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LETTER TO THE EDITOR

String fluid dynamics
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Abstract. We present the general energy–momentum tensor for a dynamical string fluid and
show that it predicts that strings are very strong during early cosmological times, weak after the
inflationary period, and negligible during the late-time evolution of the universe.

PACS numbers: 0440N, 1127, 9880C

The discussion of the cosmological implications of strings goes back nearly twenty years to
the work of Zeldovich [1] and Vilenkin [2]. A string dust model was introduced by Letelier
[3] from the description of the string function as aspacetime, surface forming bivector

6µν = εAB ∂xµ

∂λA

∂xν

∂λB
(1)

where

εAB =


1 if A = 0, B = 1

−1 if A = 1, B = 0

0 if A = B

(2)

The form of equation (1) follows closely the form of the spin bivector developed by
Halbwachs [4], and therefore the description of a string fluid energy density will use the
parallel description of the velocity matrix used in discussions of fluid dynamics in continuum
mechanics. (For a more complete discussion see, for example, the discussions of fluids with
spin and twist in metric affine geometry [5].) This means that in a fluid context we can
develop a Ray–Hilbert variational principle [6] for a string fluid by introducing the string
in terms of a set of tetrads

6ij = ρλ(x)(a4ia3j − a4j a3i ) (3)

whereρ is the string density,aµi are the tetrads, where the latin indices,i = 0, 1, 2, 3, are the
holonomic coordinates, greek indices,µ = 1, 2, 3, 4, λ(x) is the string (module) function
(considered as a parametric function) which will not be varied directly. The holonomic
metric has signaturegij = (−1, 1, 1, 1), and the anholonomic metric,ηµν = (1, 1, 1, −1).
We also identifiy the tetrada4i ≡ ui . Using equation (3), the equivalent ‘angular’ velocity
matrix takes the form

ωij = ȧαi aα
j (4)
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so that the string energy-density is given by

TST = 1
26ijωij = ρλa4

i ȧ
3i . (5)

Some additional justification for this formulation is given by Nieto [7]. It is interesting to
note the similarity of the string energy-density in the fluid framework to that which occurs
in general spin/twist formulations. In this work, we do not restrict the generality of the
spacetime manifold to the Riemannian form. One is tempted to argue from the standpoint of
a theorem [8] on the uniqueness of a symmetric connection in a Riemannian manifold (which
is both torsion and non metricity free) that this is equivalent to the ‘gauging’ of the torsion
and non-metricity away. If one compares this to electromagnetic theory with the invariance
of the electric and magnetic fields under the gauging of the vector potential, one quickly
notes that the gravitational field is not invariant because of thedifferent possible monifolds
in the metric affine geometry. For example, if we investigate the effects of intrinsic spin in
the cosmological arena, we discover that in the Riemann–Cartan (RC) spacetime, the spin
energy enters with spin-squared terms, whereas in general relativity (GR), the spin-squared
terms are missing [9]. This means that an expanded class of meaningful cosmologies is
possible in RC spacetime compared with general relativity [10]. In addition, there is the
theorem by Krisch and Smalley [11] that shows that every static perfect fluid solution in
general relativity (i.e. the Riemannian spacetime) with metricgij is equivalent to a stationary
spin fluid solution in a spacetime with torsion in a Einstein–Cartan theory (i.e. RC spacetime)
with the same metric but with zero RC vorticity. However, the matter contents of these
two spacetimes are very different as can be seen by either solving the field equations or by
writing the field equations in a psuedo-Riemannian form [9] and then comparing the matter
content to the static general relativistic case.

From the above arguments and the framework leading to equation (5), we justify that
extending our manifold to Riemann–Cartan spacetime (which will also contain the GR limit)
can lead to further understanding of the full implications of strings. We further note recent
investigations of strings which have considered the relevance of torsion to spacetime defects
[12, 13], and an exact solution of a family of strings in RC spacetime [14]. Thus in this
work we investigate our string fluids in the RC spacetime of the Einstein–Cartan theory
whereSij

k = 0[ij ]
k, square brackets indicate antisymmetrization of the indicesij and0ij

k

is the connection in RC spacetime. We have, however, chosen to sort out the details of the
dynamics of string fluids without the additional complications of spinning strings, although
the RC geometry is the natural framework for spinning fluids [15]. We leave this to a later
work.

The Ray–Hilbert Lagrangian for a string fluid in RC spacetime becomes

LG = LM + LG (6)

where

LM = e
{

− ρ [1 + ε (ρ, s)] + λµν

(
aµiaνjgij − ηµν

) + λ2

∗
∇ i

(
ρui

)
+λ3u

iX,i + λ4u
is,i − ρλa4

i ȧ
3i
}

(7)

and

LG = eR

2κ
(8)

wheree = √−g, κ = 4πG, R is the Riemann scalar in RC spacetime,λµν are the Lagrange
multipliers, and we writeλ44 = λ1 in the variation. Note that in this initial model, only the
third and fourth component of the tetrads occur in the Lagrangian, and therefore it is not
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necessary to vary those that do not appear, since the variational equations are trivial. Also
in this formulation, we do not include the string variable in the extended thermodynamics,
i.e. the internal energy is not considered a function of the string as in the improved energy–
momentum formulations [15]. Thus

dε = T ds + p

ρ2
dρ. (9)

The variational variables are thengij , Sij
k, ρ, s, X, ui, a3i , and the various Lagrange

multipliers. After varying equation (6), we obtain the metric field equation

G(ij)−
∗
∇k (T kij + T kji) = κT

ij

SF (10)

where the string fluid energy–momentum tensor is given by

T
ij

SF = T
ij

F + T
ij

ST (11)

where

T
ij

F = [ρ(1 + ε)]uiui + pgij (12)

is the perfect fluid energy–momentum tensor of the string fluid, and

T
ij

ST =
∗
∇k [u(i6j)k]+

∗
∇` [u`6k(j ]ui)uk (13)

is the string energy–momentum tensor. In reducing the metric equation to its final form
given by equations (10–13), we use the relationship for the Lagrange multiplier for the fluid
continuity

ρλ̇2 = − [
ρ (1 + ε) + p

] − TST . (14)

As a result, it is quite remarkable the that the string energy densityTST does not occur
in the fluid energy–momentum tensor given by equation (12). This occurs because of the
identity (which can be shown directly)

u(i6j)ku̇k = −TST uiuj (15)

where the first term, which would have occurred in the string energy–momentum tensor,
cancels with the right-hand term, which would have occurred in the fluid energy–momentum
tensor.

The torsion equation takes the form

T kij = 1
2κ6kiuj (16)

which has interesting consequences for the the metric field equation (10) when symmetized
on ij . However the string function can be shown to have the much simpler form

κ6ij = −8u[iSj ] (17)

which shows that the string depends only on the torsion vector. Taking the trace of
equation (16) onij shows that

Sk = κ

4
uj6

jk (18)

whereas contracting equation (17) gives

κ

4
uj6

jk = Sk + 1

4
ukuiS

i (19)

which shows thatuiS
i = 0, so that the torsion vector is a spacelike vector (i.e. not timelike).

If we use equation (3), we can expand the right-hand side of equation (18), so that the torsion
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vector is proportional toa3i . However if we had used the fluid constraint∇k[ρuk] = 0
instead of the one with the ‘star’ derivative used in the Lagrangian equation (7), then the
termκλ2ρu[igk]j would occur on the right-hand side of equation (16). Eventually one finds
that 3κρλ2 = uiS

i , and in general

Si = 3κρλ2u
i − κ

4
κρλa3i . (20)

Thus the fluid constraint with the star derivative keeps the torsion vector from having a
timelike piece.

The variational equationδa3i has two interesting consequences. First antisymmetrizing
with a3j shows thaṫu[ia3j ] = 0 which implies thaṫui ∝ a3i ; and secondly, antisymmetrizing
with u̇i and using the previous results, one finds that the string module function satisfies
the equation

λ̇ + λ = 0. (21)

Integrating gives the parametric representation

λ = Ce−τ (22)

whereC is a constant andτ is a proper time parameter in the co-moving frame.
The above discussion describes a universe populated by a simple string fluid (in contrast

to the dust model described by Letelier [3, 16]). In the far past, the strings are extremely
strong as can be seen from equation (22). Thus in a more compreshensive model, it would be
easy to see how they could have been the seed perturbations for matter density fluctuations
that lead to the formation of super clusters and galaxies during early cosmological times;
however, relatively soon after their creation, the strings become extremely weak and
therefore do not play a major role in the late-time dynamics of the universe.

In a future publication, we will present details of the present calculation and show how
the the basic model considered here can be extended to spinning strings with and without
improved energy–momentum tensors.
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Estadualde Campinas, 13018-970 Campinas, SP, Brazil
[13] Tod K P 1994Class. Quantum. Grav.11 1331
[14] Krisch J P 1995 Family of strings with spinPreprint Dept of Physics, University of Michigan
[15] Ray J R and Smalley L L 1982 Phys. Rev. Lett.49 1059;50 525 (erratum)
[16] Letelier P S 1983Phys. Rev.D 28 2414


