j&IK+k) 

- 2s'' + 2 ' s '  - 3(s')z - (f')Z + 2kS  + ($2 - ( F ) z  = peZ(K+k) 

(47) 

(48) 

(49) 

k" + + f" + (s' + f')* - 

(00) (50) 
S(k' - s') - f ' k  + s'k = 0. 

a =n2& and i r=n l&,  (52) 

with nl and n2 the squares of the respective acoustic speeds for the anisotropic pressures 
x and a. Causality sets an upper limit of one for both speeds, and the formalism imposes 
the constraint: 

nl 5 nz c 1. (53) 

The upper limit is not an equality, to avoid a singularity in K in equation (56). 
From the conservation laws for the system the energy can be determined. It is: 
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Using the variables X = s' and Y = As' - j" the field equations determine the anisotropic 
pressure u in terms of a function 4 = 4x2 - 4(&)' - Y 2 :  
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U = O(X, Y). (55) 

The equation for energy (54) provides an integral constraint on @. The field equations also 
provide the additional relations: 

F = A S  
3-A' 

k = A f  +- S 
2 - n2 

with 

The time-dependent solutions to equation (58) are the same as discussed by Van den Bergh 
and Skea [ I  I]. The two spatial equations (57) are the equations that admit an exact solution 
for y = $ or A = 3 in the single fluid model. The same solution can be obtained in the two 
fluid model, but there is now a family of fluid parameters that correspond to this special 
solution. The family is described by the relations: 

To maintain real speeds of sound and the constraint that n2 2 nl, A must lie between the 
limits: 

( I  +d) 5 A 5 3 .  (61) 

The lower limit corresponds to one dust (n  1 = 0) and a second fluid nl = n2 = f . equivalent 
to the original single fiuid solution. Other solutions to the equations are under investigation. 
The solutions found by Van den Bergh and Skea generalize the solution of Feinstein and 
Senovilla [19]. The two fluid content that we describe would also apply to the Feinstein 
and Senovilla solution. 

In conclusion, we have developed the acoustic mode speeds for a weakly discontinuous, 
isentropic two fluid system. The relationships are clearly of value in modelling and 
interpreting equations of state in general relativistic systems. The single perfect fluid 
content of the solution of Van den Bergh and Skea is extended to two fluids. Their solution 
corresponds to the comoving upper limit of two fluids in relative motion to each other. 
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