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Spinning string fluid dynamics in general relativity

Larry L Smalleyt and Jean P Krisch

1 Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899, USA
1 Department of Physics, University of Michigan, Ann Arbor, Ml 48109, USA

Received 9 June 1997

Abstract. The general, energy—momentum tensor for a dynamical, spinning string fluid in
general relativity is presented using the Ray-Hilbert variational principle. The calculations
are given for both the standard and the extended thermodynamics versions in which the latter
includes both the spin and string as thermodynamic variables. Both versions yield the same
Fermi—Walker transport of the spin with a correction term due to the string. As an unexpected
general feature, it is shown that the string and spin are dual 2-forms. Examples of solutions to
the field equations are given for the extension of static black holes for non-spinning, string fluids
to stationary, slowly rotating black holes for spinning string fluids. These solutions are then
compared with solutions obtained from the postulated energy—momentum tensor of Letelier. The
general feature of these solutions for positive density is that the spin causes the event horizon for
the stationary black hole to contract whether or not the spin is considered as a thermodynamic
variable.

PACS numbers: 0440N, 0570, 9880H

1. Introduction to spinning string fluids in general relativity

The discussion of the cosmological implications of strings goes back nearly 20 years to the
work of Zeldovich [1] and Vilenkin [2]. A string dust model was introduced by Letelier
[3] from the description of the string function asspacetimgsurface-forming bi-vector

; ap 0xH OxV
T =€ A 9 F (1)
where
1 if A=0, B=1
=11 f A=1 B=0 )
0 if A=B.

In a previous work on the dynamics of a string fluid [4], it was noted that the form of
equation (1) follows closely the form of the spin bi-vector developed by Halbwachs [5], and
therefore the description of a string fluid energy density will use the parallel description of
the velocity matrix used in discussions of fluid dynamics in continuum mechanics (see, for
example, the discussions of fluids with spin and twist in metric affine geometry for a more
complete discussion [6]). The basic discussion of string fluid dynamics plus applications to
static black hole models and cosmological solutions in general relativity (GR) are described
by [7] (referred to as paper I). In this work, a much more extensive discussion extends the
concept of the fluid dynamics of strings to the casemhningstring fluids. This means that
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in a fluid context, a Ray—Hilbert variational principle [8] can be developed for a spinning
string fluid by introducing a complete set of tetrads for the fluid

s = p)\(x)(a‘”a?’j - a4-ia3i) = po'l/ (©)
along with the usual spin density
S = pk(x)(aliazj — aljaZi) = ps'/ 4)

where p is the string densityg” are the tetrads, where the Latin indicéss= 0, 1, 2, 3,

are the holonomic coordinates, the Greek indiges= 1, 2, 3, 4 are the non-holonomic
coordinates, and whekg€x) andx(x) are the spin and string (module) functions, respectively
(considered as a parametric function), which will not be varied directly. The holonomic
metric has signature,; = (-1, 1, 1, 1), and the non-holonomic metrig,,, = (1, 1, 1, —-1).

We also identify the tetrad*® = u’. Using equations (3) and (4), the equivalent ‘angular’
velocity matrix takes the form

ol = aaiaaj (5)
so that the string energy density is given by

Tsr = %Ei'iwij = pra*a® (6)
in comparison with the spin energy density

Tg = %Si-ia)ij = pratia?. )

Some additional justification for this string formulation is given by Nieto [9]. Itis interesting
to note the similarity of the spin/string energy density in the fluid framework to that which
occurs in general spin/twist formulations [6].

In a previous work [4], the generality of the spacetime manifold was not restricted to
the Riemannian geometry of GR. However, this work will restrict itself to the Riemannian
manifold since the examples discussed in the penultimate section are compared to the
behaviour of strings in general relativity (GR).

In the next section, the treatments of spinning string fluids using both the improved and
unimproved thermodynamic versions are described. Examples of spinning string solutions
are given in section 3, and the conclusions and discussions are given in the final section.

2. Spinning string fluid Lagrangian

The Ray—Hilbert Lagrangian for a spinning string fluid in GR spacetime becomes
Log=Lm~+Lg (8)
where L, is the matter Lagrangian

La=ef—p[l+e(p, 9] + ruv(a™a” gi; — n™") + 12Vi(pu')

AU X+ hqu's; — k,oalic'ziz - pka"’iasi} 9)
and Lg is the gravitational field Lagrangian
eR
Lo = — 10
¢= 70 (10)

wheree = /=g, k = 87 G, R isthe Riemann scalar in GR spacetirhg, are the Lagrange
multipliers and we write\44 = A in the variation. Note that all components of the tetrads
occur in the Lagrangian (9), and are therefore active in the variational equations. In the first
part of this section, the spin and string variables are not included in the thermodynamics
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as in the non-improved energy—momentum formulations of spinning fluids [11]. In the
following abbreviated subsection, the spin and string variables are included in the extended
thermodynamics as in the improved energy—momentum formulations of spinning fluids [12].

3. Development of the energy—momentum tensor

3.1. Standard thermodynamics

The standard thermodynamics for a perfect fluid for a Ray—Hilbert [8] variational principle
is given by

de =T ds + 2 dp. (11)
0

The variational variables are thew, p, s, X, a* and the various Lagrange multipliers.

3.1.1. Variational equations.

(i) Tetrad and density variational equationsThe variational equations become:
Density variationsp:

—<1 +e+ E) — o —auta® — ka™*a? = 0. (12)
0

4-velocity Su:
—pVida + A3X i + has; + 2hau; + 2ha1a’i 4+ 2ha2a?; + 2ha3a’;

—pra — prupVia® — pka¥* Via®, = 0. (13)
Tetrads
Sa¥i: 2h11a%; + 20100% + 2h13a%; + 2hawu; — pka® =0 (14)
a2 2h00a”; + 20100 + 22.03a% + 2hapu; + put Vi (ka'i) = 0 (15)
8ad: 2h33a°; + 20130t + 2h03a% + 2hazu; + pu* V() = 0. (16)

The tetrad and density variations reveal the following relevant results for the Lagrange
multipliers which will be useful in the analysis of the metric field equations and the transport
properties of the spinning string.

2v =[p(l+€)+ p] — Tsr a7)
—pho=[p(L+€) + pl + Tsr + Ts (18)
r2=0 (19)
k=0 (20)
2ha1 = pkiga® (21)
2h4p = —pkiga™t (22)
2043 = —ph (23)

)\.]_]_alialj + KzzaZiazj + )»33613ia3j + )\'13a(lia3j) + )»23a(2ia31) + )\.Alu(ialj) + )\.42u(ia2j)
+hagua® — 1pka®a" + LpkaYa® + Fpu*Vi[au]a®’ =0 (24)
rau @ + rgoua®’ = %u(iSj)kuk (25)

razua®) = —%piu(iagj). (26)
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Adding equations (24)—(26) gives the useful result necessary to resolve the metric field
equation

rata¥ + rppa%a® + k33a3ia3j + 2k13a(1[a3j) + 2)\23a(2[a3j) + 22411 a™
+2)\42u(ia2j) + 2k4gu(ia3j)
= %pkd(Zialj) + %pkc'z(liazj) - %pukvk[ku(i]agj) + %M(iSj)l;lk — %pku(iasj).
(27)
The final set of identities in this section comes from the antisymmetric combination of
the tetrad variational equations similar to equations (24) and (25),
2l @ + 20 0ul 0?1 + pka™ a? — pka? ot + prilia®l =0 (28)

2aaul a + 20 goul a1 = gl §7* (29)
and sincek = 0

ps' = 2pk[ata® + ot g?1]. (30)
In addition, we note the obvious identity

prili a3 =yl 27k, (32)
Finally, combining equations (28)—(31) gives

0§ + 2ult sy 4+ 20l 7k, =0 (32)

which represents the generalization of Fermi—Walker transport for the spinning string.

The variations have been made assuming that the spin vector and string vector are both
along the same tetrad. With this assumption, the spin module funktionis constant
along the flow lines equation (20). If a different choice is made, for example, the string
vector is written with theeY tetrad, then the dot derivative of the spin module function
is proportional to thek;, multiplier and is not necessarily zero. The transport equation,
as written in equation (32), is the same in both cases and therefore independent of the
calculation’s choice of tetrads. This results also follows for the metric field equations
discussed in the next subsection.

(i) Metric field equation. The variation with respect to the metigg gives the metric field
equation

—%G’j — %p(l—i— e)gi-i — %izg’j + kllalialj + Alza(liazj) + AzzaZiaZi
+r330¥a¥ + 2013aY %) + 2093a% 0% 4+ 20 41u a? + 22 40ua®)
+2A43u(ia3j) + aulu — %pkukd3kgij — pku(id3j) + %Vk[u(iEj)k]
+%uka [Au(ia?’j)] — pka®a?) — %pkalkdzkg’j — %Vk [Sk(iuj)] =0. (33

Inserting equations (17)—(19) and (27) into equation (33) gives after rearranging

%G’j = %{[p(l+ e) + plu'u’ + pg'} + %pukvk[)»u(ia3j)] + %u(iSj)kuk
—%p)\u(ia‘?’” _ %Tsfuiu-i — pau®¥) 4 %vk[uﬁz-")k]
+LouF Vi [hua] — LV, [SH0uD]. (34)

All the ‘)’ terms in equation (34) can be shown to satisfy the relationship

—%pukvk[ku(i]as-i) — %piu(iasj) — pku(lia's-i) + %pukvk [Au(ia3j)]

= —2u" M0 + 1V, [u = Juuy. (35)
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At first it would appear that the string energy density teH‘éTSTu"u in equation (34)
would renormalize the fluid energy; however, it will be shown below that this is not the
case because of the identity

Tsru'u’ = —u 2%, (36)

Therefore substituting equations (35) and (36) into (34) gives the final results for the metric
field equation

GV = kT, (37)
where the spinning string fluid energy—momentum tensor is given by

Tsp = T7 + T +Tg; (38)
where the perfect fluid energy—momentum tensor is

T =[p(L+e€) + plu'u’ + pg” (39)
the spin energy—momentum tensor is

T;j = u Sy + Vk[u(iSj)"] (40)
and the string energy—momentum tensor is

T = Vi[u" =] + Vo [u' SH0]uDuy. (41)

Note that the combination of perfect fluid and spin energy—momentum tensors given by
equations (39) and (40) are exactly the Weyssenhoff form for a spin fluid given by Ray and
Smalley [11]. In reducing the metric equation to its final form given by equations (37)—(41),

we have used the variational equations for the Lagrange multiplier for the fluid continuity

and the 4-velocity to obtain the relations (equations (17) and (18))

20 =[p(A+¢€) + p] — Tsr (42)
and
pro=—[p(1+€) + p] — Tsy — Ts (43)

respectively. As a result of the extra fact@yy in equation (42), it is quite remarkable that
the string energy densitys; does not occur in the fluid energy—momentum tensor given
by equation (39). Thigenormalizationdoes not occur because of the identity given by
equation (36) in which the second term, which would have occurred in the string energy—
momentum tensor, cancels with the left-hand term, which would have occurred in the fluid
energy—momentum tensor. No such identity occurs for the spin energy density.

In the next section, the energy—momentum tensor is developed for the case where the
energy is considered as a function of the spin and string variables.

3.2. Extended thermodynamics

Including the spin [13] and the shear-momenta (twist) [6] as thermodynamic variables has
been discussed in earlier works. However, in this section the string variable is also treated
as a thermodynamic variable. The energy now becomes

p 1 g 1 ij
de = T ds + Edp + éa)i‘j ds¥/ + Ewi‘i do'/. (44)

Since most of the details are a repetition of the previous case, only the salient issues
are presented for simplicity.
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3.2.1. \Variational equations. Even though the tetrad variations are slightly altered by

the extended thermodynamics, the spinning string hassémee Fermi—Walker transport
properties described in the previous discussions based upon the standard thermodynamics.
The changes in the metric field equation are given in the next section.

(i) Metric field equation. The metric field equation for the extended thermodynamics now
becomes

G =Ty, (45)
where theimproved TS’} is now the sum of a perfect fluid energy—momentum tensor

7Y =[p(+e) + plu'u’ + pg” (46)
(which is the same as before) the spin energy—momentum tensor is

T¢ = 2u S iy + Vi [u' §7F] — o §7F (47)
and the string energy—momentum tensor is

T = ul iy — 0" sy + Vi [u SO + Vo[u S50 uluy. (48)

Equations (46) and (47) are the usimprovedspin energy—momentum tensor for a spinning
fluid [13]. Note in comparison with the usual Weyssenhoff spin energy—momentum given
in equation (40), besides the obviausS piece, the unusual factor of two for the first term

in equation (47).

Before leaving the discussion of the spinning string fluid energy—momentum tensor, an
interesting relationship for the temporal development of the string module function can be
derived from the 4-momentum variational equation by taking the inner product with the
tetrada® to give

—pa3iViA2 + )»3a3iX,,< + )»4a3is,,- — ,oi — pkuka3iVia3k — pkalkagiviazk
—pkaSia)ijagj =0. (49)

Since the last term vanishes, this means that this expression applies to both models treated
here. Equation (49) can be rewritten in a more illuminating form by defining the quantities
A3 = pA3, As = pis and the spatial gradient along the strinyV; u = /1 so that

A+ A = Ao 4 AaX 4 Aaf — ka¥d?, (50)

which show explicitly the strong dependence of the time development of the string module
function on the gradients of the mattaiong the string.

4. Application to spinning strings

The above discussion describes a universe populated by a spinning string fluid (in contrast
to the dust model described by Letelier [3, 16] and the fluid models described in paper I).
However, to understand the content of this paper, it is necessary to briefly recall the dust
model as a basis for extending the concept to spinning string systems. This is described in
the application below which then extends a static, spherically symmetric, bi-vector string
array in general relativity (without spin).
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4.1. Extended fluid model—no spin

The stress—energy tensors discussed in | give exact solutions for a static, spherically
symmetric, bi-vector string array in GR previously studied by Letelier [3, 14—-16] and Soleng
[17]. The starting point for their calculation is the hypothesized string stress—energy tensor

T =% k5 (51)

where for simplicity, a density and a normalization factor have been absorbed into the
definition of the string bi-vector which is defined as

K Bjk = 5S[ui- (52)
The connection to equation (3) is given by
S/ = —diepr(x)a® . (53)

Letelier studied both string clouds [3] and string fluids [16]. One of the applications,
discussed in |, of the static string fluid formalism was an extension of the Schwarzschild
vacuum solution to a black hole surrounded by a fluid of strings. The static solution is

dr?
1-h-2M/r

ds2=—<1—h—2—M)dt2+
r

+ r2do? + r? sirf ¢ do? (54)
where M is a constant. In paper |, the symholwas used. To avoid confusion with the
Kerr parameter, the parametek will be used here. In this extension, the string fluid has
zero pressure, and the string functish is radial given by

‘ 4
S/ = (o, _Ah o) (55)
M

where the thermodynamic parameteffor the string is defined in the following section.
The density of the fluid is then given by

2h 2M
=— 1-h——). 56
p er( r) (56)

The requirement of positive density requifeso be negative and the presence of the string
fluid around the black hole causes the horizon to contract away from its Schwarzschild
value. In the next section, the static solution described by equations (54)—(78) is extended
to a stationary spacetime fluid with spin.

4.2. Extension to spinning string fluid

4.2.1. The metric. The application of spinning strings described here is a slow-rotation
solution to the static Schwarzschild system described above. The stationary metric used is
given by

2
ds? = — f dt? — 2k(r, ) do dr + d% + r2de? + r?sirf 6 dp? (57)

where the metric functio is only a function of the, 6 coordinates. It is possible that a
particular solution of the metric could have the same form as in equation (53), but that is
not a requirement.
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4.2.2. The spin-string contributions.The possible spin tensor contributions &g, Sye
andS,¢. Only the case of & component of the spin vector is considered in this work; so
the spin tensor componenss,, and S,y are taken to be zero. Only the specific case where
the spin densitys,, is proportional to the fluid vorticity will be studied in this application.
Thus

(58)

where A is a constant and the subscript is the partial derivative with respect ta

The spin variables, like the string variable, may or may not be a thermodynamic variable
with respect to the second law. To indicate this possibility, the paramdi@s in I) refers
to the string thermodynamics properties, and here, the paraiegéars to the spin, so that

b=1andlorb =1 variables are not thermodynamic (59)
b =2 and/orb = 2 variables are thermodynamic.

Given this parametrization, the string fluid contributions from equations (41) and (48) are
given by

KT;J% = %{—uiuj (Sk x + bSkL'tk) +bul'S) 240§D 4 2u SDuky — Ska(uiuj)} (60)
and the spin fluid contributions from equations (40) and (47) are given by

T = bul Sy +u W) — S [uly + (b — D' ]} (61)
where the divergence of the spin density is given by

W/ = v, k. (62)

Note that the factok appears in equation (61) for the string energy—momentum since the
definition of the string function equation (53) is defined explicitly in terms of

4.3. The field equations for spinning string fluids

The only relevant field equation that must be considered in detail is a non-zero off-diagonal
equation. In the appendix, the non-zero stress—energy components associated with the
spinning string fluid are the diagonal terms and the two off-diagonal tgigmsind T g,

where the parentheses enclosing the coordinates indicate that they refendothelonomic
coordinates associated with the set of tetrads that are used to diagonalize the metric. The
diagonal stress—energy tensors have a spin contribution proportional to the product of the
spin and the vorticity. The slow-rotation approximation is defined by the expansion of all
terms to first order ikt and its derivatives which are also expanded to first order in the Kerr
parameter:. Thus in the slow-rotation approximation, these terms will not contribute to the
diagonal stress—energy tensors, and therefore their solution will be the same as in the static
case. The same is true of the off diagonal stress—energy comp@penthus thebasic
solution for the slowly rotating black hole with a spinning string fluid will be the same as

in the static case. There will be no pressure and the energy density and string density will
be the same. However, the rotation of the black hole and the spin of the string system enter
through theG (o, field equation. At first, this may seem to be a trivial addition to the static
case; however, the addition of spin to the system prodsicgsficantchanges in the metric
parameter/’.
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4.3.1. TheG (g field equation. The G, equation obtained is given by

[(fk,r —kfr+ fﬁswr)e(ﬁ_#)/z} n |:(fk,9 —kfog+ fN/fSeo )e(ﬁ_u)/z]
- 0

D D
— gB-w/2 VIS, fa(d—b) (63)
D
where the functionD is given by
D? = fr2sirf(0) + k% ~ fr?sirf(9) (64)

to first order ink. Upon substituting the chosen spin values, @hg,, field equation becomes

(P by (Rl S (BODak, ap (65)

sing r2sing ), \' fsin®

The k value for the full Kerr metric, to first order in the Kerr parameteiis variable and
proportional to sif(9). Making the same choice here gives

k = K (r) Sirt(0). (66)

Substituting equation (66) into (65) then yields

2K , —
A+ DK, —Kfp, — 20 = A%(ﬂ@ ~KfaA-B)  (67)
which has the solution of the form
K(r)= fr", n#0,1 (68)

with the constraints

(A+1)@B—n)=A1-b)

(A+Dn(nn—1A—h) =2. (69)

From this, it can be immediately seen whether or not the spin being a thermodynamic
variable is theoretically important in setting the range of possible solution parameters.

4.3.2. Spin is not a thermodynamic variabldf the spin is not a thermodynamic variable,
then the spin parametér= 1. From equation (69), it is only possible to have the value
of n = 3. Thus there are unique relationships betweenAhgarameter (the constant of
proportionality between the spin density and the vorticity) and the metric paramgiteen

by

1
k = frisir(9), (71)

and

VS, = 3Ar2sirf(). (72)
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4.3.3. Spin is a thermodynamic variablelf the spin is a thermodynamic variable, then the
spin parameteb = 2. There is now a family of equations parametrizedrbyFor eachw,
there is a single choice of andh such that

a=1"3 (73)

1= 24=m (74)
nn—1)

k= fr"sirf®) (75)

V[ S = Anr" T sir?(9). (76)

The functional relationship betweénandn given by equation (74) will be important in
the discussions given below.

Since the other field equations in the slow-rotation limit are unchanged from their static
values, then the fluid parameters must also have the same forms

. 4
S/ = (O, ——h,O, O) (77)
bM
2h 2M
=—|[(1—-h— —). 78
p er( r) (78)

It can clearly be seen that the metric paramétenust benegativein order to get positive
energy density. From equation (74), the values ebrresponding to negativeare limited
to the ranges

l<n<237 and -337<n<0. (79)

Thus the presence of spin has restricted the possible values bte that in this model,
no spin corresponds to the single value- 3 which is out of the parameter range necessary
for positive density. Also the parametaris always negative in the above ranges since the
spin opposes the vorticity.

5. Discussions and conclusions

We have developed a stress—energy tensor describing a spinning string fluid. The string fluid
can potentially have mass, stress and spin content. Although the theoretical framework
for the spinning string fluid is derived in the Riemannian spacetime of GR, the form of
energy—momentum tensor is in general valid for four cases: general relativity and the
Einstein—Cartan theory, with and without the spin treated as a thermodynamic variable.
The demonstration of the case of the EC theory in RC spacetime, which uses the extended
connection of RC spacetime, will be shown in a future work.

The application made here is the extension of a Schwarzschild black hole from a static
to a slowly rotating black hole in a stationary spacetime in GR. The off-diagonal metric is
then parametrized in terms of a parameterThe enlarged parameter content of the fluid
makes this approach a valuable tool for modelling the interactions of string structures in
stationary spacetimes. If, for example, the spin is not a thermodynamic variable, th&n
and there is a unique relationship among the spin, the vorticity and the metric parameter
which determines the radius of the event horizon of the black hole. However, the vorticity
parameter must satisfy < —% in order to ensure positive densities. The case —% just
gives the Schwarzschild radius for the rotating black hole since then the metric parameter
h=0.
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When the spin is treated as a thermodynamic variable, then equation (74) shows that
there is a family of solutions described by a range of possibl@alues which give both
positive densities and spin.

The examples above shows that the extension of a black hole to a slowly rotating black
hole emphasizes the necessity of spin to maintain a positive mass density. In all cases
described above, the spin of the fluid opposes the vorticity in the region around the black
hole. Since equation (78) requirés< 0 for positive density, then the event horizon is
contractedby the presence of the string system (except for the sase3). Theamount
of the contraction is determined by the spin.

Appendix

The general spacetime metric is given by

D2—k2
s2=—fdtz—2kdtd<p—i—e““drz—i—eﬁdGZ—i—Td(p2 (A1)

where f, k, u, 8 and D are considered to be functions ofand 6. A convenient set of
tetrads for calculational purposes (not to be confused with the set of tetrads discussed in
section 1) that diagonalize the metric is given by

—u; = A(O)i = (\/?,0,0,k/\/?)
AY,; = (0,€"2,0,0)
A®@,; =(0,0,€"20) #2)
A®; =(0,0,0,-D/\/f).

The string vector has the components
S=1(0,S,S,0). (A3)
The tetrad indexed diagonal components of the stress—energy tensor are given by

1 2—b Wo
kToo=p— =S i+ ——faS— —
o 4 8f " T
b _
Tay =t —f,. 8 kf,— fk,
«Tan = tan + ff’ + 2\/_D2[ fr = fk/l
(A4)
Toy =t S’ +b k k
KTz = ta + ffe + Zsz[ fo — fkel
kT (33 _t(33)+be2[kfa fkal
where the summation index= r, 8. Then the off-diagonal stress—energy components are
given by
frSe
T =0; T3 = +b—=
1) klr3 =+ 167D
feS
Ty =0; T,
kLo kTp@) = 16fD
1 sef (A5)
T3 = ————(kWo — fW,) — —2 (1 — 2b);
kT3 Zx/TD( 0o— W) 4\/_D2( )
b - ©
T = — fSo) — % kyy—kf ).
“Too = g5 L. S0 2\/_D2(f )y = kfr)
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