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Spinning string fluid dynamics in general relativity
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Abstract. The general, energy–momentum tensor for a dynamical, spinning string fluid in
general relativity is presented using the Ray–Hilbert variational principle. The calculations
are given for both the standard and the extended thermodynamics versions in which the latter
includes both the spin and string as thermodynamic variables. Both versions yield the same
Fermi–Walker transport of the spin with a correction term due to the string. As an unexpected
general feature, it is shown that the string and spin are dual 2-forms. Examples of solutions to
the field equations are given for the extension of static black holes for non-spinning, string fluids
to stationary, slowly rotating black holes for spinning string fluids. These solutions are then
compared with solutions obtained from the postulated energy–momentum tensor of Letelier. The
general feature of these solutions for positive density is that the spin causes the event horizon for
the stationary black hole to contract whether or not the spin is considered as a thermodynamic
variable.

PACS numbers: 0440N, 0570, 9880H

1. Introduction to spinning string fluids in general relativity

The discussion of the cosmological implications of strings goes back nearly 20 years to the
work of Zeldovich [1] and Vilenkin [2]. A string dust model was introduced by Letelier
[3] from the description of the string function as aspacetime, surface-forming bi-vector

6µν = εAB ∂x
µ

∂λA

∂xν

∂λB
(1)

where

εAB =


1 if A = 0, B = 1

−1 if A = 1, B = 0

0 if A = B.

(2)

In a previous work on the dynamics of a string fluid [4], it was noted that the form of
equation (1) follows closely the form of the spin bi-vector developed by Halbwachs [5], and
therefore the description of a string fluid energy density will use the parallel description of
the velocity matrix used in discussions of fluid dynamics in continuum mechanics (see, for
example, the discussions of fluids with spin and twist in metric affine geometry for a more
complete discussion [6]). The basic discussion of string fluid dynamics plus applications to
static black hole models and cosmological solutions in general relativity (GR) are described
by [7] (referred to as paper I). In this work, a much more extensive discussion extends the
concept of the fluid dynamics of strings to the case ofspinningstring fluids. This means that
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in a fluid context, a Ray–Hilbert variational principle [8] can be developed for a spinning
string fluid by introducing a complete set of tetrads for the fluid

6ij = ρλ(x)(a4ia3j − a4j a3i
) .= ρσ ij (3)

along with the usual spin density

Sij = ρk(x)(a1ia2j − a1j a2i
) .= ρsij (4)

whereρ is the string density,aµi are the tetrads, where the Latin indices,i = 0, 1, 2, 3,
are the holonomic coordinates, the Greek indices,µ = 1, 2, 3, 4 are the non-holonomic
coordinates, and wherek(x) andλ(x) are the spin and string (module) functions, respectively
(considered as a parametric function), which will not be varied directly. The holonomic
metric has signature,gij = (−1, 1, 1, 1), and the non-holonomic metric,ηµν = (1, 1, 1,−1).
We also identify the tetrada4i ≡ ui . Using equations (3) and (4), the equivalent ‘angular’
velocity matrix takes the form

ωij = ȧαiaαj (5)

so that the string energy density is given by

TST = 1
26

ijωij = ρλa4
i ȧ

3i (6)

in comparison with the spin energy density

TS = 1
2S

ijωij = ρλa1
i ȧ

2i . (7)

Some additional justification for this string formulation is given by Nieto [9]. It is interesting
to note the similarity of the spin/string energy density in the fluid framework to that which
occurs in general spin/twist formulations [6].

In a previous work [4], the generality of the spacetime manifold was not restricted to
the Riemannian geometry of GR. However, this work will restrict itself to the Riemannian
manifold since the examples discussed in the penultimate section are compared to the
behaviour of strings in general relativity (GR).

In the next section, the treatments of spinning string fluids using both the improved and
unimproved thermodynamic versions are described. Examples of spinning string solutions
are given in section 3, and the conclusions and discussions are given in the final section.

2. Spinning string fluid Lagrangian

The Ray–Hilbert Lagrangian for a spinning string fluid in GR spacetime becomes

LG = LM + LG (8)

whereLM is the matter Lagrangian

LM = e
{−ρ[1+ ε(ρ, s)] + λµν

(
aµiaνjgij − ηµν

)+ λ2∇i
(
ρui

)
+λ3u

iX,i + λ4u
is,i − kρa1i ȧ2

i − ρλa4
i ȧ

3i
}

(9)

andLG is the gravitational field Lagrangian

LG = eR

2κ
(10)

wheree = √−g, κ = 8πG, R is the Riemann scalar in GR spacetime,λµν are the Lagrange
multipliers and we writeλ44 = λ1 in the variation. Note that all components of the tetrads
occur in the Lagrangian (9), and are therefore active in the variational equations. In the first
part of this section, the spin and string variables are not included in the thermodynamics
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as in the non-improved energy–momentum formulations of spinning fluids [11]. In the
following abbreviated subsection, the spin and string variables are included in the extended
thermodynamics as in the improved energy–momentum formulations of spinning fluids [12].

3. Development of the energy–momentum tensor

3.1. Standard thermodynamics

The standard thermodynamics for a perfect fluid for a Ray–Hilbert [8] variational principle
is given by

dε = T ds + p

ρ2
dρ. (11)

The variational variables are thengij , ρ, s,X, aαi and the various Lagrange multipliers.

3.1.1. Variational equations.

(i) Tetrad and density variational equations.The variational equations become:
Density variationδρ:

−
(

1+ ε + p
ρ

)
− λ̇2− λuiȧ3

i − kaikȧ2
k = 0. (12)

4-velocity δu:

−ρ∇iλ2+ λ3X,i + λ4s,i + 2λ1ui + 2λ41a
1
i + 2λ42a

2
i + 2λ43a

3
i

−ρλȧ3
i − ρλuk∇ia3k − ρka1k∇ia2

k = 0. (13)

Tetrads

δa1i : 2λ11a
1
i + 2λ12a

2
i + 2λ13a

3
i + 2λ41ui − ρkȧ2

i = 0 (14)

δa2i : 2λ22a
2
i + 2λ12a

1
i + 2λ23a

3
i + 2λ42ui + ρuk∇k

(
ka1

i

) = 0 (15)

δa3i : 2λ33a
3
i + 2λ13a

1
i + 2λ23a

2
i + 2λ43ui + ρuk∇k(λui) = 0. (16)

The tetrad and density variations reveal the following relevant results for the Lagrange
multipliers which will be useful in the analysis of the metric field equations and the transport
properties of the spinning string.

2λ1 = [ρ(1+ ε)+ p] − TST (17)

−ρλ̇2 = [ρ(1+ ε)+ p] + TST + TS (18)

λ12 = 0 (19)

k̇ = 0 (20)

2λ41 = ρku̇ka2k (21)

2λ42 = −ρku̇ka1k (22)

2λ43 = −ρλ̇ (23)

λ11a
1ia1j + λ22a

2ia2j + λ33a
3ia3j + λ13a

(1ia3j) + λ23a
(2ia3j) + λ41u

(ia1j) + λ42u
(ia2j)

+λ43u
(ia3j) − 1

2ρkȧ
(2ia1j) + 1

2ρkȧ
(1ia2j) + 1

2ρu
k∇k

[
λu(i

]
a3j) = 0 (24)

λ41u
(ia1j) + λ42u

(ia2j) = 1
2u

(iSj)ku̇k (25)

λ43u
(ia3j) = − 1

2ρλ̇u
(ia3j). (26)
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Adding equations (24)–(26) gives the useful result necessary to resolve the metric field
equation

λ11a
1ia1j + λ22a

2ia2j + λ33a
3ia3j + 2λ13a

(1ia3j) + 2λ23a
(2ia3j) + 2λ41u

(ia1j)

+2λ42u
(ia2j) + 2λ43u

(ia3j)

= 1
2ρkȧ

(2ia1j) + 1
2ρkȧ

(1ia2j) − 1
2ρu

k∇k
[
λu(i

]
a3j) + 1

2u
(iSj)u̇k − 1

2ρλ̇u
(ia3j).

(27)

The final set of identities in this section comes from the antisymmetric combination of
the tetrad variational equations similar to equations (24) and (25),

2λ41u
[ia1j ] + 2λ42u

[ia2j ] + ρkȧ[1ia2j ] − ρkȧ[2ia1j ] + ρλu̇[ia3j ] = 0 (28)

2λ41u
[ia1j ] + 2λ42u

[ia2j ] = u̇ku[iSj ]k (29)

and sincek̇ = 0

ρṡij = 2ρk
[
ȧ[1ia2j ] + a[1i ȧ2j ]

]
. (30)

In addition, we note the obvious identity

ρλu̇[ia3j ] = uku̇[i6j ]k. (31)

Finally, combining equations (28)–(31) gives

ρṡij + 2u[iSj ]ku̇k + 2u̇[i6j ]kuk = 0 (32)

which represents the generalization of Fermi–Walker transport for the spinning string.
The variations have been made assuming that the spin vector and string vector are both

along the same tetrad. With this assumption, the spin module functionk(x) is constant
along the flow lines equation (20). If a different choice is made, for example, the string
vector is written with thee1i tetrad, then the dot derivative of the spin module function
is proportional to theλ12 multiplier and is not necessarily zero. The transport equation,
as written in equation (32), is the same in both cases and therefore independent of the
calculation’s choice of tetrads. This results also follows for the metric field equations
discussed in the next subsection.

(ii) Metric field equation. The variation with respect to the metricgij gives the metric field
equation

− 1

2κ
Gij − 1

2
ρ(1+ ε)gij − 1

2
λ̇2g

ij + λ11a
1ia1j + λ12a

(1ia2j) + λ22a
2ia2j

+λ33a
3ia3j + 2λ13a

(1ia3j) + 2λ23a
(2ia3j) + 2λ41u

(ia1j) + 2λ42u
(ia2j)

+2λ43u
(ia3j) + λ1u

iuj − 1
2ρλu

kȧ3
kg
ij − ρλu(i ȧ3j) + 1

2∇k
[
u(i6j)k

]
+ 1

2u
k∇k

[
λu(ia3j)

]− ρka(1i ȧ2j) − 1
2ρka

1kȧ2
kg
ij − 1

2∇k
[
Sk(iuj)

] = 0. (33)

Inserting equations (17)–(19) and (27) into equation (33) gives after rearranging

1

2κ
Gij = 1

2

{
[ρ(1+ ε)+ p]uiuj + pgij}+ 1

2
ρuk∇k

[
λu(ia3j)

]+ 1

2
u(iSj)ku̇k

− 1
2ρλ̇u

(ia3j) − 1
2TST u

iuj − ρλu(1i ȧ3j) + 1
2∇k

[
u(i6j)k

]
+ 1

2ρu
k∇k

[
λu(ia3j)

]− 1
2∇k

[
Sk(iuj)

]
. (34)

All the ‘λ’ terms in equation (34) can be shown to satisfy the relationship

− 1
2ρu

k∇k
[
λu(i

]
a3j) − 1

2ρλ̇u
(ia3j) − ρλu(1i ȧ3j) + 1

2ρu
k∇k

[
λu(ia3j)

]
= − 1

2u
(i6j)ku̇k + 1

2∇`
[
u`6k(j

]
ui)uk. (35)
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At first it would appear that the string energy density term− 1
2TST u

iu in equation (34)
would renormalize the fluid energy; however, it will be shown below that this is not the
case because of the identity

TST u
iuj = −u(i6j)ku̇k. (36)

Therefore substituting equations (35) and (36) into (34) gives the final results for the metric
field equation

Gij = κT ijSF (37)

where the spinning string fluid energy–momentum tensor is given by

T
ij

SF = T ijF + T ijS + T ijST (38)

where the perfect fluid energy–momentum tensor is

T
ij

F = [ρ(1+ ε)+ p]uiui + pgij (39)

the spin energy–momentum tensor is

T
ij

S = u(iSj)ku̇k +∇k
[
u(iSj)k

]
(40)

and the string energy–momentum tensor is

T
ij

ST = ∇k
[
u(i6j)k

]+∇`[u`6k(j
]
ui)uk. (41)

Note that the combination of perfect fluid and spin energy–momentum tensors given by
equations (39) and (40) are exactly the Weyssenhoff form for a spin fluid given by Ray and
Smalley [11]. In reducing the metric equation to its final form given by equations (37)–(41),
we have used the variational equations for the Lagrange multiplier for the fluid continuity
and the 4-velocity to obtain the relations (equations (17) and (18))

2λ1 = [ρ(1+ ε)+ p] − TST (42)

and

ρλ̇2 = −[ρ(1+ ε)+ p] − TST − TS (43)

respectively. As a result of the extra factorTST in equation (42), it is quite remarkable that
the string energy densityTST does not occur in the fluid energy–momentum tensor given
by equation (39). Thisrenormalizationdoes not occur because of the identity given by
equation (36) in which the second term, which would have occurred in the string energy–
momentum tensor, cancels with the left-hand term, which would have occurred in the fluid
energy–momentum tensor. No such identity occurs for the spin energy density.

In the next section, the energy–momentum tensor is developed for the case where the
energy is considered as a function of the spin and string variables.

3.2. Extended thermodynamics

Including the spin [13] and the shear-momenta (twist) [6] as thermodynamic variables has
been discussed in earlier works. However, in this section the string variable is also treated
as a thermodynamic variable. The energy now becomes

dε = T ds + p

ρ2
dρ + 1

2
ωij dsij + 1

2
ωij dσ ij . (44)

Since most of the details are a repetition of the previous case, only the salient issues
are presented for simplicity.
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3.2.1. Variational equations. Even though the tetrad variations are slightly altered by
the extended thermodynamics, the spinning string has thesameFermi–Walker transport
properties described in the previous discussions based upon the standard thermodynamics.
The changes in the metric field equation are given in the next section.

(i) Metric field equation. The metric field equation for the extended thermodynamics now
becomes

Gij = κT ijSF (45)

where theimprovedT ijSF is now the sum of a perfect fluid energy–momentum tensor

T
ij

F = [ρ(1+ ε)+ p]uiui + pgij (46)

(which is the same as before) the spin energy–momentum tensor is

T
ij

S = 2u(iSj)ku̇k +∇k
[
u(iSj)k

]− ω(i
k S

j)k (47)

and the string energy–momentum tensor is

T
ij

ST = u(i6j)ku̇k − u̇(i6j)kuk +∇k
[
u(i6j)k

]+∇`[u`6k(j
]
ui)uk. (48)

Equations (46) and (47) are the usualimprovedspin energy–momentum tensor for a spinning
fluid [13]. Note in comparison with the usual Weyssenhoff spin energy–momentum given
in equation (40), besides the obviousω ·S piece, the unusual factor of two for the first term
in equation (47).

Before leaving the discussion of the spinning string fluid energy–momentum tensor, an
interesting relationship for the temporal development of the string module function can be
derived from the 4-momentum variational equation by taking the inner product with the
tetrada3i to give

−ρa3i∇iλ2+ λ3a
3iX,i + λ4a

3i s,i − ρλ̇− ρλuka3i∇ia3k − ρka1ka3i∇ia2
k

−ρλa3iωij a
3j = 0. (49)

Since the last term vanishes, this means that this expression applies to both models treated
here. Equation (49) can be rewritten in a more illuminating form by defining the quantities
λ3 = ρλ̂3, λ4 = ρλ̂4 and the spatial gradient along the stringa3i∇iµ .= µ́ so that

λ̇+ λuká3k = λ́2+ λ̂3X́ + λ̂4ś − ka1ká2
k (50)

which show explicitly the strong dependence of the time development of the string module
function on the gradients of the matteralong the string.

4. Application to spinning strings

The above discussion describes a universe populated by a spinning string fluid (in contrast
to the dust model described by Letelier [3, 16] and the fluid models described in paper I).
However, to understand the content of this paper, it is necessary to briefly recall the dust
model as a basis for extending the concept to spinning string systems. This is described in
the application below which then extends a static, spherically symmetric, bi-vector string
array in general relativity (without spin).
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4.1. Extended fluid model—no spin

The stress–energy tensors discussed in I give exact solutions for a static, spherically
symmetric, bi-vector string array in GR previously studied by Letelier [3, 14–16] and Soleng
[17]. The starting point for their calculation is the hypothesized string stress–energy tensor

Tij = 6i k6jk (51)

where for simplicity, a density and a normalization factor have been absorbed into the
definition of the string bi-vector which is defined as

κ6jk = 1
2S[juk] . (52)

The connection to equation (3) is given by

Sj = −4κρλ(x)a3j . (53)

Letelier studied both string clouds [3] and string fluids [16]. One of the applications,
discussed in I, of the static string fluid formalism was an extension of the Schwarzschild
vacuum solution to a black hole surrounded by a fluid of strings. The static solution is

ds2 = −
(

1− h− 2M

r

)
dt2+ dr2

1− h− 2M/r
+ r2 dθ2+ r2 sin2 ϕ dθ2 (54)

whereM is a constant. In paper I, the symbola was used. To avoid confusion with the
Kerr parametera, the parameterh will be used here. In this extension, the string fluid has
zero pressure, and the string functionSj is radial given by

Sj =
(

0,− 4h

bM
, 0, 0

)
(55)

where the thermodynamic parameterb for the string is defined in the following section.
The density of the fluid is then given by

ρ = − 2h

bMr

(
1− h− 2M

r

)
. (56)

The requirement of positive density requiresh to be negative and the presence of the string
fluid around the black hole causes the horizon to contract away from its Schwarzschild
value. In the next section, the static solution described by equations (54)–(78) is extended
to a stationary spacetime fluid with spin.

4.2. Extension to spinning string fluid

4.2.1. The metric. The application of spinning strings described here is a slow-rotation
solution to the static Schwarzschild system described above. The stationary metric used is
given by

ds2 = −f dt2− 2k(r, θ)dϕ dt + dr2

f
+ r2 dθ2+ r2 sin2 θ dϕ2 (57)

where the metric functionk is only a function of ther, θ coordinates. It is possible that a
particular solution of the metric could have the same form as in equation (53), but that is
not a requirement.
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4.2.2. The spin–string contributions.The possible spin tensor contributions areSrϕ, Sϕθ
andSrθ . Only the case of aθ component of the spin vector is considered in this work; so
the spin tensor componentsSϕθ , andSrθ are taken to be zero. Only the specific case where
the spin densitySrϕ is proportional to the fluid vorticity will be studied in this application.
Thus

Srϕ = Af k,r − kf,r
f
√
f

(58)

whereA is a constant and the subscript ‘r ’ is the partial derivative with respect tor.
The spin variables, like the string variable, may or may not be a thermodynamic variable

with respect to the second law. To indicate this possibility, the parameterb (as in I) refers
to the string thermodynamics properties, and here, the parameterb̄ refers to the spin, so that

b = 1 and/orb̄ = 1 variables are not thermodynamic

b = 2 and/orb̄ = 2 variables are thermodynamic.
(59)

Given this parametrization, the string fluid contributions from equations (41) and (48) are
given by

κT
ij

ST = 1
4

{−uiuj (Sk ;k + bSku̇k)+ bu̇(iSj) + 2u(i Ṡj) + 2u(iSj)uk;k − Sk∇k
(
uiuj

)}
(60)

and the spin fluid contributions from equations (40) and (47) are given by

T
ij

S = b̄u(iSj)ku̇k + u(iWj) − {Sk(i[uj);k + (b̄ − 1)ωj)k
]}

(61)

where the divergence of the spin density is given by

Wj = ∇kSjk. (62)

Note that the factorκ appears in equation (61) for the string energy–momentum since the
definition of the string function equation (53) is defined explicitly in terms ofκ.

4.3. The field equations for spinning string fluids

The only relevant field equation that must be considered in detail is a non-zero off-diagonal
equation. In the appendix, the non-zero stress–energy components associated with the
spinning string fluid are the diagonal terms and the two off-diagonal termsTrθ and T(0ϕ)
where the parentheses enclosing the coordinates indicate that they refer to thenon-holonomic
coordinates associated with the set of tetrads that are used to diagonalize the metric. The
diagonal stress–energy tensors have a spin contribution proportional to the product of the
spin and the vorticity. The slow-rotation approximation is defined by the expansion of all
terms to first order ink and its derivatives which are also expanded to first order in the Kerr
parametera. Thus in the slow-rotation approximation, these terms will not contribute to the
diagonal stress–energy tensors, and therefore their solution will be the same as in the static
case. The same is true of the off diagonal stress–energy componentTrθ . Thus thebasic
solution for the slowly rotating black hole with a spinning string fluid will be the same as
in the static case. There will be no pressure and the energy density and string density will
be the same. However, the rotation of the black hole and the spin of the string system enter
through theG(0ϕ) field equation. At first, this may seem to be a trivial addition to the static
case; however, the addition of spin to the system producessignificantchanges in the metric
parameter ‘h’.
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4.3.1. TheG(0ϕ) field equation. TheG(0ϕ) equation obtained is given by[(
f k,r − kf,r + f

√
f Sϕr

D

)
e(β−µ)/2

]
,r

+
[(
f k,θ − kf,θ + f

√
f Sϕθ

D

)
e(β−µ)/2

]
,θ

= e(β−µ)/2
√
f Sϕ

kf,k(1− b̄)
D

(63)

where the functionD is given by

D2 = f r2 sin2(θ)+ k2 ≈ f r2 sin2(θ) (64)

to first order ink. Upon substituting the chosen spin values, theG(0ϕ) field equation becomes

(A+ 1)

(
f k,r − kf,r

sinθ

)
,r

+
(

k,θ

r2 sinθ

)
,θ

=
(
f,r (1− b̄)
f sinθ

)
A(f k,r − kf,r ). (65)

The k value for the full Kerr metric, to first order in the Kerr parametera, is variable and
proportional to sin2(θ). Making the same choice here gives

k = K(r) sin2(θ). (66)

Substituting equation (66) into (65) then yields

(A+ 1)(fK,r −Kf,r),r − 2K(r)

r2
= Af, r

f
(fK,r −Kf,r)(1− b̄) (67)

which has the solution of the form

K(r) = f rn, n 6= 0, 1 (68)

with the constraints

(A+ 1)(3− n) = A(1− b̄)
(A+ 1)n(n− 1)(1− h) = 2.

(69)

From this, it can be immediately seen whether or not the spin being a thermodynamic
variable is theoretically important in setting the range of possible solution parameters.

4.3.2. Spin is not a thermodynamic variable.If the spin is not a thermodynamic variable,
then the spin parameter̄b = 1. From equation (69), it is only possible to have the value
of n = 3. Thus there are unique relationships between theA parameter (the constant of
proportionality between the spin density and the vorticity) and the metric parameterh given
by

1− h = 1

3(A+ 1)
, (70)

k = f r3 sin2(θ), (71)

and √
f Sϕr = 3Ar2 sin2(θ). (72)
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4.3.3. Spin is a thermodynamic variable.If the spin is a thermodynamic variable, then the
spin parameter̄b = 2. There is now a family of equations parametrized byn. For eachn,
there is a single choice ofA andh such that

A = n− 3

4− n (73)

1− h = 2(4− n)
n(n− 1)

(74)

k = f rn sin2(θ) (75)√
f Sϕr = Anrn−1 sin2(θ). (76)

The functional relationship betweenh and n given by equation (74) will be important in
the discussions given below.

Since the other field equations in the slow-rotation limit are unchanged from their static
values, then the fluid parameters must also have the same forms

Sj =
(

0,− 4h

bM
, 0, 0

)
(77)

ρ = − 2h

bMr

(
1− h− 2M

r

)
. (78)

It can clearly be seen that the metric parameterh must benegativein order to get positive
energy density. From equation (74), the values ofn corresponding to negativeh are limited
to the ranges

1< n < 2.37 and −3.37< n < 0. (79)

Thus the presence of spin has restricted the possible values ofh. Note that in this model,
no spin corresponds to the single valuen = 3 which is out of the parameter range necessary
for positive density. Also the parameterA is always negative in the above ranges since the
spin opposes the vorticity.

5. Discussions and conclusions

We have developed a stress–energy tensor describing a spinning string fluid. The string fluid
can potentially have mass, stress and spin content. Although the theoretical framework
for the spinning string fluid is derived in the Riemannian spacetime of GR, the form of
energy–momentum tensor is in general valid for four cases: general relativity and the
Einstein–Cartan theory, with and without the spin treated as a thermodynamic variable.
The demonstration of the case of the EC theory in RC spacetime, which uses the extended
connection of RC spacetime, will be shown in a future work.

The application made here is the extension of a Schwarzschild black hole from a static
to a slowly rotating black hole in a stationary spacetime in GR. The off-diagonal metric is
then parametrized in terms of a parametern. The enlarged parameter content of the fluid
makes this approach a valuable tool for modelling the interactions of string structures in
stationary spacetimes. If, for example, the spin is not a thermodynamic variable, thenn = 3,
and there is a unique relationship among the spin, the vorticity and the metric parameterh

which determines the radius of the event horizon of the black hole. However, the vorticity
parameter must satisfyA 6 − 2

3 in order to ensure positive densities. The caseA = − 2
3 just

gives the Schwarzschild radius for the rotating black hole since then the metric parameter
h = 0.
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When the spin is treated as a thermodynamic variable, then equation (74) shows that
there is a family of solutions described by a range of possiblen values which give both
positive densities and spin.

The examples above shows that the extension of a black hole to a slowly rotating black
hole emphasizes the necessity of spin to maintain a positive mass density. In all cases
described above, the spin of the fluid opposes the vorticity in the region around the black
hole. Since equation (78) requiresh < 0 for positive density, then the event horizon is
contractedby the presence of the string system (except for the casen = 3). Theamount
of the contraction is determined by the spin.

Appendix

The general spacetime metric is given by

ds2 = −f dt2− 2k dt dϕ + eµ dr2+ eβ dθ2+ D
2− k2

f
dϕ2 (A1)

wheref, k, µ, β andD are considered to be functions ofr and θ . A convenient set of
tetrads for calculational purposes (not to be confused with the set of tetrads discussed in
section 1) that diagonalize the metric is given by

−ui ≡ A(0) i =
(√
f , 0, 0, k/

√
f
)

A(1) i =
(
0, eµ/2, 0, 0

)
A(2) i =

(
0, 0, eβ/2, 0

)
A(3) i =

(
0, 0, 0,−D/

√
f
)
.

(A2)

The string vector has the components

S = (0, Sr,Sθ , 0). (A3)

The tetrad indexed diagonal components of the stress–energy tensor are given by

κT(00) = ρ − 1

4
Sk ;k + 2− b

8f
f,aS

a − W0√
f

κT(11) = t(11) + b

8f
f,rS

r + b̄ Sϕ
r

2
√
fD2

[kf,r − f k,r ]

κT(22) = t(22) + b

8f
f,θS

θ + b̄ Sϕ
θ

2
√
fD2

[kf,θ − f k,θ ]

κT(33) = t(33) + b̄ Sϕ
a

√
fD2

[kf,a − f k,a]

(A4)

where the summation indexa = r, θ . Then the off-diagonal stress–energy components are
given by

κT(0)r = 0; κTr(3) = +b f,rSϕ

16
√
fD

κT(0)θ = 0; κTθ(3) = b f,θSϕ

16
√
fD

κT(03) = − 1

2
√
fD

(kW0− fWϕ)− Sϕ
af,a

4
√
fD2

(1− 2b̄);

κTrθ = b

8f
f,(rSθ) − b̄ Sϕ(θ

2
√
fD2

(f k,r) − kf,r)).

(A5)
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